Hall Ticket	No	3
-------------	----	---

IINSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER -I

B. Tech V Semester End Examinations (Regular), December-2019

Regulations: IARE-R16

OPTIMIZATION TECHNIQUES

(Common to CSE/IT/EEE)

Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Unit

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

				UNI	Γ – Ι					
1.	a)	Discuss various th Operations Resear			the various st	eps used in s	olving	[7M]		
	b)	Solve the given pr	oblem by usi	ng Graphical	method			[7M]		
		Maximize Z = 20x	<₁ + 10x₂							
		$S 15x_1 + 6x_2 \le 30$	000							
		$3x_1 + 4x_2 \le 1300$								
		$x_1 + 2x_2 \le 500$								
2.	a)	Use penalty BIG I	M Method to	solve the foll	owing Linear	r Programmii	ng Problem.	[7M]		
		Minimize Z = 5x1	+ 3x2							
		State that 2x1 + 4	x2 ≤ 12							
		2x1 + 2x	2 = 10							
		5x1 + 2>	(2 ≥ 10							
	b)	Use- Two phase s	imple method	l to solve to s	olve the follo	wing Linear	Programming			
		Problem.								
		Minimize: $Z = x_1$								
		State that $2x_1 + x_2$								
		$x_1 + 7x_2$								
		and x_1 , z_2	$X_2 \ge 0$							
				UNIT				[7M]		
3.	a)									
		visit each city once and then returns to his starting point. The travelling cost in ('000) of each city from a particular city is given A B C D E								
		Α	A	2 2	5	D 7	1			
		B	6	α	3	8	2			
		C	8	7	α	4	7			
		D	12	4	6	α	5			
		Ε	1	3	2	8	A			

b)	to each warehouse, the requirement of each market and the unit transportation cost RS from each warehouse to each market is given below									
			Р	Q	R	S	Su	pply		
		A	6	3	5	4		22		
		B	5	9	2	7		15		
		C Demand	5	12	8	9		8 45		
	based on h to S, 15 un i). Ch	ing clerk of t is own experi- nits from B to neck and see in nd the optimation	ence 12 u R, 7 Units f the clerk	units from s from C t t has an op	A to Q, o P, and otimal so	1 unit fro 1 unit fro lution	om A to R m C to R.	, 9 units		
a)										
	-		-		-			the com	pany m	
	-		tal transpo		ost.			the com	party in	
	-	inimize the to	tal transpo	B	ost.	D	E	the com	pany m	
	-	inimize the to From X	tal transpo A 5	B 8	ost. To C 6	D 6	E 3	the com		
	-	inimize the to From X Y	A A 5 4	B 8 7	To C 6 7	D 6 6	E 3 6			
	-	inimize the to From X	tal transpo A 5	B 8	ost. To C 6	D 6	E 3		pany m	
b)	A compute replacing a time, the o resistors sa	inimize the to From X Y	A 5 4 8 000 resis vidually is or would end of m	B 8 7 4 stors where s Rs 1 only be reduced	To C 6 7 6 n any res 7. 1 all the d to 35	D 6 6 istor fails he resistor paisa. Th	E 3 6 3 it is repla s are repl e percent	aced. The aced at th age of su	cost of ne same urviving	[7M]
b)	A compute replacing a time, the o resistors sa	From From X Y Z er contains 10 a resistor indiv cost per resist ay S(t) at the	A 5 4 8 000 resis vidually is or would end of m	B 8 7 4 stors where s Rs 1 only be reduced	To C 6 7 6 n any res 7. 1 all the d to 35	D 6 6 istor fails he resistor paisa. Th	E 3 6 3 it is repla s are repl e percent	aced. The aced at th age of su	cost of ne same urviving	[7M]
b)	A compute replacing a time, the or resistors sa month 't' a	From From X Y Z er contains 10 a resistor indiv cost per resist ay S(t) at the are as follows.	A 5 4 8 ,000 resis vidually is or would end of m	B 8 7 4 stors wher s Rs 1only be reduce onth 't' as	To C 6 7 6 1 any res 7. If all the ed to 35 nd the pr	D 6 6 istor fails he resistor paisa. Th robability	E 3 6 3 it is repla s are repl e percent of failure	iced. The aced at th age of su p (t) dur	cost of ne same urviving	[7M]

5.					UNIT – III				
	a)	Find an optimal machines, when	-			-		-	[7M]
		Jobs			Ma	chines			
			M1	M	2	M3	M4	M5	
		Α	7		5	2	3	9	
		B	6	6		4	5	10	
		C	5	4		5	6	8	
		D	8	3)	3	2	6	
	b)	Solve the game	whose payo	off matrix i	is given belo	W			[7M]
						Payer	B		
				B 1	B	2	B3	B4	
			A1	3	2		4	0	
			A2	3	4		2	4	
		Player A	A3	4	2		4 0	0 8	
			A4	0	4		0	0	
			L,F L,C M,J	<u>)</u> P	H A	Paymen pays B pays A pays B	Rs.3 Rs.3 Rs.2		[7M]
			M,	-		pays A pays A			
			N,C	2		pays A			
		What are the best game for A and	-	s for player	s A and B in	this gai	me? What is	the value of the	
1	b)	colors: White (V	W), Black ((B) and Re th P and Q	ed (R) indep has chosen	endently white (V	v of the othe W,W), neith	one of the three er. Thereafter the er wins anything	[7M]
		If player P selec	ts white ar mount and	so on. The	e complete p	ayoff tal	ble is showr	s.2/- or player Q below. Find the	
		If player P select wins the same at	ts white ar mount and	so on. The	e complete p ne value of th Q W E	ayoff tal ne game.	ble is showr		
		If player P select wins the same at	ts white ar mount and ies for P ar	so on. The nd Q and th W	e complete p ne value of th Q W E 0 -2	ayoff tal ne game.	ble is showr		
		If player P select wins the same at	ts white ar mount and	so on. The	e complete p ne value of th Q W E	R R 6	ble is showr		

		UNIT – IV				
7.	a)	 Solve the following given Linear Programming problem by using Dynamic Programming technique. Maximize 5x + 9y subject to -x + 3y ≤3, 5x + 3y ≤27 and both x and y are ≥0. 				
	b)	In a cargo-loading problem, there are four items of different weight per unit and value as shown below. The maximum cargo load is restricted to 17 units. How many units of each item is loaded to maximize the value? $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[7M]			
8.	a)	A vessel is to be loaded with stocks of 3 items. Each item 'i' has a weight of w_i and a value of v_i . The maximum cargo weight the vessel can take is 5 and the details of the three items are as follows: $ \frac{j w_j v_j}{1 1 30} $ Develop the recursive equation for the above case and find the most valuable cargo load without exceeding the maximum cargo weight by using dynamic programming.	[7M]			
	b)	Minimize $a^2 + b^2 + c^2$, subject to $a + b + c = 10$ when i). <i>a</i> , <i>b</i> , <i>c</i> are non-negative, ii). <i>a</i> , <i>b</i> , <i>c</i> are non-negative integers.	[7M]			
		UNIT – V				
9.	a)	What is the major disadvantage associate with a solution technique based upon direct use of full quadratic approximations to all functions in the nonlinear program?	[7M]			
	b)	Outline an implementation of a successive Lagrangian QP algorithm that would employ the more conservative step adjustment strategy of the Griffith and Stewart SLP algorithm. Discuss the advantages and disadvantages relative to the penalty function strategy.				
10	a)	Compare the treatment of inequality constraints in the GRG and CVM algorithms. How do the methods of estimating multiplier values differ?	[7M]			
•	b)	Suppose the CVM algorithm were employed with a problem involving a quadratic objective function and quadratic inequality constraints. How manyiterations are likely to be required to solve the problem, assuming exact arithmetic? What assumptions about the problem are likely to be necessary in making this estimate?	[7M]			

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

I. COURSE OBJECTIVES:

The course should enable the students to:

S.No	Description
Ι	Learn fundamentals of linear programming through optimization.
II	Understand theory of optimization methods and algorithms developed for solving various types of optimization problems.
III	Apply the mathematical results and numerical techniques of optimization theory to concrete Engineering Problems.
IV	Understand and apply optimization techniques to industrial applications
v	Apply the dynamic programming and quadratic approximation to electrical and electronic problems and applications.

II. COURSE LEARNING OUTCOMES:

Students who complete the course will have demonstrated the ability to do the following

AHS012.01	Explain the various characteristics and phases of linear programming.
AHS012.02	Formulate the various linear programming problems by using graphical and simplex methods
AHS012.03	Understand the artificial variable techniques like two phase and Big-M methods.
AHS012.04	Explain Transportation problem and the formulation of the problem by using optimal solution.
AHS012.05	Solve the assignment problems by using optimal solutions and the variance of assignment problems.
AHS012.06	Describe the travelling sales man problem.
AHS012.07	Explain the sequencing and the types of sequencing methods.
AHS012.08	Use n jobs through two machines and n jobs through three machines to solve an appropriate
	problem.
AHS012.09	Use two jobs through m machines to solve an appropriate problem.
AHS012.10	Understand theory of games and the terminologies used in theory of games concept.
AHS012.11	Determine appropriate technique to solve to a given problem.
AHS012.12	Solve the problems by using dominance principle and Graphical method.
AHS012.13	Understand the Bellman's principle of optimality.
AHS012.14	Describe heuristic problem-solving methods.
AHS012.15	Understand the mapping of real-world problems to algorithmic solutions.
AHS012.16	List out the various applications of dynamic programming.
AHS012.17	Define the shortest path problem with approximate solutions.
AHS012.18	Explain the linear programming problem with approximate solutions.
AHS012.19	Define the various quadratic approximation methods for solving constraint problems.

AHS012.20	Explain the direct quadratic approximation for solving the constraint problems.
AHS012.21	Explain the quadratic approximation method by using lagrangian function.
AHS012.22	Describe the variable metric methods for constrained optimization.

MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES

SEE Question No.		Course learning Outcomes				
	а	AHS012.01	Explain the various characteristics and phases of linear programming	Understand		
1	b	AHS012.02	Formulate the various linear programming problems by using graphical and simplex methods	Understand		
2	a	AHS012.03	Understand the artificial variable techniques like two phase and Big-M methods.	Remember		
	b	AHS012.02	Formulate the various linear programming problems by using graphical and simplex methods	Understand		
3	a	AHS012.06	Describe the travelling sales man problem.	Understand		
	b	AHS012.04	Explain Transportation problem and the formulation of the problem by using optimal solution.	Understand		
4	a	AHS012.05	Solve the assignment problems by using optimal solutions and the variance of assignment problems.	Remember		
	b	AHS012.05	Solve the assignment problems by using optimal solutions and the variance of assignment problems.	Understand		
5	a	AHS012.08	Use n jobs through two machines and n jobs through three machines to solve an appropriate problem.	Remember		
	b	AHS012.08	Use n jobs through two machines and n jobs through three machines to solve an appropriate problem.	Remember		
6	а	AHS012.10	Determine appropriate technique to solve to a given problem.	Understand		
	b	AHS012.11	Determine appropriate technique to solve to a given problem.	Remember		
7	a	AHS012.15	List out the various applications of dynamic programming.	Remember		
	b	AHS012.17	Define the shortest path problem with approximate solutions.	Understand		
8	a	AHS012.18	Explain the linear programming problem with approximate solutions	Remember		
	b	AHS012.18	Explain the linear programming problem with approximate solutions.	Understand		
9	a	AHS012.19	Define the various quadratic approximation methods for solving constraint problems	Understand		
	b	AHS012.21	Explain the quadratic approximation method by using lagrangian function.	Remember		
10	a	AHS012.20	Explain the direct quadratic approximation for solving the constraint problems.	Understand		
	b	AHS012.22	Describe the variable metric methods for constrained optimization.	Understand		