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Wattmeter 

• A wattmeter is essentially an inherent combination of an ammeter  

and a voltmeter and, therefore , consists of two coils known as  

current coil and pressure coil. 

• Wattmeter connection: 



Measurement of Power in 3-Phase Circuit 

• Measurement of power in 3-  

phase, 4-wire circuits----------- 

 
• P=W1+W2+W3 

• Measurement of power in 3-  

phase, 3-wire circuits------------- 

 
• P=W1+W2+W3 



• 3-wattmeter method of measuring  

3-phase power of delta connected 

• P=W1+W2+W3 

• 1-wattmeter method of measuring  

balanced 3-phase power (a) star  

connected, (b) delta connected 

• P=3W 



• 2-wattmeter method of measuring  

3-phase 3-wire power : 

– (a) star connected, 

– P=W1+W2 

– (b) delta connected 

– P=W1+W2 



Determination of P.F. from Wattmeter Reading 

• If load is balanced, then p.f. of the  

load can be determined from the  

wattmeter readings 

• Vector diagram for balanced star 

connected inductive load ----- 

• The watt-ratio Curve ---------- 

 
• p.f. can be determined from 

reading of two wattmeters 

W1   W2 

3W1   W2  
cos   cos tan1 





AC STEADY STATE ANALYSIS 

In AC steady state analysis the frequency is assumed constant (e.g., 60Hz).  

Here we consider the frequency as a variable and examine how the performanc  

varies with the frequency. 

Variation in impedance of basic components 

ZR  R  R0 Resistor 



ZL  jL  L90 
Inductor 



Capacitor Z  
1 

 
1 

  90 c 
jC C 



Frequency dependent behavior of series RLC network 

Z 
   1  2 

L   
jC jC 

R  j eq  

2 

 j C 

( j)  LC  jRC 1  
 j 

 
RC  j(  LC 1) 

eq 

2 2 2 

| Z |   
(RC )  (1  LC)  

C 

 

 


 

e

q 
RC 

  2 LC 1 
Z  tan1 

"Simplification in notation" j  s 

s2 LC  sRC 1 
Zeq (s)  

sC 



For all cases seen, and all cases to be studied, the impedance is of the f orm 

0 1 n b  sn  b sn1  ... b s  b n1 

a sm  a sm1  ... a s  a 
Z (s)     m m1 1 0 

1 

sC 
ZR (s)  R, ZL (s)  sL,  ZC  

Simplified notation for basic components 

Moreover, if the circuit elements (L,R,C, dependent sources) are real then the 

expression for any voltage or current will also be a rational function in s 

LEARNING EXAMPLE 

sL   1  

sC 
R 

o 

R 
V (s)  S V 

sRC 

s2 LC  sRC 1 
VS  

R  sL 1/ sC 

VS Vo  
( j )2 LC  jRC 1 

jRC 

s  j 

100 
2 3 3 ( j) (0.1 2.5310 )  j(15 2.5310 ) 1 

j(15 2.53103 ) 
Vo  



NETWORK FUNCTIONS 

INPUT OUTPUT TRANSFER FUNCTION SYMBOL 

Voltage Voltage Voltage Gain Gv(s) 

Current Voltage Transimpedance Z(s) 

Current Current Current Gain Gi(s) 

Voltage Current Transadmittance Y(s) 

When voltages and currents are defined at different terminal pairs we  

define the ratios as Transfer Functions 

If voltage and current are defined at the same terminals we define 

Driving Point Impedance/Admittance 

Some nomenclature 

 
Transadmittance 

2 

V1(s) Transfer admittance 

I  (s)  
Y  (s)  T 

Voltage gain 
V1(s) 

v G (s)  
V2 (s) 

To compute the transfer functions one must sol  

the circuit. Any valid technique is acceptable 

EXAMPLE 



LEARNING EXAMPLE 

 

Transadmittance 

1 V (s) 

Transfer admittance 

Y (s)  
I2 (s)  

T 

Voltage gain 
1 V (s) 

v G (s)  
V2 (s) 

The textbook uses mesh analysis. We will  

use Thevenin’s theorem 

sC 
T

H 

1 

1 sC sL  R 

1 
  

sLR1  Z (s)  
1 

 R  || sL  

1 sC (sL  R ) 

s2 LCR  sL  R 
1 1 ZTH (s)  

1 

1 

V (s) OC 

sL  

sL  R 
V (s)  

 

V (s)  
OC 

ZTH (s) 

 

V2 (s) 

 

R2 

I2 (s) 

 2 
R  Z (s) 

I  (s)  
2 TH 

VOC (s) 

1 

1 1 
2 

2 

1 

  sL  

sC (sL  R ) 

s  LCR  sL  R 
R  

V1(s) 
sL  R 

2 

s2 LC 

s (R1  R2 )LC  s(L  R1R2C )  R1 

YT (s)  

1 1 

v 2  T 
V (s) V (s) 

G (s)  
V2 (s) 

 
R2 I2 (s) 

 R Y (s) 

 sC (sL  R1) 

sC (sL  R1) 



POLES AND ZEROS (More nomenclature) 

a sm  a 

b  sn  b sn1  ... b s  b n n1 1  0 

sm1  ... a s  a 
H (s)     m m1 1 0 Arbitrary network function 

Using the roots, every (monic) polynomial can be expressed as a 

product of first order terms 

H (s)  K0 
(s  z1)(s  z2 )...(s  zm ) 

(s  p1)(s  p2 )...(s  pn ) 

z1, z2 ,...,zm  zeros of the network function 

p1, p2 ,..., pn  poles of the network function 

The network function is uniquely determined by its poles and zeros 

and its value at some other value of s (to compute the gain) 

EXAMPLE 

zeros : z1  1, 

poles : p1   2  j2, p2  2  j2 

H (0)  1 

0 
(s  2  j2)(s  2  j2) 

H (s)  K 0 
s2  4s  8 

(s 1) s 1 
 K 

0 8 
H (0)  K 

1 
 1  

s2  4s  8 
H (s)  8

  s 1  



7 

zero : z1   0 

poles : p1   50Hz, p2  20,000Hz 

K0  (4 10 ) 

VS (s) 
for the voltage gain G(s)  

Vo (s) 

LEARNING EXTENSIONFind the pole and zero locations and the value of Ko 

 
in in 

  sC R  

1 sCo Ro  
[1000] 

1 sCinRin  
G(s)    

  40,000  
[1000] 

 s  40,000    s 100  

  1  
 

  s  

H (s)  K0 
(s  z1)(s  z2 )...(s  zm ) 

(s  p1)(s  p2 )...(s  pn ) 
Zeros = roots of numerator 

Poles = roots of denominator 

For this case the gain was shown to be 

Variable  

Frequency  

Response 



SINUSOIDAL FREQUENCY ANALYSIS 

H (s) 

Circuit represented by 

network function 

 
 

0 

B0 cos( t  ) 

A e j ( t  ) 

 
 

0 

B0 | H ( j) | cos t   H ( j) 

A H ( j)e j ( t  ) 

Notation 

M ( ) | H ( j ) | 

 ( )  H ( j ) 

H ( j )  M ( )e j ( ) 

Plots of M (), (), as function of  are generally called 

magnitude and phase characteri stics. 

20log 
10 

10 

 () 
vs log () 

(M ()) 
BODE PLOTS 

 

 

To study the behavior of a network as a function of the frequency we analyze 

the network function H ( j) as a function of . 



HISTORY OF THE DECIBEL 

Originated as a measure of relative (radio) power 

1 P 
2  dB 1 

P | (over P )  10log 
P2 

1 

2 

1 

2 2 

I 2 V 2 R 
2  dB P  I 2 R  

V 
1 

 P | (over P )  10log 
V 2    10log 

I2  

By extension 

V |dB  20log10 |V | 

I |dB  20log10 | I | 

G |dB  20log10 | G | 

Using log scales the frequency characteristics of network functions 

have simple asymptotic behavior. 

The asymptotes can be used as reasonable and efficient approximations 



Constant Term 

Poles/Zeros at the origin 
 
 

  N 
 N 

( j) N    N 90 

| ( j) |dB   N  20log10 () 
( j)  

the x - axis is log10 

this is a straight line 



Simple zero 

Simple pole 



LEARNING EXAMPLE Generate magnitude and phase plots 

Draw asymptotes 

for each term 

Breaks/corners : 1,10,50 

dB 
40 

20 

0 

 20 

 90 

90 

0.1 1 10 100 1000 

10 |dB 

 20 dB / dec  

 45 / dec 

20dB / dec 

45 / dec 

G ( j)  10 (0.1 j 1) 
v ( j 1) (0.02 j 1) 

Draw composites 



LEARNING EXAMPLE Generate magnitude and phase plots 

Breaks (corners) :1, 10 

dB 
40 

20 

0 

 20 

 90 

 270 

90 

0.1 1 10 100 

Draw asymptotes for each 

28dB 

 40dB / dec 

180 

45 / dec 

G ( j)  25 ( j 
1) 

v 
( j)2 (0.1 j 1) 

 45 

Form composites 



LEARNING EXTENSION Sketch the magnitude characteristic 

4 
10 ( j  2) 

( j 10)( j 100) 
G( j)  

breaks : 2, 10, 100 

But the function is NOT in standard form 

Put in standard form 
We need to show about  

4 decades 

dB 
40 

20 

0 

 20 

 90 

90 

1 10 100 1000 

26 |dB 

G( j)  20

( 
j / 2 1) 

( j /10 1) ( j /100 1) 



Put in standard form 

( j 1)( j /10 1) 

j 
G( j)  

LEARNING EXTENSION Sketch the magnitude characteristic 

G( j)  10 j 

( j 1)( j 10) 

not in standard form 

zero at the origin  

breaks :1, 10 

dB 
40 

20 

0 

 20 

 270 

90 

 

 

 90 

0.1 1 
10 

100 
Once each term is drawn we form the composites 

20dB / dec 
 20dB / dec 



LEARNING EXTENSION 
Determine a transfer function from the composite 

magnitude asymptotes plot 

A 

A. Pole at the origin. 

Crosses 0dB line at 5 

j 

5 

B 

C 

D 

E 

B. Zero at 5 

C. Pole at 20 

D. Zero at 50 

E. Pole at 100 

j( j / 20 1)( j /100 1) 

5( j / 5 1)( j / 50 1) 
G( j)  

Sinusoidal 



Properties of resonant circuits 

At resonance the impedance/admittance is minimal 

Current through the serial circuit/  

voltage across the parallel circuit can  

become very large 

1 

R 0CR 
Quality Factor : Q  

0 L 
 

1 
)2 

1 

C 

jC 

| Z |2  R2  (L  

Z ( j )  R  jL  
1 

L 

jL 

| Y |2  G2  (C  
1 

)2 

Y ( j )  G   jC 

Given the similarities between series and parallel resonant circuits,  

we will focus on serial circuits 



LEARNING EXAMPLE Determine the resonant frequency, the voltage across each 

element at resonance and the value of the quality factor 

0 
 

1 

LC 
  2000rad / sec  

1 

(25103 H )(10 106 F ) 

I 

Z  2 
 

100 
 5A I  

VS 

At resonance Z  2 

0  L  (2103 )(25103 )  50 

VL  j0 LI  j50 5  25090(V ) 

1 

1 

0 

0 

I   j50  5  250  90 VC   
j C 

  L  50 
 C 0 

R 
Q  

0 L  
50 

 25 
2 

S L  0 
R 

|VC | Q |VS | 

|V |   L
VS  Q |V | 

At resonance 



Resonance for the series circuit 

1 
)2 

1 

C 

jC 

QR 

1 
0 L  QR, 0C  

At resonance : 

 
  

0 

0  

    

 0 

 R1 jQ(  ) 

Z ( j )  R  j 
 

QR  j 
0 QR 

1 

0  
1 jQ( 

  
 

0 V1 

G  
VR  v 

 

 

 

 

 

 

 
is 
 
 

) 

Z ( j )  R  jL  

 
| Z |2  R2  (L  

 
Claim: The voltage gain 

Z ( j ) 

R 

jC 

R 
v  

R  jL    
1  

G  

M () | Gv |, () | Gv 

1/ 2 

2     0 

0 

1 

 

 
  

 

   1 Q2 (  ) 
  

M ( )  

    0 

0  
 ()   tan1 ( Q 

  
 

 

BW  
0 

Q 

 
  

  
   1 

2 

  1  
0 

 

  1  

2Q  2Q  
LO     

Half power frequencie s 

G v 
 

R  

Z 



LEARNING EXTENSION A series RLC circuit as the following properties: 

R  4,0  4000rad / sec, BW 100rad / sec 

Determine the values of L,C. 

Q  
0 L 

 
1 

R 0CR LC 

1 
0  BW  

 0 

Q 

Q. 1. Given resonant frequency and bandwidth determine 

2. Given R, resonant frequency and Q determine L, C. 

Q   
0  

4000 
 40 

BW 100 

 

L  
QR 

 
40  4 

 0.040H 
0 4000 

0 0 

1 
 1.56 106 F 

1 

4 102 16 106 
  C  

 RQ 

1 

L 2 



50mH 

5 F 

when R  50 and R 1 LEARNING EXAMPLE Determine 0 , max 

1 

LC 
0  2000rad / s  

1 

(5102 )(5106 ) 
  

Q  
0 L 

 
1 

R 0CR LC 

1 
0  

0 

max 

1 

2Q2 
u  1 

 
 

max 

R 
Q  

2000  0.050 max   2000  1 1
2Q2 

R Q Wmax 

50 2 1871 

1 100 2000 

Evaluated with EXCEL and rounded to zero decimals 

Using MATLAB one can display the frequency respon se 



FILTER NETWORKS 

Networks designed to have frequency selective behavior 

COMMON FILTERS 

Low-pass filter 
High-pass filter 

Band-pass filter 

Band-reject filter 

We focus first on 

PASSIVE filters 



Simple low-pass filter 

V 
G v 

R  

1 

1 jRC 1 

jC 

1 

1 

 
V0  

  jC 
 

v 
G  

1 
;    RC 

1 j 



1 

1 

1  2 v 

Gv    ( )   tan  

M ( ) | G | 

max 
 

  

  2 
M  1,  M   

1 
   

1  

  
1 

half power frequency 
 

BW  
1 

 



Simple high-pass filter 

G  
V0  R  jCR 

v V 
1 

R  1 

jC 

1 jCR 

v 
G  

j 
;   RC 

1 j 

2 

 

1  2 

v 

v 

G   ( )  
 

 tan1  

M ( ) | G | 

1 
max 

 

     

  2 
M  1,  M   

1 
  

  
1 

half power frequency 
 

 
 

1 
LO 



Simple band-pass filter 

Band-pass 

 
  

 

G v 

C  
R  jL  

1 V1 

 
V0  

  R  

RC 2    2 LC 12 

RC 
M ()  

1 
  1 

    

LC  
M   

 
M (  0)  M (  )  0 

  0 

2 

 (R / L)  R / L2  4 2 

LO  

LC 

1 
0  

2 2 

    0 

2 

(R / L)  R / L  4 
HI 

BW  HI   LO  R 

L 

1 

2 
HI LO  M ( ) M ( )  



Simple band-reject filter 

0 0 
 0  

1 

LC  C 
 

 1  
 j   L   0   

at   0 the capacitor acts as open circuit V0  V1 

at    the inductor acts as open circuit V0  V1 

band - pass filter 

are determined as in the LO , HI 



LEARNING EXAMPLE Depending on where the output is taken, this circuit 

can produce low-pass, high-pass or band-pass or band- 

reject filters 

Band-pass 

Band-reject filter 

 
 VS 

C  
R  jL  

 

VL  
  jL  

  1   
VL   0 0, 

VL (  )  1 

VS VS 
High-pass 

 

VC 

1 


  jC  

R  jL  
1  

  
 C  

VS 

VC   0 1, 
VC (  )  0 
VS VS 

Low-pass 

Bode plot for R 10, L 159H, C 159 F 



Ideal Op-Amp 

ACTIVE FILTERS 

 
Passive filters have several limitations 

 

1. Cannot generate gains greater than one 

 

2. Loading effect makes them difficult to interconnect 

 

3. Use of inductance makes them difficult to handle 

Using operational amplifiers one can design all basic filters, and more, 

with only resistors and capacitors 

The linear models developed for operational amplifiers circuits are valid, in a 

more general framework, if one replaces the resistors by impedances 

 

These currents are 

zero 



Laplace Circuit Analysis 

Circuit Element Modeling 

 

 
i(t) 

 

 
 

I(s) 

+ + v(t)

 
_ 

V(s) _ 



Laplace Circuit Analysis 

Circuit Element Modeling 

Resistance 

R 

G 

+ 

_ 

+ 

v(t) = Ri(t) 

s) R 
V(s) = RI( 

_ 

V(s) = 
I(s) + 

G _ 

+ 

_ 

+ 

_ 

 

+ 

_ 

v(t) 

V(s) 

V(s) 

Time Domain 

Complex Frequency Domain 



Laplace Circuit Analysis 

Circuit Element Modeling 

Inductor 

_ 

+ i(t) 

I(s) 

VL(s) 

+ 

I(s) 
sL 

_ 
Li(0) 

+ 

VL(s) = sLI(s) - Li(0) 

i(0) 
VL(s)  s 

_ 

+ 

_ 

sL 

Best for mesh 

Best for nodal 

v t= L
di(t) 

L dt 



Laplace Circuit Analysis 

Capacitor 
+ 

_ 

+ 

_ 

VC(s) 

 1 
sC 

+ 

_ 

i(t) 

V  (0) C 

s 

I(s) 

C V  (s)  = 
I(s) vc(0) 

+ 
sC s 

vc(0)C 

+ 

_ 

vC(s) 

I(s) 

1 

sC 

Mesh 

Nodal 

0 
c c v  (t)  1 t i(t)dt  v (0) 

C  



Laplace Circuit Analysis 

  

+ + 

_ 

i2(t) L1 L2 

  

+ 

_ 

+ 

_ 

I1(s) 
I2(s) sL1 sL2 

sM 

v1(t) i1(t) 

 
_ 

v2(t) 

L1 i(0) + M  i2(0) 
_ + 

L2 i2(  0   )M +i1(0) 

+ 
_ 

V1(s) V2(s) 

Linear Transformer 

M 

1 1 
dt dt 

v (t)  L 
di1 (t)  M 

di2 (t) 

V1 (s)  sL1 I1 (s)  L1i1 (0)  sMI2 (s)  Mi2 (0) 

v2 (t)  L2 

di2 (t)  M 
di1 (t) 

dt dt 

V2 (s)  sL2 I2 (s)  L2i2 (0)  sMI1 (s)  Mi1 (0) 



Laplace Circuit Analysis 

Time domain to complex frequency domain 

R ! R 2 

+ 

_ 

_ 

+ 

C2 

L 2 

C1 

VA(t) VB(t) L 1 

1 i (t) 

i2(t) 

+ 
_ 

_ 
v1(0) 

v2(0) 

+ 

R! R2 sL2 

sL1 

+ 

_ 

+ 

_ 

+ 
_ + 

_ 

_ 

+ 

1 

sC1 

1 

sC2 

VA(s) VB(s) 

v1(0) 

s 

2 v (0) 

s 

2 2 L i (0) 

+  

L1i1(0) 
_ 



Laplace Circuit Analysis 

Circuit Application: 

Given the circuit below.  Assume zero IC’s. Use Laplace to find vc(t). 

The time domain circuit: 

+ 

_ 

2u(t) V 

100  

0.001 F 

+ 

vc(t) 

_ 

t = 0 

+ 

_ 

100  

+ 

t = 0 

Vc(s) 

_ 

2 

s s 
1000 

I(s) 

Laplace circuit 

 
   
 2  1000  

20 

s(s  10) 
V (s)  

100  
1000 

s 

s 
V (s)   s  

c 

c 



Laplace Circuit Analysis 

Circuit Application: 

+ 

_ 

100  

+ 

t = 0 

Vc(s) 

_ 

2 

s 

1000 

s I(s) 

c 

c 

v (t )  2         2e10t u(t ) 

 
2 

 
2 

s s  10 

20 

s(s  10) 
V (s)  



Laplace Circuit Analysis 

Circuit Application: 

Given the circuit below.  Assume vc(0) = - 4 V. Use Laplace to find vc(t). 

The time domain circuit: 

+ 

_ 

2u(t) V 

100  

0.001 F 

+ 

vc(t) 

_ 

+ 

_ 

100  

+ 

t = 0 

t = 0 

Vc(s) 

_ 

_ 

+ 
s 
4 

2 

s 

1000 

s 
I(s) 

Laplace circuit: 

100 
 

 
1000 

6 

s  10 

 

 

100I (s)  

s 

2 
 

4 
 I (s)

 

s

 

s 



Laplace Circuit Analysis 

Circuit Application: 

+ 

_ 

100  

+ 

t = 0 

Vc(s) 

_ 

_ 

+ 

2 

s 

1000 

s 

4 

s 

I(s) 

s 

c 
 V (s) 

c 

 

 

2 
 

6 

s s  10 

2 
 100I (s)  V  (s)  0 

c 

c 

v(t )  2  6e10t u(t ) 

6 

s s  10 
V  (s)   

2 
 

 A 
 

  

 B   s  

 s  10 

s(s  10) 
V  (s)  

 4s  20 
 

Check the boundary conditions 

vc(0) = - 4 V 

vc(oo) = 2 V 

1 

2 

3 



Laplace Circuit Analysis 

Circuit Application: 

+ 

_ 
e-tu(t) 

1  2  

4u(t) 1  

2 H 

1 F 

+ 

_ 

1  2  

1    1  

s 

1 

s+1 

2s 

4  

s 1 I (s) 2 I (s) 3 I (s) 

i0 (t) 

Time  Domain 

Laplace 

Find i0(t) using Laplace 



Circuit Application: Find i0(t) using Laplace 

+ 

_ 

1  2  

1  1 

s 

1 

s+1 

2s 

4  

s 1 I (s) 2 I (s) 3 I (s) 

Mesh 1 

2 

1 
 

(s  1) I (s)  I (s)  4 
1 2 

4 

s s 

I (s)  1) 
I (s)  

s 

(s 

Laplace Circuit Analysis 



+ 

_ 

1  2  

1    1  

s 

1 

s+1 

4  

s 1 I (s) 2 I (s) 3 I (s) 

Circuit Application: Find i0(t) using Laplace 

Laplace Circuit Analysis 

Mesh 2 

s s 

s s 

s  1 

 0 
s  1 

s 

1  1 
I  (s)  

3s  1 
I (s)  

 1 
I  (s)  

3s  1 
I (s)  I (s)  0 

 (s  1)I (s)  (s  1)(3s  1) I (s)  s 
1 2 

 I (s)  (3s  1) I (s)  
1 2 

1 2 

1 2 3 



Circuit Application: Find i0(t) using Laplace 

Laplace Circuit Analysis 

+ 

_ 
1  1 

s 

1 

s+1 

4  

s 1 I (s) 2 I (s) 3 I (s) 

(s  1) I (s)  I (s)  4 
1 2 

 (s  1)I (s)  (s  1)(3s  1) I (s)  s 
1 2 

Add these 2 

equations 

2 
s(3s  4) I (s)  s  4 



Circuit Application: Find i0(t) using Laplace 

Laplace Circuit Analysis 

+ 

_ 
1  1 

s 

1 

s+1 

4  

s 1 I (s) 2 I (s) 3 I (s) 

2 
s(3s  4) I (s)  s  4 

3 

2 
1 

2 

2 

1 

s 

i (t ) [1  
2 

e
 4

3 
t 
]u(t ) 

  3  

s  43 s(s  43) 

(s  4) 
I (s)   3  

Is final value of  

i2(t) reasonable? 



FILTER NETWORKS 

Networks designed to have frequency selective behavior 

COMMON FILTERS 

Low-pass filter 
High-pass filter 

Band-pass filter 

Band-reject filter 

We focus first on 

PASSIVE filters 



Simple low-pass filter 

V 
G v 

R  

1 

1 jRC 1 

jC 

1 

1 

 
V0  

  jC 
 

v 
G  

1 
;    RC 

1 j 



1 

1 

1  2 v 

Gv    ( )   tan  

M ( ) | G | 

max 
 

  

  2 
M  1,  M   

1 
   

1  

  
1 

half power frequency 
 

BW  
1 

 



Simple high-pass filter 

G  
V0  R  jCR 

v V 
1 

R  1 

jC 

1 jCR 

v 
G  

j 
;   RC 

1 j 

2 

 

1  2 

v 

v 

G   ( )  
 

 tan1  

M ( ) | G | 

1 
max 

 

     

  2 
M  1,  M   

1 
  

  
1 

half power frequency 
 

 
 

1 
LO 



Simple band-pass filter 

Band-pass 

 
  

 

G v 

C  
R  jL  

1 V1 

 
V0  

  R  

RC 2    2 LC 12 

RC 
M ()  

1 
  1 

    

LC  
M   

 
M (  0)  M (  )  0 

  0 

2 

 (R / L)  R / L2  4 2 

LO  

LC 

1 
0  

2 2 

    0 

2 

(R / L)  R / L  4 
HI 

BW  HI   LO  R 

L 

1 

2 
HI LO  M ( ) M ( )  



Simple band-reject filter 

0 0 
 0  

1 

LC  C 
 

 1  
 j   L   0   

at   0 the capacitor acts as open circuit V0  V1 

at    the inductor acts as open circuit V0  V1 

band - pass filter 

are determined as in the LO , HI 



LEARNING EXAMPLE Depending on where the output is taken, this circuit 

can produce low-pass, high-pass or band-pass or band- 

reject filters 

Band-pass 

Band-reject filter 

 
 VS 

C  
R  jL  

 

VL  
  jL  

  1   
VL   0 0, 

VL (  )  1 

VS VS 
High-pass 

 

VC 

1 


  jC  

R  jL  
1  

  
 C  

VS 

VC   0 1, 
VC (  )  0 
VS VS 

Low-pass 

Bode plot for R 10, L 159H, C 159 F 



Ideal Op-Amp 

ACTIVE FILTERS 

 
Passive filters have several limitations 

 

1. Cannot generate gains greater than one 

 

2. Loading effect makes them difficult to interconnect 

 

3. Use of inductance makes them difficult to handle 

Using operational amplifiers one can design all basic filters, and more, 

with only resistors and capacitors 

The linear models developed for operational amplifiers circuits are valid, in a 

more general framework, if one replaces the resistors by impedances 

 

These currents are 

zero 
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DC TRANSIENT ANALYSIS 
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SUB - TOPICS 

 NATURAL RESPONSE OF RL CIRCUIT 

 NATURAL RESPONSE OF RC CIRCUIT 

 STEP RESPONSE OF RL CIRCUIT 

 STEP RESPONSE OF RC CIRCUIT 
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OBJECTIVES 

 To investigate the behavior of currents and  

voltages when energy is either released or  

acquired by inductors and capacitors when  

there is an abrupt change in dc current or  

voltage source. 

 To do an analysis of natural response and  

step response of RL and RC circuit. 
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FIRST – ORDER CIRCUITS 

A circuit that contains only sources,  

resistor and inductor is called and RL  

circuit. 

A circuit that contains only sources,  

resistor and capacitor is called an RC  

circuit. 

 RL and RC circuits are called first – order  

circuits because their voltages and  

currents are describe by first order  

differential equations. 
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vs 

R 

C 

i 

An RL circuit An RC circuit 

L 

R 

i 

Vs 
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Review (conceptual) 

 Any first – order circuit can be reduced to a 

Thévenin (or Norton) equivalent connected to either 

a single equivalent inductor or capacitor. 

- In steady state, an inductor behave like a short circuit. 

- In steady state, a capacitor behaves like an open circuit. 

L RN IN VTh C 

RTh 



 The natural response of an RL and RC  

circuit is its behavior (i.e., current and  

voltage ) when stored energy in the  

inductor or capacitor is released to the  

resistive part of the network (containing no  

independent sources) 

 The steps response of an RL and RC  

circuits is its behavior when a voltage or  

current source step is applied to the  

circuit, or immediately after a switch state  

is changed. 
65 
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NATURAL RESPONSE OF AN  

RL CIRCUIT 
 Consider the following circuit, for which the  

switch is closed for t<0, and then opened at t =  

0: 

 The dc voltage V, has been supplying the RL  

circuit with constant current for a long time 

L Ro R Is 

t = 0 i + 

V 

– 



Solving for the circuit 
 For t ≤ 0, i(t) = Io 

 For t ≥ 0, the circuit reduce to 

is used to denote the time immediately after switching. 
67 

L Ro R Io 

i + 

v 

– 

 0
  

Notation: 

0   is used to denote the time just prior to switching. 
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Continue… 

 Applying KVL to the circuit: 

dt 

dt 

di(t) 
  

R 
dt  

i(t) L 

L 
di(t) 

 Ri(t) 

L 
di(t) 

 Ri(t)  0 

v(t)  Ri(t)  0 

(4) 

(3) 

(1) 

(2) 



Continue 

 From equation (4), let say; 

 Integrate both sides of equation (5); 

Where: 

i(to) is the current corresponding to time to 

i(t) ia the current corresponding to time t 

69 

u L 

du 
  

R 
dv (5) 

t 

o o 

  t 
dv 

u L 

du R i(t ) 

i(t ) 
(6) 
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Continue 

 Therefore, 

ln 
i(t) 

  
R 

t  
i(0)  L 

 hence, the current is 

(7) 

0 
i(t)  i(0)e( R / L)t  I e( R / L)t 
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Continue 

From the Ohm’s law, the voltage across  

the resistor R is: 

0 
v(t)  i(t)R  I Re( R / L)t 

 And the power dissipated in the resistor is: 

 

p  v  i(t)  I 2   Re2( R / 
L)t 

R 0 
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Continue 

 Energy absorb by the resistor is: 

2 
0 

w  
1 

LI 2 (1 e2(  R / L) t  ) 
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Time Constant, τ 

 Time constant, τ determines the rate at which 

the current or voltage approaches zero. 

 Time constant, (sec)    
L  

R  
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 The expressions for current, voltage, power  

and energy using time constant concept: 

2 
0 

0 

t / 

t / 

w  
1 

LI 2 (1 e2 t  / ) 

p  I 2 Re2 t  / 

v(t)  I 0 Re 

i(t)  I0e 
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Switching time 

 For all transient cases, the following instants of 

switching times are considered. 

 t = 0- , this is the time of switching between -∞ to  

0 or time before. 

 t = 0+ , this is the time of switching at the instant  

just after time t = 0s (taken as initial value) 

 t = ∞ , this is the time of switching between t = 0+ 

to ∞ (taken as final value for step response) 



76 

 The illustration of the different instance of 

switching times is: 

t   0  t   0  

-∞ ∞ 
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Example 

 For the circuit below, find the expression  

of io(t) and Vo(t). The switch was closed for  

a long time, and at t = 0, the switch was  

opened. 

2H 0.1Ω 10Ω 20A 

t = 0 

i0 

+ 

V 

– 
iL 

40Ω 

2Ω 
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Solution : 
Step 1: 

Find τ for t > 0. Draw the equivalent circuit. The 

switch is opened. 

So; 

sec 

RT  (2 10 // 40)  10 

RT 10 
  

L 
 

2 
 0.2 
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Step 2: 

At t = 0- , time from -∞ to 0-, the switch was closed 

for 

a long time. 

The inductor behave like a short circuit as it being 

supplied for a long time by a dc current source. 

Current 

20A thus flows through the short circuit until the  

switch 

0.1Ω 10Ω 20A 
iL(0-) 

40Ω 

2Ω 
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Step 3: 

At the instant when the switch is opened, the time t = 0+, 

The current through the inductor remains the same 

uous). (contin 

Thus, which is the initial 

current. 

 
Only at this particular instant the value of the current through 

the 

inductor is the same. 

Since, there is no other supply in the circuit after the switch is 

2H 10Ω 20A 

io(0+) 

+ 

o v (0+) 

– 
L i (0+) 

40Ω 

2Ω 

i (0  )  i (0  )  20A  
L L  
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By using current division, the current in the 40Ω  

resistor 

is: 

So, 

So, 

10 io   iL  4A 
10  40 

o i (t)  4e5t A 

Using Ohm’s Law, the Vo is: 

Vo (t)  4 40  160 

0 V (t)  160e5t 
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NATURAL RESPONSE OF AN RC  

CIRCUIT 

 Consider the following circuit, for which the switch is 

closed for t < 0, and then opened at t = 0: 

C 

Ro 

R Vo 

t = 0 
+ 
 

+ 

v 

– 

Notation: 

 0- is used to denote the time just prior to switching 

 0+ is used to denote the time immediately after switching. 
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Solving for the voltage (t ≥ 0) 

+ 

v 

– 

C 

Ro 

R Vo 

+ 
 

 For t ≤ 0, v(t) = Vo 

 For t > 0, the circuit reduces to 

i 



84 

Continue 
 Applying KCL to the RC circuit: 

iC  iR  0 (1) 

C 
dv(t) 

  
v(t) 

  0 
dt R  (2) 

dv(t) 
 

v(t) 
 0 

dt RC 
(3) 

dv ( t )  
    

v ( t )   

dt  R C  (4) 

dt 
dv(t) 

    
1 

v (t ) RC 
(5 

) 



85 

Continue 
 From equation (5), let say: 

 Integrate both sides of equation (6): 

dy 
x RC 

dx 
    

1 (6) 

t 

V  
du       dy  

x RC  o  0 

1 v ( t  ) 1 
(7) 

R C  V o  

 Therefore: 

ln  
v ( t )  

    
t  

(8) 
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Continue 

 Hence, the voltage is: 

o 
 V et / RC v(t)  v(0)et / RC 

 Using Ohm’s law, the current is: 

 

 

i(t)  
v(t) 

 
Vo et / RC 

R R 
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Continue 
 The power dissipated in the resistor is: 

 The energy absorb by the resistor is: 

R 
o 

R 

V 2 

e2t / RC p(t)  vi  

2 
o 

w  
1 

CV 2 (1 e2t / RC ) 
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Continue 

 The time constant for the RC circuit equal the 

product of the resistance and capacitance, 

 

 Time constant,  RC sec 



89 

 The expressions for voltage, current, power and  

energy using time constant concept: 

2 
o 

o 

o 

R 

V 2 

R 

e2 t  / 

w(t)  
1 

CV 2 (1 e2 t  / ) 

e t  / 

 

p(t)  

i(t)  
Vo 

v(t)  V e t  / 
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 For the case of capacitor, two important 

observation can be made, 

1)capacitor behaves like an open circuit when  

being supplied by dc source 

(From, ic = Cdv/dt, when v is constant, dv/dt = 0.  

When current in circuit is zero, the circuit is open  

circuit.) 

 
2) in capacitor, the voltage is continuous / stays 

the same that is, Vc(0+) = Vc(0-) 
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Example 

The switch has been in position a for a long time. 

At 

Time t = 0, the switch moves to b. Find the  

expressions 

for the vc(t), ic(t) and vo(t) and hence sketch them 

for t = 

0 to t = 5τ. t = 0 
+ 
 

+ 

Vo 

– 
10kΩ 

a b 5kΩ 18kΩ 

0.1μF 
12kΩ 60kΩ 90V 
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Solution 
Step 1: 

Find t for t > 5τ that is when the switch was at a. 

Draw 

the equivalent circuit. 

RT   (18k 12k) // 60k   20k 

18kΩ 

0.1μF 12k 

Ω 
60kΩ 

T   R C  20103  0.1106  2ms 
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Step 2: 

At t = 0, the switch was at a. the capacitor behaves 

like 

An open circuit as it is being supplied by a 

+ 
 

+ 

Vc(0- 

) 

– 

5kΩ 

10kΩ 

constant 

source. 
90V 

c 
15 

v (0 )  
10 

 90  60V 
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Step 3: 

At t = 0+, the instant when the switch is at b. 

The voltage across capacitor remains the same at 
this 

particular instant. 

vc(0+) = vc(0-) = 60V 

18kΩ 

0.1μF 12k 

Ω 
60kΩ 

+ 

Vo 

– 

+ 

60V 

– 
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Using voltage divider rule, 

Hence; 

o 
30 

12 
 60  24V V (0 )   

c 

o 

c 

i (t)  0.03e500 t  A  

v (t)  24e500 tV 

v (t)  60e500 tV 
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Summary 

No RL circuit 

1 

2 Inductor behaves like a  

short circuit when being  

supplied by dc source for a  

long time 

3 Inductor current is 

continuous 

iL(0+) = iL(0-) 

RC circuit 

  RC 

 
Capacitor behaves like an  

open circuit when being  

supplied by dc source for a  

long time 

Voltage across capacitor is 

continuous 

vC(0+) = vC(0-) 

R 
  

L 
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Step Response of RL Circuit 

 After switch is closed, using KVL 

dt 
s V  Ri(t)  L 

di 

R 
Vs 

t = 0 
+ 

v(t) 

– 

+ 
 

 The switch is closed at time t = 0. 
i 

L 

(1) 
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Continue 
 Rearrange the equation; 

   
R  L  L dt 

i(t)  
 Ri(t) Vs  R  Vs   di(t) 

dt s 
 
 

 
L  R  

 
i  

 R V 
di  

di 

L 
R 

dt 

 
(4) 

(3) 

(2) 

  
i(t ) 

s 
u  (V R) 

i(t) Vs R 

du 
t 

dv   
0 0 L 

R 
(5) 
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Continue 
 Therefore: 

 Hence, the current is; 

L I0   (Vs R) 

 R 
t  ln 

i(t)  (Vs R) 
(5) 

s 
o 

e 
V ( R / L)t 

 
R  

  i(t)  
Vs   I  
R  

 The voltage; 

v(t)  (V  I R)e( R / L)t 

s o 
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Example 

2Ω 
10V 

The switch is closed for a long time at t = 0, the 

switch 

opens. Find the expressions for iL(t) and vL(t). 
t = 0 

+ 
 

3Ω 

1/4H 
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Solution 
Step 1: 

Find τ for t > 0. The switch was opened. Draw the 

equivalent circuit. Short circuit the voltage source. 

2Ω 3Ω 

RT  20 

L 
 

1 
s 

1/4H 

 

 

RT  (2  3)  5 

  
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Continue 
Step 2: 

At t = 0-, the switch was closed. Draw the 

equivalent 

circuit with 3Ω shorted and the inductor behaves 

2Ω like a 

short circuit. 10V 
+ 
 L i (0-) 

 

iL (0 )  10 / 2  5A 
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Continue 

like a 

short circuit. 

Step 3: 

At t = 0+, the instant switch was opened. The  

current in 

inductor is cIontini u(o0us). i (0 )  5A 
0 L L 

 

 

 

Step 4: 

At t =∞, that is after a long time the switch has been  

left 

opened. The inductor will once again be behaving 
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Continue 

Hence: 

R 

( R / L)t 

R  

Vs Vs    Io   e 
 

iL (t)  

2Ω 
10V 

+ 
 

3Ω 

L i (∞) 

iL ()  Vs / RT  2A 

2 0t iL (t )   2    3e A  
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Continue 

 And the voltage is: 

 

v  (t)  (V  I   R)e( R / 
L)t 

L  s  o 

20t vL (t)  15e V 
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Step Response of RL Circuit 
 The switch is closed at time t = 0 

 From the circuit; 

R 

t = 0 + 

vc(t) 

– i 

Is C 

I 
s 

 C 
dvc  

vc 

dt R  
(1) 
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Continue 

 Division of Equation (1) by C gives; 

 Same mathematical techniques with RL, the  
voltage is: 

 And the current is: 

Is  
dvc   

vc  

C  dt  RC 

t / RC vc (t)  Is R  (Vo  Is R)e 

(2) 

o 
V t / RC 

e 
R  

 
 s 

 

 
i(t)  I

  
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Example 

The switch has been in position a for a long time. At t 

= 0, 

the switch moves to b. Find Vc(t) for t > 0 and  

calculate its 

t = 0 
+ 
 

+ 

Vc 

– 

5kΩ 

value at t =3k1Ωs      and t = 4s.a b 4kΩ 

0.5mF 

24V 
+ 
 30V 
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Solution 

Step 1: 

To find τ for t > 0, the switch is at b and short circuit  

the 

voltage source. 
4kΩ 

0.5mF 

 
 

  RC  2s 
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Continue 

Step 2: 

The capacitor behaves like an open circuit as it is  

being 

supplied by a con3ksΩtant  dc source. 

+ 
 

+ 

Vc (0-) 

– 

5kΩ 24V 

c 
8 

From the circuit, 
V (0 )  24 

5 
 15V 
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Continue 

Step 3: 

At t = 0+, the instant when the switch is just moves  

to b. 

Vc (0 )  Vc (0 )  15V 
Voltage acrosscapacitor remains the same. 

Step 4: 

At t = ∞, the capacitor again behaves like an open 

circuit since4kitΩis being supplied by a constant 

+ 
 30V 

source. 
+ 

Vc(∞) 

– 

Vc ()  30V 
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Continue 

Step 5:  

Hence, 

At t = 1s, Vc(t) = 20.9V 

At t = 4s, Vc(t) = 28 V 

c 
V (t)  30  (15  30)e0.5t  30 15e0.5tV 
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Introduction to Three-Phase Power 



114 

Typical Transformer Yard 
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Basic Three-Phase Circuit 
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What is Three-Phase Power? 

• Three sinusoidal voltages of equal  

amplitude and frequency out of phase with  

each other by 120°. Known as “balanced”. 

• Phases are labeled A, B, and C. 

• Phases are sequenced as A, B, C  

(positive) or A, C, B (negative). 
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Three-Phase Power 
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Definitions 

• 4 wires 

– 3 “active” phases, A, B, C 

– 1 “ground”, or “neutral” 

• Color Code 

– Phase A 

– Phase B 

– Phase C 

– Neutral 

Red  

Black  

Blue 

White or Gray 
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Phasor (Vector) Form for abc 

Va=Vm/0° 

Vb=Vm/-120° 

Vc=Vm/+120° 
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Phasor (Vector) Form for abc 

Va=Vm/0° 

Vc=Vm/+120° 

Vb=Vm/-120° 

Note that KVL applies .... Va+Vb+Vc=0 
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Three-Phase Generator 

• 2-pole (North-South)  

rotor turned by a  

“prime mover” 

• Sinusoidal voltages  

are induced in each  

stator winding 
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How are the sources connected? 

• (a) shows the sources  

(phases) connected in  

a wye (Y). 

– Notice the fourth  

terminal, known as  

Neutral. 

• (b) shows the sources  

(phases) connected in  

a delta (∆). 

– Three terminals 
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Look at a Y-Y System 
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Definitions 

• Zg represents the internal  
generator impedance per  
phase 

• Zl represents the  
impedance of the line  
connecting the generator  
to the load 

• ZA,B,C represents the load 
impedance per phase 

• Zo represents the  
impedance of the neutral  
conductor 
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Look at the Line and Load Voltages 
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VAB  

VBC 

 VAN VBN 

 VBN VCN 

VCA  V VAN 
CN 

Line Voltages Phase Voltages 
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-VBN 

Vector addition to find VAB=VAN-VBN 
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-VBN 

Using the Tip-to-Tail Method 

VΦ = Line-to-Neutral, 

or Phase Voltage 

 

 

VAB = VAN – VBN = √3VΦ 
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Conclusions for the Y connection 

• The amplitude of the line-to-line voltage is  

equal to √3 times the amplitude of the  

phase voltage. 

• The line-to-line voltages form a balanced  

set of 3-phase voltages. 

• The set of line-to-line voltages leads the  

set of line-to-neutral (phase) voltages by  

30°. 
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Summary 
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Look at the Delta-Connected Load 
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I AB  I 0 

I  I  120 
BC 

ICA  I 120 
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IaA   IAB   ICA 

I  IBC   IAB 
bB 

 

IcC  ICA   IBC 

Line Currents Phase Currents 
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-ICA 

Vector Addition to find IaA=IAB-ICA 
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-ICA 

Using the Tip-to-Tail Method 

IaA = √3IΦ/-30° 
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Conclusions for the Delta Connection 

• The amplitude of the line current is equal 

to √3 times the phase current. 

• The set of line currents lags the phase 

currents by 30°. 



Fourier analysis deals with the representation of signals by sinewave  

components. The simplest type of Fourier analysis is that of the  

Fourier series where a periodic signal x(t) is represented as a sum  

of sinewaves. 

x (t )= ∑ sine waves . 



The sine waves could be sin (), cos () or a combination thereof: 

e j( )= cos( )+ j sin ( ). 

The sine wave components in the summation will be a complex sine 

wave at various frequencies: 

e 
jnω0 t n= 0, ± 1, ± 2, … 



2π 
ω0≡ 

T 

The complex sinewave frequencies are integral multiples of 

Where T is the period of the signal to be represented. 

x ( t )=  x ( t +T ) . 



The weights or coefficients Xn  are found from 

 1 
X n= 

T 
∫ − T / 2 

T / 2 − jnω0 t 

x ( t ) e dt . 

∞ 

x ( t )= ∑ X n e 
n= − ∞ 

0 
jn ω t 

, 

The resultant summation is a weighted sum of the complex 

sinewaves ej0t : 



w . . . . . . 

0 

X0 X 1 X 2 

X-1 X-2 

X3 X-3 

20 30 20 0 30 

The weights Xn  correspond to the magnitudes of the frequency 

components of the spectrum of x(t). 

 

 
X(w) 



Example: Find the Fourier series for the following function: 

x(t) 

t . . . . . . 

T 

x ( t )= ∑ 
n= − ∞ 

∞ 

δ ( t − nT ) . 



Solution: this function is clearly periodic. We calculate the 

coefficients as follows: 

X n = 
 1 

T 
∫ − T / 2 

T / 2 

x ( t ) e 
− jn ω0 t dt 

= 
 1 

T 
∫ − T / 2 

T / 2 δ ( t ) 
− jn ω0 t 

e dt 

= 
1 

T 
∫ − T / 2 

T / 2 − jn ω0 ( 0) 

δ ( t ) e dt 



T 
= 

1 
e 

− jn ω0 ( 0 ) 

∫ 
− T /2 

T / 2 

δ ( t ) dt 

= 
1 

( 1 )( 1)= 
1 

. 
T T 

So, 

1 0 
jn ω t 

∞ 

x ( t )= ∑ T 
e = 

n= − ∞ 

1 

T 

∞ 

∑ 
n = − ∞ 

e 0 
jn ω t 

. 



X(w) 

w . . . . . . 

w0 



Example: Find the Fourier series for the following function: 

T 

1 

 

 
-1 

Solution: The coefficients are calculated in much the same way as  

before. 



X n = 
 1 

T 
∫ 

0 

T 

x ( t ) e 
− jn ω0 t dt 

= 
 1 

T 
∫ 

0 

T / 2 

( 1 ) e 
− jn ω0 t 

T 
dt + 1 ∫ 

T / 2 

T 

(− 1) e 
− jnω 0 t 

dt 

= 
1 1 

T (− jn ω0 ) 

− jn ω0 t 

e ∣ 
0 

T / 2 

− 
1 1 

T (− jn ω0 ) 
e 

− jnω0 t ∣ 
T / 2 

T 

= 
T (− jn ω0 ) 

 1  1 [e 
− jn ω0 T / 2

− e− j0 − e 
− jnω 0 T 

+ e 
− jnω0 T / 2 ] 



= 
T (− jn ω0 ) 

 1  1 [e− jn π − e− j0− e− jn 2π + e− jn π ] 

= 
T (− jn ω0 ) 

 1  2 [e− jn π − e− j0 ] 

= 
 1  2 [e−  j0− e− jn π ] 
T ( jn ω0 ) 

= 
( jn π ) 

  1 [1− e−  jn π ] 

= 
( jn π ) 

  1 [1− (− 1 )n ]. 



n X = {  
2 

j n π 
( n odd) , 

0 ( n even ) . 

Thus, 

x ( t)= 
  2  ∑ 
j π n= − ∞ 

n odd 

∞ 1 

n 
e 

jn Ω0 t . 



w 
. . . . . . 

w0 

1 1 

3w0 -w0 -3w0 

The spectrum of the square wave is shown below 

 

 

|X(w)| 

5w0 
-5w0 

1 

3 
1 

5 

1 

3 1 

5 



Fourier Transforms 

Fourier transforms allow the frequency analysis of non-periodic as well  

as periodic functions. The Fourier transformation is derived from  

Fourier series. 

To derive the Fourier transform, let us take the Fourier series, and 

take the limit as T∞.  As T∞, we also have 00 (since 02T 



If we let 0   , T=2p/w and cnT = X(n), we have 

X (n Δω)= ∫ 
∞ 

− ∞ 
x (t ) e − jn Δ ωt dt . 

and, 

Δω→0 2 π n= − ∞ 

∞ 

x ( t )= lim 
1  ∑ X ( n Δω) e jn Δ ωt Δ ω . 



This last expression is a Riemann sum which is a definite integral: 

2 π 
x ( t )=  

1 ∫ 
∞ 

− ∞ 
X ( ω) e j ωt d ω, 

where w = n.  Using this last piece of notation in X(n), we have 

X (ω)= ∫ 
∞ 

− ∞ 
x ( t )e − j ωt dt . 



This last expression is the definition of the Fourier transform of x(t): 

F {x (t )} ≡ X (ω)= ∫ 
∞ 

− ∞ 
x (t )e − j ωt dt . 



− 1 
F {X ( ω)} = x ( t )= 

  1  

2 π 
∫ 

∞ 

− ∞ 
X ( ω) e j ωt d ω . 

In the process of deriving and expression for the Fourier transform, we  

have also derived an expression for the inverse Fourier  

transformation: 



Example: find the Fourier transform of a delta function, x(t)=(t). 

(t) 

t 

 

 

Solution: using the definition of the Fourier transform, we have 

X (ω)= F { δ (t )}= ∫ 
∞ 

− ∞ 
δ( t )e − j ωt dt 



∞ 
= ∫ − ∞ 

δ ( t ) e 
− j ω( 0 ) 

dt 

e−  j ω( 0 )∫ 
∞ 

− ∞ 
δ ( t ) dt = 

= ( 1 )( 1 )= 1 . 



As corollary of this last problem, we have the following: the inverse 

Fourier transformation of one is a delta function: 

− 1 
F {1}= δ ( t )= 

  1  

2 π 
∫ 

∞ 

− ∞ 
e j ωt d ω . 

This will be a very useful fact in other Fourier transform derivations. 



We know that the Fourier transform of a delta function is one. What is  

the Fourier transform of one? The answer may be obtained by  

noticing the similarities between the forward transformation and the  

reverse transformation. 

t  

(t) 

 

F {(t)} F 

F -1 



Let us do a few manipulations on the inverse Fourier transformation: 

− 1 F {X (ω)} = x (t )= ∫ 
∞ 

− ∞ 
X ( ω)e jωt d ω . 

− 1 
F {X ( t )} = x ( ω)= 

  1  

2 π 
∫ 

∞ 

− ∞ 
X ( t ) e j ωt dt . 



2 π 
x (− ω)=  

1 ∫ 
∞ 

− ∞ 
X ( t ) e− j ωt dt . 

Thus we have the Fourier transform of a Fourier transform: 

F {X ( t )}= 2 π x (− ω). 

If we know the forward Fourier transform, we can find the reverse 

Fourier transform. This property is called duality. 



Applying this result to the Fourier transform of (t), we have 

F {1 }= 2π δ ( ω) . 

A physical interpretation can be given to the Fourier transforms of (t) 

and 1. The function 1 is a D.C. signal whose sole frequency  

component is 0 Hz. This component is represented by a spike at 0  

rad/sec in the frequency domain. The function (t) is like a lighting  

bolt whose spectrum covers the entire frequency band (from f = 0 to 

). 



Suppose we had a function x(t) whose Fourier transform we know,  

X(). We then wished to know the Fourier transform of a shifted  
version of x(t), x(t-a) : 

∞ 
F {x ( t − a )} = ∫ − ∞ 

x ( t − a ) e − j ωt 

∞ 

∫ − ∞ 
x ( t ) e 

− j ω( t +a ) 

dt  

dt 

e−  j ωa∫ 
∞ 

− ∞ 
x ( t ) e− j ωt dt 

= 

= 

= e− j ωa X ( ω). 



Applying this principle to F {(t)}, we have 

F {δ (t− a )}= e− j ωa . 

Using duality, we also have 

F {e jat } = 

= 

δ(− ω− a)  

δ ( ω+ a ). 



The previous two results could also have been had by direct 

application of the Fourier transform: 

∞ − j ωt 

∫ 
− ∞ 

∞ 
δ ( t − a ) e − j ωa 

dt  

dt 

e−  j ωa∫ 
∞ 

− ∞ 
δ ( t − a ) dt 

F {δ ( t − a )} = ∫ − ∞ 
δ ( t − a ) e 

= 

= 

= e− j ωa . 



F {e− jat } ∫ − ∞ 

∞ 
e− jat e− j ωt dt 

∞ 

∫ − ∞ 
e − j ( a+ω)t dt 

= 

= 

= δ( ω+ a). 

The last step is true because of the “very useful fact”: 

δ ( t )= 
  1  

2 π 
∫ 

∞ 

− ∞ 
e j ωt d ω . 



As a corollary of the previous Fourier transformations, we also have 

F {e+ jat }= 2 πδ( ω− a ). 

F {δ ( t+a )}= e+ j ωa . 

A summary of the Fourier transforms derived so far are shown in the  

table on the following slide. 



x ( t ) X  ( ω) 

 

δ (t ) 
 

1 

 

δ ( t − a ) 

e jat 

 

1 

 

2 πδ ( ω) 

e−  j ωa 

 

2 πδ ( ω− a ) 



Let’s find the Fourier transform of a sinewave: 

F {cos ωo t } = F { 1 [ 0 
j ω t 

e +e 0 
− j ω t ]} 

= 
1 

2 
[ 

2 

{ j ω0 t F e }+ F {e 
− j ω0 t }] 

 2 π  

2 
[δ(ω− ω0 )+δ(ω+ ω0)] = 

= π[δ ( ω− ω0 )+ δ ( ω+ ω0 )]. 



Similarly we have 

F {sin ωo t } = F { 1 

2j 
[ 0 

j ω t 

e + e 0 
− j ω t ]} 

2 π 
2j  [ ] 

= δ ( ω− ω0 )− δ ( ω+ ω0 ) 

= j π[δ ( ω+ω0 )− δ ( ω− ω0 )]. 



The plots of these Fourier transforms are shown below. 

w 

(w-w0) 
(w+w0) 

w 

j (w-w0) 

j (w+w0) 

F {cos w0t} 

F {sin 0t} 



The physical interpretation of these transforms should be clear: the  

spectrum of a sinewave consists of spikes at the frequency of the  

sinewave along with a spike at the corresponding negative frequency.  

The (generally complex) coefficients of the spikes depend upon the  

phase of the sinewave. 



Now, let’s find the Fourier transform of a pulse: 

x(t) 

Applying the definition of the Fourier transform, we have 

t 

-½ ½ 

 
This function is sometimes referred to as (t) . 



F {Π ( t )} = ∫ 1 

 1  

2 
e − j ωt dt 

= 

− 
2 

1 

− j ω 
e− j ωt ∣ − 

 1  

2 

1 

2 

= 
j ω 

  1 [e j ω/ 2 − e− j ω/ 2 ] 

= 
2j ω 

2 

  1 [e j ω/ 2− e− j ω/ 2 ] 

sin ω 

 ω 
2 

2 
= 

  2 ≡ sinc ω . 



A plot of this function is shown below: 



Now, let’s find the Fourier transform of a pulsed sinewave: 

x ( t )= Π ( t ) cos10 πt . 

-1 -0.5 0.5 1 
-1.5 

(t) cos 10 t 
1.5 

 

1 
 

0.5 
 

0 
 

-0.5 
 

-1 

0 

t 



F {Π ( t ) cos 10 t } = 
1 

2 
∫ 1 

− 
2 

1 

2      ( e j 10 πt + e−  j 10 πt ) e−  j ωt dt 

= 
1 

2 ∫ 1 

2 

1 

2 

− 
( e−  j ( ω− 10 ) t + e−  j (ω+10 )t ) dt 

= 1 sinc (ω− 10 )+ 1 sinc (ω− 10 ). 
2 2 



A plot of this function is shown below: 



Exercise: find the Fourier transform of the following pulsed sine wave: 

20 
x (t )= Π ( t  )sin 100πt . 


