

Question Paper Code: AEEB09

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER

B.Tech III Semester End Examinations, November - 2019

Regulations: R18

NETWORK ANALYSIS

(Common to EEE)

Time: 3 hours

Max. Marks: 70

[7M]

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

MODULE – I

- 1. a) Derive the condition for maximum power transfer with DC excitation and verify with an [7M] example.
 - b) In a network consisting of three parallel branches, first is defined as 100V in series with (3 + 4j) ohms, second branch 7 ohms and third branch 50V in series with (2 + 3j) ohms. Apply milliman's theorem to determine current flowing through 7 ohms.
- 2. a) State and explain the procedure to draw equivalent series circuit using Thevenin's theorem their by verify theorem with an example for DC excitation.
 - b) Determine voltage across 2+j5 using superposition theorem for circuit shown in figure 1 [7M] below?

Figure 1

MODULE – II

- 3. a) Derive the transient response for series RC circuit for AC excitation using differential [7M] equation approach.
 - b) A series R C circuit with $R = 100 \Omega$ and $C = 25 \mu F$ has a sinusoidal excitation V(t) = 250 [7M] Sin 500t. Find the total current assuming that the capacitor is initially uncharged. Use time domain approach.

a) For the circuit given in Figure 2 steady state conditions are reached for the switch K in position '1'. At t = 0, the switch is changed to position 2. Use the time domain method to determine the current through the inductor for all t≥0.

b) Derive the transient response for parallel RL circuit for DC excitation using differential [7M] equation approach.

MODULE – III

- 5. a) Define locus diagram? Draw the locus diagram of series RL circuit with variable R and [7M] constant L.
 - b) The transform voltage V(s) of a network is given by $V(s) = 4s/(s+2)(s^2+2s+2)$ plot its [7M] pole-zero diagram and hence obtain v(t).
- 6. a) What is a driving point function? Explain the necessary conditions for driving point [7M] functions.
 - b) For the network shown in figure 3 determine the following transfer functions G21 (s) and [7M] Z21 (s).

MODULE – IV

- 7. a) Obtain the expressions for Y parameters of when 2 two -port networks are [7M] connected in parallel.
 - b) Find the ABCD parameters of the circuit shown in figure 4 below.

[7M]

- 8. Give the condition for symmetry for Y parameters .Explain image parameters with a) necessary expressions.
 - For the following network shown in figure 5 determine Z parameters b)

MODULE – V

- 9. Define the term pass band? Explain the design procedure for a constant-k high pass filter [7M] a) and its characteristics.
 - A constant K low pass filter is designed to cut off at a frequency of 1000Hz and the b) [7M] resistance of the load circuit is 50ohm. Calculate the values of the corresponding components required.
- 10. a) What are desirable characteristics of ideal filter? Design m-derived low pass filter and [7M] draw its characteristics?
 - b) Design a low pass filter (both T and π sections) having a cutoff frequency of 2 KHz to operate with a terminated load resistance of 500Ω [7M]

[7M]

[7M]

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

The course should enable the students to:

Ι	Apply network theorems to obtain the equivalent circuit of electrical networks.			
II	Analyze the transient response of series and parallel RL, RC, RLC circuits for DC and AC			
	excitations.			
III	Understand the concept of locus diagram for series and parallel circuits and also network functions			
	for one port and two port networks.			
IV	Evaluate the two port network parameters and Discuss their interrelation and interconnection of			
	networks.			
V	Design different types of filters and study their characteristics.			

COURSE OUTCOMES (COs):

CO 1	Apply Thevenin's and Norton theorems to analyze and design for maximum power transfer and the concept of linearity and the associated technique of superposition to circuits and network.		
CO 2	Analyze the transient response of series and parallel circuits with DC and AC excitation using		
	differential approach and Laplace transform approach.		
CO 3	Understand the locus diagram representation and various functions of network.		
CO 4	Understand the features of two port networks and to obtain their equivalent circuits		
CO 5	Design low pass, high pass, band pass and band elimination filter networks.		

COURSE LEARNING OUTCOMES (CLOs):

AEEB09.01	Verify the law of conservation of energy, superposition principle, reciprocity and maximum power					
	transfer condition for the electrical network with DC excitation and AC Excitation.					
AEEB09.02	2 Summarize the procedure of Thevenin's, Norton's and Milliman's theorems to reduce complex					
	network into simple equivalent network.					
AEEB09.03	Estimate the transient response of series and parallel circuits with DC excitation.					
AEEB09.04	Analyze the transient response of series and parallel circuits with AC excitation.					
AEEB09.05	Evaluate the transient response of first and second order electric circuits using differential equation					
	approach.					
AEEB09.06	Determine the transient response of first and second order electric circuits using Laplace transform					
	technique.					
AEEB09.07	Explain the concept of locus diagram for series and parallel circuits.					
AEEB09.08	Generalize the concept of network functions for one port and two port networks					
AEEB09.09	Observe the Time Response From pole - zero plots.					
AEEB09.10	Examine the electric networks in time domain and frequency domain.					
AEEB09.11	Calculate Z, Y, ABCD, H and image parameters of two port network.					
AEEB09.12	Derive the condition for symmetry and reciprocity for different parameters of two port networks.					
AEEB09.13	Inter relationships between various two port networks them.					
AEEB09.14	Outline the concepts of interconnections of two port networks.					
AEEB09.15	Design of low pass, high pass, band pass, band elimination and study their characteristics.					
AEEB09.16	Apply the concept of network theorems, switching transient to solve real time world applications.					
AEEB09.17	Process the knowledge and skills for employability and to succeed national and international level					
	competitive examinations					

MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES

SEE		Course Learning Outcomes		Course	Blooms
Question				Outcomes	Lavol
1	0 a	AFFB09.01	Verify the law of conservation of energy superposition	COL	Understand
1	a	ALLD07.01	principle, reciprocity and maximum power transfer	001	Onderstand
			condition for the electrical network with DC excitation		
			and AC Excitation.		
	b	AEEB09.01	Verify the law of conservation of energy, superposition	CO1	Understand
			principle, reciprocity and maximum power transfer		
			condition for the electrical network with DC excitation		
			and AC Excitation		
2	а	AEEB09.02	Summarize the procedure of Thevenin's, Norton's and	COI	Understand
			Milliman's theorems to reduce complex network into		
	h	AFEB09 01	Verify the law of conservation of energy superposition	CO1	Understand
	U	ALLD07.01	principle reciprocity and maximum power transfer	001	Onderstand
			condition for the electrical network with DC excitation		
			and AC Excitation		
3	а	AEEB09.04	Analyze the transient response of series and parallel	CO2	Understand
			circuits with AC excitation.		
	b	AEEB09.05	Evaluate the transient response of first and second order	CO2	Remember
4		AEED00.02	electric circuits using differential equation approach.	CO2	I la douotou d
4	а	AEEB09.03	Analyze the transient response of series and parallel circuits with DC excitation	02	Understand
	b	AEEB09.05	Evaluate the transient response of first and second order	CO2	Understand
	Ũ		electric circuits using differential equation approach.	002	Chicolistano
5	а	AEEB09.07	Explain the concept of locus diagram for series and	CO3	Understand
			parallel circuits		
	b	AEEB09.07	Explain the concept of locus diagram for series and	CO3	Understand
6			parallel circuits.	<u> </u>	I In denoton d
0	а	AEEB09.08	and two port networks	005	Understand
	b	AEEB09.08	Generalize the concept of network functions for one port	CO3	Understand
			and two port networks.		
7	a	AEEB09.14	Outline the concepts of interconnections of two port	CO4	Understand
			networks.		
	b	AEEB09.11	Calculate Z, Y, ABCD, H and image parameters of two	CO4	Understand
0		AEED00 12	port network.	<u> </u>	Understand
0	a	AEED09.12	different parameters of two port networks	C04	Understand
	b	AEEB09.11	Calculate Z. Y. ABCD. H and image parameters of two	CO4	Understand
	-		port network.		
9	a	AEEB09.15	Design of low pass, high pass, band pass, band	CO5	Remember
			elimination and study their characteristics		
	b	AEEB09.15	Design of low pass, high pass, band pass, band	CO5	Understand
10	0	AEEB00 15	Design of low pass high pass hand pass hand	CO5	Domomhor
10	a	ALLD09.13	elimination and study their characteristics	005	Kemeniber
	b	AEEB09.15	Design of low pass, high pass, band pass, band	CO5	Understand
	-		elimination and study their characteristics.		