NETWORK THEORY
POWER POINT PRESENTATION

PREPARED BY:
ekha Chandran, Associlate Professor, EEE



Wattmeter

A wattmeter is essentially an inherent combination of an ammeter

and a voltmeter and, therefore , consists of two coils known as
current coil and pressure coill.

Wattmeter connection:

WATTMETER

Wattmeter-Connections




Measurement of Power in 3-Phase Circuit

Measurement of power in 3-
phase, 4-wire circuits----------- BN

P=W,;+W,+W;

Measurement of power in 3-
phase, 3-wire circuits------------- >

P=W;+W,+W,




3-wattmeter method of measuring
3-phase power of delta connected

P=W, +W,+W,

/Wlf)'/ﬂ[rf/?

1-wattmeter method of measuring e
balanced 3-phase power (a) star
connected, (b) delta connected

P=3W




« 2-wattmeter method of measuring
3-phase 3-wire power :
— (@) star connected,
- P=W,+W,

— (b) delta connected
— P=W +W,




Determination of P.F. from Wattmeter Reading

If load is balanced, then p.f. ofthe
load can be determined from the
wattmeter readings

Vector diagram for balanced star
connected inductive load ----- -

-W
Cos ¢ = cos tan™* 3w, -w,)
W, +W,
it Aa 0
5 5 il
_ “g §0‘6
The watt-ratio Curve ---------- - ;]‘8’0-4
(3] 00-2'

v O

p.f. can be determined from
reading of two wattmeters
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Q
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@







In AC steady state analysis the frequency is assumed constant (e.g., 60Hz).

Here we consider the frequency as a variable and examine how the performanc
varies with the frequency.

Resistor by —+ R% Zr =R =R£0°

Magnitude of Z ({1)
Phase of Z;, (degrees)

Frequency Frequency

(b) (c)
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Magnitude of Z; (£{})

Inductor

Frequency

(b)

L} Z, =jol = ol£90°
A
+90°
w
]
sh)
=
2
N
k=
B
g
[=»
0
0
Frequency

(c)

GEAUX



Magnitude of Z. (£2)

O
Capacitor Zc— -~ (= Z.= 1 1/ g0
JaC aC
0,
A
_of
=1
S
N
ke
2
E
=»
R ~90°
0
0 > 0
Frequency Frequency

(b) (c)

GEAUX »




|Frequency dependent behavior of series RLC netwotk

j)° ' ~ji aRC+ij(@w’cC -1
B I Zeq:R+ja)|—+_1 _(jo) L(?+|a)RC+1>< !_ i( )
O AA M jaﬁ jaﬁ — aC
Zoq — C "Simplification in notation" jo=~s
s2LC +sRC+1
© Zeq (S) = sC
: 22 [ @?LC -1)
_J(@RC) +(1- wLC) /2, :tan‘1|k—J
| Zeq |_ aﬁ q C(RC
4 o0t
o 3
5 N 0
SR E’_gﬂﬁ
% U > 0 >
VLe Frequency Frequency

(b) ()

4 > GEAUX »




Simplified notation for basic components

1
Z-(S)=R,Z, (s)=sL, Zr= —
< (5) =R, Z,(5) c=

For all cases seen, and all cases to be studied, the impedance is of the form
a.s"+a, ST+ +as+a,

Z(S): n n-1
b,s"+b, 4" +...+bsS+Db,

Moreover, if the circuit elements (L,R,C, dependent sources) are real thenthe
expression for any voltage or current will also be a rational function in s

L=01H
[y R
K Vfs) = Ve=__ SRC
¢ 1 ssmrSL * R+sL+1/sC s?LC +sRC +1
o o \ = ~ I
V5—1o/gv<j/sc R—E{SQ%VG S~ jw .
|

- V, = V

°" (jo)’LC +jaRC+1 °

e ja(15x 2.53x107)
° (jw)?(0.1x 2.53x107%) + je(15x 2.53x107%) +1
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When voltages and currentsare defined at different terminal pairs we
define the ratios as Transfer Functions

INPUT  OUTPUT TRANSFER FUNCTION SYMBOL

Voltage | Voltage Voltage Gain Gv(s)
Current = Voltage Transimpedance Z(s)
Current | Current Current Gain Gi(s)
Voltage | Current Transadmittance Y(s)

If voltage and current are defined at the same terminals we define
Driving Point Impedance/Admittance

R1

Vi) () @

I,(s)[ Transadmittance
V,(s) | Transfer admittance

A
1 sC

IC O

sL @ V(s) ERZ

s To compute the transfer functions one mustsol
© the circuit. Any valid technique is acceptable

. 4

v,

S

Yr(s)=F

G,(s) = L) Voltage gain

Vils) <> [GrAx >




sL

V = V.
oc (8) SL+R, 1O)
" The textbook uses mesh analysis. We will
Va(s) SR, use Thevenin’s theorem
5 Z, (5)=-L 4R, [sL= 1+ SLRu
o sC sC sL+R;
1, (s) [ Transadmittance 2 LCR +sL +R
s) = V.(s) | Transfer admittance Z7n (8) = X '
1 sC(sL+R))
G,(s) = ValS) Voltage gain
Vi(s) oL
Vi(s)
L (s)= Voc(s) sL +R; XsC(sL+Ry)
> 2 Ryt Zm(s) g . s?LCR+sL+R, SsC(sL+Ry)
TH (S) > sC(sL+R))

s°LC

Y+(S) =
r(s) s?(R, + R,)LC +s(L+ R,R,C) + R,

_Vy(8) Ry, (s) _
G = o)~ )
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-1 : :
H(s) = anS" +ay 8" +..+&S+a; Arbitrary network function
n n-1
b,s"+b, 4" +...+bsS+Db,

Using the roots, every (monic) polynomial can be expressed as a
product of first order terms

H(s) =Ky (5—21)(5—2;)...(S—Zp)
(5= Pu)(s —P2)---(S — Pn)

21, 25 ,...,Zm = Zeros of the network function
P1, P2,..., Pp= poles of the network function

The network function is uniquely determined by its poles and zeros
and its value at some other value of s (to compute the gain)

- H(s) = K (s+1) K s+1

O5+2-2)5+2+j2) °s2+45+8

Zeros :z;= -1,
poles : py=-2+]j2, p,=-2-]2 H(O):Kogzlj H(s) —g—S+1
H(0)=1 8 s?+4s+8
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_Find the pole and zero locations and the value of K,

for the voltage gain G(s)= Vo(S)
Vs(s)
C; R,
f K in c
& I 1/sCip /{;\O/‘
I\ ! vg(t Ry, S vin(t G v,(t
o g 4 S( ) in m( ) 1000’Uin([) ’1\ 0 0( )
Vs(s)  Rin S Vin(s) = _ Vi o - ! .
1000Vip(s) [ 155G, R,=1MQ Cij,=3.18nF R,=1000 C, = 79.58 nF
O * S

H(s)=K, (5—21)(S—2)...(S—Zn) Zeros = roots of numerator
(S—py)(S—p,)...(S—pn) Poles =roots of denominator

For this case the gain was shown to be

[ sC.R. | 1 40,000z ]
G(s) =]  =—*—*—1000] |— } |
| 1+sCinRin | 1+sC, R, | Is +1007r S+40,0007ZJ
26102, =0 Variable
poles : p, = -50Hz, p,=-20,000Hz Frequency

KO _ (4 X107)7Z' Response
4| [P




Agllt) e . { AH (je)ei@t0)

Bocosot10) o] O | |BolH(j) [cos(@t+0+ SH(je)

Circuit represented by
network function

To study the behavior of a network as a function of the frequency we analyze
the network function H (j®) as a function of w.

Notation

M(w)=H(jo)|

() =2H(jw)

H(jo)= M (w)e!?®
Plots of M (w),#(w), as function of @ are generally called
magnitude and phase characteri stics.

20log,, (M(w))
()

> [GrAx >

BODE PLOTS{ vs log,, (@)




Originated as a measure of relative (radio) power

P2 |dB (overPl) :1OIog PZ
Pl

Vv ° Vv, 1,

P=1°R= ﬁ = P2 |dB (overPl) =10log ViT:

10log IZZ
1
V |ig =20logy, |V |
By extension | |;g=20log | 1|
G |ygg=20logy |G|

Using log scales the frequency characteristics of network functions
have simple asymptotic behavior.
The asymptotes can be used as reasonable and efficient approximations

<> [GrAx >




Con stant Term '/— Magnitude characteristic

20 |Dg|”f(” .
. Phase o
E % characteristic 0 =
a: S S N S S S S S S S -:L'r
Bl 2
E £
3= | _ _ |
[x=]
— e 0.1 1.0 10 100
o (rad /s:log scale) the x - axis is |091oa)

{a} this is astraight line

Poles/Zeros at the origin(ja))iN _)J|(ja))i'\' lig=£N x 20log,o (@)
| Z(jw)*N =+N90°

Magnitude characteristic 3
with slope of —20N dB/decade % 5 ~
i d - S A S _+ "ﬂ' gﬂ-:h
= - ¥._Phase f L )
@ ; 20 8 o-F - _characteristic | o 50
= D = = — = — = Er‘; Magnitude characteristic =
S = 3“5} with slope of 2
o i<t / f L
EZ L SharacleriSlicN o e e - N(90%) 20N dB/decade £
an =2
f_: 'E I.U
L. w (rad/s:log scale)
w (rad/s:log scale) (c)

(b)
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O

10

0

—45°

+18
. dB = 20 log, (1 + jwT)|
£
= = tan lw7
o 12— ®
=
=
=
&h
= 6
0
- ! 0 —
" I
1
I I | I I
0.1 0.2 0.5 1.0 2.0 4.0
wT (rad/s)(Log scale)
1 2 3 4 5 6 7591 2 3 4 56 7891
| l I L1 | l | | |
dB = 20 log, (1 + jwT) 1
E“‘ EI—'I— —————— —— — — — — — T T T T o T T — ) —
= - diB dr = tan lwT
E . vl\‘,ﬂ —2210) dB;’decadEED_
=
_"é —ﬁ 1 T
& Ty N T
=
—185 —
—20 | | | |
10
0.2 0.5 1.0 2.0 4.0
w7 (rad/s)({Log scale)
a) | | P>

Phase shift (deg)

Phase shift (deg)

Simple zero

Simple pole

GEAUX »




_ GG(e_ne)rate magnitude and phase plots
jo) = [10[0L D .
Draw asymptotes v (o) 0.02 jo+1) Breaks/corners : 1,10,50

for each term
Draw composites

dB 35 791 3005 791 35 7 ¢l 305 791
40 + T B e N T B B R | ||I|-|||L I R T
20 T 10]4g
) — \20 B/dec
90 —20dB/dec I
- 90°
45°/dec I
-90°
0.1 1 1 100 1000
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Form composites

dB i
40

20

Generate magnitude and phase plots

G(jo)= 25(jo

+1)
! (jw)? (0.1jow+1)
791 305 791
L] R I.I|I3

Breaks (corners) :1,10

0
—-20

45°/dec

90°

—45°

O

—180°

0.1

GEAUX »




_ Sketch the magnitude characteristic

G(jw)= 10*(jo+ 2) breaks: 2, 10,100
Jo)= (jow+10)(jow +100) But the function is NOT in standard form
Put in standard form C D= 20 jol2+1) We need to showabout
_ : 4 decades
(jo/10+1)(jaw/100+1)
dB 1 305 791 3 5 791 35 761 35 791
. e - | | R R N N B A
40 + — e e -
20 | — - 26|dB
—
0 —
20+ |

90°

1 10 100 1000 -0
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_ Sketch the magnitude characteristic

Put in standard form G(jw)= 0jw not in standard form
i jo+1)( jow+10 zero at the origin
6(ia)m (jo+1)(jo+10) g
(jo+1) breaks:1,10
dB i 305 791 3 5 35 791
40 L | I | | | | I
20
0- —20dB/Hec
—20 20dB/dec
— 90°
—
-90°
—270°
0.1 1 100

Once each term is drawn we form the composites

|

>

GEAUX »




_ Determine a transfer function from the composite
magnitude asymptotes plot
A. Pole at the origin.

Crosses O%IB line at 5

jo

B. Zero at 5
C. Pole at 2
. Zero at 5(:)\\
E. Pole at 106—
)
. 5(joT5+1)(jew!/50+1)1
G(jw)~> )(J )

jo(jw!20+1)(Jw/100+1) I/

Sinusoidal

Sror)




Properties of resonant circuits

At resonance the impedance/admittance is minimal

: : 1 : 1 .
Z(jo)=R+ JoL+ —— Y(jo)=G+ —+jaC
Jal Y| A Jal

>
N
N
I
7y
N
_|_
B
|
-
e

Y| |Y|2=GZ+(C(£—L)2
al

|Z|

ol ] Current through the serial circuit/
voltage across the parallel circuit can
. become very large

) L 1
uality Factor: O = @ t—
Quality Q R ~ aCR

Given the similarities between series and parallel resonantcircuits,
we will focus on serial circuits

<> [GrAx >




_ Determine the resonant frequency, the voltage acrosseach

element at resonance and the value of the qualityfactor

| 20
— e 1 _pL=500
il o °
==40 uF
a Vo= | =—j50x5=250/—90°
Jo,C
Vg =10 oov<i>
{25mH Q:“)L'— _50_oc
R 2
Wy = S 1 =2000rad /sec
0 JLC \/(25X10_3 H )(10)(10_6 F) At resonance
Atresonance Z =2Q
V, Fo,L V
Ve _1020°_ VL ool =Q1IVs |
C— |Vc|=Q|Vs|

@, = (2x10%)(25x1073) =500
V, = japLl = j50x5=250./90°(V)
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A, ! Z(jw)=R+ jol+ — &
. joC 2
VRS R|ZP=Ri+(al- ) £
R +( e E
Vi 7= € Claim: The voltagegain =
V 1 =
{L G, ===
\J _ Vi1rjo(2-®
® 10 0,
e _ R R
V_ - -
R+jcoL+_1— Z(jo)
jaC
At resonance:
1
oL =QR, &C = —
QR 3
Z(jo)=R+ji2QR-j“QR p
0} @
v Z =RI1+JQ(—~-—)
Wy ()]
M (@) =G, |, o) |= £G,
4| [P

+6()

e
Ly

—
et

5

|
)
=

M (@) = 172
@) |
"""""" 0,
"""" BW=%
Q
>

q;lﬁ poWer frequencies

(a)) =~ tan‘lQ( Q%

(0
\_

1 oy L
a)Lo—alJ|L— 20 +\/(2Q) +1J@>




_ A series RLC circuit as the following properties:

R =4Q,ay =4000rad /sec,BW =100rad /sec

Determine the values of L,C.

JLC R @CR Q

1. Given resonant frequency and bandwidth determine Q.
2. Given R, resonant frequency and Q determine L, C.

o @ _4000_,,

BW 100
L=QR_40x4_ 44404
@, 4000
1 1 1

=1.56x10°F

"L oRQ  4x102x16x10°
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_Determine Wy , Omaxy When R=50Q and R =1Q

R L
VWA Akl ®
50mH Y
vs(®) CF Vo L, 1 gal_ 1
5uF ) JLC R ®CR
) Uy = ax 1 1
1 1 oo 2
@, = 2000rad /s

~JLC  [(5x10°2)(5x10°°)
2000 0.050
Q= E Oy = 2000 % /1—%Qz

R Q Wmax
50 2 1871
1 100 2000

Evaluated with EXCEL and rounded to zero decimals

Using MATLAB one can display the frequency response

<> [GrAx >




Networks designed to have frequency selective behavior

COMMON FILTERS G,(jw)
G,(jo) 4
~— Ideal characteristic ] ——
I -~
ﬂ /
~ I y 4
N —\—\ —Typical characteristic V2 | Typical .
V2 { charalztcgs#tlc Ideal characteristic
N --_"' - >
\"..__ 0 w, w
0
- ) i filt
: High-pass filter
Low-pass filter gn-p
‘ G (jw) A
G, (jo) A _
We focus firston |
, PASSIVE filters 1 >] L7
A
1 I "-.IZ \\‘ I f
= | | - >
V2 | Yo " Py w
Wio @ Yy w Band-reject filter

Band-pass filter 5 GEAUX »




_|..
Ct)vl C= V,
O ® o
1
My__jeC 1
"V, g, ! 1+jeRC
jaC
c=_ 1 .,_RC
1+ jor
M (@) =|G, |-+
! J1+(wr)

£G, =¢(w)=—tan] ot

1 1
M. =1 Mo==|= =
e ( r) V2

= Ezhalf power frequency
T

~ High-frequency asymptote, —20dB /decade

~ Low-frequency asymptote

Wr=————m—m——— -

Magnitude (dB)

Arctangent curve

I
I
1 | ()
| I
[ —45
I
00

| I

Phase shift (deg)

I

I

I

|

|+ One decade—lr| —»
{a

R
©
Bw= 1
T
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G = 197 . _RC
' 1+ jor

M(@) =G, |-

1/1+(a)r)2

/G, =¢(w)="—tant wr

_ y_L
M e 1M(a)—T)| %

W= Ezhalf power frequency
4

Magnitude (dB)

0 —

|
b
=]
|

Low-frequency asymptote

______ =0
| 2
| =
| [
I @

| I "r:%

| A petaneant ok

Arctangent Lu:w;: | 190

| |

|

\ | — +45

| |

[ | e :% —U

|-I—[}nc dccadc—>|

w (log scale)

(c)

GEAUX »




T~

CAAA)
L C + 1
. L—
Vq %R Vv, V2 I I !
I I ! >
- o Wy i )
)
Band-pass (e)
—(R/L)++/(R/L)? + 4>
o _Vo_ R o = J(Z )+ 4o
RVA . 1
Vi R+J(a)L—) _(R/L)+\/(R/L)2+4a)§
aRC — o 2
M (w) = .
J@RC Y +(2LC -1} BW = @y — @0= R
1 L
M =—— =1 M(w=0)=M(®w=x)=0
( m) (0=0)= M(0=w)
3 1
®=Lc
1
M(a)LO):ﬁ:M(a)HI)
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G (jw) &
1 | B N A |( 1 \| )
=i Oy =——x = |l L——— ||=
v 2 \ |‘f R 0 \/TC Jl\ 0 Ct)OC J
“o % P o at w =0 the capacitor acts as open circuit =V, =V,
(b)
at o =« the inductor acts as open circuit =V, =V,
—VWW—e : :
R W o, Wy are determined as in the
band - pass filter
C /<
i \%
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_ Depending on where the output is taken, this circuit

can produce low-pass, high-pass or band-pass or band-

reject filters

5+ 1.0V Vs
L3 Vr
™ VC Vg \'43
Band-reject filter
n % 0.5V
>
Vg=1 0°V<i> C;=VC
) oV
+ >
R {rﬁand-pass 10 10 100 1.0k 10k 100k 1.0M
— Frequency (Hz)
° Bode plot for R=10Q, L=159uH, C =159u F
Vi _ 08 ﬁ(a):O):O, V'—(a): ) =1 s
VS R + J((OL— L\ VS VS IgN-pass
aC )
1
Ve Ve (w=0)=1, Ve (w= ) =0
Ve 1 Vs Vs Low-pass

>

|

GEAUX »




Passive filters have several limitations

1. Cannot generate gains greater thanone
2. Loading effect makes them difficult to interconnect

3. Use of inductance makes them difficult to handle

Using operational amplifiers one can design all basic filters, and more,
with only resistors and capacitors

The linear models developed for operational ampllflers circuits are valid, in a
more general framework, if one replaces Ors bylmpedances

These currents are
Zero

Ideal Op-Amp i

. .




_aplace Circuit Analysis

Circuit Element Modeling

it) ! = I !




_aplace Circuit Analysis

Circuit Element Modeling

Resistance
+
+ - -
v(t) = Ri(t)§ R v(t) Time Domain
+
V(s) = R|(SJ5 2 R V(s) Complex Frequency Domain

+

+
V(S)=Ig)‘ 26 V(s)




_aplace Circuit Analysis

Circuit Element Modeling

Inductor
L i
di(t
t)=L
3_ VL() dt
)
sL
Best for mesh V.(s) V| (s) = sLI(s) - Li(0)
~ Li(0)
l +
+ ” ‘TS)
Best for nodal v, 'c\® s




_aplace Circuit Analysis

Capacitor —
i(t)
T vew= }.(t)dt +v¢(0)
0
|
1 (s)
Mesh Ve(s) sC Vi(s) = 1s) , ve(0)

" V) sC S
- S

MO

T ve(S)

U/
|
|

Nodal | Ve(O)C C




_aplace Circuit Analysis

Linear Transformer
M

+ +

vi(t) i) ng g Lo @ V(1)

(D) = leild(tt) Y dizd (tt)

V,(s) =sL,l,(s) — Li;(0) + sMl, (s) — Mi, (0)

o diy(t) di,(t)
V(=L at M dt
V,(s) =sL,1,(s) — L,1,(0) +sMl,(s) — Mi, (0)

L4 I(O) +M |2(0)
()
\J

+

Vi(s) @ sLq

LA

Loiz( 0 )M +iy(0)
+f\ =
\

+

% sLp @ Va(s)




_aplace Circuit Analysis

‘ Time domain to complex frequency domain ‘
R! +Vl(0_) L2 RZ
_I\N\I I I J_ — OO0 ’\/\/\I
+ G VO T _
Va(t) i Va(t
_C) Lé Til(t) / B(t)
v1(0) _
.S +L2| 2(0)
R B sL, - R
_IW\I I I O OO /\ I\/\/\I
1 1
sCy 5 p——
. — V(0 .
Q) Va®) v ve(s) ()
- s, .
+
L1i1(0)




_aplace Circuit Analysis

CircuitApplic

ation:

Given the circuit below. Assume zero IC’s. Use Laplace to find v,(t).

The time domain circuit:

t=0 100Q
> — AAA
+
0.001 F=—=

2u(t) V +c>

Laplace circuit

Vs)

()

V (s)

c

100+ 1000

B s(s+10)

S

20




_aplace Circuit Analysis

Circuit Application:

0 2 2
s(s+ 10)

V_(s)

S B s+10

v (t)= [2— 2e~ 10t ]u(t)




_aplace Circuit Analysis

Circuit Application:

Given the circuit below. Assume v,(0) =-4V. Use Laplace to find v.(t).

The time domain circuit;

t=0 100 Q
¢ — A -
- Laplace circuit:
t=0 100Q
NN
83+ﬂ = (s)[100+@] 1000 [ 7
2 + S —
ol | _ Ve
S - _() () O )
6 B
1001 (s)= +

s+10




_aplace Circuit Analysis

Circuit Application:

100Q
NN
1000 | 7
2 + T__
— I(s) _ Ve(s)
S C) 4
N z g)
@ v ( _—4s+20 A | _
¢ s(s+ 10) B s
s+10
V (s)=2- O
£ s s+10
v(t)= [2 6e‘10t]u(t)

%—1OOI (5) = V_(s) =0

2 6

s s+10

=V (5)

Check the boundary conditions

®

v.(0)= -4V

v.(00) =2V




_aplace Circuit Analysis

Circuit Application:

Find iy(t) using Laplace

Time Domain 4u(tC

1Q 2Q

2H

(OO

NNV

(1F

io (D)
§ 1Q  ety(t

Laplace 4

1Q 2Q

25

(XXM

N\ N
1) T 4 1x(9) gm lg@)_QF_l
S s+1




_aplace Circuit Analysis

Circuit Application: Find iy(t) using Laplace
1Q 20 28
NN 4VAVAY OONN__
4 | — 1 | § | L
s Q@ ] TL e e ko) (P
Mesh 1
(s+1) 1,(s) 4
| (S) — = —
s 1 S S

(s +1) |1(S)_ Iz(s) =4




_aplace Circuit Analysis

Circuit Application: Find iy(t) using Laplace
10 2Q
AN A POON
50O uo| T 1 165) S0 1 %}%
Mesh 2 . 3s 41
— S + _
?Il(s)+ S I2(s)—l3(s)—0
-1 3s +1 1
— 1 (s) + | (s)— — =0
S 1 ) S (®) s+1
—1 (8)+(3s+1)I (s)= _°
1 2 s+1

—(s+1)|1(s)+(s+1)(3s+1)I2(s) =S




_aplace Circuit Analysis

Circuit Application:

Find iy(t) using Laplace

+

4
S

(s+1)|1(s)—I2(s):4 7

— (s+1)|1(s)+(s+1)(33+1) I2(s) =S _

—— A

SO

S

:Lm' ng(S)L G

AVAVAY (XM

S(3s +4) Iz(s) =S+4

1
s+1

Add these 2
equations




_aplace Circuit Analysis

Circuit Application:

Find iy(t) using Laplace

—— A
4 | ‘ — 1 | | ‘
s ( 1(5) -+ 2(S 1Q 3(5) m

S(3s+4)1 (s) =s+4

1,(5)=

s(s+4/) s

Is final value of

I,(t) reasonable?
£/)<S+ 4) 1

W

S+

W

i (t)=[1 - ge_ *34u(t)




Networks designed to have frequency selective behavior

COMMON FILTERS G,(jw)
G,(jo) 4
~— Ideal characteristic ] ——
I -~
ﬂ /
~ I y 4
N —\—\ —Typical characteristic V2 | Typical .
V2 { charalztcgs#tlc Ideal characteristic
N --_"' - >
\"..__ 0 w, w
0
- ) i filt
: High-pass filter
Low-pass filter gn-p
‘ G (jw) A
G, (jo) A _
We focus firston |
, PASSIVE filters 1 >] L7
A
1 I "-.IZ \\‘ I f
= | | - >
V2 | Yo " Py w
Wio @ Yy w Band-reject filter

Band-pass filter 5 GEAUX »




_|..
Ct)vl C= V,
O ® o
1
My__jeC 1
"V, g, ! 1+jeRC
jaC
c=_ 1 .,_RC
1+ jor
M (@) =|G, |-+
! J1+(wr)

£G, =¢(w)=—tan] ot

1 1
M. =1 Mo==|= =
e ( r) V2

= Ezhalf power frequency
T

~ High-frequency asymptote, —20dB /decade

~ Low-frequency asymptote

Wr=————m—m——— -

Magnitude (dB)

Arctangent curve

I
I
1 | ()
| I
[ —45
I
00

| I

Phase shift (deg)

I

I

I

|

|+ One decade—lr| —»
{a

R
©
Bw= 1
T

<> [GrAx >




G = 197 . _RC
' 1+ jor

M(@) =G, |-

1/1+(a)r)2

/G, =¢(w)="—tant wr

_ y_L
M e 1M(a)—T)| %

W= Ezhalf power frequency
4

Magnitude (dB)

0 —

|
b
=]
|

Low-frequency asymptote

______ =0
| 2
| =
| [
I @

| I "r:%

| A petaneant ok

Arctangent Lu:w;: | 190

| |

|

\ | — +45

| |

[ | e :% —U

|-I—[}nc dccadc—>|

w (log scale)

(c)

GEAUX »




T~

CAAA)
L C + 1
. L—
Vq %R Vv, V2 I I !
I I ! >
- o Wy i )
)
Band-pass (e)
—(R/L)++/(R/L)? + 4>
o _Vo_ R o = J(Z )+ 4o
RVA . 1
Vi R+J(a)L—) _(R/L)+\/(R/L)2+4a)§
aRC — o 2
M (w) = .
J@RC Y +(2LC -1} BW = @y — @0= R
1 L
M =—— =1 M(w=0)=M(®w=x)=0
( m) (0=0)= M(0=w)
3 1
®=Lc
1
M(a)LO):ﬁ:M(a)HI)

<> [GrAx >




G (jw) &
1 | B N A |( 1 \| )
=i Oy =——x = |l L——— ||=
v 2 \ |‘f R 0 \/TC Jl\ 0 Ct)OC J
“o % P o at w =0 the capacitor acts as open circuit =V, =V,
(b)
at o =« the inductor acts as open circuit =V, =V,
—VWW—e : :
R W o, Wy are determined as in the
band - pass filter
C /<
i \%

<> [GrAx >




_ Depending on where the output is taken, this circuit

can produce low-pass, high-pass or band-pass or band-

reject filters

5+ 1.0V Vs
L3 Vr
™ VC Vg \'43
Band-reject filter
n % 0.5V
>
Vg=1 0°V<i> C;=VC
) oV
+ >
R {rﬁand-pass 10 10 100 1.0k 10k 100k 1.0M
— Frequency (Hz)
° Bode plot for R=10Q, L=159uH, C =159u F
Vi _ 08 ﬁ(a):O):O, V'—(a): ) =1 s
VS R + J((OL— L\ VS VS IgN-pass
aC )
1
Ve Ve (w=0)=1, Ve (w= ) =0
Ve 1 Vs Vs Low-pass

>

|

GEAUX »




Passive filters have several limitations

1. Cannot generate gains greater thanone
2. Loading effect makes them difficult to interconnect

3. Use of inductance makes them difficult to handle

Using operational amplifiers one can design all basic filters, and more,
with only resistors and capacitors

The linear models developed for operational ampllflers circuits are valid, in a
more general framework, if one replaces Ors bylmpedances

These currents are
Zero

Ideal Op-Amp i

. .




DC TRANSIENT ANALYSIS

59



SUB - TOPICS

B NATURAL RESPONSE OF RLCIRCUIT
B NATURAL RESPONSE OF RCCIRCUIT
B STEP RESPONSE OF RLCIRCUIT
B STEP RESPONSE OF RCCIRCUIT
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OBJECTIVES

B To Investigate the behavior of currentsand
voltages when energy Is either released or
acquired by inductors and capacitors when
there Is an abrupt change in dc current or
voltage source.

B To do an analysis of natural responseand
step response of RL and RC circuilit.

61



FIRST — ORDER CIRCUITS

B A circult that contains only sources,
resistor and inductor iIs called and RL
CIrcuit.

B A circuit that contains only sources,
resistor and capacitor is called an RC
circuit.

B RL and RC circuits are called first —order
circuits because their voltages and
currents are describe by first order
differential equations. >



|

An RL circuit An RC circuit




Review (conceptual)

B Any first — order circuit can be reduced to a
Thévenin (or Norton) equivalent connected to either

a single equivalent inductor or capacitpr.
Th

JV\A/f
W(1) v 3t w(®) ==c

- In steady state, an inductor behave like a short circuit.
- In steady state, a capacitor behaves like an open circuit.

64



he natural response of an RL and RC
circuit Is Its behavior (i.e., current and
voltage ) when stored energy in the
Inductor or capacitor is released to the
resistive part of the network (containing no
Independent sources)

he steps response of an RL and RC
circuits Is its behavior when a voltage or
current source step Is applied to the

circuit, or immediately after a switch state
IS changed.

65



NATURAL RESPONSE OF AN
RL CIRCUIT

B Consider the following circuit, for which the
switch iIs closed for t<0, and then opened at t =

0 e
t=0 i— +
I <,> R, L R \%

B The dc voltage V, has been supplying the RL
circuit with constant current for a long time

66



Solving for the circult
BFort<O0, i) =lo
B For =0, the circuit reduce to

Notation:

>O ~ Is used to denote the time just prior to switching.

»0" js used to denote the time immediately after switching.
67



Continue...

B Applying KVL to thecircuit:

v(t) + Ri(t) =0

L9 L Ri =0

dt
ait) _ _p;
L ~ Ri(t)
di(t) Ry

i) L

(1)
(2)

(3)

(4)

68



Continue
B From equation (4), letsay:;

du R
— =——dv 5
u L )
B Integrate both sides of equation (5);
ity du Rt
oy =l X
m\\Vhere:

“*I(to) IS the current corresponding to time to
“*1(t) 1a the current corresponding to time t

69



Continue

B Therefore,

I(t) _ R
In@ ft (7)

B hence, the currentis

i(t) =i (O)e—(R/L)t _ Ioe_( R/L)t
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Continue

BFrom the Ohm's law, the voltage across
the resistor R Is:

v(t) =i(t)R = I Re~R/L!

B And the power dissipated in the resistoris:

p = Vij(t) =12 Re®

71



Continue

B Energy absorb by the resistoris:

W= 1 LI2(1-e2(R/LN)

2




Time Constant, 1

B Time constant, T determines the rate at which
the current or voltage approaches zero.

B Time constant,|€ = —| (sec)

73



B The expressions for current, voltage, power
and energy using time constant concept:

(1) = 1pe "
v(t)=1,Re ™"
p.=1< Re=2%:

W :%ng(l— 02117

74



Switching time

B For all transient cases, the following instants of
switching times are considered.

v t = 0, this is the time of switching between -« to
O or time before.

v t = 0%, this is the time of switching at the instant
just after time t = Os (taken as initial value)

v t = < | this is the time of switching between t = 0+
to « (taken as final value for step response)
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B The illustration of the different instance of
switching times Is:

76



Example

B For the circuit below, find the expression
of Io(t) and Vo(t). The switch was closed for
a long time, and at t = 0, the switch was
opened.

77



Solution :
Step 1.
Find 1 for t > 0. Draw the equivalent circuit. The
switch Is opened.

So;

T = L — 2 =0.2 sec

R 10




Step 2:

Att =0, time from -« to 0~ the switch was closed

for

2Q)

W

a long-tme-
20a(

=010

l_

1.(0)

§ 100Q § 40Q

The inductor behave like a short circuit as it being
supplied for a long time by a dc current source.

Current

20A thus flows through the short circuit until the

switch

79



Step 3:
At the instant when the switch is opened, the time t = 0+,

2Q .

/M 1,(0Y)
l +
_20A ' §2H 1OQ§ 400 §VO(O+)
1.(0%)

The current through the inductor remains the same

(contin im“('j\+ =1 (07)=20A
Thus, L ( ) L ( )
current.

which iIs the initial

Only at this particular instant the value of the current through
the

Inductor is the same. 80

Cinra tharao ic nna nthoar ciinnhv 1in thea ittt aftoar tha ewiniterh 1



By using current division, the current in the 40Q
resistor 10
igr 1o =-I_ =—4A
10+ 40

> i, (t) =—4e A

Using Ohm’s Law, the V, is:
V, (t) =-4x40=-160

So, |V, (t) =-160e™




NATURAL RESPONSE OF AN RC
CIRCUIT

B Consider the following circuit, for which the switch is
closed for t < 0, and then opened at t =0:

W

0]

Vo <—> C—
Notation:

» 0-is used to denote the time just prior to switching
» 0*is used to denote the time immediately after switching.

0

I < + |

82



Solving for the voltage (f = 0)

BFort<0,v() =V,
B Fort >0, the circuit reducesto

| va\/i |

83



Continue
B Applying KCL to the RC circuilit:

ic +i, =0 - (1)
i 10
dv(t t

A
T R @
W Red (5

)



Continue

B From equation (5), let say:

X RC
B Integrate both sides of equation (6):

v(t) ] 1t
—du=-—-1{dy - (7)
IVO X RC jo

B Therefore:

t t
" R - ®

85



Continue

B Hence, the voltage Is:

V(t) — V(O) e—t/ RC :Voe—t/ RC

B Using Ohm’s law, the current is:

i(t) :w :\ie—t/RC
R R

86



Continue

B The power dissipated In the resistor Is:

R Ve
p(t) _ V|R _ _oe—Zt/ RC
R
B The energy absorb by the resistor is:

W — E CV02 (1- a—2t/RC )

2




Continue

B The time constant for the RC circuit equal the
product of the resistance and capacitance,

B Time constant,- secC

88



B The expressions for voltage, current, power and
energy using time constant concept:

v(t) =V e t’"

- V —t/t
1([) = —=2¢€
() R

2
9) e—Zt/T

R

w(t) = %CVOZ (1—e-21/7)

p(t) =




B For the case of capacitor, two important
observation can be made,

1)capacitor behaves like an open circuit when
being supplied by dc source

(From, I. = Cdv/dt, when v is constant, dv/dt = 0.
When current in circuit is zero, the circuit Is open
circuit.)

2) In capacitor, the voltage is continuous / stays
the same that is, V.(0*) = V,(0)

90



The switch has been In position a for a long time.

At

Example

Time t = 0, the switch moves to b. Find the
expressions

for the vc(g)k &(t) and vo(t) and hence sk%&l&them

fort= /W\/

Otot*

90V <_‘

e

10kQ
O0.1pF=

+

_60k9% 12k% VA
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Solution

Step 1.

Find t for t > 571 that Is when the switch was at a.
Draw 18k0Q

the equivalent gircuit: M\

0.14F —— 60kr§ £122k %

R, = (18kQ +12kQ) // 60kQ = 20kQ

7=R.C =20x10°x0.1x107° =2ms

92



Step 2:

Att =0, the switch was at a. the capacitor behaves
like

An open circult as 'gkiﬁbeing supplied by a

constant /\M °

source. N
90V C) 10kQ V(0

v.(0) =1 x90 = 60V

15

93



Step 3.
At t = O*, the instant when the switch Is at b.

18kQ

, W

60V 1 *
' 0.ApF— GOkr% ;Zk% v,

The voltage across capacitor remains the same at
this
particular instant.

v(0%) = v(0) = 60V

94



Using voltage divider rule,

V. (0%) = %x(so = 24V

Hence;

v (t) =60e°"V
v, (t) =24V
I (t) =—0.03e"'A
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Summary

No | RL cireuit RC cireuit
1
R
2 | Inductor behaves like a Capacitor behaves like an

short circuit when being
supplied by de source for a
long time

open circuit when being
supplied by dc source for a
long time

Inductor current IS
continuous

1,.(0%) =1, (0)

Voltage across capacitor Is
continuous

Ve(0*) = ve(0)
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Step Response of RL Circuit

B The switch is closed at time t = 0.

AN > i
L. R t=0 % '
VS<_> L 3 v(t)

B After switch Is closed, using KVL

: di
V. =Ri(t) +L - (1
=Ri()+L S @)

97



Continue

B Rearrange the equation;

ditt) _—Ri®+V, R |
LT o) ——@
 _R(. V.
di= — [ i—Ys dt :
R[i-2) e

R d
_—dt >

L i)V /R )

__J‘ dv = I()l(t)

u- w /R) ©)



Continue
B Therefore:

SR, i)~ (V/R)

L lo = (Vs /R)

B Hence, the current Is;

i0)=Ys 41 —\L)ewut
R \U° R

B The voltage;

VB =(V —T R)e "

~ (5)
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Example
The switch Is closed for a long time at t = 0, the
switch

opens. Find the expressions for i (t) and v (t).
t=0

—M——W—
w () " FMH

100



Solution
Step 1.
Find 1 for t > 0. The switch was opened. Draw the
equivalent circuit. Short circuit the voltage source.

—

20 30

1/4H

R =(2+3)Q =50

_L_1

R, 20

101



Continue

Step 2:

At t = O, the switch was closed. Draw the
equivalent

circuit with 3Q sho%dfb‘\ﬂpl—fhj inductor behaves

like a 1. 20
short circuit. 10V <—> i, (0-)

i, (0 )=10/2=5A

102



Continue

Step 3.

At t = 0*, the Instant switch was opened. The
current in

iInductor Is qm:ﬁ]um}%:i (0-) =5A

Step 4:

At t =« that Is after a long time the switch has been
left

opened. The inductor will once again be behaving
like a

short CIrcuit.

103



Continue
M
- 30
oY <> ()

i, (0) =V./R; =2A
Hence:

|L(t)_V 4f| - )e RILY

104



Continue

B And the voltage is:

vigt) =(vV -1 R)e™™

v, (t) =-15e "V

105



Step Response of RL Circuit

B The switch iIs closed at time t =

Xe %

B From the circuit;

| =c Ve Ve

dt R

—~ Ve(l)

. (1)

106



Continue
B Division of Equation (1) by C gives;
I, _dv, v,

_ + . (2
C dt RC @)

B Same mathematical techniques with RL, the
voltage Is:

v.(t)=I.R+(V,— I .R)e ™"

B And the curentis:

Vv
i t — Is o e—t/RC
( ) (— R ) 107




Example

The switch has been in position a for a long time. At t

:O,

the switch moves to b. Find V(t) for t > 0 and

calculate its

value at t %’sand t=4s.a

+

24V <_> 5k9% V.

~—

4kQ

W

C_D 30V

108



Step 1.

Solution

To find T for t > 0O, the switch is at b and short circuit

the
voltage source.

4kQ

JVV\/i

0.5mb—

\

7=RC =25

109



Continue

Step 2:
The capacitor behaves like an open circuit as itis
being
supplied by a cogsoiantdc source.
—‘\N\, ®
+
24V C) 5kQ é

Vc (O')

From the circulit, VC(O_) — 24 x 55: 15V

110



Continue

Step 3.
At t = 0%, the instant when the switch Is just moves
to b.

Voltage acrg/ffoc?&a\(}lt&r )re:rilg\l)ws the same.

Step 4:
At t = «, the capacitor again behaves like an open
circuit sincedkitQis being supplied by a constant

souree:

. Oov Ve (0) =30V

Ve(*)




Continue

Step 5:
Hence,

V. (t) =30+ (15—30)e 2% =30—15e 05

Att=1s, V () =20.9V
Att=4s, V() = 28V

12



Introduction to Three-Phase Power

— { =il g s
N

113



Typical Transformer Yard

cisbbab

14



Basic Three-Phase Circuit

O
Three-phase

voltage
source

Three-phase
line

/M
/\
\

o L ree-phase

load

115



What is Three-Phase Power?

* Three sinusoidal voltages of equal

amplitude and frequency out of phase with
each other by 120°. Known as “balanced”.

 Phases are labeled A, B, and C.

* Phases are sequenced as A, B, C
(positive) or A, C, B (negative).

116



voltage in volts

Three-Phase Power

Three-Phase-Voltage

angle in radians

17



* 4 wires
— 3 "active” phases, A, B, C
— 1 "ground”, or “neutral”

 Color Code

Phase A
Phase B
Phase C
Neutral

Definitions

Red
Black
Blue

White or Gray

118



Phasor (Vector) Form for abc

v VeVi/+120°

V=V, /0°

Vo V=V, /-120°

119



Phasor (Vector) Form for abc

v VeVi/+120°

V=V, /0°

Vo V=V, /-120°
Note that KVL applies .... V_ +V,+V_=0
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Three-Phase Generator

Axis of

¢ 2'p0|e (NOI’th-SOUth) a-_pfz;nse
. winding

rotor turned by a ./
“prime mover” |

e Sinusoidal voltages
are induced In each

stator winding 8
e “e
A\ X \
R Axis of
% b-phase
/ winding
Axisof NI Stator
c-phase
winding

121
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How are the sources connected?

« (a) shows the sources

(phases) connected In

a wye (Y).

— Notice the fourth
terminal, known as
Neutral.

* (b) shows the sources

(phases) connected In

a delta (A).

— Three terminals

123



Look at a Y-Y System

V IbB B
Vc’n o b'n

(S
N
{ g

IaA

N
® Zo
N
V

(O

TS e

ICC
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<

=

® >

Definitions

o

=X )

Z®

-0

(ef J

2y
ne

Zqrepresents the internal
generator impedance per
phase

Z represents the
Impedance of the line
connecting the generator
to the load

Z g crepresents the load
Impedance per phase

Z,represents the
Impedance of the neutral
conductor
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Look at the Line and Load Voltages

A
+ @ —n
VAB VAN ZA
_ B Van _
Vca e - SN 1 Zo—eN
_|_
Vic Ven Zc
_1_
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+o—
B VaB Van Z
VCAIE i VN 75 —eN
_|_
Vie Ven Ze
— ot
C
Vg :VAN _VBN
Line Voltages VBC :VBN _VCN Phase Voltages
Vea :VCN —Van

127



Vector addition to find Vag=Van-Ven

128



Using the Tip-to-Tail Method

VCA V( 'N

V¢ = Line-to-Neutral,
v or Phase Voltage
Vie l

Vag= Van— VN = \/3V¢

129



Conclusions for the Y connection

* The amplitude of the line-to-line voltage is
equal to V3 times the amplitude of the
phase voltage.

* The line-to-line voltages form a balanced
set of 3-phase voltages.

* The set of line-to-line voltages leads the
set of line-to-neutral (phase) voltages by
30°.
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Summary

Vea Ven Vas
30°
30°
- V/\I\
30°
Vin
\/
Vie
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Look at the Delta-Connected Load

132



VAN

R

IcC

— lB(‘

IAB — I¢4OO
| =1,/-120°

lea = 1,£120°

133



Line Currents | = IBC - IAB Phase Currents

134



Vector Addition to find | x=lag-lca

135



Using the Tip-to-Tail Method

Lyp Igc

= V3lg/-30°

136



Conclusions for the Delta Connection

* The amplitude of the line current is equal
to V3 times the phase current.

* The set of line currents lags the phase
currents by 30°.
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Fourier analysis deals with the representation of signals by sinewave
components. The simplest type of Fourier analysis is that of the
Fourier series where a periodic signal x(t) is represented as a sum
of sinewaves.

X(t)=) sinewaves .



The sine waves could be sin (), cos () or a combination thereof:

elU=cos( )+ jsin().

The sine wave components in the summation will be a complex sine
wave at various frequencies:

e/ n=0,+1,+2 ...



The complex sinewave frequencies are integral multiples of

2w
a)(): T —

T

Where T is the period of the signal to be represented.

X(t)= X(t+T).



The resultant summation is a weighted sum of the complex
sinewaves ejoot ;

Q0

X(t)=) X, el

N=— o

The weights or coefficients X, are foundfrom



The weights X,, correspond to the magnitudes of thefrequency
components of the spectrum of x(t).

X(w)

-3y —2m¢9 —0y ®g 209 30




Example: Find the Fourier series for the following function:

X(t)

[ L]

X(1)= i o(t—nT).

nN=—



Solution: this function is clearly periodic. We calculate the
coefficients as follows:

1 T/2 - jn gt
t ], x(ne "t

1] " a(t)e " gy

T/2

X
[

1 T/2 —jna)o(O)
), ae dt



So,

in
:Z ej Wyt



X(w)




Example: Find the Fourier series for the following function:

— [ —

Solution: The coefficients are calculated in much the sameway as
before.



L[ Txtye et
=] e dt

—jnowgt

lj‘ T/2(1 — jnw,t 1(T
o[ e ek (-1
TY T1/2 )e dt
1 1 -inogt |2 1
T (- jnwg) [ eyt
, 1 T (= Jnw,)
[e—jna)OTIZ -0 -J ,
~ o j —e ]na)OT_l_e—jncuoT/Z]

T (= Inew)



1

1

T (= jnwy)

1 2 [e-in— g= 0]

1 2 [e~ 10— gin]

1 A jnm
Grole ]
{1~ (- 1)"]

[e—jnn_ e~ j0_ e—jn 27t_|_e—jn 7r]



Thus,

2 — 1 JnQ,t

= - —€e :

x(1) jTrn:Z_w n
nodd



The spectrum of the square wave is shown below

IX(w)|

Wl

—(

- 5W0 '3WO 'Wo WO 3W0

SWj



Fourier Transforms

Fourier transforms allow the frequency analysis of non-periodic aswell
as periodic functions. The Fourier transformation is derived from
Fourier series.

To derive the Fourier transform, let us take the Fourier series, and
take the limit as T2 =, As T =2«, we also have a, =0 (since ay=27/T).



If we let ey =Aw, T=2p/w and c,T = X(ndw), we have

> @)

X (nAw)=I_w x(t)e  INAwt gt

and,

x(t)= lim =— X (nAw)elnAWtAqy .
(t)= Mzﬂnz (nAw)



This last expression is a Riemann sum which is a definite integral:

X(t)= Zl?r[ : X (w)elwtd w,

where w = nd@. Using this last piece of notation in X(nAw), we have

X (w)=] ~ x(t)e ivtdt.



This last expression is the definition of the Fourier transform of x(t):

o0

FI(IE X (w)=] ~ x(t)e iwtdt.



In the process of deriving and expression for the Fourier transform, we
have also derived an expression for the inverse Fourier
transformation:

F™HX (w)}= x(t)= i! io X (w)el*'dw.



Example: find the Fourier transform of a delta function, x(t)=t).

o(t)
4

Solution: using the definition of the Fourier transform, we have

X (w)= Fm=] 7 s(t)eiotdt



|7 s(t)e 19O gy
e‘j‘”“’)f T oo(t)dt

- o0

(1)(1)=1.



As corollary of this last problem, we have the following: the inverse
Fourier transformation of one is a delta function:

F'l{l}:é(t):i " evtg .

This will be a very useful fact in other Fourier transform derivations.



F{5(t)}
5()

1

F
)

F -1
-

We know that the Fourier transform of a delta function is one. What is
the Fourier transform of one? The answer may be obtained by

noticing the similarities between the forward transformation and the
reverse transformation.



Let us do a few manipulations on the inverse Fourier transformation:

FHX ()= x()=] * X (w)e ' dw.

(> 0]

FHX (D))= x(w)= i] T X (t)elwtdt.



X (—Ww)= Zl?r’[ :) X (t)e” Jwidt .

Thus we have the Fourier transform of a Fourier transform:
FA{X (t)}=21x (- w).

If we know the forward Fourier transform, we can find the reverse
Fourier transform. This property is called duality.



Applying this result to the Fourier transform of §(t), we have

F{l}=2xn 6 (w).

A physicalinterpretation can be given to the Fourier transforms of t)
and 1. The function 1 is a D.C. signal whose sole frequency

component is 0 Hz. This component is represented by a spike at 0
rad/sec in the frequency domain. The function &t) is like a lighting

bolt whose spectrum covers the entire frequency band (from f = 0to
).



Suppose we had a function x(t) whose Fourier transform we know,

X(w). We then wished to know the Fourier transform of a shifted
version of x(t), x(t-a) :

"
(> @)

F {x(t-a)} | __x(t—a)e lwtdt

(> 0]

X (t)e— jw(t+a)dt
e‘j‘”aj : x (t)e™ Jwtdt
emiwa X ().




Applying this principle to = {6(1)}, we have
F{(t— a)l=eiwa,

Using duality, we also have

jatl = O(— w—a)
P o(w+a).



The previous two results could also have been had by direct
application of the Fourier transform:

F{o(t—a)}

o(t—a)eivtdt

| _o(t—a)etwrdt
em 93] 7 5(t- a)dt

e_j(.k)a




an

@,
E’;

—)
[

> 0]

e i(arw)t gt

— o0

o(w+a).

The last step is true because of the “very useful fact”:

1 ¢~ .
o(t)= " elWidw.
() 2T —° W



As a corollary of the previous Fourier transformations, we also have

F{o(t+a)}=etiwa,

F {etiat}=2ms(w-a).

A summary of the Fourier transforms derived so far are shown inthe
table on the following slide.



X(t) X (W)
o(t) 1
1 2TIo(W)
o(t—a) g lum
ekt 2TTo(w—a)




Let’s find the Fourier transform of a sinewave;

F{cosw,t} = F%[ej“’°t+e_j‘”°t]}
d SR GRS O |

? [0 (W= wyo)+3(w+wy) |

= T[S (W= wo)+5(w+uwy)].



Similarly we have

F {sinw,t} = %[e “ +e Jwt]}

= %F[é(w W)~ 5(w+w0)
= jT[o(wrwy)- 6 (w= wy)].



The plots of these Fourier transforms are shown below.

6(W+WO) S(W-WO)

- {cos wot}

J 8 (W+Wo)

F {sin coot} ] O(W-wp)




The physical interpretation of these transforms should be clear: the
spectrum of a sinewave consists of spikes at the frequency of the
sinewave along with a spike at the corresponding negative frequency.

The (generally complex) coefficients of the spikes depend upon the
phase of the sinewave.



Now, let’s find the Fourier transform of a pulse:

X(t)

=15 14

This function is sometimes referred to as I(t).

Applying the definition of the Fourier transform, we have



F{(t)}




A plot of this function is shown below:

1.5

0.5

sinc ® /2

o




Now, let’s find the Fourier transform of a pulsed sinewave:

X(t)=11(t)cosl0 xt.

I(t) cos 10 t

15

R

VAR AA

| ANRNIITETA

IR

-1.5
-1 -0.5 0 0.5

t



l i : -
F{I7(t)COS].Ot} = %I31(e110711+e—1107rt)e—1wtdt
2
1

% j 1 (671w 10t g™ I WHONy gt
2

1;sinc (- 1O)+Lzsinc (w-10).



A plot of this function is shown below:

Spectrum of Pulsed Sinewave




Exercise: find the Fourier transform of the following pulsed sine wave:

X(t)= I7( )sin 100zt .



