
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad – 500 043

Object Oriented Programming through Java
Course Code: ACS003

IV Semester (IARE – R16)

Prepared by:

Mr. G Chandra Sekhar

Assistant Professor

Mr. E Sunil Reddy
Assistant Professor

1

 OOP concepts- Data abstraction- encapsulation- inheritance- benefits of

inheritance- polymorphism-classes and objects- procedural and object

oriented programming paradigm.

 Java programming – History of java- comments data types-variables-

constants-scope and life time of variables-operators-operator hierarchy-

expressions-type conversion and casting- enumerated types- control flow –

block scope- conditional statements-loops-break and continue statements-

simple java stand alone programs-arrays-console input and output-

formatting output-constructors-methods-parameter passing- static fields and

methods- access control- this reference- overloading methods and

constructors-recursion-garbage collection- building strings- exploring

string class

2

UNIT - I

Introduction

Need for OOP Paradigm

 OOP is an approach to program organization and development, which

attempts to eliminate some of the drawbacks of conventional programming

methods by incorporating the best of structured programming features with

several new concepts.

 OOP allows us to decompose a problem into number of entities called

objects and then build data and methods (functions) around these entities.

 The data of an object can be accessed only by the methods associated with

the object.

3

Object-oriented programming (OOP) is a programming paradigm that uses

“Objects “and their interactions to design applications.

It simplifies the software development and maintenance by providing some

concepts:

 Object

 Class

 Data Abstraction & Encapsulation

 Inheritance

 Polymorphism

 Dynamic Binding

 Message Passing

4

Object

 Objects are the basic run time entities in an object-oriented system. They

may represent a person, a place, a bank account, a table of data or any item

that the program has to handle.

5

Class

 The entire set of data and code of an object can be made of a user defined

data type with the help of a class.

 In fact, Objects are variables of the type class. Once a class has been defined,

we can create any number of objects belonging to that class.

 Classes are data types based on which objects are created. Objects with

similar properties and methods are grouped together to form a Class. Thus a

Class represents a set of individual objects.

6

 Characteristics of an object are represented in a class as Properties. The

actions that can be performed by objects become functions of the class and

is referred to as Methods.

 A class is thus a collection of objects of similar type . for example: mango,

apple, and orange are members of the class fruit . ex: fruit mango; will

create an object mango belonging to the class fruit.

7

Example for class

class Human

{

private: EyeColor IColor;

NAME personname;

public:

void SetName(NAME anyName);

void SetIColor(EyeColor eyecolor);

};

8

Data abstraction

 Abstraction refers to the act of representing essential features without including

the background details or explanations. since the classes use the concept of data

abstraction ,they are known as abstraction data type(ADT).

 For example, a class Car would be made up of an Engine, Gearbox, Steering

objects, and many more components. To build the Car class, one does not need

to know how the different components work internally, but only know how to

interface with them, i.e., send messages to them, receive messages from them,

and perhaps make the different objects composing the class interact with each

other.

9

An example for abstraction

 Humans manage complexity through abstraction. When you drive your car

you do not have to be concerned with the exact internal working of your

car(unless you are a mechanic).

 What you are concerned with is interacting with your car via its interfaces like

steering wheel, brake pedal, accelerator pedal etc. Various manufacturers of

car has different implementation of car working but its basic interface has not

changed (i.e. you still use steering wheel, brake pedal, accelerator pedal etc to

interact with your car). Hence the knowledge you have of your car is abstract.

10

Some of the Object-Oriented Paradigm are:

 Emphasis is on data rather than procedure.

 Programs are divided into objects.

 Data Structures are designed such that they Characterize the objects.

 Methods that operate on the data of an object are tied together in the

data structure.

 Data is hidden and can not be accessed by external functions.

 Objects may communicate with each other through methods.

11

Encapsulation

Encapsulation in Java is a mechanism of wrapping the data (variables) and

code acting on the data (methods) together as a single unit. In encapsulation,

the variables of a class will be hidden from other classes, and can be accessed

only through the methods of their current class. Therefore, it is also known as

data hiding.

To achieve encapsulation in Java −

• Declare the variables of a class as private.

• Provide public setter and getter methods to modify and view the variables

values.

Benefits of Encapsulation

• The fields of a class can be made read-only or write-only.

• A class can have total control over what is stored in its fields.

12

Inheritance

Inheritance in Java is a mechanism in which one object acquires all the properties and behaviors
of a parent object. It is an important part of OOPs (Object Oriented programming system).

The idea behind inheritance in Java is that you can create new classes that are built upon existing
classes. When you inherit from an existing class, you can reuse methods and fields of the parent
class. Moreover, you can add new methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parent-child relations

Why use inheritance in java

• For Method Overriding (so runtime polymorphism can be achieved).

• For Co

Terms used in Inheritance

• Class: A class is a group of objects which have common properties. It is a template or
blueprint from which objects are created.

• Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called a
derived class, extended class, or child class.

• Super Class/Parent Class: Superclass is the class from where a subclass inherits the features. It
is also called a base class or a parent class.

• Reusability: As the name specifies, reusability is a mechanism which facilitates you to reuse
the fields and methods of the existing class when you create a new class. You can use the same
fields and methods already defined in the previous class.de Reusability.hip.

13

Benefit of using inheritance:

• A code can be used again and again

• Inheritance in Java enhances the properties of the class, which means that

property of the parent class will automatically be inherited by the base class

• It can define more specialized classes by adding new details.

14

Polymorphism

• Polymorphism in Java is a concept by which we can perform a single action in
different ways. Polymorphism is derived from 2 Greek words: poly and morphs.
The word "poly" means many and "morphs" means forms. So polymorphism
means many forms.

• There are two types of polymorphism in Java: compile-time polymorphism and
runtime polymorphism. We can perform polymorphism in java by method
overloading and method overriding.

• If you overload a static method in Java, it is the example of compile time
polymorphism. Here, we will focus on runtime polymorphism in java.

• Runtime Polymorphism in Java.

Runtime polymorphism or Dynamic Method Dispatch is a process in which a call
to an overridden method is resolved at runtime rather than compile-time.

• In this process, an overridden method is called through the reference variable of
a superclass. The determination of the method to be called is based on the object
being referred to by the reference variable.

• Let's first understand the upcasting before Runtime Polymorphism.

15

16

CLASSES

Class is blue print or an idea of an Object
From One class any number of Instances can be created
It is an encapsulation of attributes and methods

FIGURE

CIRCLE

RECTANGLE

SQUARE

Ob1

Ob2

Ob3

class

17

Syntax of CLASS

class <ClassName>

{

attributes/variables;

Constructors();

methods();

}

18

Instance

 Instance is an Object of a class which is an entity with its own attribute values

and methods.

Creating an Instance

ClassName refVariable;

refVariable = new Constructor();

or

ClassName refVariable = new Constructor();

19

Java Class Hierarchy

In Java, class “Object” is the base class to all other classes

 If we do not explicitly say extends in a new class definition, it

implicitly extends Object

 The tree of classes that extend from Object and all of its subclasses are

is called the class hierarchy

 All classes eventually lead back up to Object

 This will enable consistent access of objects of different classes.

20

Method Binding
• Objects are used to call methods.

• MethodBinding is an object that can be used to call an arbitrary
public method, on an instance that is acquired by evaluating the
leading portion of a method binding expression via a value binding.

• It is legal for a class to have two or more methods with the same
name.

• Java has to be able to uniquely associate the invocation of a method
with its definition relying on the number and types of arguments.

• Therefore the same-named methods must be distinguished:

1) by the number of arguments, or

2) by the types of arguments

• Overloading and inheritance are two ways to implement
polymorphism.

21

History of Java

Computer language innovation and development occurs for two fundamental

reasons:

1) to adapt to changing environments and uses

2) to implement improvements in the art of programming

 The development of Java was driven by both in equal measures.

 Many Java features are inherited from the earlier languages:

B  C  C++  Java

22

Before Java: C

 Designed by Dennis Ritchie in 1970s.

 Before C: BASIC, COBOL, FORTRAN, PASCAL

 C- structured, efficient, high-level language that could replace assembly code
when creating systems programs.

 Designed, implemented and tested by programmers.

23

Before Java: C++

 Designed by Bjarne Stroustrup in 1979.

 Response to the increased complexity of programs and respective
improvements in the programming paradigms and methods:

1) assembler languages

2) high-level languages

3) structured programming

4) object-oriented programming (OOP)

 OOP – methodology that helps organize complex programs through the use of
inheritance, encapsulation and polymorphism.

 C++ extends C by adding object-oriented features.

24

Java: History

• In 1990, Sun Microsystems started a project called Green.

• Objective: to develop software for consumer electronics.

• Project was assigned to James Gosling, a veteran of classic network
software design. Others included Patrick Naughton, ChrisWarth, Ed
Frank, and Mike Sheridan.

• The team started writing programs in C++ for embedding into

– toasters

– washing machines

– VCR’s

• Aim was to make these appliances more “intelligent”.

25

Java: History (contd.)

 C++ is powerful, but also dangerous. The power and popularity of C derived from
the extensive use of pointers. However, any incorrect use of pointers can cause
memory leaks, leading the program to crash.

 In a complex program, such memory leaks are often hard to detect.

 Robustness is essential. Users have come to expect that Windows may crash or that a
program running under Windows may crash. (“This program has performed an
illegal operation and will be shut down”)

 However, users do not expect toasters to crash, or washing machines to crash.

 A design for consumer electronics has to be robust.

 Replacing pointers by references, and automating memory management was the
proposed solution.

26

Java: History (contd.)

• Hence, the team built a new programming language called Oak, which
avoided potentially dangerous constructs in C++, such as pointers, pointer
arithmetic, operator overloading etc.

• Introduced automatic memory management, freeing the programmer to
concentrate on other things.

• Architecture neutrality (Platform independence)
• Many different CPU’s are used as controllers. Hardware chips are evolving

rapidly. As better chips become available, older chips become obsolete and
their production is stopped. Manufacturers of toasters and washing
machines would like to use the chips available off the shelf, and would not
like to reinvest in compiler development every two-three years.

• So, the software and programming language had to be architecture neutral.

27

Java: History (contd)
• It was soon realized that these design goals of consumer electronics perfectly suited an

ideal programming language for the Internet and WWW, which should be:
 object-oriented (& support GUI)
 – robust
 – architecture neutral

• Internet programming presented a BIG business opportunity. Much bigger than
programming for consumer electronics.

• Java was “re-targeted” for the Internet
• The team was expanded to include Bill Joy (developer of Unix), Arthur van Hoff,

Jonathan Payne, Frank Yellin, Tim Lindholm etc.
• In 1994, an early web browser called WebRunner was written in Oak. WebRunner was

later renamed HotJava.
• In 1995, Oak was renamed Java.
• A common story is that the name Java relates to the place from where the development

team got its coffee. The name Java survived the trade mark search.

28

Java History

 Designed by James Gosling, Patrick Naughton, Chris Warth, Ed Frank and Mike
Sheridan at Sun Microsystems in 1991.

 The original motivation is not Internet: platform-independent software
embedded in consumer electronics devices.

 With Internet, the urgent need appeared to break the fortified positions of Intel,
Macintosh and Unix programmer communities.

 Java as an “Internet version of C++”? No.
 Java was not designed to replace C++, but to solve a different set of problems.

29

The Java Buzzwords

• The key considerations were summed up by the
Java team in the following list of buzzwords:

 Simple
 Secure
 Portable
 Object-oriented
 Robust
Multithreaded
 Architecture-neutral
 Interpreted
 High performance
 Distributed
 Dynamic

30

• simple – Java is designed to be easy for the professional programmer to learn and
use.

• object-oriented: a clean, usable, pragmatic approach to objects, not restricted by
the need for compatibility with other languages.

• Robust: restricts the programmer to find the mistakes early, performs compile-time
(strong typing) and run-time (exception-handling) checks, manages memory
automatically.

• Multithreaded: supports multi-threaded programming for writing program that
perform concurrent computations.

• Architecture-neutral: Java Virtual Machine provides a platform independent
environment for the execution of Java byte code

• Interpreted and high-performance: Java programs are compiled into an
intermediate representation – byte code:

a) can be later interpreted by any JVM

b) can be also translated into the native machine code for efficiency.

31

• Distributed: Java handles TCP/IP protocols, accessing a resource through
its URL much like accessing a local file.

• Dynamic: substantial amounts of run-time type information to verify and
resolve access to objects at run-time.

• Secure: programs are confined to the Java execution environment and
cannot access other parts of the computer.

• Portability: Many types of computers and operating systems are in use
throughout the world—and many are connected to the Internet.

• For programs to be dynamically downloaded to all the various types of
platforms connected to the Internet, some means of generating portable
executable code is needed. The same mechanism that helps ensure
security also helps create portability.

• Indeed, Java's solution to these two problems is both elegant and
efficient.

32

Comments

• The java comments are statements that are not executed
by the compiler and interpreter. The comments can be
used to provide information or explanation about the
variable, method, class or any statement. It can also be
used to hide program code for specific time.

• Types of Java Comments
• There are 3 types of comments in java.

• Single Line Comment
• Multi Line Comment
• Documentation Comment

33

Comments
1) Java Single Line Comment
The single line comment is used to comment only one line.
• Syntax:
• //This is single line comment
Example:
public class CommentExample1 {
public static void main(String[] args) {
int i=10;//Here, i is a variable
System.out.println(i);
}
}
Output:
10

34

Comments

2) Java Multi Line Comment

The multi line comment is used to comment multiple lines of code.

Syntax:

/*

This

is

multi line

comment

*/

Example:

public class CommentExample2 {

public static void main(String[] args) {

/* Let's declare and

print variable in java. */

int i=10;

System.out.println(i);

} } Output: 10
35

Comments

3) Java Documentation Comment

The documentation comment is used to create documentation API. To create
documentation API, you need to use javadoc tool.

Syntax:

/**

This

is

documentation

comment

*/

36

Data Types

• Java defines eight simple types:
1)byte – 8-bit integer type

2)short – 16-bit integer type

3)int – 32-bit integer type

4)long – 64-bit integer type

5)float – 32-bit floating-point type

6)double – 64-bit floating-point type

7)char – symbols in a character set

8)boolean – logical values true and false

37

• byte: 8-bit integer type.

Range: -128 to 127.

Example: byte b = -15;

Usage: particularly when working with data streams.

• short: 16-bit integer type.

Range: -32768 to 32767.

Example: short c = 1000;

Usage: probably the least used simple type.

38

• int: 32-bit integer type.
Range: -2147483648 to 2147483647.

Example: int b = -50000;

Usage:

1) Most common integer type.

2) Typically used to control loops and to index
arrays.

3) Expressions involving the byte, short and int
values are promoted to int before calculation.

39

 long: 64-bit integer type.
Range: -9223372036854775808 to

9223372036854775807.
Example: long l = 10000000000000000;
Usage: 1) useful when int type is not large enough to hold the

desired value

 float: 32-bit floating-point number.
Range: 1.4e-045 to 3.4e+038.
Example: float f = 1.5;
Usage:
1) fractional part is needed
2) large degree of precision is not required

40

• double: 64-bit floating-point number.

Range: 4.9e-324 to 1.8e+308.

Example: double pi = 3.1416;

Usage:

1) accuracy over many iterative calculations

2) manipulation of large-valued numbers

41

char: 16-bit data type used to store characters.
Range: 0 to 65536.

Example: char c = ‘a’;

Usage:

1) Represents both ASCII and Unicode character sets;
Unicode defines a

character set with characters found in (almost) all
human languages.

2) Not the same as in C/C++ where char is 8-bit and
represents ASCII only.

42

• boolean: Two-valued type of logical values.

Range: values true and false.

Example: boolean b = (1<2);

Usage:

1) returned by relational operators, such as 1<2

2) required by branching expressions such as if
or for

43

Variables

• declaration – how to assign a type to a variable
• initialization – how to give an initial value to a variable
• scope – how the variable is visible to other parts of the

program
• lifetime – how the variable is created, used and

destroyed
• type conversion – how Java handles automatic type

conversion
• type casting – how the type of a variable can be

narrowed down

44

Variables

• Java uses variables to store data.

• To allocate memory space for a variable JVM requires:

1) to specify the data type of the variable

2) to associate an identifier with the variable

3) optionally, the variable may be assigned an initial
value

• All done as part of variable declaration.

45

Basic Variable Declaration

• datatype identifier [=value];

• datatype must be

– A simple datatype

– User defined datatype (class type)

• Identifier is a recognizable name confirm to
identifier rules

• Value is an optional initial value.

46

Variable Declaration

• We can declare several variables at the same time:

type identifier *=value+*, identifier *=value+ …+;
Examples:

int a, b, c;

int d = 3, e, f = 5;

byte g = 22;

double pi = 3.14159;

char ch = 'x';

47

Variable Scope

• Scope determines the visibility of program elements with respect to
other program elements.

• In Java, scope is defined separately for classes and methods:
1) variables defined by a class have a global scope
2) variables defined by a method have a local scope
A scope is defined by a block:
{
…
}
A variable declared inside the scope is not visible outside:
{
int n;
}
n = 1;// this is illegal

48

Variable Lifetime

• Variables are created when their scope is entered by
control flow and destroyed when their scope is left:

• A variable declared in a method will not hold its
value between different invocations of this method.

• A variable declared in a block looses its value when
the block is left.

• Initialized in a block, a variable will be re-initialized
with every re-entry. Variables lifetime is confined to
its scope!

49

Operators Types

• Java operators are used to build value expressions.

• Java provides a rich set of operators:

1) assignment

2) arithmetic

3) relational

4) logical

5) bitwise

50

Arithmetic assignments

+= v += expr; v = v + expr ;

-= v -=expr; v = v - expr ;

*= v *= expr; v = v * expr ;

/= v /= expr; v = v / expr ;

%= v %= expr; v = v % expr ;

51

Basic Arithmetic Operators

+ op1 + op2 ADD

- op1 - op2 SUBSTRACT

* op1 * op2 MULTIPLY

/ op1 / op2 DIVISION

% op1 % op2 REMAINDER

52

Relational operator

== Equals to Apply to any type

!= Not equals to Apply to any type

> Greater than Apply to numerical type

< Less than Apply to numerical type

>= Greater than or equal Apply to numerical type

<= Less than or equal Apply to numerical type

53

Logical operators

& op1 & op2 Logical AND

| op1 | op2 Logical OR

&& op1 && op2 Short-circuit

AND

|| op1 || op2 Short-circuit OR

! ! op Logical NOT

^ op1 ^ op2 Logical XOR

54

Bit wise operators

~ ~op Inverts all bits

& op1 & op2 Produces 1 bit if both operands are 1

| op1 |op2 Produces 1 bit if either operand is 1

^ op1 ^ op2 Produces 1 bit if exactly one operand is 1

>> op1 >> op2 Shifts all bits in op1 right by the value of

op2

<< op1 << op2 Shifts all bits in op1 left by the value of

op2

55

Operator Hierarchy

56

Operators Precedence

postfix increment and decrement ++ --

prefix increment and decrement, and unary ++ -- + - ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>=>>>=

• An expression is a construct made up of variables, operators, and method
invocations, which are constructed according to the syntax of the language, that
evaluates to a single value.

• Examples of expressions are in bold below:

int number = 0;

anArray[0] = 100;

System.out.println ("Element 1 at index 0: " + anArray[0]);

int result = 1 + 2; // result is now 3 if(value1 == value2)

System.out.println("value1 == value2");

Expressions

57

Expressions

 The data type of the value returned by an expression depends on the elements used in
the expression.

 The expression number = 0 returns an int because the assignment operator returns a
value of the same data type as its left-hand operand; in this case, number is an int.

 As you can see from the other expressions, an expression can return other types of
values as well, such as boolean or String. The Java programming language allows
you to construct compound expressions from various smaller expressions as long as
the data type required by one part of the expression matches the data type of the
other.

 Here's an example of a compound expression: 1 * 2 * 3

58

Type Conversion

• Size Direction of Data Type

– Widening Type Conversion (Casting down)

• Smaller Data Type Larger Data Type

– Narrowing Type Conversion (Casting up)

• Larger Data Type Smaller Data Type

• Conversion done in two ways

– Implicit type conversion

• Carried out by compiler automatically

– Explicit type conversion

• Carried out by programmer using casting

59

Type Conversion

• Widening Type Converstion

– Implicit conversion by compiler automatically

byte -> short, int, long, float, double

short -> int, long, float, double

char -> int, long, float, double

int -> long, float, double

long -> float, double

float -> double

60

Type Conversion

• Narrowing Type Conversion

– Programmer should describe the conversion

explicitly

byte -> char

short -> byte, char

char -> byte, short

int -> byte, short, char

long -> byte, short, char, int

float -> byte, short, char, int, long

double -> byte, short, char, int, long, float

61

Type Conversion

• byte and short are always promoted to int

• if one operand is long, the whole expression is
promoted to long

• if one operand is float, the entire expression is
promoted to float

• if any operand is double, the result is double

62

Type Casting

• General form: (targetType) value
• Examples:
• 1) integer value will be reduced module bytes

range:
int i;
byte b = (byte) i;

• 2) floating-point value will be truncated to integer
value:
float f;
int i = (int) f;

63

Control Statements

• Java control statements cause the flow of
execution to advance and branch based on the
changes to the state of the program.

• Control statements are divided into three groups:
1) selection statements allow the program to
choose different parts of the execution based on
the outcome of an expression
2) iteration statements enable program execution
to repeat one or more statements
3) jump statements enable your program to
execute in a non-linear fashion

64

Selection Statements

• Java selection statements allow to control the flow of
program’s execution based upon conditions known
only during run-time.

• Java provides four selection statements:

1) if

2) if-else

3) if-else-if

4) switch

65

Iteration Statements

• Java iteration statements enable repeated
execution of part of a program until a certain
termination condition becomes true.

• Java provides three iteration statements:

1) while

2) do-while

3) for

66

Jump Statements

• Java jump statements enable transfer of
control to other parts of program.

• Java provides three jump statements:
1) break
2) continue
3) return

• In addition, Java supports exception handling
that can also alter the control flow of a
program.

67

Simple Java Program

• A class to display a simple message:
class MyProgram
{
public static void main(String[] args)
{

System.out.println(“First Java program.");
}

}

68

Arrays

• An array is a group of liked-typed variables
referred to by a common

• name, with individual variables accessed by
their index.

• Arrays are:
1) declared

2) created

3) initialized

4) used

• Also, arrays can have one or several dimensions.
69

Array Declaration

• Array declaration involves:

1) declaring an array identifier

2) declaring the number of dimensions

3) declaring the data type of the array elements

• Two styles of array declaration:

type array-variable[];

or

type [] array-variable;

70

Array Creation

• After declaration, no array actually exists.

• In order to create an array, we use the new operator:

type array-variable[];

array-variable = new type[size];

• This creates a new array to hold size elements of
type type, which reference will be kept in the
variable array-variable.

71

Array Indexing

• Later we can refer to the elements of this
array through their indexes:

• array-variable[index]

• The array index always starts with zero!

• The Java run-time system makes sure that all
array indexes are in the correct range,
otherwise raises a run-time error.

72

Array Initialization

• Arrays can be initialized when they are declared:

• int monthDays[] =
{31,28,31,30,31,30,31,31,30,31,30,31};

• Note:

1) there is no need to use the new operator

2) the array is created large enough to hold all
specified elements

73

Multidimensional Arrays

• Multidimensional arrays are arrays of arrays:

1) declaration: int array[][];

2) creation: int array = new int[2][3];

3) initialization

int array[][] = { {1, 2, 3}, {4, 5, 6} };

74

What is an Object?

• Real world objects are things that have:

1) state

2) behavior

Example: your dog:

• state – name, color, breed, sits?, barks?, wages tail?,
runs?

• behavior – sitting, barking, waging tail, running

• A software object is a bundle of variables (state) and
methods (operations).

75

What is a Class?

• A class is a blueprint that defines the variables
and methods common to all objects of a
certain kind.

• Example: ‘your dog’ is a object of the class
Dog.

• An object holds values for the variables
defines in the class.

• An object is called an instance of the Class

76

Object Creation

• A variable is declared to refer to the objects of
type/class String:

String s;

• The value of s is null; it does not yet refer to any
object.

• A new String object is created in memory with initial
“abc” value:

• String s = new String(“abc”);

• Now s contains the address of this new object.

77

Object Destruction

• A program accumulates memory through its
execution.

• Two mechanism to free memory that is no longer
need by the program:

1) manual – done in C/C++
2) automatic – done in Java

• In Java, when an object is no longer accessible
through any variable, it is eventually removed
from the memory by the garbage collector.

• Garbage collector is parts of the Java Run-Time
Environment.

78

Class

• A basis for the Java language.

• Each concept we wish to describe in Java must
be included inside a class.

• A class defines a new data type, whose values
are objects:

• A class is a template for objects

• An object is an instance of a class

79

Class Definition

 A class contains a name, several variable declarations (instance
variables) and several method declarations. All are called
members of the class.

 General form of a class:
class classname {

type instance-variable-1;
…
type instance-variable-n;
type method-name-1(parameter-list) , … -
type method-name-2(parameter-list) , … -
…
type method-name-m(parameter-list) , … -

}

80

Example: Class Usage

class Box {
double width;
double height;
double depth;
}
class BoxDemo {
public static void main(String args[]) {
Box mybox = new Box();
double vol;
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;
vol = mybox.width * mybox.height * mybox.depth;
System.out.println ("Volume is " + vol);
} }

81

Constructor

• A constructor initializes the instance variables of an
object.

• It is called immediately after the object is created but
before the new operator completes.

1) it is syntactically similar to a method:
2) it has the same name as the name of its class
3) it is written without return type; the default
return type of a class

• constructor is the same classWhen the class has no
constructor, the default constructor automatically
initializes all its instance variables with zero.

82

Example: Constructor

class Box {
double width;
double height;
double depth;
Box() {
System.out.println("Constructing Box");
width = 10; height = 10; depth = 10;
}
double volume() {
return width * height * depth;
}
}

83

Parameterized Constructor

class Box {
double width;
double height;
double depth;
Box(double w, double h, double d) {
width = w; height = h; depth = d;
}
double volume()
{ return width * height * depth;
}
}

84

Methods

 General form of a method definition:
type name(parameter-list) {

… return value;
…

}
 Components:

1) type - type of values returned by the method. If a method
does not return any value, its return type must be void.
2) name is the name of the method
3) parameter-list is a sequence of type-identifier lists
separated by commas
4) return value indicates what value is returned by the
method.

85

Example: Method

• Classes declare methods to hide their internal data
structures, as well as for their own internal use: Within a
class, we can refer directly to its member variables:

class Box {

double width, height, depth;

void volume() {

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

86

Parameterized Method

• Parameters increase generality and applicability of a
method:

• 1) method without parameters

int square() { return 10*10; }

• 2) method with parameters

int square(int i) { return i*i; }

• Parameter: a variable receiving value at the time the
method is invoked.

• Argument: a value passed to the method when it is
invoked.

87

Access Control: Data Hiding and Encapsulation

• Java provides control over the visibility of variables
and methods.

• Encapsulation, safely sealing data within the capsule
of the class Prevents programmers from relying on
details of class implementation, so you can update
without worry

• Helps in protecting against accidental or wrong
usage.

• Keeps code elegant and clean (easier to maintain)

88

Access Modifiers: Public, Private, Protected

• Public: keyword applied to a class, makes it
available/visible everywhere. Applied to a
method or variable, completely visible.

• Default(No visibility modifier is specified): it
behaves like public in its package and private
in other packages.

• Default Public keyword applied to a class,
makes it available/visible everywhere.
Applied to a method or variable, completely
visible.

89

• Private fields or methods for a class only
visible within that class. Private members are
not visible within subclasses, and are not
inherited.

• Protected members of a class are visible
within the class, subclasses and also within all
classes that are in the same package as that
class.

90

Visibility

public class Circle {

private double x,y,r;

// Constructor

public Circle (double x, double y, double r) {

this.x = x;

this.y = y;

this.r = r;

}

//Methods to return circumference and area

public double circumference() { return 2*3.14*r;}

public double area() { return 3.14 * r * r; }

}

91

String Handling

• String is probably the most commonly used class in
Java's class library. The obvious reason for this is that
strings are a very important part of programming.

• The first thing to understand about strings is that every
string you create is actually an object of type String.
Even string constants are actually String objects.

• For example, in the statement
System.out.println("This is a String, too");

the string "This is a String, too" is a String constant

92

• Java defines one operator for String objects: +.

• It is used to concatenate two strings. For example,
this statement

• String myString = "I" + " like " + "Java.";

results in myString containing

"I like Java."

93

• The String class contains several methods that you can use. Here are
a few. You can

• test two strings for equality by using
equals(). You can obtain the length of a string by calling the length()
method. You can obtain the character at a specified index within a
string by calling charAt(). The general forms of these three methods
are shown here:

• // Demonstrating some String methods.
class StringDemo2 {
public static void main(String args[]) {

String strOb1 = "First String";
String strOb2 = "Second String";
String strOb3 = strOb1; System.out.println("Length

of strOb1: " +
strOb1.length());

94

System.out.println ("Char at index 3 in strOb1: " +
strOb1.charAt(3));
if(strOb1.equals(strOb2))

System.out.println("strOb1 == strOb2");
else
System.out.println("strOb1 != strOb2");
if(strOb1.equals(strOb3))
System.out.println("strOb1 == strOb3");
else
System.out.println("strOb1 != strOb3");
} }

This program generates the following output:
Length of strOb1: 12
Char at index 3 in strOb1: s
strOb1 != strOb2
strOb1 == strOb3

95

UNIT-2

MULTIPLE INHERITANCE ,INTERFACES AND PACKAGES

96

97

Inheritance

• Methods allows a software developer to reuse a sequence of
statements

• Inheritance allows a software developer to reuse classes by
deriving a new class from an existing one

• The existing class is called the parent class, or superclass, or
base class

• The derived class is called the child class or subclass.
• As the name implies, the child inherits characteristics of the

parent
• That is, the child class inherits the methods and data defined

for the parent class

98

Inheritance

• Inheritance relationships are often shown
graphically in a class diagram, with the
arrow pointing to the parent class

Inheritance should
create an is-a
relationship,

meaning the child is
a more specific
version of the

parent

Animal
weight : int

+ getWeight() : int

Bird

+ fly() : void

99

Deriving Subclasses

• In Java, we use the reserved word extends to establish an
inheritance relationship

class Animal

{

// class contents

int weight;

public void int getWeight() {…}

}

class Bird extends Animal

{

// class contents

public void fly() {…};

}

100

Class Hierarchy
• A child class of one parent can be the parent of another

child, forming class hierarchies

Animal

Reptile Bird Mammal

Snake Lizard BatHorseParrot

 At the top of the hierarchy there’s a default class
called Object.

101

Class Hierarchy

• Good class design puts all common features as high in the
hierarchy as reasonable

• inheritance is transitive
– An instance of class Parrot is also an instance of Bird, an instance of

Animal, …, and an instance of class Object

• The class hierarchy determines how methods are executed:
– Previously, we took the simplified view that when variable v is an

instance of class C, then a procedure call v.proc1() invokes the method
proc1() defined in class C

– However, if C is a child of some superclass C’ (and hence v is both an
instance of C and an instance of C’), the picture becomes more
complex, because methods of class C can override the methods of
class C’ (next two slides).

102

Defining Methods in the Child Class: Overriding by Replacement

• A child class can override the definition of an inherited method in favor
of its own
– that is, a child can redefine a method that it inherits from its parent
– the new method must have the same signature as the parent's method, but

can have different code in the body

• In java, all methods except of constructors override the methods of their
ancestor class by replacement. E.g.:
– the Animal class has method eat()
– the Bird class has method eat() and Bird extends Animal
– variable b is of class Bird, i.e. Bird b = …
– b.eat() simply invokes the eat() method of the Bird class

• If a method is declared with the final modifier, it cannot be
overridden

103

Defining Methods in the Child Class: Overriding by Refinement

• Constructors in a subclass override the definition of an inherited constructor
method by refining them (instead of replacing them)

- Assume class Animal has constructors
Animal(), Animal(int weight), Animal(int weight, int livespan)

- Assume class Bird which extends Animal has constructors
Bird(), Bird(int weight), Bird(int weight, int livespan)

- Let’s say we create a Bird object, e.g. Bird b = Bird(5)
- This will invoke first the constructor of the Animal (the superclass of Bird) and then

the constructor of the Bird

• This is called constructor chaining: If class C0 extends C1 and C1 extends C2 and
… Cn-1 extends Cn = Object then when creating an instance of object C0 first
constructor of Cn is invoked, then constructors of Cn-1, …, C2, C1, and finally the
constructor of C

- The constructors (in each case) are chosen by their signature, e.g. (), (int), etc…
- If no constructor with matching signature is found in any of the class Ci for i>0 then the

default constructor is executed for that class
- If no constructor with matching signature is found in the class C0 then this causes a compiler

errorFirst the new method must have the same signature as the parent's method, but can
have different code in the body

104

Recap: Class Hierarchy
• In Java, a class can extend a single other class

(If none is stated then it implicitly extends an Object class)

Animal

Reptile Bird Mammal

Snake Lizard BatHorseParrot

 Imagine what would happen to method handling
rules if every class could extend two others…

(Answer: It would create multiple problems!)

Hierarchical Abstraction

• An essential element of object-oriented programming is
abstraction.

• Humans manage complexity through abstraction. For
example, people do not think of a car as a set of tens of
thousands of individual parts. They think of it as a well-
defined object with its own unique behavior.

• This abstraction allows people to use a car without being
overwhelmed by the complexity of the parts that form the
car. They can ignore the details of how the engine,
transmission, and braking systems work.

• Instead they are free to utilize the object as a whole.

105

Class Hierarchy

 A child class of one parent can be the parent of another child,
forming class hierarchies

Animal

Reptile Bird Mammal

Snake Lizard BatHorseParrot

 At the top of the hierarchy there’s a default class called Object.
106

Class Hierarchy

• Good class design puts all common features as high in the
hierarchy as reasonable

• The class hierarchy determines how methods are executed

• inheritance is transitive

– An instance of class Parrot is also an instance of Bird, an
instance of Animal, …, and an instance of class Object

107

Base Class Object

• In Java, all classes use inheritance.

• If no parent class is specified explicitly, the base class Object is implicitly
inherited.

• All classes defined in Java, is a child of Object class, which provides minimal
functionality guaranteed to e common to all objects.

• Methods defined in Object class are;

1. equals(Object obj): Determine whether the argument object is the same as the
receiver.

2. getClass(): Returns the class of the receiver, an object of type Class.

3. hashCode(): Returns a hash value for this object. Should be overridden when the
equals method is changed.

4. toString(): Converts object into a string value. This method is also often
overridden.

108

Base class

1) a class obtains variables and methods from another class

2) the former is called subclass, the latter super-class (Base class)

3) a sub-class provides a specialized behavior with respect to its
super-class

4) inheritance facilitates code reuse and avoids duplication of data

Extends

 Is a keyword used to inherit a class from another class

 Allows to extend from only one class

class One

{ int a=5;

}

class Two extends One

{

int b=10;

}
109

Subclass, Subtype and Substitutability
• A subtype is a class that satisfies the principle of

substitutability.

• A subclass is something constructed using inheritance,
whether or not it satisfies the principle of substitutability.

• The two concepts are independent. Not all subclasses are
subtypes, and (at least in some languages) you can
construct subtypes that are not subclasses.

• Substitutability is fundamental to many of the powerful
software development techniques in OOP.

• The idea is that, declared a variable in one type may hold
the value of different type.

• Substitutability can occur through use of inheritance,
whether using extends, or using implements keywords.

110

When new classes are constructed using inheritance, the argument
used to justify the validity of substitutability is as follows;

• Instances of the subclass must possess all data fields associated
with its parent class.

• Instances of the subclass must implement, through inheritance
at least, all functionality defined for parent class. (Defining new
methods is not important for the argument.)

• Thus, an instance of a child class can mimic the behavior of the
parent class and should be indistinguishable from an instance of
parent class if substituted in a similar situation.

111

Subclass, Subtype, and Substitutability

The term subtype is used to describe the relationship between
types that explicitly recognizes the principle of substitution. A type
B is considered to be a subtype of A if an instances of B can legally
be assigned to a variable declared as of type A.

The term subclass refers to inheritance mechanism made by
extends keyword.

Not all subclasses are subtypes. Subtypes can also be formed
using interface, linking types that have no inheritance relationship.

112

Subclass

• Methods allows to reuse a sequence of statements

• Inheritance allows to reuse classes by deriving a new class from an
existing one

• The existing class is called the parent class, or superclass, or base
class

• The derived class is called the child class or subclass.

• As the name implies, the child inherits characteristics of the
parent(i.e the child class inherits the methods and data defined for
the parent class

113

Subtype

• Inheritance relationships are often shown graphically in a
class diagram, with the arrow pointing to the parent class

Animal

weight : int

+ getWeight() : int

Bird

+ fly() : void

114

Substitutability (Deriving Subclasses)

 In Java, we use the reserved word extends to establish an
inheritance relationship

class Animal
{
// class contents
int weight;

public void int getWeight() ,…-
}

class Bird extends Animal
{

// class contents
public void fly() ,…-;

} 115

Defining Methods in the Child Class: Overriding by Replacement

• A child class can override the definition of an inherited method in
favor of its own
– that is, a child can redefine a method that it inherits from its parent
– the new method must have the same signature as the parent's method,

but can have different code in the body

• In java, all methods except of constructors override the methods of
their ancestor class by replacement. E.g.:
– the Animal class has method eat()
– the Bird class has method eat() and Bird extends Animal
– variable b is of class Bird, i.e. Bird b = …
– b.eat() simply invokes the eat() method of the Bird class

• If a method is declared with the final modifier, it cannot be
overridden

116

Forms of Inheritance

Inheritance is used in a variety of way and for a variety of different
purposes .

• Inheritance for Specialization

• Inheritance for Specification

• Inheritance for Construction

• Inheritance for Extension

• Inheritance for Limitation

• Inheritance for Combination

One or many of these forms may occur in a single case.

117

Forms of Inheritance
(- Inheritance for Specialization -)

Most commonly used inheritance and sub classification is for
specialization.

Always creates a subtype, and the principles of substitutability
is explicitly upheld.

It is the most ideal form of inheritance.

An example of subclassification for specialization is;

public class PinBallGame extends Frame {

// body of class

}

118

Specialization

• By far the most common form of inheritance is for specialization.

– Child class is a specialized form of parent class

– Principle of substitutability holds

• A good example is the Java hierarchy of Graphical components in the AWT:

• Component

• Label

• Button

• TextComponent

– TextArea

– TextField

• CheckBox

• ScrollBar

119

Forms of Inheritance
(- Inheritance for Specification -)

This is another most common use of inheritance. Two different
mechanisms are provided by Java, interface and abstract, to make use of
subclassification for specification. Subtype is formed and substitutability
is explicitly upheld.

Mostly, not used for refinement of its parent class, but instead is used for
definitions of the properties provided by its parent.

class FireButtonListener implements ActionListener {

// body of class

}

class B extends A {

// class A is defined as abstract specification class

}
120

Specification

• The next most common form of inheritance involves
specification. The parent class specifies some behavior, but
does not implement the behavior
– Child class implements the behavior
– Similar to Java interface or abstract class
– When parent class does not implement actual behavior but

merely defines the behavior that will be implemented in
child classes

• Example, Java 1.1 Event Listeners:
ActionListener, MouseListener, and so on specify behavior, but
must be subclassed.

121

Forms of Inheritance
(- Inheritance for Construction -)

Child class inherits most of its functionality from parent, but may
change the name or parameters of methods inherited from
parent class to form its interface.

This type of inheritance is also widely used for code reuse
purposes. It simplifies the construction of newly formed
abstraction but is not a form of subtype, and often violates
substitutability.

Example is Stack class defined in Java libraries.

122

Construction

• The parent class is used only for its behavior, the child class
has no is-a relationship to the parent.

– Child modify the arguments or names of methods

–

• An example might be subclassing the idea of a Set from an
existing List class.

– Child class is not a more specialized form of parent class;
no substitutability

123

Forms of Inheritance
(- Inheritance for Extension -)

Subclassification for extension occurs when a child class only
adds new behavior to the parent class and does not modify or
alter any of the inherited attributes.

Such subclasses are always subtypes, and substitutability can be
used.

Example of this type of inheritance is done in the definition of
the class Properties which is an extension of the class HashTable.

124

Generalization or Extension

 The child class generalizes or extends the parent class by
providing more functionality

 In some sense, opposite of subclassing for specialization

 The child doesn't change anything inherited from the
parent, it simply adds new features

 Often used when we cannot modify existing base parent
class

 Example, ColoredWindow inheriting from Window

 Add additional data fields

 Override window display methods

125

Forms of Inheritance
(- Inheritance for Limitation -)

Subclassification for limitation occurs when the behavior of the
subclass is smaller or more restrictive that the behavior of its
parent class.

Like subclassification for extension, this form of inheritance
occurs most frequently when a programmer is building on a
base of existing classes.

Is not a subtype, and substitutability is not proper.

126

Limitation

• The child class limits some of the behavior of the parent class.

• Example, you have an existing List data type, and you want a
Stack

• Inherit from List, but override the methods that allow access
to elements other than top so as to produce errors.

127

Forms of Inheritance
(- Inheritance for Combination -)

This types of inheritance is known as multiple inheritance in
Object Oriented Programming.

Although the Java does not permit a subclass to be formed be
inheritance from more than one parent class, several
approximations to the concept are possible.

Example of this type is Hole class defined as;

class Hole extends Ball implements PinBallTarget{

// body of class

}

128

Combination

• Two or more classes that seem to be related, but its not clear
who should be the parent and who should be the child.

• Example: Mouse and TouchPad and JoyStick

• Better solution, abstract out common parts to new parent
class, and use subclassing for specialization.

129

Summary of Forms of Inheritance

• Specialization. The child class is a special case of the parent class; in other words,
the child class is a subtype of the parent class.

• Specification. The parent class defines behavior that is implemented in the child
class but not in the parent class.

• Construction. The child class makes use of the behavior provided by the parent class,
but is not a subtype of the parent class.

• Generalization. The child class modifies or overrides some of the methods of the
parent class.

• Extension. The child class adds new functionality to the parent class, but does not
change any inherited behavior.

• Limitation. The child class restricts the use of some of the behavior inherited from
the parent class.

• Variance. The child class and parent class are variants of each other, and the class-
subclass relationship is arbitrary.

• Combination. The child class inherits features from more than one parent class. This
is multiple inheritance and will be the subject of a later chapter.

130

The Benefits of Inheritance

• Software Reusability (among projects)

• Increased Reliability (resulting from reuse and sharing of
well-tested code)

• Code Sharing (within a project)

• Consistency of Interface (among related objects)

• Software Components

• Rapid Prototyping (quickly assemble from pre-existing
components)

• Polymorphism and Frameworks (high-level reusable
components)

• Information Hiding

131

The Costs of Inheritance

• Execution Speed

• Program Size

• Message-Passing Overhead

• Program Complexity (in overuse of inheritance)

132

Types of inheritance

 Acquiring the properties of an existing Object into newly
creating Object to overcome the re-declaration of
properties in deferent classes.

 These are 3 types:

1.Simple Inheritance

SUPER

SUB

SUPER

SUB 1 SUB 2

extendsextends

133

2. Multi Level

Inheritance

3. Multiple

Inheritance

SUPER

SUB

SUB SUB

SUPER 1
SUPER 2

extends

extends

implements

SUB

SUPER 1 SUPER 2

implements

SUB

extends

134

Member access rules

• Visibility modifiers determine which class members are
accessible and which do not

• Members (variables and methods) declared with public
visibility are accessible, and those with private visibility are not

• Problem: How to make class/instance variables visible only to
its subclasses?

• Solution: Java provides a third visibility modifier that helps in
inheritance situations: protected

135

Modifiers and Inheritance (cont.)

Visibility Modifiers for class/interface:

public : can be accessed from outside the class definition.

protected : can be accessed only within the class definition in
which it appears, within other classess in the same package, or
within the definition of subclassess.

private : can be accessed only within the class definition in
which it appears.

default-access (if omitted) features accessible from inside the
current Java package

136

The protected Modifier

• The protected visibility modifier allows a member of a base class
to be accessed in the child

– protected visibility provides more encapsulation than
public does

– protected visibility is not as tightly encapsulated as private
visibility

Book
protected int pages
+ getPages() : int

+ setPages(): void

Dictionary

+ getDefinitions() : int

+ setDefinitions(): void

+ computeRatios() : double
137

“super” uses

 ‘super’ is a keyword used to refer to hidden variables of super
class from sub class.

 super.a=a;

 It is used to call a constructor of super class from constructor of
sub class which should be first statement.

 super(a,b);

 It is used to call a super class method from sub class method to
avoid redundancy of code

 super.addNumbers(a, b);

138

Super and Hiding

• Why is super needed to access super-class members?

• When a sub-class declares the variables or methods with
the same names and types as its super-class:

class A {

int i = 1;

}

class B extends A {

int i = 2;

System.out.println(“i is “ + i);

}

• The re-declared variables/methods hide those of the
super-class.

139

Example: Super and Hiding

class A {
int i;
}
class B extends A {
int i;
B(int a, int b) {
super.i = a; i = b;
}
void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);
}
}

140

Example: Super and Hiding

• Although the i variable in B hides the i variable in A,
super allows access to the hidden variable of the
super-class:

class UseSuper {

public static void main(String args[]) {

B subOb = new B(1, 2);

subOb.show();

}

}

141

Using final with inheritance

• final keyword is used declare constants which can not change
its value of definition.

• final Variables can not change its value.

• final Methods can not be Overridden or Over Loaded

• final Classes can not be extended or inherited

142

Preventing Overriding with final

• A method declared final cannot be overridden in any
sub-class:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

This class declaration is illegal:

class B extends A {

void meth() {

System.out.println("Illegal!");

}

}
143

Preventing Inheritance with final

• A class declared final cannot be inherited – has no sub-
classes.

final class A , … -

• This class declaration is considered illegal:

class B extends A , … -

• Declaring a class final implicitly declares all its methods
final.

• It is illegal to declare a class as both abstract and final.

144

Object class and its methods

• The Object class is the parent class of all the classes in java by default. In other words, it is the topmost class of

java.

• The Object class is beneficial if you want to refer any object whose type you don't know. Notice that parent class

reference variable can refer the child class object, know as upcasting.

145

Polymorphism

• Polymorphism is one of three pillars of object-orientation.

• Polymorphism: many different (poly) forms of objects that
share a common interface respond differently when a
method of that interface is invoked:
1) a super-class defines the common interface

2) sub-classes have to follow this interface (inheritance),
but are also permitted to provide their own
implementations (overriding)

• A sub-class provides a specialized behaviors relying on the
common elements defined by its super-class.

146

Polymorphism

• A polymorphic reference can refer to different types of
objects at different times
– In java every reference can be polymorphic except of

references to base types and final classes.

• It is the type of the object being referenced, not the
reference type, that determines which method is invoked
– Polymorphic references are therefore resolved at run-

time, not during compilation; this is called dynamic
binding

• Careful use of polymorphic references can lead to
elegant, robust software designs

147

Method Overriding

• When a method of a sub-class has the same name and type as
a method of the super-class, we say that this method is
overridden.

• When an overridden method is called from within the sub-
class:

1) it will always refer to the sub-class method

2) super-class method is hidden

148

Example: Hiding with Overriding 1

class A {
int i, j;
A(int a, int b) {
i = a; j = b;
}
void show() {
System.out.println("i and j: " + i + " " + j);
}
}

149

Example: Hiding with Overriding 2

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

void show() {

System.out.println("k: " + k);

}

}

150

Example: Hiding with Overriding 3

• When show() is invoked on an object of type B, the
version of show() defined in B is used:

class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);
subOb.show();
}
}

• The version of show() in A is hidden through
overriding.

151

Overloading vs. Overriding

• Overloading deals with
multiple methods in the
same class with the same
name but different
signatures

• Overloading lets you
define a similar operation
in different ways for
different data

• Overriding deals with two
methods, one in a parent
class and one in a child class,
that have the same
signature

o Overriding lets you define a
similar operation in different
ways for different object
types

152

Abstract Classes

• Java allows abstract classes
– use the modifier abstract on a class header to declare an

abstract class
abstract class Vehicle

{ … }

• An abstract class is a placeholder in a class hierarchy
that represents a generic concept

Vehicle

Car Boat Plane

153

Abstract Class: Example

public abstract class Vehicle

{

String name;

public String getName()

{ return name; } \\ method body

abstract public void move();

\\ no body!

}

 An abstract class often contains abstract methods,
though it doesn’t have to
 Abstract methods consist of only methods declarations,

without any method body

154

Abstract Classes

• An abstract class often contains abstract methods, though it
doesn’t have to
– Abstract methods consist of only methods declarations, without any

method body

• The non-abstract child of an abstract class must override the
abstract methods of the parent

• An abstract class cannot be instantiated

• The use of abstract classes is a design decision; it helps us
establish common elements in a class that is too general to
instantiate

155

Abstract Method

• Inheritance allows a sub-class to override the methods of its
super-class.

• A super-class may altogether leave the implementation details
of a method and declare such a method abstract:

• abstract type name(parameter-list);

• Two kinds of methods:

1) concrete – may be overridden by sub-classes

2) abstract – must be overridden by sub-classes

• It is illegal to define abstract constructors or static methods.

156

Defining a Package
A package is both a naming and a visibility control mechanism:

1) divides the name space into disjoint subsets It is possible to
define classes within a package that are not accessible by code
outside the package.

2) controls the visibility of classes and their members It is
possible to define class members that are only exposed to
other members of the same package.

Same-package classes may have an intimate knowledge of
each other, but not expose that knowledge to other packages

157

Creating a Package

• A package statement inserted as the first line of the source
file:
package myPackage;
class MyClass1 { … }
class MyClass2 { … }

• means that all classes in this file belong to the myPackage
package.

• The package statement creates a name space where such
classes are stored.

• When the package statement is omitted, class names are put
into the default package which has no name.

158

Multiple Source Files

• Other files may include the same package instruction:

1. package myPackage;

class MyClass1 , … -

class MyClass2 , … -

2. package myPackage;

class MyClass3, … -

• A package may be distributed through several source
files

159

Packages and Directories

• Java uses file system directories to store packages.

• Consider the Java source file:

package myPackage;

class MyClass1 { … }

class MyClass2 { … }

• The byte code files MyClass1.class and MyClass2.class must
be stored in a directory myPackage.

• Case is significant! Directory names must match package
names exactly.

160

Package Hierarchy

• To create a package hierarchy, separate each package name with
a dot:

package myPackage1.myPackage2.myPackage3;

• A package hierarchy must be stored accordingly in the file system:

1) Unix myPackage1/myPackage2/myPackage3

2) Windows myPackage1\myPackage2\myPackage3

3) Macintosh myPackage1:myPackage2:myPackage3

• You cannot rename a package without renaming its directory!

161

Accessing a Package

• As packages are stored in directories, how does the Java run-
time system know where to look for packages?

• Two ways:

1) The current directory is the default start point - if packages
are stored in the current directory or sub-directories, they will
be found.

2) Specify a directory path or paths by setting the CLASSPATH
environment variable.

162

CLASSPATH Variable

• CLASSPATH - environment variable that points to the root
directory of the system’s package hierarchy.

• Several root directories may be specified in CLASSPATH,

• e.g. the current directory and the C:\raju\myJava directory:

.;C:\raju\myJava

• Java will search for the required packages by looking up
subsequent directories described in the CLASSPATH variable.

163

Finding Packages

• Consider this package statement:

package myPackage;

In order for a program to find myPackage, one of the following

must be true:

1) program is executed from the directory immediately above

myPackage (the parent of myPackage directory)

2) CLASSPATH must be set to include the path to myPackage

164

Example: Package

package MyPack;

class Balance {
String name;
double bal;
Balance(String n, double b) {
name = n; bal = b;
}
void show() {
if (bal<0) System.out.print("-->> ");
System.out.println(name + ": $" + bal);
} }

165

Example: Package

class AccountBalance

{

public static void main(String args[])

{

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

current[1] = new Balance("Will Tell", 157.02);

current[2] = new Balance("Tom Jackson", -12.33);

for (int i=0; i<3; i++) current[i].show();

}

}

166

Example: Package

• Save, compile and execute:

1) call the file AccountBalance.java

2) save the file in the directory MyPack

3) compile; AccountBalance.class should be also in MyPack

4) set access to MyPack in CLASSPATH variable, or make the

parent of MyPack your current directory

5) run: java MyPack.AccountBalance

• Make sure to use the package-qualified class name.

167

Importing of Packages

• Since classes within packages must be fully-qualified with
their package names, it would be tedious to always type long
dot-separated names.

• The import statement allows to use classes or whole packages
directly.

• Importing of a concrete class:

import myPackage1.myPackage2.myClass;

• Importing of all classes within a package:

import myPackage1.myPackage2.*;

168

Import Statement

• The import statement occurs immediately after the package

statement and before the class statement:

package myPackage;

• import otherPackage1;otherPackage2.otherClass;

class myClass , … -

• The Java system accepts this import statement by default:

import java.lang.*;

• This package includes the basic language functions. Without
such functions, Java is of no much use.

169

Example: Packages 1

• A package MyPack with one public class Balance.

The class has two same-package variables: public constructor and a
public show method.

package MyPack;
public class Balance {
String name;
double bal;
public Balance(String n, double b) {
name = n; bal = b;
}
public void show() {
if (bal<0) System.out.print("-->> ");
System.out.println(name + ": $" + bal);
}
}

170

Example: Packages 2

The importing code has access to the public class Balance of the

MyPack package and its two public members:

import MyPack.*;

class TestBalance {

public static void main(String args[]) {

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show();

}

}

171

Java Source File

Finally, a Java source file consists of:

1) a single package instruction (optional)

2) several import statements (optional)

3) a single public class declaration (required)

4) several classes private to the package (optional)

At the minimum, a file contains a single public class declaration.

172

Differences between classes and interfaces

• Interfaces are syntactically similar to classes, but they lack instance variables,
and their methods are declared without any body.

• One class can implement any number of interfaces.

• Interfaces are designed to support dynamic method resolution at run time.

• Interface is little bit like a class... but interface is lack in instance
variables....that's u can't create object for it.....

• Interfaces are developed to support multiple inheritance...

• The methods present in interfaces r pure abstract..

• The access specifiers public,private,protected are possible with classes, but
the interface uses only one spcifier public.....

• interfaces contains only the method declarations.... no definitions.......

• A interface defines, which method a class has to implement. This is way - if you
want to call a method defined by an interface - you don't need to know the
exact class type of an object, you only need to know that it implements a
specific interface.

• Another important point about interfaces is that a class can implement
multiple interfaces.

173

Defining an interface

• Using interface, we specify what a class must do, but not how it does this.

• An interface is syntactically similar to a class, but it lacks instance variables and its methods
are declared without any body.

• An interface is defined with an interface keyword.
 An interface declaration consists of modifiers, the keyword interface, the interface name, a

comma-separated list of parent interfaces (if any), and the interface body.
For example:
public interface GroupedInterface extends Interface1, Interface2, Interface3 {
// constant declarations double E = 2.718282;
// base of natural logarithms //
//method signatures
void doSomething (int i, double x);
int doSomethingElse(String s);
}

 The public access specifier indicates that the interface can be used by any class in any
package. If you do not specify that the interface is public, your interface will be accessible
only to classes defined in the same package as the interface.

 An interface can extend other interfaces, just as a class can extend or subclass another class.
However, whereas a class can extend only one other class, an interface can extend any
number of interfaces. The interface declaration includes a comma-separated list of all the
interfaces that it extends

174

Implementing interface

General format:

access interface name {

type method-name1(parameter-list);

type method-name2(parameter-list);

…

type var-name1 = value1;

type var-nameM = valueM;

…

}

175

• Two types of access:

1) public – interface may be used anywhere in a program

2) default – interface may be used in the current package only

• Interface methods have no bodies – they end with the
semicolon after the parameter list.

• They are essentially abstract methods.

• An interface may include variables, but they must be final,
static and initialized with a constant value.

• In a public interface, all members are implicitly public.

176

Interface Implementation

• A class implements an interface if it provides a complete set
of methods defined by this interface.

1) any number of classes may implement an interface

2) one class may implement any number of interfaces

• Each class is free to determine the details of its
implementation.

• Implementation relation is written with the implements
keyword.

177

Implementation Format

• General format of a class that includes the implements clause:

• Syntax:

access class name extends super-class implements interface1,
interface2, …, interfaceN {

…

}

• Access is public or default.

178

Implementation Comments

• If a class implements several interfaces, they are separated
with a comma.

• If a class implements two interfaces that declare the same
method, the same method will be used by the clients of either
interface.

• The methods that implement an interface must be declared
public.

• The type signature of the implementing method must match
exactly the type signature specified in the interface definition.

179

Example: Interface

Declaration of the Callback interface:
interface Callback
{
void callback(int param);
}

Client class implements the Callback interface:
class Client implements Callback
{
public void callback(int p)
{
System.out.println("callback called with " + p);
}
}

180

More Methods in Implementation

• An implementing class may also declare its own methods:

class Client implements Callback {

public void callback(int p) {

System.out.println("callback called with " + p);

}

void nonIfaceMeth() {

System.out.println("Classes that implement “ +

“interfaces may also define ” +

“other members, too.");

}

}

181

Applying interfaces

 A Java interface declares a set of method signatures i.e., says what
behavior exists Does not say how the behavior is implemented

i.e., does not give code for the methods

 Does not describe any state (but may include “final” constants)

 A concrete class that implements an interface Contains “implements
InterfaceName” in the class declaration

 Must provide implementations (either directly or inherited from a
superclass) of all methods declared in the interface

 An abstract class can also implement an interface

 Can optionally have implementations of some or all interface methods

182

• Interfaces and Extends both describe an “is- a” relation.

• If B implements interface A, then B inherits the (abstract) method
signatures in A

• If B extends class A, then B inherits everything in A.

• which can include method code and instance variables as well as
abstract method signatures.

• Inheritance” is sometimes used to talk about the superclass /
subclass “extends” relation only

183

Variables in interface
• Variables declared in an interface must be constants.

• A technique to import shared constants into multiple classes:

1) declare an interface with variables initialized to the desired
values

2) include that interface in a class through implementation.

• As no methods are included in the interface, the class does
not implement.

• anything except importing the variables as constants.

184

Example: Interface Variables 1

An interface with constant values:

import java.util.Random;

interface SharedConstants {

int NO = 0;

int YES = 1;

int MAYBE = 2;

int LATER = 3;

int SOON = 4;

int NEVER = 5;

}

185

Example: Interface Variables 2

• Question implements SharedConstants, including all its constants.

• Which constant is returned depends on the generated random
number:

class Question implements SharedConstants {
Random rand = new Random();
int ask() {
int prob = (int) (100 * rand.nextDouble());
if (prob < 30) return NO;
else if (prob < 60) return YES;
else if (prob < 75) return LATER;
else if (prob < 98) return SOON;
else return NEVER;
}
}

186

Example: Interface Variables 3

• AskMe includes all shared constants in the same way, using them to
display the result, depending on the value received:

class AskMe implements SharedConstants {
static void answer(int result) {
switch(result) {
case NO: System.out.println("No"); break;
case YES: System.out.println("Yes"); break;
case MAYBE: System.out.println("Maybe"); break;
case LATER: System.out.println("Later"); break;
case SOON: System.out.println("Soon"); break;
case NEVER: System.out.println("Never"); break;
}
}

187

Example: Interface Variables 4
 The testing function relies on the fact that both ask and

answer methods.

 defined in different classes, rely on the same constants:

public static void main(String args[]) {
Question q = new Question();
answer(q.ask());
answer(q.ask());
answer(q.ask());
answer(q.ask());
}
}

188

Extending interfaces
• One interface may inherit another interface.

• The inheritance syntax is the same for classes and interfaces.
interface MyInterface1 {
void myMethod1(…) ;
}
interface MyInterface2 extends MyInterface1 {
void myMethod2(…) ;
}

• When a class implements an interface that inherits another
interface, it must provide implementations for all methods
defined within the interface inheritance chain.

189

Example: Interface Inheritance 1

• Consider interfaces A and B.

interface A {

void meth1();

void meth2();

}

B extends A:

interface B extends A {

void meth3();

}

190

Example: Interface Inheritance 2

• MyClass must implement all of A and B methods:
class MyClass implements B {
public void meth1() {
System.out.println("Implement meth1().");
}
public void meth2() {
System.out.println("Implement meth2().");
}
public void meth3() {
System.out.println("Implement meth3().");
} }

191

Example: Interface Inheritance 3
• Create a new MyClass object, then invoke all interface methods

on it:

class IFExtend {

public static void main(String arg[]) {

MyClass ob = new MyClass();

ob.meth1();

ob.meth2();

ob.meth3();

}

}

192

UNIT-3
EXCEPTION HANDLING AND MULTITHREADING

193

Exceptions

• Exception is an abnormal condition that arises when
executing a program.

• In the languages that do not support exception handling,
errors must be checked and handled manually, usually
through the use of error codes.

• In contrast, Java:
1) provides syntactic mechanisms to signal, detect and

handle errors
2) ensures a clean separation between the code executed

in the absence of errors and the code to handle various
kinds of errors

3) brings run-time error management into object-
oriented programming

194

Exception Handling

• An exception is an object that describes an exceptional
condition (error) that has occurred when executing a
program.

• Exception handling involves the following:
1) when an error occurs, an object (exception) representing

this error is created and thrown in the method that
caused it

2) that method may choose to handle the exception itself or
pass it on

3) either way, at some point, the exception is caught and
processed

195

Exception Sources
• Exceptions can be:

1) generated by the Java run-time system Fundamental errors that violate
the rules of the Java language or the constraints of the Java execution
environment.

2) manually generated by programmer’s code Such exceptions are typically
used to report some error conditions to the caller of a method.

Exception Constructs
• Five constructs are used in exception handling:

1) try – a block surrounding program statements to monitor for exceptions
2) catch – together with try, catches specific kinds of exceptions and

handles them in some way
3) finally – specifies any code that absolutely must be executed whether or

not an exception occurs
4) throw – used to throw a specific exception from the program
5) throws – specifies which exceptions a given method can throw

196

Exception-Handling Block

General form:

try , … -

catch(Exception1 ex1) , … -

catch(Exception2 ex2) , … -

…

finally , … -

where:

1) try , … - is the block of code to monitor for exceptions

2) catch(Exception ex) , … - is exception handler for the

exception Exception

3) finally , … - is the block of code to execute before the try

block ends

197

Benefits of exception handling

• Separating Error-Handling code from “regular” business logic
code

• Propagating errors up the call stack

• Grouping and differentiating error types

198

Using Java Exception Handling

method1 {
try {
call method2;
} catch (exception e) {
doErrorProcessing;
}
}
method2 throws exception {
call method3;
}
method3 throws exception {
call readFile;
}

 Any checked exceptions
that can be thrown within a
method must be specified in
its throws clause.

199

Grouping and Differentiating Error Types

 Because all exceptions thrown within a program are objects, the
grouping or categorizing of exceptions is a natural outcome of
the class hierarchy.

 An example of a group of related exception classes in the Java
platform are those defined in java.io.IOException and its
descendants.

 IOException is the most general and represents any type of error
that can occur when performing I/O.

 Its descendants represent more specific errors. For example,
FileNotFoundException means that a file could not be located on
disk.

200

 A method can write specific handlers that can handle a very specific
exception.

 The FileNotFoundException class has no descendants, so the following handler
can handle only one type of exception.

catch (FileNotFoundException e) {
...
}

 A method can catch an exception based on its group or general type by
specifying any of the exception's super classes in the catch statement.

 For example, to catch all I/O exceptions, regardless of their specific type, an
exception handler specifies an IOException argument.

// Catch all I/O exceptions, including
// FileNotFoundException, EOFException, and so on.
catch (IOException e) {
...
}

201

Termination vs. Resumption

• There are two basic models in exception-handling theory.

• In termination the error is so critical there’s no way to get
back to where the exception occurred. Whoever threw the
exception decided that there was no way to salvage the
situation, and they don’t want to come back.

• The alternative is called resumption. It means that the
exception handler is expected to do something to rectify the
situation, and then the faulting method is retried, presuming
success the second time. If you want resumption, it means
you still hope to continue execution after the exception is
handled.

202

• In resumption a method call that want resumption-like
behavior (i.e don’t throw an exception all a method that fixes
the problem.)

• Alternatively, place your try block inside a while loop that
keeps reentering the try block until the result is satisfactory.

• Operating systems that supported resumptive exception
handling eventually ended up using termination-like code
and skipping resumption.

203

Exception Hierarchy
 All exceptions are sub-classes of the build-in class Throwable.
 Throwable contains two immediate sub-classes:
1) Exception – exceptional conditions that programs should catch

The class includes:
a) RuntimeException – defined automatically for user

programs to include: division by zero, invalid array
indexing, etc.

b) use-defined exception classes

2) Error – exceptions used by Java to indicate errors with the
runtime environment; user programs are not supposed to catch
them

204

Hierarchy of Exception Classes

205

Usage of try-catch Statements

• Syntax:

try {

<code to be monitored for exceptions>

} catch (<ExceptionType1> <ObjName>) {

<handler if ExceptionType1 occurs>

} ...

} catch (<ExceptionTypeN> <ObjName>) {

<handler if ExceptionTypeN occurs>

}

206

Catching Exceptions:
The try-catch Statements

class DivByZero {
public static void main(String args[]) {
try {
System.out.println(3/0);
System.out.println(“Please print me.”);
} catch (ArithmeticException exc) {
//Division by zero is an ArithmeticException
System.out.println(exc);
}
System.out.println(“After exception.”);
}
}

207

Catching Exceptions:
Multiple catch

class MultipleCatch {
public static void main(String args[]) {
try {
int den = Integer.parseInt(args[0]);
System.out.println(3/den);
} catch (ArithmeticException exc) {
System.out.println(“Divisor was 0.”);
} catch (ArrayIndexOutOfBoundsException exc2) {
System.out.println(“Missing argument.”);
}
System.out.println(“After exception.”);
}
}

208

Catching Exceptions:
Nested try's

class NestedTryDemo {
public static void main(String args[]){
try {
int a = Integer.parseInt(args[0]);
try {
int b = Integer.parseInt(args[1]);
System.out.println(a/b);
} catch (ArithmeticException e) {
System.out.println(“Div by zero error!");
} } catch (ArrayIndexOutOfBoundsException) {
System.out.println(“Need 2 parameters!");
} } }

209

Catching Exceptions:
Nested try's with methods

class NestedTryDemo2 {
static void nestedTry(String args[]) {
try {
int a = Integer.parseInt(args[0]);
int b = Integer.parseInt(args[1]);
System.out.println(a/b);
} catch (ArithmeticException e) {
System.out.println("Div by zero error!");
} }
public static void main(String args[]){
try {
nestedTry(args);
} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Need 2 parameters!");
} } }

210

Throwing Exceptions(throw)
• So far, we were only catching the exceptions thrown by the Java

system.
• In fact, a user program may throw an exception explicitly:

throw ThrowableInstance;
• ThrowableInstance must be an object of type Throwable or its

subclass.
Once an exception is thrown by:

throw ThrowableInstance;
1) the flow of control stops immediately.
2) the nearest enclosing try statement is inspected if it has a catch
statement that matches the type of exception:
1) if one exists, control is transferred to that statement
2) otherwise, the next enclosing try statement is examined
3) if no enclosing try statement has a corresponding catch clause,

the default exception handler halts the program and prints the
stack

211

Creating Exceptions

Two ways to obtain a Throwable instance:

1) creating one with the new operator

All Java built-in exceptions have at least two Constructors:

One without parameters and another with one String
parameter:

throw new NullPointerException("demo");

2) using a parameter of the catch clause

try , … - catch(Throwable e) , … e … -

212

Example: throw 1

class ThrowDemo {

//The method demoproc throws a NullPointerException

exception which is immediately caught in the try block and

re-thrown:

static void demoproc() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc.");

throw e;

}

}
213

Example: throw 2

The main method calls demoproc within the try block
which catches and handles the NullPointerException
exception:
public static void main(String args[]) {
try {
demoproc();
} catch(NullPointerException e) {
System.out.println("Recaught: " + e);
}
}
}

214

throws Declaration

• If a method is capable of causing an exception that it does not
handle, it must specify this behavior by the throws clause in its
declaration:

type name(parameter-list) throws exception-list {
…

}

• where exception-list is a comma-separated list of all types of
exceptions that a method might throw.

• All exceptions must be listed except Error and RuntimeException
or any of their subclasses, otherwise a compile-time error
occurs.

215

Example: throws 1

• The throwOne method throws an exception that it does not
catch, nor declares it within the throws clause.

class ThrowsDemo {
static void throwOne() {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");
}
public static void main(String args[]) {
throwOne();
}
}

• Therefore this program does not compile.

216

Example: throws 2

• Corrected program: throwOne lists exception, main catches it:
class ThrowsDemo {
static void throwOne() throws IllegalAccessException {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");
}
public static void main(String args[]) {
try {
throwOne();
} catch (IllegalAccessException e) {
System.out.println("Caught " + e);
} } }

217

finally

• When an exception is thrown:

1) the execution of a method is changed

2) the method may even return prematurely.

• This may be a problem is many situations.

• For instance, if a method opens a file on entry and closes on
exit; exception handling should not bypass the proper closure
of the file.

• The finally block is used to address this problem.

218

finally Clause
 The try/catch statement requires at least one catch or finally

clause, although both are optional:

try , … -

catch(Exception1 ex1) , … - …

finally , … }

 Executed after try/catch whether of not the exception is thrown.

 Any time a method is to return to a caller from inside the
try/catch block via:

1) uncaught exception or

2) explicit return

the finally clause is executed just before the method returns.

219

Example: finally 1

• Three methods to exit in various ways.

class FinallyDemo {

//procA prematurely breaks out of the try by throwing an
exception, the finally clause is executed on the way out:

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

} }

220

Example: finally 2

// procB’s try statement is exited via a return statement, the
finally clause is executed before procB returns:

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

}

}

221

Example: finally 3

• In procC, the try statement executes normally without error,
however the finally clause is still executed:

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

222

Example: finally 4

• Demonstration of the three methods:
public static void main(String args[]) {
try {
procA();
} catch (Exception e) {
System.out.println("Exception caught");
}
procB();
procC();
}
}

223

Java Built-In Exceptions

• The default java.lang package provides several exception classes,
all sub-classing the RuntimeException class.

• Two sets of build-in exception classes:
1. unchecked exceptions – the compiler does not check if a

method handles or throws there exceptions

2. checked exceptions – must be included in the method’s throws
clause if the method generates but does not handle them

224

Unchecked Built-In Exceptions

Methods that generate but do not handle those exceptions
need not declare them in the throws clause:

1) ArithmeticException
2) ArrayIndexOutOfBoundsException
3) ArrayStoreException
4) ClassCastException
5) IllegalStateException
6) IllegalMonitorStateException
7) IllegalArgumentException

8. StringIndexOutOfBounds

9. UnsupportedOperationException

10. SecurityException

11. NumberFormatException

12. NullPointerException

13. NegativeArraySizeException

14. IndexOutOfBoundsException

15. IllegalThreadStateException

225

Checked Built-In Exceptions

Methods that generate but do not handle those exceptions must

declare them in the throws clause:

1. NoSuchMethodException NoSuchFieldException

2. InterruptedException

3. InstantiationException

4. IllegalAccessException

5. CloneNotSupportedException

6. ClassNotFoundException

226

Creating Own Exception Classes

 Build-in exception classes handle some generic errors.

 For application-specific errors define your own exception classes.
How? Define a subclass of Exception:

class MyException extends Exception , … }

 MyException need not implement anything – its mere existence in
the type system allows to use its objects as exceptions.

227

Example: Own Exceptions 1

• A new exception class is defined, with a private detail
variable, a one parameter constructor and an overridden
toString method:

class MyException extends Exception {
private int detail;
MyException(int a) {
detail = a;
}
public String toString() {
return "MyException[" + detail + "]";
}
}

228

Example: Own Exceptions 2

class ExceptionDemo {

The static compute method throws the MyException

exception whenever its a argument is greater than 10:

static void compute(int a) throws MyException {

System.out.println("Called compute(" + a + ")");

if (a > 10) throw new MyException(a);

System.out.println("Normal exit");

}

229

Example: Own Exceptions 3

The main method calls compute with two arguments within a try
block that catches the MyException exception:

public static void main(String args[]) {
try {
compute(1);
compute(20);
} catch (MyException e) {
System.out.println("Caught " + e);
}
}
}

230

Exception Summary

• FileNotFoundException: Signals that an attempt
to open the file denoted by a specified pathname
has failed.

• InterruptedIOException: Signals that an I/O
operation has been interrupted

• InvalidClassException: Thrown when the
Serialization runtime detects one of the following
problems with a Class.

• InvalidObjectException: Indicates that one or
more deserialized objects failed validation tests.

• IOException: Signals that an I/O exception of
some sort has occurred.

231

http://java.sun.com/javase/6/docs/api/java/io/FileNotFoundException.html
http://java.sun.com/javase/6/docs/api/java/io/InterruptedIOException.html
http://java.sun.com/javase/6/docs/api/java/io/InvalidClassException.html
http://java.sun.com/javase/6/docs/api/java/io/InvalidObjectException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html

Differences between multi threading and multitasking

Multi-Tasking

• Two kinds of multi-tasking:
1) process-based multi-tasking
2) thread-based multi-tasking

• Process-based multi-tasking is about allowing several programs to execute
concurrently, e.g. Java compiler and a text editor.

• Processes are heavyweight tasks:
1) that require their own address space
2) inter-process communication is expensive and limited
3) context-switching from one process to another is expensive

and limited

232

Thread-Based Multi-Tasking

• Thread-based multi-tasking is about a single program
executing concurrently

• several tasks e.g. a text editor printing and spell-checking
text.

• Threads are lightweight tasks:
1) they share the same address space
2) they cooperatively share the same process
3) inter-thread communication is inexpensive
4) context-switching from one thread to another

is low-cost
• Java multi-tasking is thread-based.

233

Reasons for Multi-Threading

• Multi-threading enables to write efficient programs that
make the maximum use of the CPU, keeping the idle time to
a minimum.

• There is plenty of idle time for interactive, networked
applications:

1) the transmission rate of data over a network is much
slower than the rate at which the computer can process it

2) local file system resources can be read and written at a
much slower rate than can be processed by the CPU

3) of course, user input is much slower than the computer

234

Thread Lifecycle

• Thread exist in several states:

1) ready to run
2) running
3) a running thread can be suspended
4) a suspended thread can be resumed
5) a thread can be blocked when waiting for a

resource
6) a thread can be terminated

• Once terminated, a thread cannot be resumed.

235

Thread Lifecycle

Born

Blocked
Runnable

Dead

stop()

start()

stop()

Active

block on I/O

I/O available

JVM

sleep(500)

wake up

suspend()

resume()

wait

notify

236

• New state – After the creations of Thread instance the thread is in this
state but before the start() method invocation. At this point, the thread
is considered not alive.

• Runnable (Ready-to-run) state – A thread start its life from Runnable
state. A thread first enters runnable state after the invoking of start()
method but a thread can return to this state after either running,
waiting, sleeping or coming back from blocked state also. On this state a
thread is waiting for a turn on the processor.

• Running state – A thread is in running state that means the thread is
currently executing. There are several ways to enter in Runnable state
but there is only one way to enter in Running state: the scheduler select
a thread from runnable pool.

• Dead state – A thread can be considered dead when its run() method
completes. If any thread comes on this state that means it cannot ever
run again.

• Blocked - A thread can enter in this state because of waiting the
resources that are hold by another thread.

Thread Lifecycle

237

Creating Threads

• To create a new thread a program will:

1) extend the Thread class, or

2) implement the Runnable interface

• Thread class encapsulates a thread of
execution.

• The whole Java multithreading environment is
based on the Thread class.

238

Thread Methods

• Start: a thread by calling start its run method

• Sleep: suspend a thread for a period of time

• Run: entry-point for a thread

• Join: wait for a thread to terminate

• isAlive: determine if a thread is still running

• getPriority: obtain a thread’s priority

• getName: obtain a thread’s name

239

New Thread: Runnable

 To create a new thread by implementing the Runnable
interface:
1) create a class that implements the run method (inside this
method, we define the code that constitutes the new
thread):

public void run()
2) instantiate a Thread object within that class, a possible
constructor is:

Thread(Runnable threadOb, String threadName)
3) call the start method on this object (start calls run):

void start()

240

Example: New Thread 1

• A class NewThread that implements Runnable:
class NewThread implements Runnable {
Thread t;
//Creating and starting a new thread. Passing this to the
// Thread constructor – the new thread will call this
// object’s run method:
NewThread() {
t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);
t.start();
}

241

Example: New Thread 2

//This is the entry point for the newly created thread – a five-iterations loop
//with a half-second pause between the iterations all within try/catch:
public void run() {
try {
for (int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);
}
} catch (InterruptedException e) {
System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");
}
}

242

Example: New Thread 3

class ThreadDemo {

public static void main(String args[]) {

//A new thread is created as an object of

// NewThread:

new NewThread();

//After calling the NewThread start method,

// control returns here.

243

Example: New Thread 4

//Both threads (new and main) continue concurrently.
//Here is the loop for the main thread:
try {
for (int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");
}
}

244

New Thread: Extend Thread

• The second way to create a new thread:

1) create a new class that extends Thread

2) create an instance of that class

• Thread provides both run and start methods:

1) the extending class must override run

2) it must also call the start method

245

Example: New Thread 1

• The new thread class extends Thread:
class NewThread extends Thread {
//Create a new thread by calling the Thread’s
// constructor and start method:
NewThread() {
super("Demo Thread");
System.out.println("Child thread: " + this);
start();
}

246

Example: New Thread 2

NewThread overrides the Thread’s run method:
public void run() {
try {
for (int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);
}
} catch (InterruptedException e) {
System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");
}
}

247

Example: New Thread 3

class ExtendThread {

public static void main(String args[]) {

//After a new thread is created:

new NewThread();

//the new and main threads continue

//concurrently…

248

Example: New Thread 4

//This is the loop of the main thread:
try {
for (int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");
}
}

249

Threads: Synchronization

• Multi-threading introduces asynchronous behavior to a program.
• How to ensure synchronous behavior when we need it?
• For instance, how to prevent two threads from simultaneously

writing and reading the same object?
• Java implementation of monitors:

1) classes can define so-called synchronized methods
2) each object has its own implicit monitor that is automatically
entered when one of the object’s synchronized methods is called
3) once a thread is inside a synchronized method, no other thread
can call any other synchronized method on the same object

250

Thread Synchronization

• Language keyword: synchronized

• Takes out a monitor lock on an object

– Exclusive lock for that thread

• If lock is currently unavailable, thread will block

251

Thread Synchronization

• Protects access to code, not to data

– Make data members private

– Synchronize accessor methods

• Puts a “force field” around the locked object
so no other threads can enter

• Actually, it only blocks access to other synchronizing
threads

252

Thread Priorities

• Each thread have a priority. Priorities are represented by a number
between 1 and 10. In most cases, thread schedular schedules the
threads according to their priority (known as preemptive scheduling).
But it is not guaranteed because it depends on JVM specification that
which scheduling it chooses.

3 constants defined in Thread class:

• public static int MIN_PRIORITY

• public static int NORM_PRIORITY

• public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of
MIN_PRIORITY is 1 and the value of MAX_PRIORITY is 10.

253

Thread Priorities
Example of priority of a Thread:
1. class TestMultiPriority1 extends Thread{
2. public void run(){
3. System.out.println("running thread name is:"+Thread.currentThread().getName());
4. System.out.println("running thread priority is:"+Thread.currentThread().getPriority());
5.
6. }
7. public static void main(String args[]){
8. TestMultiPriority1 m1=new TestMultiPriority1();
9. TestMultiPriority1 m2=new TestMultiPriority1();
10. m1.setPriority(Thread.MIN_PRIORITY);
11. m2.setPriority(Thread.MAX_PRIORITY);
12. m1.start();
13. m2.start();
14.
15. }
16. }

• Output:running thread name is:
• Thread-0 running thread priority is:10
• running thread name is:Thread-1
• running thread priority is:1

254

Inter thread Communication
• Inter-thread communication or Co-operation is all about allowing synchronized

threads to communicate with each other.

• Cooperation (Inter-thread communication) is a mechanism in which a thread is paused
running in its critical section and another thread is allowed to enter (or lock) in the same
critical section to be executed.It is implemented by following methods of Object class:

• wait()

• notify()

• notifyAll()

1) wait() method

• Causes current thread to release the lock and wait until either another thread
invokes the notify() method or the notifyAll() method for this object, or a
specified amount of time has elapsed.

2) notify() method

• Wakes up a single thread that is waiting on this object's monitor. If any threads
are waiting on this object, one of them is chosen to be awakened. The choice is
arbitrary and occurs at the discretion of the implementation.

• Syntax: public final void notify()

3) notifyAll() method

• Wakes up all threads that are waiting on this object's monitor. Syntax:

• public final void notifyAll()

255

Daemon Threads

• Any Java thread can be a daemon thread.
• Daemon threads are service providers for other threads running in the

same process as the daemon thread.
• The run() method for a daemon thread is typically an infinite loop that

waits for a service request. When the only remaining threads in a
process are daemon threads, the interpreter exits. This makes sense
because when only daemon threads remain, there is no other thread
for which a daemon thread can provide a service.

• To specify that a thread is a daemon thread, call the setDaemon
method with the argument true. To determine if a thread is a daemon
thread, use the accessor method isDaemon.

256

Thread Groups

o Every Java thread is a member of a thread group.
o Thread groups provide a mechanism for collecting multiple threads into a single

object and manipulating those threads all at once, rather than individually.
o For example, you can start or suspend all the threads within a group with a single

method call.
o Java thread groups are implemented by the “ThreadGroup” class in the java.lang

package.
• The runtime system puts a thread into a thread group during thread construction.
• When you create a thread, you can either allow the runtime system to put the

new thread in some reasonable default group or you can explicitly set the new
thread's group.

• The thread is a permanent member of whatever thread group it joins upon its
creation--you cannot move a thread to a new group after the thread has been
created

257

The ThreadGroup Class

• The “ThreadGroup” class manages groups of threads for Java
applications.

• A ThreadGroup can contain any number of threads.
• The threads in a group are generally related in some way, such

as who created them, what function they perform, or when
they should be started and stopped.

• ThreadGroups can contain not only threads but also other
ThreadGroups.

• The top-most thread group in a Java application is the thread
group named main.

• You can create threads and thread groups in the main group.
• You can also create threads and thread groups in subgroups of

main.

258

http://java.sun.com/products/jdk/1.1/api/java.lang.ThreadGroup.html

Creating a Thread Explicitly in a Group

• A thread is a permanent member of whatever thread group it joins when its
created--you cannot move a thread to a new group after the thread has been
created. Thus, if you wish to put your new thread in a thread group other than the
default, you must specify the thread group explicitly when you create the thread.

• The Thread class has three constructors that let you set a new thread's group:

public Thread(ThreadGroup group, Runnable target) public
Thread(ThreadGroup group, String name)
public Thread(ThreadGroup group, Runnable target, String name)

• Each of these constructors creates a new thread, initializes it based on the
Runnable and String parameters, and makes the new thread a member of the
specified group.
For example:
ThreadGroup myThreadGroup = new ThreadGroup("My Group of Threads");
Thread myThread = new Thread(myThreadGroup, "a thread for my group");

259

UNIT-4
FILES AND CONNECTING TO DATABASE

260

Package java.io

• Provides for system input and output through data streams, serialization
and the file system.

Interface Summary

• DataInput The Data Input interface provides for reading bytes from a
binary stream and reconstructing from them data in any of the Java
primitive types.

• DataOutput The Data Output interface provides for converting data from
any of the Java primitive types to a series of bytes and writing these bytes
to a binary stream

• Externalizable Only the identity of the class of an Externalizable instance is
written in the serialization stream and it is the responsibility of the class to
save and restore the contents of its instances.

• Serializable Serializability of a class is enabled by the class implementing
the java.io.Serializable interface.

261

http://java.sun.com/javase/6/docs/api/java/io/DataInput.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutput.html
http://java.sun.com/javase/6/docs/api/java/io/Externalizable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html

Class Summary

• BufferedInputStream: A BufferedInputStream adds functionality to
another input stream-namely, the ability to buffer the input and to
support the mark and reset methods.

• BufferedOutputStream: The class implements a buffered output
stream.

• BufferedReader: Reads text from a character-input stream,
buffering characters so as to provide for the efficient reading of
characters, arrays, and lines.

• BufferedWriter: Writes text to a character-output stream, buffering
characters so as to provide for the efficient writing of single
characters, arrays, and strings

• ByteArrayInputStream: A ByteArrayInputStream contains an
internal buffer that contains bytes that may be read from the
stream.

• ByteArrayOutputStream: This class implements an output stream
in which the data is written into a byte array.

262

http://java.sun.com/javase/6/docs/api/java/io/BufferedInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedWriter.html
http://java.sun.com/javase/6/docs/api/java/io/ByteArrayInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ByteArrayOutputStream.html

• CharArrayReader: This class implements a character buffer that can be
used as a character-input stream

• .CharArrayWriter: This class implements a character buffer that can be
used as an Writer

• Console: Methods to access the character-based console device, if any,
associated with the current Java virtual machine.

• DataInputStream: A data input stream lets an application read primitive
Java data types from an underlying input stream in a machine-
independent way.

• DataOutputStream: A data output stream lets an application write
primitive Java data types to an output stream in a portable way.

263

http://java.sun.com/javase/6/docs/api/java/io/CharArrayReader.html
http://java.sun.com/javase/6/docs/api/java/io/CharArrayWriter.html
http://java.sun.com/javase/6/docs/api/java/io/Console.html
http://java.sun.com/javase/6/docs/api/java/io/DataInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutputStream.html

• File: An abstract representation of file and directory pathnames.

• FileInputStream: A FileInputStream obtains input bytes from a file in a file system.

• FileOutputStream: A file output stream is an output stream for writing data to a File or to a FileDescriptor.

• FileReader: Convenience class for reading character files.

• FileWriter: Convenience class for writing character files.

• FilterInputStream: A FilterInputStream contains some other input stream, which it uses as its basic source

of data, possibly transforming the data along the way or providing additional functionality.

• FilterOutputStream: This class is the superclass of all classes that filter output streams

• .FilterReader: Abstract class for reading filtered character streams

• .FilterWriter: Abstract class for writing filtered character streams

• .InputStream: This abstract class is the superclass of all classes representing an input stream of bytes.

• InputStreamReader: An InputStreamReader is a bridge from byte streams to character streams: It reads

bytes and decodes them into characters using a specified charset.

264

http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/io/FileInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/FileOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/FileReader.html
http://java.sun.com/javase/6/docs/api/java/io/FileWriter.html
http://java.sun.com/javase/6/docs/api/java/io/FilterInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/FilterOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/FilterReader.html
http://java.sun.com/javase/6/docs/api/java/io/FilterWriter.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStreamReader.html
http://java.sun.com/javase/6/docs/api/java/nio/charset/Charset.html

• ObjectInputStream: An ObjectInputStream deserializes primitive data and
objects previously written using an ObjectOutputStream

• ObjectOutputStream: An ObjectOutputStream writes primitive data types
and graphs of Java objects to an OutputStream.

• OutputStream: This abstract class is the superclass of all classes
representing an output stream of bytes.

• OutputStreamWriter: An OutputStreamWriter is a bridge from character
streams to byte streams: Characters written to it are encoded into bytes
using a specified charset.

• PrintWriter: Prints formatted representations of objects to a text-output
stream.

• RandomAccessFile: Instances of this class support both reading and
writing to a random access file.

• StreamTokenizer: The StreamTokenizer class takes an input stream and
parses it into "tokens", allowing the tokens to be read one at a time.

265

http://java.sun.com/javase/6/docs/api/java/io/ObjectInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/OutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/OutputStreamWriter.html
http://java.sun.com/javase/6/docs/api/java/nio/charset/Charset.html
http://java.sun.com/javase/6/docs/api/java/io/PrintWriter.html
http://java.sun.com/javase/6/docs/api/java/io/RandomAccessFile.html
http://java.sun.com/javase/6/docs/api/java/io/StreamTokenizer.html

JDBC connectivity

266

Introduction

• JDBC stands for Java Database Connectivity, which is a

standard Java API for database-independent connectivity

between the Java programming language and a wide

range of databases.

• The JDBC library includes APIs for each of the tasks

commonly associated with database usage:

Making a connection to a database

Creating SQL or MySQL statements

Executing that SQL or MySQL queries in the database

Viewing & Modifying the resulting records
267

Required Steps:

• There are following steps required to create a new Database using JDBC
application:

• Import the packages . Requires that you include the packages containing the
JDBC classes needed for database programming. Most often, using import
java.sql.* will suffice.

• Register the JDBC driver . Requires that you initialize a driver so you can open a
communications channel with the database.

• Open a connection . Requires using the DriverManager.getConnection()
method to create a Connection object, which represents a physical connection
with database server.

• To create a new database, you need not to give any database name while
preparing database URL as mentioned in the below example.

• Execute a query . Requires using an object of type Statement for building and
submitting an SQL statement to the database.

• Clean up the environment . Requires explicitly closing all database resources
versus relying on the JVM's garbage collection.

268

Creating JDBC Application, connecting a Database

• There are six steps involved in building a JDBC application which I'm going to brief in
this tutorial:

1.Import the packages:

• To use the standard JDBC package, which allows you to select, insert, update, and
delete data in SQL tables, add the following imports to your source code:

• //STEP 1. Import required packages

• Syntax :import java.sql.*;

2.Register the JDBC driver:

• This requires that you initialize a driver so you can open a communications channel
with the database.

• Registering the driver is the process by which the Oracle driver's class file is loaded
into memory so it can be utilized as an implementation of the JDBC interfaces.

• You need to do this registration only once in your program

• //STEP 2: Register JDBC driver

• Syntax:Class.forName("com.mysql.jdbc.Driver");
269

Open a connection:

• After you've loaded the driver, you can establish a connection using the
DriverManager.getConnection() method, which represents a physical connection with
the database as follows:

• //STEP 3: Open a connection // Database credentials

 static final String USER = "username";

 static final String PASS = "password";

 System.out.println("Connecting to database...");

 conn = DriverManager.getConnection(DB_URL,USER,PASS);

Execute a query:

• This requires using an object of type Statement or PreparedStatement for building and
submitting an SQL statement to the database as follows:

• //STEP 4: Execute a query

 System.out.println("Creating statement...");

 stmt = conn.createStatement();

 String sql; sql = "SELECT id, first, last, age FROM Employees";

 ResultSet rs = stmt.executeQuery(sql);
270

• Following table lists down popular JDBC driver names and database URL.

RDBMS JDBC driver name URL format

• MySQL com.mysql.jdbc.Driver jdbc:mysql://hostname/ databaseName

ORACLE oracle.jdbc.driver.OracleDriver jdbc:oracle:thin:@hostname:port

Number:databaseName

• DB2 COM.ibm.db2.jdbc.net.DB2Driver jdbc:db2:hostname:port

Number/databaseName

• Sybase com.sybase.jdbc.SybDriver jdbc:sybase:Tds:hostname: port

Number/databaseName

• All the highlighted part in URL format is static and you need to change only remaining part as per

your database setup.

271

• If there is an SQL UPDATE,INSERT or DELETE statement

required, then following code snippet would be required:

• //STEP 4: Execute a query

 System.out.println("Creating statement...");

 stmt = conn.createStatement();

 String sql;

 sql = "DELETE FROM Employees";

 ResultSet rs = stmt.executeUpdate(sql);

272

Extract data from result set:

• This step is required in case you are fetching data from the database. You can use
the appropriate ResultSet.getXXX() method to retrieve the data from the result
set as follows:

• //STEP 5: Extract data from result set

 while(rs.next())

 {

//Retrieve by column name

 int id = rs.getInt("id");

 int age = rs.getInt("age");

 String first = rs.getString("first");

 String last = rs.getString("last");

• //Display values

 System.out.print("ID: " + id);

 System.out.print(", Age: " + age);

 System.out.print(", First: " + first);

 System.out.println(", Last: " + last); }

273

• Clean up the environment:

• You should explicitly close all database resources versus

relying on the JVM's garbage collection as follows:

• //STEP 6: Clean-up environment

 rs.close();

 stmt.close();

 conn.close();

274

JDBC Driver

• JDBC drivers implement the defined interfaces in the JDBC API for
interacting with your database server.

• For example, using JDBC drivers enable you to open database
connections and to interact with it by sending SQL or database
commands then receiving results with Java.

• The Java.sql package that ships with JDK contains various classes with
their behaviours defined and their actual implementaions are done in
third-party drivers.

• Third party vendors implements the java.sql.Driver interface in their
database driver.

JDBC Drivers Types:

• JDBC driver implementations vary because of the wide variety of
operating systems and hardware platforms in which Java operates. Sun
has divided the implementation types into four categories, Types 1, 2, 3,
and 4

275

Type 1: JDBC-ODBC Bridge Driver

• In a Type 1 driver, a JDBC bridge is used to access ODBC
drivers installed on each client machine.

• Using ODBC requires configuring on your system a Data
Source Name (DSN) that represents the target database.

• When Java first came out, this was a useful driver
because most databases only supported ODBC access but
now this type of driver is recommended only for
experimental use or when no other alternative is
available.

• The JDBC-ODBC bridge that comes with JDK 1.2 is a good
example of this kind of driver.

276

Type 1: JDBC-ODBC Bridge Driver

Advantages:
• easy to use.
• can be easily connected to any database.

Disadvantages:
• Performance degraded because JDBC method call is converted into the ODBC

function calls.
• The ODBC driver needs to be installed on the client machine.

277

Type 2: JDBC-Native API

• In a Type 2 driver, JDBC API calls are converted into native C/C++

API calls which are unique to the database.

• These drivers typically provided by the database vendors and

used in the same manner as the JDBC-ODBC Bridge, the vendor-

specific driver must be installed on each client machine.

• If we change the Database we have to change the native API as

it is specific to a database and they are mostly obsolete now but

you may realize some speed increase with a Type 2 driver,

because it eliminates ODBC's overhead.

• The Oracle Call Interface (OCI) driver is an example of a Type 2

driver.

278

Type 2: JDBC-Native API

Advantage:
• performance upgraded than JDBC-ODBC bridge driver.

Disadvantage:
• The Native driver needs to be installed on the each client machine.
• The Vendor client library needs to be installed on client machine.

279

Type 3: JDBC-Net pure Java/ Network Protocol
Driver

• In a Type 3 driver, a three-tier approach is used to accessing
databases.

• The JDBC clients use standard network sockets to
communicate with an middleware application server. The
socket information is then translated by the middleware
application server into the call format required by the DBMS,
and forwarded to the database server.

• This kind of driver is extremely flexible, since it requires no
code installed on the client and a single driver can actually
provide access to multiple databases

280

Type 3: JDBC-Net pure Java/ Network Protocol
Driver

Advantage:
• No client side library is required because of application server that can perform

many tasks like auditing, load balancing, logging etc.

Disadvantages:
• Network support is required on client machine.
• Requires database-specific coding to be done in the middle tier.
• Maintenance of Network Protocol driver becomes costly because it requires

database-specific coding to be done in the middle tier.

281

Type 4: 100% pure Java / thin driver

• In a Type 4 driver, a pure Java-based driver that
communicates directly with vendor's database through
socket connection.

• This is the highest performance driver available for the
database and is usually provided by the vendor itself.

• This kind of driver is extremely flexible, you don't need to
install special software on the client or server. Further,
these drivers can be downloaded dynamically.

• MySQL's Connector/J driver is a Type 4 driver. Because of
the proprietary nature of their network protocols,
database vendors usually supply type 4 drivers.

282

Type 4: 100% pure Java / thin driver

Advantage:
• Better performance than all other drivers.
• No software is required at client side or server side.

Disadvantage:
• Drivers depend on the Database.

283

Which Driver should be used?

• If you are accessing one type of database, such as Oracle,
Sybase, or IBM, the preferred driver Type is 4.

• If your Java application is accessing multiple types of databases
at the same time, Type 3 is the preferred driver.

• Type 2 drivers are useful in situations where a type 3 or Type 4
driver is not available yet for your database.

• The Type 1 driver is not considered a deployment-level driver
and is typically used for development and testing purposes
only.

284

There are 5 steps to connect any java application with the database
using JDBC. These steps are as follows:

• Register the Driver class

• Create connection

• Create statement

• Execute queries

• Close connection

Java Database Connectivity

285

1) Register the driver class

• The forName() method of Class is used to register the driver class.
This method is used to dynamically load the driver class.

Syntax of forName() method

• public static void forName(String className)throws

ClassNotFoundException

Example to register the OracleDriver class

• Here, Java program is loading oracle driver to establish database
connection.

• Class.forName("oracle.jdbc.driver.OracleDriver");

Java Database Connectivity

286

2) Create the connection object

• The getConnection() method of DriverManager class is used to
establish connection with the database.

• Syntax of getConnection() method

1) public static Connection getConnection(String url)throws

SQLException

2) public static Connection getConnection(String url,String name,Stri
ng password) throws SQLException

Example to establish connection with the Oracle database

• Connection con=DriverManager.getConnection("jdbc:oracle:thin:
@localhost:1521:xe","system","password");

Java Database Connectivity

287

3) Create the Statement object

• The createStatement() method of Connection interface is
used to create statement. The object of

• statement is responsible to execute queries with the
database.

Syntax of createStatement() method

• public Statement createStatement()throws SQLException

Example to create the statement object

• Statement stmt=con.createStatement();

Java Database Connectivity

288

4) Execute the query

• The executeQuery() method of Statement interface is used to
execute queries to the database.

• This method returns the object of ResultSet that can be used to
get all the records of a table.

Syntax of executeQuery() method

• public ResultSet executeQuery(String sql)throws SQLException

Example to execute query

• ResultSet rs=stmt.executeQuery("select * from emp");

• while(rs.next()){

• System.out.println(rs.getInt(1)+" "+rs.getString(2));

• }

Java Database Connectivity

289

5) Close the connection object

• By closing connection object statement and ResultSet will be
closed automatically.

• The close() method of Connection interface is used to close the
connection.

Syntax of close() method

• public void close()throws SQLException

Example to close connection

• con.close();

Java Database Connectivity

290

In general, to process any SQL statement with JDBC, you follow
these steps:

• Establishing a connection.

• Create a statement.

• Execute the query.

• Process the result set object

• Close the connection.

Querying a Database and Processing Result

291

Establishing Connections

• First, establish a connection with the data source you want to use.
A data source can be a DBMS, a legacy file system, or some other
source of data with a corresponding JDBC driver. This connection
is represented by a Connection object.

Creating Statements

• A Statement is an interface that represents a SQL statement. You
execute Statement objects, and they generate ResultSet objects,
which is a table of data representing a database result set. You
need a Connection object to create a Statement object.

• For example, CoffeesTables.viewTable creates a Statement object
with the following code:

• stmt = con.createStatement();

Querying a Database and Processing Result

292

There are three different kinds of statements:

• Statement: Used to implement simple SQL statements with no
parameters.

• PreparedStatement: (Extends Statement.) Used for
precompiling SQL statements that might contain input
parameters. See Using Prepared Statements for more
information.

• CallableStatement: (Extends PreparedStatement.) Used to
execute stored procedures that may contain both input and
output parameters. See Stored Procedures for more
information.

Querying a Database and Processing Result

293

Executing Queries

• To execute a query, call an execute method from Statement such as the
following:

• execute: Returns true if the first object that the query returns is a
ResultSet object. Use this method if the query could return one or more
ResultSet objects. Retrieve the ResultSet objects returned from the
query by repeatedly calling Statement.getResultSet.

• executeQuery: Returns one ResultSet object.

• executeUpdate: Returns an integer representing the number of rows
affected by the SQL statement. Use this method if you are using INSERT,
DELETE, or UPDATE SQL statements.

• For example, CoffeesTables.viewTable executed a Statement object with
the following code:

• ResultSet rs = stmt.executeQuery(query); See Retrieving and Modifying
Values from Result Sets for more information.

Querying a Database and Processing Result

294

Processing ResultSet Objects

• access the data in a ResultSet object through a cursor. Note that this
cursor is not a database cursor.

• This cursor is a pointer that points to one row of data in the ResultSet
object. Initially, the cursor is positioned before the first row. You call
various methods defined in the ResultSet object to move the cursor.

Closing Connections

• When you are finished using a Statement, call the method
Statement.close to immediately release the resources it is using. When
you call this method, its ResultSet objects are closed.

• For example, the method CoffeesTables.viewTable ensures that the
Statement object is closed at the end of the method, regardless of any
SQLException objects thrown, by wrapping it in a finally block:

• } finally { if (stmt != null) { stmt.close(); }}

Querying a Database and Processing Result

295

The following steps are required to create a new Database using JDBC
application

• Import the packages: Requires that you include the packages containing
the JDBC classes needed for database programming. Most often, using
import java.sql.* will suffice.

• Register the JDBC driver: Requires that you initialize a driver so you can
open a communications channel with the database.

• Open a connection: Requires using the DriverManager.getConnection()
method to create a Connection object, which represents a physical
connection with a database server.

• Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to update records in a table. This Query
makes use of IN and WHERE clause to update conditional records.

• Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Updating Data With JDBC:

296

UNIT-5

GUI PROGRAMMING AND APPLETS

297

The AWT CLASS HIERARCHY

• Java AWT (Abstract Window Toolkit) is an API to develop GUI or
window-based applications in java.

• Java AWT components are platform-dependent i.e. components
are displayed according to the view of operating system. AWT is
heavyweight i.e. its components are using the resources of OS.

298

The AWT CLASS HIERARCHY

299

The AWT CLASS HIERARCHY

• The AWT classes are contained in the java.awt package. It is
one of Java's largest packages. some of the AWT classes.

AWT Classes
• Component – It is an object that is represented in graphical

form and then displayed n the users screen.

• Container – It consists of AWT components

• Panel - It is a type of container class

• Window - It is a top-level window without any borders and
members.

• Dialog - It is a top-level window containing a title and border.

• Frame - It is a top-level window containing a title and border.
It can also contain other components

300

The AWT CLASS HIERARCHY

• Text Component - It is the base of TextField and TextArea.

• TextArea - It is an object in which a user can enter or modify the
multi line input

• TextField - It is a text area which a user can enter or modify single
line input.

• Button - It is used to create a button.

• Canvas - It is a blank rectangular area where a user can draw
different shapes or can even trap the input events generated user.

• Checkbox - It is a component that can be in either ‘on’ or ‘off’
state at certain point of time.

• Choice – It opens a pop-up menu containing choices.

• Label - It places the text in container.

• List - It is a list containing string items. It is scrollable.

• Scrollbar - It contains a vertical or horizontal scrollbar.

301

AWT Example by Inheritance

• Let's see a simple example of AWT where we are inheriting Frame class. Here, we
are showing Button component on the Frame.

• import java.awt.*;

• class First extends Frame{

• First(){

• Button b=new Button("click me");

• b.setBounds(30,100,80,30);// setting button position

• add(b);//adding button into frame

• setSize(300,300);//frame size 300 width and 300 height

• setLayout(null);//no layout manager

• setVisible(true);//now frame will be visible, by default not visible

• }

• public static void main(String args[]){

• First f=new First();

• }}

The AWT CLASS HIERARCHY

302

• Swing API is a set of extensible GUI Components to ease the
developer's life to create JAVA based Front End/GUI Applications.
It is build on top of AWT API and acts as a replacement of AWT
API, since it has almost every control corresponding to AWT
controls. Swing component follows a Model-View-Controller
architecture to fulfill the following criterias.

• A single API is to be sufficient to support multiple look and feel.

• API is to be model driven so that the highest level API is not
required to have data.

• API is to use the Java Bean model so that Builder Tools and IDE can
provide better services to the developers for use.

INTRODUCTION TO SWING

303

MVC Architecture

• Swing API architecture follows loosely based MVC architecture in
the following manner.

• Model represents component's data.

• View represents visual representation of the component's data.

• Controller takes the input from the user on the view and reflects
the changes in Component's data.

• Swing component has Model as a seperate element, while the
View and Controller part are clubbed in the User Interface
elements. Because of which, Swing has a pluggable look-and-feel
architecture.

INTRODUCTION TO SWING

304

Swing Features

• Light Weight − Swing components are independent of native
Operating System's API as Swing API controls are rendered mostly
using pure JAVA code instead of underlying operating system calls.

• Rich Controls − Swing provides a rich set of advanced controls like
Tree, TabbedPane, slider, colorpicker, and table controls.

• Highly Customizable − Swing controls can be customized in a very
easy way as visual apperance is independent of internal
representation.

• Pluggable look-and-feel − SWING based GUI Application look and
feel can be changed at run-time, based on available values.

INTRODUCTION TO SWING

305

Differentiation between Swing and AWT

Swing AWT

Swing is used for building highly interactive
GUI applications

AWT is used for building GUI applications.

The component of SWING are light weight The components of AWT are heavy weight

The look and feel is not based on OS The look and fees is based on OS

It is purely based on Java It is not purely based on Java

It is slower in performance It is faster in performance

The features like icons and tool-tips are
supported

The feature like icons and tool-tips are not
supported

A Plug-in is needed for applets The web browser supports applets

Platform imposes very less limitations for
components

Platform imposes many limitations for
components

BorderLayout is the default layout for
content Pane

FlowLayout and BorderLayout are default
layout for applet and Frame respectively

SWING VS AWT

306

• Swing components are enhanced components compared to that
of AWT.

• They are even driven and provide a good programming approach
through OOP concepts. They are light weight components which
makes use of model-view controller architecture.

• All the components of swing are contained in javax.swing
package.

• Unlike AWT, Java Swing provides platform-independent and
lightweight components.

• The javax.swing package provides classes for java swing API such
as JButton, JTextField, JTextArea, JRadioButton, JCheckbox,
JMenu, JColorChooser etc.

HIERARCHY FOR SWING COMPONENTS

307

HIERARCHY FOR SWING COMPONENTS

308

• The hierarchy of swing components consists of following
elements.

HIERARCHY FOR SWING COMPONENTS

Component It is a visual control which is independent

Container It is a type of component that contains other components

JComponent It is a class that holds all the other components

JPanel It is a light weight swing container. It is a component that can be
added to contentPane of Jframe

Jlabel It is a easiet-to-use component that is used to create a component

JTextComponent It is the base class for JtextField and JTextArea

JTextField It allows the user to enter or edit single line of text

JTextArea It allows the user to enter or edit multiple line of text

Abstract Button It is the base clas of Jbutton and JMenuItem

JButton It is a push button associated with icon, a string or both.

JMenuItem It represents an list of item in the form of menu

309

• A container is a component which it can contain other components
inside itself. It is also an instance of a subclass
of java.awt.Container.

• java.awt.Container extends java.awt.Component so containers are
themselves components.

• In general components are contained in a container. An applet is a
container. Other containers include windows, frames, dialogs, and
panels. Containers may contain other containers.

• Every container has a LayoutManager that determines how
different components are positioned within the container.

• Applets provide a ready-made container and a
default LayoutManager, a FlowLayout.

CONTAINERS- JFRAME, JAPPLET

310

Containers

• Top-Level Containers

• The components at the top of any Swing containment
hierarchy

311

General Purpose Containers

• Intermediate containers that can be used under many
different circumstances.

312

Special Purpose Container

• Intermediate containers that play specific roles in the UI.

313

ABOUT JFrame
• JFrame is used for creating new windows called Jframe objects.
• They are displayed on the screen and are intractable with the

users.
• It is similar to that of AWT where Frames user interact with these

frames through buttons.
• A frame consists of a title which is a string ad a menu bar.
• Several menus can be added using menu bar.
• JFrame receives events from windows. For example window

closing will generate an event. It provides several methods inorder
to control the attributes of the window.

• JFrame works like the main window where components like
Labels, Buttons, Textfields are added to create a GUI.

• Unlike Frame, JFrame has the option to hide or close the window
with the help of setDefaultCloseOperation(int) method.

CONTAINERS- JFRAME, JAPPLET

314

Example program for JFrame
import javax.swing.*;
class Frame
{

public static void main (String args[])
{

JFrame f= new Jframe (“Demo”);
f.setSize(100, 50);
f.setVisible(true);

}
}

CONTAINERS – JFRAME, JAPPLET

315

ABOUT JApplet

• JApplet is a swing container that is used for creating applets

• It is similar to applet of AWT.

• It allows the users to add components of it.

• The methods of it are init(), start(), stop() and destroy()

• The JApplet class extends the Applet class.

• If using Swing components in an applet, subclass JApplet, not
Applet
– JApplet is a subclass of Applet

– Sets up special internal component event handling, among other
things

– Can have a JMenuBar

– Default LayoutManager is BorderLayout

CONTAINERS – JFRAME, JAPPLET

316

Example program for JApplet

• import java.applet.*;

• import javax.swing.*;

• import java.awt.event.*;

• public class EventJApplet extends JApplet implements ActionListener

• {

• JButton b;

• JTextField tf;

• public void init(){

• tf=new JTextField();

• tf.setBounds(30,40,150,20);

• b=new JButton("Click");

• b.setBounds(80,150,70,40);

CONTAINERS – JFRAME, JAPPLET

317

• add(b);add(tf);

• b.addActionListener(this);

• setLayout(null);

• }

• public void actionPerformed(ActionEvent e){

• tf.setText("Welcome");

• } }

myapplet.html

• <html>

• <body>

• <applet code="EventJApplet.class" width="300" height="300">

• </applet>

• </body>

• </html>

CONTAINERS – JFRAME, JAPPLET

318

About JDialog

• JDialog is a container that is used to create and manage a dialog.’

• It inherits the properties of container, component, window and

Dialog of AWT and allow user to create model or modeless dialog.

• A modal dialog pauses the application until the dialog is closed.

• Whereas the modeless dialog activates the remaining part of the

application.

• A dialog can be created with the below statement

JDialog (Frame owner, String title, boolean is Modal)

CONTAINERS – JDialog, JPanel

319

Example program on JDialog

import java.awt.event.*;

import java.awt.*;

import javax.swing.*;

class solve extends JFrame implements ActionListener {

static JFrame f;

public static void main(String[] args)

{

f = new JFrame("frame");

solve s = new solve();

JPanel p = new JPanel();

JButton b = new JButton("click");

b.addActionListener(s);

p.add(b);

f.add(p);

CONTAINERS – JDialog, JPanel

320

f.setSize(400, 400);

f.show();

}

public void actionPerformed(ActionEvent e)

{

String s = e.getActionCommand();

if (s.equals("click")) {

JDialog d = new JDialog(f, "dialog Box");

JLabel l = new JLabel("this is a dialog box");

d.add(l);

d.setSize(100, 100);

d.setVisible(true);

}

}

}

CONTAINERS – JDialog, JPanel

321

About JPanel
• JPanel, a part of Java Swing package, is a container that can store a

group of components.
• The main task of JPanel is to organize components, various layouts

can be set in JPanel which provide better organization of
components, however it does not have a title bar.

Constructor of JPanel are :
• JPanel() : creates a new panel with flow layout
• JPanel(LayoutManager l) : creates a new JPanel with specified

layoutManager
• JPanel(boolean isDoubleBuffered) : creates a new JPanel with a

specified buffering strategy
• JPanel(LayoutManager l, boolean isDoubleBuffered) : creates a new

JPanel with specified layoutManager and a specified buffering
strategy

CONTAINERS – JDialog, JPanel

322

Example program of Jpanel

• import java.awt.event.*;

• import java.awt.*;

• import javax.swing.*;

• class solution extends JFrame {

• static JFrame f;

• static JButton b, b1, b2;

• static JLabel l;

• public static void main(String[] args) {

• f = new JFrame("panel");

• l = new JLabel("panel label");

• b = new JButton("button1");

CONTAINERS – JDialog, JPanel

323

Example program of Jpanel

• import java.awt.event.*;

• import java.awt.*;

• import javax.swing.*;

• class solution extends JFrame {

• static JFrame f;

• static JButton b, b1, b2;

• static JLabel l;

• public static void main(String[] args) {

• f = new JFrame("panel");

• l = new JLabel("panel label");

CONTAINERS – JDialog, JPanel

324

• b = new JButton("button1");

• b1 = new JButton("button2");

• b2 = new JButton("button3");

• JPanel p = new JPanel();

• p.add(b);

• p.add(b1);

• p.add(b2);

• p.add(l);

• p.setBackground(Color.red);

• f.add(p);

• f.setSize(300, 300);

• f.show();

• } }

CONTAINERS – JDialog, JPanel

325

GridBag Layout

• The Java GridBagLayout class is used to align components
vertically, horizontally or along their baseline.

• The components may not be of same size. Each GridBagLayout
object maintains a dynamic, rectangular grid of cells.

• Each component occupies one or more cells known as its display
area. Each component associates an instance of
GridBagConstraints.

• With the help of constraints object we arrange component's
display area on the grid. The GridBagLayout manages each
component's minimum and preferred sizes in order to determine
component's size.

• The constructors are
GridLayout()
GridLayout(int numRows, int numColumns)
GridLayout(int numRows, int numColumns, int horz, int vert)

326

Limitations of AWT

• AWT supports limited number of GUI components.

• AWT components are heavy weight components.

• AWT components are developed by using platform specific
code.

• AWT components behaves differently in different operating
systems.

• AWT component is converted by the native code of the
operating system.

327

• Lowest Common Denominator

– If not available natively on one Java platform, not available
on any Java platform

• Simple Component Set

• Components Peer-Based

– Platform controls component appearance

– Inconsistencies in implementations

– Interfacing to native platform error-prone

Components

328

Components

• Container

– JComponent

• AbstractButton
– JButton

– JMenuItem

» JCheckBoxMenuItem

» JMenu

» JRadioButtonMenuItem

– JToggleButton

» JCheckBox

» JRadioButton

329

• JComponent
– JComboBox

– JLabel

– JList

– JMenuBar

– JPanel

– JPopupMenu

– JScrollBar

– JScrollPane

330

• JComponent

– JTextComponent

• JTextArea

• JTextField
– JPasswordField

• JTextPane
– JHTMLPane

331

JFrame

public class FrameTest {
public static void main (String args[]) {
JFrame f = new JFrame ("JFrame Example");
Container c = f.getContentPane();
c.setLayout (new FlowLayout());
for (int i = 0; i < 5; i++) {

c.add (new JButton ("No"));
c.add (new Button ("Batter"));

}
c.add (new JLabel ("Swing"));
f.setSize (300, 200);
f.show();

}
}

332

JComponent

• JComponent supports the following components.
• JComponent

– JComboBox
– JLabel
– JList
– JMenuBar
– JPanel
– JPopupMenu
– JScrollBar
– JScrollPane
– JTextComponent

• JTextArea
• JTextField

– JPasswordField
• JTextPane

– JHTMLPane

333

• Swing labels are instances of the JLabel class, which extends
JComponent.

• It can display text and/or an icon.

• Constructors are:

1. JLabel(Icon i) 2. JLabel(String s) 3. JLabel(String s, Icon i, int
align)

• Here, s and i are the text and icon used for the label. The align
argument is either LEFT, RIGHT, or CENTER. These constants are
defined in the SwingConstants interface,

• Methods are:

1. Icon getIcon()

2. String getText()

3. void setIcon(Icon i)

4. void setText(String s)

• Here, i and s are the icon and text, respectively.
334

Buttons

• Swing buttons provide features that are not found in the Button class
defined by the AWT.

• Swing buttons are subclasses of the AbstractButton class, which
extends JComponent.

• AbstractButton contains many methods that allow you to control the
behavior of buttons, check boxes, and radio buttons.

• Methods are:
1. void setDisabledIcon(Icon di)
2. void setPressedIcon(Icon pi)
3. void setSelectedIcon(Icon si)
4. void setRolloverIcon(Icon ri)

• Here, di, pi, si, and ri are the icons to be used for these different
conditions.

• The text associated with a button can be read and written via the
following methods:

1. String getText() 2. void setText(String s)
• Here, s is the text to be associated with the button.

335

JButton

• The JButton class is used to create a labeled button that has
platform independent implementation. The application result in
some action when the button is pushed. It inherits
AbstractButton class.

• The JButton class provides the functionality of a push button.

• JButton allows an icon, a string, or both to be associated with the
push button.

• Some of its constructors are :

JButton(Icon i)

JButton(String s)

JButton(String s, Icon i)

• Here, s and i are the string and icon used for the button.

336

JButton

• import javax.swing.*;

• public class ButtonExample {

• public static void main(String[] args) {

• JFrame f=new JFrame("Button Example");

• JButton b=new JButton("Click Here");

• b.setBounds(50,100,95,30);

• f.add(b);

• f.setSize(400,400);

• f.setLayout(null);

• f.setVisible(true);

• }

• }

337

JLabel

• The object of JLabel class is a component for placing text in a
container.

• It is used to display a single line of read only text.

• The text can be changed by an application but a user cannot edit it
directly. It inherits JComponent class.

Commonly used Constructors:

JLabel(): Creates a JLabel instance with no image and with an empty
string for the title.

JLabel(String s): Creates a JLabel instance with the specified text.

JLabel(Icon i): Creates a JLabel instance with the specified image.

JLabel(String s, Icon i, int horizontalAlignment): Creates a JLabel
instance with the specified text, image, and horizontal alignment.

338

JLabel

• import javax.swing.*;

• class TextFieldExample {

• public static void main(String args[]) {

• JFrame f= new JFrame("TextField Example");

• JTextField t1,t2;

• t1=new JTextField("Welcome to Javatpoint.");

• t1.setBounds(50,100, 200,30);

• t2=new JTextField("AWT Tutorial");

• t2.setBounds(50,150, 200,30);

• f.add(t1); f.add(t2);

• f.setSize(400,400);

• f.setLayout(null);

• f.setVisible(true);

• } }

339

JTextField

• JTextField is a part of javax.swing package. The class JTextField is a

component that allows editing of a single line of text.

• JTextField inherits the JTextComponent class and uses the interface

SwingConstants.

The constructor of the class are :

• JTextField() : constructor that creates a new TextField

• JTextField(int columns) : constructor that creates a new empty TextField
with specified number of columns.

• JTextField(String text) : constructor that creates a new empty text field
initialized with the given string.

• JTextField(String text, int columns) : constructor that creates a new empty
textField with the given string and a specified number of columns .

• JTextField(Document doc, String text, int columns) : constructor that
creates a textfield that uses the given text storage model and the given
number of columns.

340

JTextField

Java program to create a blank text field of definite number of
columns.

• import java.awt.event.*;

• import javax.swing.*;

• class text extends JFrame implements ActionListener {

• static JTextField t;

• static JFrame f;

• static JButton b;

• static JLabel l;

• text()

• { }

341

JTextField

• public static void main(String[] args) {

• f = new JFrame("textfield");

• l = new JLabel("nothing entered");

• b = new JButton("submit");

• text te = new text(); b.addActionListener(te);

• t = new JTextField(16); JPanel p = new JPanel();

• p.add(t); p.add(b); p.add(l); f.add(p); f.setSize(300, 300);

• f.show(); }

• public void actionPerformed(ActionEvent e)

• {

• String s = e.getActionCommand();

• if (s.equals("submit")) { l.setText(t.getText());

• t.setText(" ");

• } }}

342

JTextArea

• JTextArea is a part of java Swing package . It represents a multi line area that
displays text. It is used to edit the text.

• JTextArea inherits JComponent class. The text in JTextArea can be set to different
available fonts and can be appended to new text . A text area can be customized
to the need of user.

Constructors of JTextArea are:

• JTextArea() : constructs a new blank text area .

• JTextArea(String s) : constructs a new text area with a given initial text.

• JTextArea(int row, int column) : constructs a new text area with a given number
of rows and columns.

• JTextArea(String s, int row, int column) : constructs a new text area with a given
number of rows and columns and a given initial text.

343

JTextArea

• // Java Program to create a simple JTextArea

• import java.awt.event.*;

• import java.awt.*;

• import javax.swing.*;

• class text extends JFrame implements ActionListener {

• static JFrame f; static JButton b; static JLabel l; static JTextArea jt;

• text()

• { }

• public static void main(String[] args)

• {

• f = new JFrame("textfield");

• l = new JLabel("nothing entered");

• b = new JButton("submit");

• text te = new text();

• b.addActionListener(te);
344

JTextArea

• jt = new JTextArea(10, 10);

• JPanel p = new JPanel();

• p.add(jt);

• p.add(b);

• p.add(l);

• f.add(p);

• f.setSize(300, 300);

• f.show();

• }

• public void actionPerformed(ActionEvent e) {

• String s = e.getActionCommand();

• if (s.equals("submit")) {

• l.setText(jt.getText());

• } } }

345

Layout Manager

• The Layout Managers are used to arrange components in a
particular manner.

• LayoutManager is an interface that is implemented by all the
classes of layout managers.

• it is very tedious to manually lay out a large number of
components and sometimes the width and height information
is not yet available when you need to arrange some control,
because the native toolkit components haven't been realized.

• Each Container object has a layout manager associated with it.
• A layout manager is an instance of any class that implements

the LayoutManager interface.
• The layout manager is set by the setLayout() method. If no call

to setLayout() is made, then the default layout manager is
used.

• Whenever a container is resized (or sized for the first time), the
layout manager is used to position each of the components
within it.

346

Layout manager Types

Layout manager class defines the following types of layout managers

• BoarderLayout

• GridLayout

• FlowLayout

• CardLayout

• GridBagLayout

347

Boarder layout

 The BorderLayout class implements a common layout style for
top-level windows. It has four narrow, fixed-width components
at the edges and one large area in the center.

 The four sides are referred to as north, south, east, and west.
The middle area is called the center.

 The constructors defined by BorderLayout:
(a) BorderLayout() (b) BorderLayout(int horz, int vert)

 BorderLayout defines the following constants that specify the
regions:

public static final int NORTH
public static final int SOUTH
public static final int EAST
public static final int WEST
public static final int CENTER

Components can be added by
void add(Component compObj, Object region);

348

Boarder layout

import java.awt.*;
import javax.swing.*;
public class Border {
JFrame f;
Border(){

f=new JFrame();
JButton b1=new JButton("NORTH");;
JButton b2=new JButton("SOUTH");;
JButton b3=new JButton("EAST");;
JButton b4=new JButton("WEST");;
JButton b5=new JButton("CENTER");;
f.add(b1,BorderLayout.NORTH);
f.add(b2,BorderLayout.SOUTH);
f.add(b3,BorderLayout.EAST);
f.add(b4,BorderLayout.WEST);
f.add(b5,BorderLayout.CENTER);
f.setSize(300,300);
f.setVisible(true); }
public static void main(String[] args) {

new Border();
}
}

349

Grid layout

• GridLayout lays out components in a two-dimensional grid. When
you instantiate a GridLayout, define the number of rows and
columns.

• The constructors supported by GridLayout is:
GridLayout()
GridLayout(int numRows, int numColumns)
GridLayout(int numRows, int numColumns, int horz, int vert)

• The first form creates a single-column grid layout.
• The second form creates a grid layout
• with the specified number of rows and columns.
• The third form allows you to specify the horizontal and vertical

space left between components in horz and vert, respectively.
• Either numRows or numColumns can be zero. Specifying numRows

as zero allows for unlimited-length columns. Specifying numColumns
as zero allows for unlimited-lengthrows.

350

Grid layout

• import java.awt.*;
• import javax.swing.*;
• public class MyGridLayout{
• JFrame f;
• MyGridLayout(){
• f=new JFrame();
• JButton b1=new JButton("1");
• JButton b2=new JButton("2");
• JButton b3=new JButton("3");
• JButton b4=new JButton("4");
• JButton b5=new JButton("5");
• JButton b6=new JButton("6");
• JButton b7=new JButton("7");
• JButton b8=new JButton("8");
• JButton b9=new JButton("9");

351

Grid layout

• f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);
• f.add(b6);f.add(b7);f.add(b8);f.add(b9);

• f.setLayout(new GridLayout(3,3));
• //setting grid layout of 3 rows and 3 columns

• f.setSize(300,300);
• f.setVisible(true);
• }
• public static void main(String[] args) {
• new MyGridLayout();
• }
• }

352

Flow layout

 FlowLayout is the default layout manager.
 Components are laid out from the upper-left corner, left to right and top to

bottom. When no more components fit on a line, the next one appears on the
next line. A small space is left between each component, above and below, as
well as left and right.

 The constructors are
FlowLayout()
FlowLayout(int how)
FlowLayout(int how, int horz, int vert)

 The first form creates the default layout, which centers components and
leaves five pixels of space between each component.

 The second form allows to specify how each line is aligned. Valid values for
are:

FlowLayout.LEFT
FlowLayout.CENTER
FlowLayout.RIGHT

These values specify left, center, and right alignment, respectively.
 The third form allows to specify the horizontal and vertical space left between

components in horz and vert, respectively
353

Flow layout

• import java.awt.*;

• import javax.swing.*;

• public class MyFlowLayout{

• JFrame f;

• MyFlowLayout(){

• f=new JFrame();

• JButton b1=new JButton("1");

• JButton b2=new JButton("2");

• JButton b3=new JButton("3");

• JButton b4=new JButton("4");

• JButton b5=new JButton("5");

• f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);

• f.setLayout(new FlowLayout(FlowLayout.RIGHT));

• f.setSize(300,300);

• f.setVisible(true);

• }

• public static void main(String[] args) {

• new MyFlowLayout();

• } }
354

Card Layout

• The CardLayout class is unique among the other layout managers in that it
stores several different layouts.

• Each layout can be thought of as being on a separate index card in a deck
that can be shuffled so that any card is on top at a given time.

• The CardLayout class manages the components in such a manner that only
one component is visible at a time. It treats each component as a card that
is why it is known as CardLayout.

• CardLayout provides these two constructors:
CardLayout()
CardLayout(int horz, int vert)

• The cards are held in an object of type Panel. This panel must have
CardLayout selected as its layout manager.

• Cards are added to panel using
void add(Component panelObj, Object name);

• methods defined by CardLayout:
void first(Container deck)
void last(Container deck)
void next(Container deck)
void previous(Container deck)
void show(Container deck, String cardName)

355

Card Layout

• import java.awt.*;

• import java.awt.event.*;

• import javax.swing.*;

• public class CardLayoutExample extends JFrame implements ActionListener{

• CardLayout card;

• JButton b1,b2,b3;

• Container c;

• CardLayoutExample(){

• c=getContentPane();

• card=new CardLayout(40,30);

• //create CardLayout object with 40 hor space and 30 ver space

• c.setLayout(card);

• b1=new JButton("Apple");

• b2=new JButton("Boy");

• b3=new JButton("Cat");

• b1.addActionListener(this);

• b2.addActionListener(this);

• b3.addActionListener(this);
356

https://www.facebook.com/sharer.php?u=https://www.javatpoint.com/CardLayout
https://twitter.com/share?url=https://www.javatpoint.com/CardLayout
https://plusone.google.com/_/+1/confirm?hl=en&url=https://www.javatpoint.com/CardLayout
https://www.pinterest.com/pin/create/button/?url=https://www.javatpoint.com/CardLayout
https://www.javatpoint.com/software-testing-tutorial
https://www.javatpoint.com/numpy-tutorial
https://www.facebook.com/sharer.php?u=https://www.javatpoint.com/CardLayout

Card Layout

• c.add("a",b1);c.add("b",b2);c.add("c",b3);
• }
• public void actionPerformed(ActionEvent e)
• {
• card.next(c);
• }
• public static void main(String[] args) {
• CardLayoutExample cl=new CardLayoutExample();
• cl.setSize(400,400);
• cl.setVisible(true);
• cl.setDefaultCloseOperation(EXIT_ON_CLOSE);
• }
• }

357

https://www.facebook.com/sharer.php?u=https://www.javatpoint.com/CardLayout
https://twitter.com/share?url=https://www.javatpoint.com/CardLayout
https://plusone.google.com/_/+1/confirm?hl=en&url=https://www.javatpoint.com/CardLayout
https://www.pinterest.com/pin/create/button/?url=https://www.javatpoint.com/CardLayout
https://www.javatpoint.com/software-testing-tutorial
https://www.javatpoint.com/numpy-tutorial
https://www.facebook.com/sharer.php?u=https://www.javatpoint.com/CardLayout

Event handling

• For the user to interact with a GUI, the underlying operating
system must support event handling.

1. operating systems constantly monitor events such as
keystrokes, mouse clicks, voice command, etc.

2. operating systems sort out these events and report them
to the appropriate application programs

3. each application program then decides what to do in
response to these events

358

Events

• An event is an object that describes a state change in a source.
• It can be generated as a consequence of a person interacting

with the elements in a graphical user interface.
• Some of the activities that cause events to be generated are

pressing a button, entering a character via the keyboard,
selecting an item in a list, and clicking the mouse.

• Events may also occur that are not directly caused by
interactions with a user interface.

• For example, an event may be generated when a timer
expires, a counter exceeds a value, a software or hardware
failure occurs, or an operation is completed.

• Events can be defined as needed and appropriate by
application.

359

Event sources

• A source is an object that generates an event.
• This occurs when the internal state of that object changes in

some way.
• Sources may generate more than one type of event.
• A source must register listeners in order for the listeners to

receive notifications about a specific type of event.
• Each type of event has its own registration method.
• General form is:

public void addTypeListener(TypeListener el)
Here, Type is the name of the event and el is a reference to the
event listener.

• For example,
1. The method that registers a keyboard event listener is called

addKeyListener().
2. The method that registers a mouse motion listener is called

addMouseMotionListener(). 360

• When an event occurs, all registered listeners are notified and
receive a copy of the event object. This is known as
multicasting the event.

• In all cases, notifications are sent only to listeners that register
to receive them.

• Some sources may allow only one listener to register. The
general form is:
public void addTypeListener(TypeListener el) throws
java.util.TooManyListenersException

Here Type is the name of the event and el is a reference to the
event listener.

• When such an event occurs, the registered listener is notified.
This is known as unicasting the event.

361

• A source must also provide a method that allows a listener to
unregister an interest in a specific type of event.

• The general form is:
public void removeTypeListener(TypeListener el)
Here, Type is the name of the event and el is a reference to the
event listener.

• For example, to remove a keyboard listener, you would call
removeKeyListener().

• The methods that add or remove listeners are provided by the
source that generates events.

• For example, the Component class provides methods to add and
remove keyboard and mouse event listeners.

362

Event classes

• The Event classes that represent events are at the core of
Java's event handling mechanism.

• Super class of the Java event class hierarchy is EventObject,
which is in java.util. for all events.

• Constructor is :

EventObject(Object src)
Here, src is the object that generates this event.

• EventObject contains two methods: getSource() and
toString().

• 1. The getSource() method returns the source of the event.
General form is : Object getSource()

• 2. The toString() returns the string equivalent of the event.

363

• EventObject is a superclass of all events.

• AWTEvent is a superclass of all AWT events that are handled
by the delegation event model.

• The package java.awt.event defines several types of events
that are generated by various user interface elements.

364

Event Classes in java.awt.event

• ActionEvent: Generated when a button is pressed, a list item
is double clicked, or a menu item is selected.

• AdjustmentEvent: Generated when a scroll bar is
manipulated.

• ComponentEvent: Generated when a component is hidden,
moved, resized, or becomes visible.

• ContainerEvent: Generated when a component is added to or
removed from a container.

• FocusEvent: Generated when a component gains or loses
keyboard focus.

365

• InputEvent: Abstract super class for all component input event
classes.

• ItemEvent: Generated when a check box or list item is clicked;
also

• occurs when a choice selection is made or a checkable menu
item is selected or deselected.

• KeyEvent: Generated when input is received from the
keyboard.

• MouseEvent: Generated when the mouse is dragged, moved,
clicked, pressed, or released; also generated when the mouse
enters or exits a component.

• TextEvent: Generated when the value of a text area or text
field is changed.

• WindowEvent: Generated when a window is activated, closed,
deactivated, deiconified, iconified, opened, or quit.

366

Event Listeners

• A listener is an object that is notified when an event occurs.
• Event has two major requirements.

1. It must have been registered with one or more sources to
receive
notifications about specific types of events.

2. It must implement methods to receive and process these
notifications.

• The methods that receive and process events are defined in a
set of interfaces found in java.awt.event.

• For example, the MouseMotionListener interface defines two
methods to receive notifications when the mouse is dragged or
moved.

• Any object may receive and process one or both of these
events if it provides an implementation of this interface.

367

Handling Mouse Events

• Mouse events can be handled by implementing the
MouseListener and the MouseMotionListener interfaces.

• MouseListener Interface defines five methods. The general
forms of these methods are:

1. void mouseClicked(MouseEvent me)
2. void mouseEntered(MouseEvent me)
3. void mouseExited(MouseEvent me)
4. void mousePressed(MouseEvent me)
5. void mouseReleased(MouseEvent me)

• MouseMotionListener Interface. This interface defines two
methods. Their general forms are :

1. void mouseDragged(MouseEvent me)
2. void mouseMoved(MouseEvent me)

368

Handling Keyboard Events

• Keyboard events, can be handled by implementing the
KeyListener interface.

• KeyListner interface defines three methods. The general
forms of these methods are :

1. void keyPressed(KeyEvent ke)

2. void keyReleased(KeyEvent ke)

3. void keyTyped(KeyEvent ke)

• To implement keyboard events implementation to the above
methods is needed.

369

Concepts of Applets
• Applets are small applications that are accessed on an Internet server,

transported over the Internet, automatically installed, and run as part
of a Web document.

• After an applet arrives on the client, it has limited access to resources,
so that it can produce an arbitrary multimedia user interface and run
complex computations without introducing the risk of viruses or
breaching data integrity.

• applets – Java program that runs within a Java-enabled browser,
invoked through a “applet” reference on a web page, dynamically
downloaded to the client computer

import java.awt.*;
import java.applet.*;
public class SimpleApplet extends Applet {
public void paint(Graphics g) {
g.drawString("A Simple Applet", 20, 20);
}
}

370

There are two ways to run an applet:
1. Executing the applet within a Java-compatible Web browser, such

as NetscapeNavigator.

2. Using an applet viewer, such as the standard JDK tool,
appletviewer.

An appletviewer executes your applet in a window. This is generally
the fastest and easiest way to test an applet.

To execute an applet in a Web browser, you need to write a short
HTML text file that contains the appropriate APPLET tag.

<applet code="SimpleApplet" width=200 height=60>
</applet>

371

Differences between applets and applications

372

Applet Application

An Applet is an small
application program in java that
can be embedded HTML page

An Application in java can run
alone in client or server

It is derived from JApplet It is extended from JFrame

It does not have main method It has main method

It is displayed by HTML It is displayed through
serVisible() method

The size of it applet is specified
in HTML

The size of application is
defined with the help of
seSize() method

It can be runs within a
Graphical User Interface (GUI)

It runs without Graphical User
Interface (GUI)

Applet Application

It can be executed in a java
compatible container like a
browser or appletviewer

It is executed at command line
through java.exe or jview.exe

It gets closed only when HTML
document is closed

It is closed with close button

It is portable and can run on
environment supported by java
browsers

It runs on client machines that
has JDK, JRE and JNM

It can be created by extending
that clas java.applet.Applet

It can be created using the
method public static void main
(string args[])

Differences between applets and applications

373

Life cycle of an applet

• Applets life cycle includes the following methods
1. init()
2. start()
3. paint()
4. stop()
5. destroy()

• When an applet begins, the AWT calls the following methods, in
this sequence:

init()
start()
paint()

• When an applet is terminated, the following sequence of
method calls takes place:

stop()
destroy()

374

• init(): The init() method is the first method to be called. This is
where you should initialize variables. This method is called only
once during the run time of your applet.

• start(): The start() method is called after init(). It is also called
to restart an applet after it has been stopped. Whereas init() is
called once—the first time an applet is loaded—start() is called
each time an applet's HTML document is displayed onscreen. So,
if a user leaves a web page and comes back, the applet resumes
execution at start().

• paint(): The paint() method is called each time applet's output
must be redrawn. paint() is also called when the applet begins
execution. Whatever the cause, whenever the applet must
redraw its output, paint() is called. The paint() method has one
parameter of type Graphics. This parameter will contain the
graphics context, which describes the graphics environment in
which the applet is running. This context is used whenever
output to the applet is required.

Life cycle of an applet

375

• stop(): The stop() method is called when a web browser
leaves the HTML document containing the applet—when it
goes to another page, for example. When stop() is called, the
applet is probably running. Applet uses stop() to suspend
threads that don't need to run when the applet is not visible.
To restart start() is called if the user returns to the page.

• destroy(): The destroy() method is called when the
environment determines that your applet needs to be
removed completely from memory. The stop() method is
always called before destroy().

Life cycle of an applet

376

Types of applets

• Applets are two types

1.Simple applets

2.JApplets

• Simple applets can be created by extending Applet class

• JApplets can be created by extending JApplet class of
javax.swing.JApplet package

377

Creating applets
 Applets are created by extending the Applet class.

import java.awt.*;
import java.applet.*;
/*<applet code="AppletSkel" width=300 height=100></applet> */
public class AppletSkel extends Applet {
public void init() {
// initialization
}
public void start() {
// start or resume execution
}
public void stop() {
// suspends execution
}
public void destroy() {
// perform shutdown activities
}
public void paint(Graphics g) {
// redisplay contents of window
}}

378

Passing Parameters to applets

• It is also possible to supply user-defined parameters to an applet using
<PARAM> tags. Each <PARAM> tag has a name attribute and value attribute.

• Inside the applet code, the applet can refer to that parameter by name to find
its value.

• APPLET tag in HTML allows you to pass parameters to applet.
• To retrieve a parameter, use the getParameter() method. It returns the value of

the specified parameter in the form of a String object.
// Use Parameters
import java.awt.*;
import java.applet.*;
/*
<applet code="ParamDemo" width=300 height=80>
<param name=fontName value=Courier>
<param name=fontSize value=14>
<param name=leading value=2>
<param name=accountEnabled value=true>
</applet>
*/

379

public class ParamDemo extends Applet{
String fontName;
int fontSize;
float leading;
boolean active;
// Initialize the string to be displayed.
public void start() {
String param;
fontName = getParameter("fontName");
if(fontName == null)
fontName = "Not Found";
param = getParameter("fontSize");
try {
if(param != null) // if not found
fontSize = Integer.parseInt(param);
else
fontSize = 0;
} catch(NumberFormatException e) {
fontSize = -1;
}
param = getParameter("leading");

380

try {
if(param != null) // if not found
leading = Float.valueOf(param).floatValue();
else
leading = 0;
} catch(NumberFormatException e) {
leading = -1;
}
param = getParameter("accountEnabled");
if(param != null)
active = Boolean.valueOf(param).booleanValue();
}
// Display parameters.
public void paint(Graphics g) {
g.drawString("Font name: " + fontName, 0, 10);
g.drawString("Font size: " + fontSize, 0, 26);
g.drawString("Leading: " + leading, 0, 42);
g.drawString("Account Active: " + active, 0, 58);
}}

381

