PULSE AND DIGITAL CIRCUITS
(A40415)
II-B.Tech II- Sem-ECE
(R15 Regulation)

Prepared by
B.Naresh
Asst.Prof
UNIT-1
LINEAR WAVE SHAPING
Basics

Analog Quantities

• Most natural quantities that we see are analog and vary continuously. Analog systems can generally handle higher power than digital systems.

• Digital systems can process, store, and transmit data more efficiently but can only assign discrete values to each point.
Analog and Digital Systems

- Digital systems can process, store, and transmit data more efficiently but can only assign discrete values to each point.
• Digital electronics uses circuits that have two states, which are represented by two different voltage levels called HIGH and LOW. The voltages represent numbers in the binary system.

• In binary, a single number is called a *bit* (for *binary digit*). A bit can have the value of either a 0 or a 1, depending on if the voltage is HIGH or LOW.
Digital Signals

• Digital waveforms change between the LOW and HIGH levels. A positive going pulse is one that goes from an normally LOW logic level to a HIGH level and then back again. Digital waveforms are made up of a series of pulses.

(a) Positive-going pulse

(b) Negative-going pulse
Pulse Definitions

- Actual pulses are not ideal but are described by the rise time, fall time, amplitude, and other characteristics.
Periodic Pulse Waveforms

- Periodic pulse waveforms are composed of pulses that repeats in a fixed interval called the **period**.
- The **frequency** is the rate it repeats and is measured in hertz. The **clock** is a basic timing signal that is an example of a periodic wave.

\[T = \frac{1}{f} \]

What is the period of a repetitive wave if \(f = 3.2 \text{ GHz} \)?
Pulse Definitions

- In addition to frequency and period, repetitive pulse waveforms are described by the amplitude (A), pulse width (t_w) and duty cycle. Duty cycle is the ratio of t_w to T.
Wave Shaping

Definition: It is the process of changing the shape of input signal with linear / non-linear circuits.

Types:

i. Linear Wave Shaping

ii. Non-linear Wave Shaping
Linear Wave Shaping

Definition: The process where by the form of a non-sinusoidal signal is changed by transmission through a linear network is called **Linear Wave Shaping.**

Types:

i. High Pass RC Circuit.

ii. Low Pass RC Circuit.
Non-sinusoidal wave forms

1) Step
2) Pulse
3) Square wave
4) Ramp
5) Exponential wave forms.
Step Waveform

A step voltage is one which maintains the value zero for all times \(t<0 \) and maintains the value \(V \) for all times \(t>0 \).

\[
\begin{align*}
V_i &= 0 \quad t < 0 \\
V_i &= V \quad t > 0
\end{align*}
\]

Pulse

The pulse amplitude is ‘\(V \)’ and the pulse duration is \(t_p \).

\[
\begin{align*}
0 \leq t \leq t_p & \quad V_i = V \\
\text{Otherwise} & \quad V_i = 0
\end{align*}
\]
Square Wave

- A wave form which maintains itself at one constant level \(v^1 \) for a time \(T_1 \) and at other constant Level \(V^{11} \) for a time \(T_2 \) and which is repetitive with a period \(T = T_1 + T_2 \) is called a square-wave.

![Square Wave Diagram]

Ramp

A waveform which is zero for \(t < 0 \) and which increases linearly with time for \(t > 0 \).

\[V_i = \alpha t, \quad t > 0 \]

\[V_i = \alpha t, \quad t > 0 \]
Exponential

- The exponential waveform input is given by where T is the time constant of the exponential input
High Pass RC Circuit

If \(f = \text{low} \), \(X_c \) becomes high
C act as open circuit, so the \(V_o = 0 \).

If \(f = \text{high} \), \(X_c \) becomes low
C acts as short circuit, so we get the output.

The higher frequency components in the input signal appear at the output with less attenuation due to this behavior the circuit is called “High Pass Filter”.

\[
X_c = \frac{1}{2\pi fC}
\]
Sinusoidal input

- For Sinusoidal input, the output increases in amplitude with increasing frequency.

\[V_o = iR \]

\[i = \frac{V_{in}}{R - jX_C} = \frac{V_{in}}{R - \frac{j}{\omega C}} \]

\[i = \frac{V_{in}}{R \left[1 - \frac{j}{\omega RC} \right]} \]

\[V_o = iR = \frac{V_{in} \times R}{R \left[1 - \frac{j}{\omega RC} \right]} = \frac{V_{in}}{\frac{1}{2\pi f RC}} \]
\[V_0 = \frac{V_{\text{in}}}{1 - j \frac{f_1}{f}} \quad \text{where} \quad f_1 = \frac{1}{2\pi RC} \]

\[\frac{V_0}{V_{\text{in}}} = \frac{1}{1 + j\left(-\frac{f_1}{f}\right)} \]

\[\left| \frac{V_0}{V_{\text{in}}} \right| = \frac{1}{\sqrt{1 + \left(\frac{f_1}{f}\right)^2}} \]

\[\theta = -\tan^{-1}\left(-\frac{f_1}{f}\right) = \tan^{-1}\left(\frac{f_1}{f}\right) \]

At the frequency \(f = f_1 \)

\[\left| \frac{V_0}{V_{\text{n}}} \right| = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} = 0.707 \]

\[|A| = 0.707 \]
At $f = f_1$ the gain is 0.707 or this level corresponds to a signal reduction of 3 decibels (dB).

$\therefore f_1$ is referred to as Lower 3-dB frequency.
Square wave input

• Percentage Tilt ($^\circ$ Tilt)

Tilt is defined as the decay in the amplitude of the output voltage wave due to the input voltage maintaining constant level

\[P = \frac{V_1 - V_1'}{\frac{V}{2}} \times 100 \]

\[V_1' = V_1 \cdot e^{-\frac{T_1}{RC}} \quad \text{(1)} \]

\[V_2' = V_2 \cdot e^{-\frac{T_2}{RC}} \quad \text{(2)} \]

\[V_1' - V_2' = V \quad \text{(3)} \]

\[V_1 - V_2' = V \quad \text{(4)} \]
• A symmetrical square wave is one for which $T_1 = T_2 = \frac{T}{2}$ & because of symmetry $V_1 = -V_2$

By substituting these in above equation (3)

$$V_1' = -V_2'$$

$$V = V_1' - V_2$$

$$V = V_1 e^{-\frac{T}{2RC}} - V_2$$

$$V = V_1 e^{-\frac{T}{2RC}} + V_2$$

$$V = V_1 e^{-\frac{T}{2RC}}$$

$$V = V_1 (1 + e^{-\frac{T}{2RC}})$$

Equation (1)

$$V_1' = V_1 e^{-\frac{T}{2RC}}$$

$$V_1' = \frac{V}{1 + e^{-\frac{T}{2RC}}} \times e^{-\frac{T}{2RC}} = \frac{V}{1 + e^{-\frac{T}{2RC}}}$$

$$V_1' = \frac{V}{1 + e^{-\frac{T}{2RC}}}$$

$$V_1' = \frac{V}{1 + e^{-\frac{T}{2RC}}}$$
For RC >> $T/2$ the equation (I) & (II) becomes as

$$V_1 \approx \frac{V}{2} (1+ \frac{T}{4RC}) \text{ & } V'_1 \approx \frac{V}{2} (1- \frac{T}{4RC})$$

The percentage tilt 'P' is defined by

$$P = \frac{V_1 - V'_1}{V_1/2} \times 100$$

$$P = \frac{V}{1 + e^{-T/2RC}} - \frac{V}{1 + e^{T/2RC}} \times 100$$

$$P = \left[\frac{1}{1 + e^{-T/2RC}} - \frac{1}{1 + e^{T/2RC}} \right] \times 200$$

$$P = \left[\frac{1}{1 + e^{-T/2RC}} - \frac{e^{-T/2RC}}{1 + e^{T/2RC}} \right] \times 200$$

$$P = \frac{1 - e^{-T/2RC}}{1 + e^{-T/2RC}} \times 200\%$$
High Pass RC circuit acts as differentiator:-

- The time constant of high pass RC circuit in very small in comparison within the time required for the input signal to make an appreciable change, the circuit is called a “differentiator”.

- Under this circumstances the voltage drop across R will be very small in comparison with the drop across C. Hence we may consider that the total input V_i appears across C, so that the current is determined entirely by the capacitance.

- Then the current is $i = C \frac{dV_i}{dt}$ and the output signal across R is

 $V_0 = iR$

 $V_0 = RC \frac{dV_i}{dt}$

- hence the output is proportional to the derivative of the input.
Low Pass RC Circuit

If \(f = \text{low} \), \(X_c \) becomes high
\(C \) act as open circuit, so we get the output.

If \(f = \text{high} \), \(X_c \) becomes low
\(C \) acts as short circuit, so \(V_o = 0 \).

As the lower frequency signals appear at the output, it is called as “Low pass RC circuit”.

\[
X_c = \frac{1}{2\pi f} \frac{1}{C}
\]
Sinusoidal input

\[V_o = \frac{1}{CS} i \]

\[V_o = \frac{V_{in} \times \frac{X_C}{j}}{R + \frac{X_C}{j}} \]

where \(X_C = \frac{1}{2\pi f C} \)

\[V_o = \frac{V_{in} \times \frac{1}{j \omega C}}{R + \frac{1}{j \omega C}} \]

\[V_0 = \frac{V_n}{j\omega RC + 1} = \frac{V_n}{1 + j2\pi f RC} \]
\[V_0 = \frac{V_{in}}{1 + j \frac{f}{f_2}} \] where \(f_2 = \frac{1}{2\pi RC} \)

\[A = \frac{V_O}{V_{in}} = \frac{1}{1 + j \frac{f}{f_2}} \]

\[|A| = \frac{1}{\sqrt{1 + \left(\frac{f}{f_2}\right)^2}} \] and \(\theta = -\tan^{-1}\left(\frac{f}{f_2}\right) \)

At the frequency \(f = f_2 \)

\[\left| \frac{V_O}{V_{in}} \right| = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} = 0.707 \]

\[|A| = 0.707 \]
At $f = f_2$ the gain is 0.707 or this level corresponds to a signal reduction of 3 decibels (dB).

$\therefore f_2$ or f_h is referred to as upper 3-dB frequency.
Square wave input

• Rise Time (t_r):

The time required for the voltage to rise from 10% to 90% of the final steady value is called “Rise Time”.

\[t_r = 2.2RC \]
The output voltage V_{01} & V_{02} is given by

$$
\Rightarrow V_0 = V_f + (V_i - V_f) \ e^{-\frac{t}{RC}}
$$

if we set

$$
V_{01} = V_2 \text{ at } t=T_1 \\
V_{02} = V_1 \text{ at } t= T_1+T_2
$$

and

$$
V_2 = V^1 + (V_1-V^1) \ e^{-\frac{T_1}{RC}}
$$

$$
V_1 = V^{11} + (V_2-V^{11}) \ e^{-\frac{T_2}{RC}}
$$

Since the average across R is zero then the d.c voltage at the output is same as that of the input. This average value is indicated as $V_{d.c.}$
Consider a symmetrical square wave with zero average value, so that
\[T_1 = T_2 = \frac{T}{2} \]

\[V^1 = -V^{11} = \frac{V}{2} \quad \& \quad V_1 = -V_2 \]

\[V_2 = \frac{V}{2} + \left(-V_2 - \frac{V}{2} \right) e^{-\frac{T}{2RC}} \]

\[V_2 = \left[1 + e^{-\frac{T}{2RC}} \right] = \frac{V}{2} \left[1 - e^{-\frac{T}{2RC}} \right] \]

\[V = \frac{V}{2} \left[\frac{1 - e^{-\frac{T}{2RC}}}{1 + e^{-\frac{T}{2RC}}} \right] \]

\[V_2 = \frac{V}{2} \left[\frac{e^{\frac{T}{2RC}} - 1}{e^{\frac{T}{2RC}} + 1} \right] \]

\[V_2 = \frac{V}{2} \cdot \frac{e^{2x} - 1}{e^{2x} + 1} \text{ where } x = \frac{T}{4RC} \]

\[V_2 = \frac{V}{2} \tan \ h x \]
Low pass RC circuit acts as an integrator

- The time constant is very large in comparison with the time required for the input signal to make an appreciable change, the circuit is called an “Integrator”.

- As RC >> T the voltage drop across C will be very small in comparison to the voltage drop across R and we may consider that the total input V_i appear and across R, then

$$V_i = iR$$

$$i = \frac{V_i}{R}$$

For low pass RC circuit the output voltage V_o is given by

$$V_o = \frac{1}{C} \int i \, dt$$

$$V_o = \frac{1}{C} \int \frac{V_i}{R} \, dt$$

$$V_o = \frac{1}{RC} \int V_i \, dt$$
Advantages of Integrator over differentiator

• Integrators are almost invariably preferred over differentiators in analog computer applications for the following reasons.

• The gain of the integrator decreases with frequency where as the gain of the differentiator increases linearly with frequency. It is easier to stabilize the former than the latter with respect to spurious oscillations.

• As a result of its limited band width an integrator is less sensitive to noise voltages than a differentiator.

• If the input wave form changes very rapidly, the amplifier of a differentiator may over load.

• It is more convenient to introduce initial conditions in an integrator.
RL Circuits

- **RL filter** or **RL network**, is an electric circuit composed of resistors and inductors driven by a voltage or current source.

\[X_L = \omega L \]
UNIT-2

NON-LINEAR WAVE SHAPING
Non-Linear Wave Shaping

Definition: The process where by the form of a signal is changed by transmission through a non-linear network is called Non-linear Wave Shaping.

Types:

i. Clippers.

ii. Clampers.
Clipper Classifications

According to biasing, the clippers may be classified as

- Unbiased clippers and
- Biased clippers.

According to configuration used the clippers may be

- Series diode clippers
- Parallel or shunt diode clippers
- A series combination of diode, resistor and reference supply
- Multi-diode clippers consisting of several diodes, resistors and reference voltages
- Two emitter-coupled transistors operating as an over-driven
Contd…

According to level of clipping the clippers may be

• Positive clippers
• Negative clippers
• Biased clippers and
• Combination clippers
Clipper

• Clipping circuits are used to remove the part of a signal that is above or below some defined reference level.
• Clippers also known as
 Voltage limiters
 Current limiters
 Amplitude selectors
 Slicers
Let's again consider piecewise linear diode model.

Reverse bias

Forward bias

Forward bias

Conducts \((V_T)\)

Reverse bias

Blocks \((I_S = 0)\)
Unbiased clippers (Parallel Positive Clippers)

- **Without** the battery, the output of the circuit below would be the negative portion of the input wave (assuming the bottom node is grounded). When $vi > 0$, the diode is on (short-circuited), vi is dropped across R and $vo=0$. When $vi < 0$, the diode is off (open-circuited), the voltage across R is zero and $vo=vi$.

![Input signal](image1)

![Circuit diagram](image2)

![Output graph](image3)
Unbiased clippers (Parallel Negative Clippers)

+ive cycle: - anode is at ground potential and cathode sees variable +ive voltage from 0 to +Vm So complete cycle, the diode is reverse biased and Vo =Vin. At positive peak Vo = +5V

-ive cycle: - anode is at ground potential and cathode sees variable -ive vols from 0 to –Vm. When magnitude of input volatge i.e /Vin/ >Vd, the diode become forward biased and hence Vo = -Vd = 0.7V
Series positive clipper

+ive cycle :- anode is at ground potential and cathode sees variable +ive voltage from 0 to +Vm. For complete cycle, diode becomes reverse biased and hence Vo = 0V

-ive cycle :- anode is at ground potential and cathode sees variable -ive voltage from 0 to –Vm. So in complete cycle, the diode is forward biased and Vo = Vin + Vd. At negative peak, Vo = -5V
Series Negative clipper

+iive cycle :- anode is at positive potential from 0 to +Vm. For complete cycle, diode become forward biased and hence vo= 5v

-iive cycle :- Cathode is at ground potential and cathode sees variable -ive voltage from 0 to –Vm. So in complete cycle, the diode is Reverse biased and negative peak, Vo= 0
Let’s again consider piecewise linear diode model

Reverse bias

Forward bias

Forward bias

Conducts (V_T)

Reverse bias

Blocks ($I_s = 0$)
Positive Shunt clipping with zero reference voltage

Transfer characteristics equations:

\[V_o = 0 \text{ for } V_i > 0 \]
\[V_o = V_i \text{ for } V_i < 0 \] \{ Ideal \}

\[V_o = V_\gamma \text{ for } V_i > V_\gamma \] \(D \text{- ON} \)
\[V_o = V_i \text{ for } V_i < V_\gamma \] \(D \text{- OFF} \)
Positive Shunt clipping with positive reference voltage

Transfer characteristics equations:

\[V_i < V_R + V_\gamma \quad D \quad \text{OFF} \]

\[V_O = V_i \]

\[V_i > V_R + V_\gamma \quad D \quad \text{ON} \]

\[V_O = V_R + V_\gamma \]
Positive Shunt clipping with negative reference voltage

Transfer characteristics

equation:

\[V_i > V_\gamma - V_R \quad \text{D - ON} \quad V_O \]

\[= V_\gamma - V_R \]

\[V_i < V_\gamma - V_R \quad \text{D - OFF} \]

\[V_O = V_i \]
Negative Shunt clipping with zero reference voltage

Transfer characteristic equations:

\[V_i > -V \gamma D - \text{OFF} \quad V_O = V \gamma \]

\[V_i < -V \gamma D - \text{ON} \quad V_O = -V \gamma \]
Negative Shunt clipping with positive reference voltage

Transfer characteristics equations:

\[V_i < V_R - V_\gamma \quad D \quad \text{ON} \]
\[V_O = V_R - V_\gamma \]

\[V_i > V_R - V_\gamma \quad D \quad \text{OFF} \]
\[V_O = V_i \]
Negative Shunt clipping with negative reference voltage

Transfer characteristic equations:

\[V_i < -(V_\gamma + V_R) \] \hspace{1cm} D - ON \hspace{1cm} V_O = V_i

\[V_i < -(V_\gamma + V_R) \] \hspace{1cm} D - OFF \hspace{1cm} V_O = V_i
Negative Series clipper with zero reference

Transfer characteristic equations:

<table>
<thead>
<tr>
<th>V_i</th>
<th>D</th>
<th>V_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>> 0</td>
<td>ON</td>
<td>V_i</td>
</tr>
<tr>
<td>$< V_T$</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>$> V_T$</td>
<td>ON</td>
<td>$V_i - V_T$</td>
</tr>
</tbody>
</table>

Ideal Diode

Practical Diode

Output
CLIPPING AT TWO INDEPENDENT LEVELS

Transfer characteristic equations:

<table>
<thead>
<tr>
<th>Input (Vi)</th>
<th>Diode State</th>
<th>Output (Vo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_i \leq V_{R_1}$</td>
<td>D_1-ON, D_2-OFF</td>
<td>$V_O = V_{R_1}$</td>
</tr>
<tr>
<td>$V_{R_1} < V_i < V_{R_2}$</td>
<td>D_1-OFF, D_2-OFF</td>
<td>$V_O = V_i$</td>
</tr>
<tr>
<td>$V_i \geq V_{R_2}$</td>
<td>D_1-OFF, D_2-ON</td>
<td>$V_O = V_{R_2}$</td>
</tr>
</tbody>
</table>
Contd..

Transistor Clipper Waveforms For Sinusoidal Input
Transistor Clipper circuit

- The transistor has two types of linearities
 - One linearity happens when the transistor passes from cut-in region to the active region. The other linearity occurs when the transistor passes from the active region to the saturation region. When any input signal passes through the transistor, across the boundary between cut-in region and active region, or across the boundary between the active region and saturation region, a portion of the input signal will be clipped.

![Transistor Clipper Circuit Diagram](www.CircuitsToday.com)
CLAMPING CIRCUIT

• The need to establish the extremity of the positive (or) negative signal excursion at some reference level. When the signal is passed through a capacitive coupling network such a signal has lost its d.c. component. The clamping circuit introduces the d.c. components at the outside, for this reason the coupling circuits are referred to as d.c. restore (or) d.c. reinserter.

• Def: “A clamping circuit is one that takes an input waveform and provides an output i.e., a faithful replica of its shape, but has one edge clamped to the zero voltage reference point.

There are two types of clamping circuits.

• 1) Negative clamping circuit.
• 2) Positive clamping circuit.
The circuit for a positive clamper is shown in the figure. During the negative half cycle of the input signal, the diode conducts and acts like a short circuit. The output voltage $V_o \Rightarrow 0$ volts. The capacitor is charged to the peak value of input voltage V_m. and it behaves like a battery. During the positive half of the input signal, the diode does not conduct and acts as an open circuit. Hence the output voltage $V_o \Rightarrow V_m + V_m$ This gives a positively clamped voltage.

$$V_o \Rightarrow V_m + V_m = 2V_m$$
Positive Clamper - MMS

Positive Clamper

[Circuit diagram]

100nF
10kOhms

10 Volts
Negative Clamper

During the positive half cycle the diode conducts and acts like a short circuit. The capacitor charges to peak value of input voltage V_m. During this interval the output V_o which is taken across the short circuit will be zero. During the negative half cycle, the diode is open. The output voltage can be found by applying KVL.

\[-V_m - V_m - V_o = 0 \quad V_o = -2V_m\]
Biased Clamper

Biased Positive Clamper
CLAMPING CIRCUIT THEOREM

• Therefore the charge acquired by the capacitor during the forward interval

\[\frac{A_f}{A_r} = \frac{R_f}{R} \]

Consider a square wave input is applied to a clamping circuit under steady state condition.
If \(V_f(t) \) is the output waveform in the forward direction, then from below figure
the capacitor charging current is

\[i_f = \frac{V}{R_f} \]

Therefore the charge acquired by the capacitor during the forward interval

\[\int_{0}^{T_f} i_f dt = \frac{1}{R_f} \int_{0}^{T_f} V_f dt = \frac{A_f}{R_f} \]

............... (1)
• Similarly if \(V_f(t) \) is the output voltage in the reverse direction, then the current which discharges by the capacitor is

\[
\int_{T_1}^{T_2} i_r \, dt = \frac{1}{R} \int_{T_1}^{T_2} V_r \, dt = \frac{A_r}{R} \]

In the steady-state the net charge acquired by the capacitor must be zero. Therefore from equation (1) & (2) this equation says that for any input waveform the ratio of the area under the output voltage curve in the forward direction to the reverse direction is equal to the ratio \(\frac{A_f}{A_r} \).
Clamping Circuit taking Source and Diode Resistances into account
Practical Clamping circuit
Effect of diode characteristics on clamping voltage

\[dV_{cl} = \eta V_T \frac{dV}{V} \]
Synchronized Clamping
UNIT - 3

Steady State Switching Characteristics of Devices
Transistors as switches

- both FETs and bipolar transistors make good switches
- neither form produce ideal switches and their characteristics are slightly different
- both forms of device take a finite time to switch and this produces a slight delay in the operation of the gate
- this is termed the propagation delay of the circuit
Diode As a Switch

- The semiconductor Signal Diode is a small non-linear semiconductor devices generally used in electronic circuits, where small currents or high frequencies are involved such as in radio, television and digital logic circuits.
Diode As a Switch

Conventional Current Flow

Anode

Cathode

Silicon Diode and its V-I Characteristics
• Unlike the resistor, whose two terminal leads are equivalent, the behavior of the diode depend on the relative polarity of its terminals.
• Ideal Diode

Figure 2. I-V characteristic (a) and symbol (b) of the ideal diode.
Contd....

- Piecewise linear approximation model of the diode.
- Offset diode model (0.7 Volt model)
Contd....
Diode Switching times

- Reverse recovery time of the diode
- Forward recovery time of the diode
• As long as the voltage $V_i = V_F$ till t_1, the diode is ON. The forward resistance of the diode being negligible when compared to R_L, therefore $I_f = V_f/R$. At $t = t_1$, the polarity of V_i is abruptly reversed, i.e. $V_i = -V_R$ and $I_r = -V_r/R$ until $t = t_2$ at which time minority carrier density p_n at $x = 0$ has reached the equilibrium value p_n0.

• At $t = t_2$ the charge carriers have been swept, the polarity of the diode voltage reverses, the diode current starts to decrease. The time duration, t_1 to t_2, during which period the stored minority charge becomes zero is called the storage time t_s. The time interval from t_2 to the instant that the diode has recovered ($V = -V_R$) is called the transition time, t_t. The sum total of the storage time, t_s and the transition time, t_t is called the reverse recovery time of the diode, t_{rr}.

• $t_{rr} = t_s + t_t$
The BJT as a Switch

- Transistor as a Switch works in two regions
- Cut off
- Saturation
The bipolar transistor as a logical switch

(a) Circuit

(b) Waveforms
Transistor Switching Times

- Delay time (td)
- Rise time (tr)
- Storage time (ts)
- Fall time (tf)
Contd..

- **Delay Time, \(td\)**: It is the time taken for the collector current to reach from its initial value to 10% of its final value. If the rise of the collector current is linear, the time required to rise to 10%IC(sat) is 1/8 the time required for the current to rise from 10% to 90% IC(sat). where \(tr\) is the rise time.

- **Rise Time, \(tr\)**: It is the time taken for the collector current to reach from 10% of its final value to 90% of its final value. However, because of the stored charges, the current remains unaltered for sometime interval \(ts1\) and then begins to fall. The time taken for this current to fall from its initial value at \(ts1\) to 90% of its initial value is \(ts2\). The sum of these \(ts1\) and \(ts2\) is approximately \(ts1\) and is called the storage time.

- **Storage time, \(ts\)**: It is the time taken for the collector current to fall from its initial value to 90% of its initial value.

- **Fall time, \(tf\)**: It is the time taken for the collector current to fall from 90% of its initial value to 10% of its initial value.

- \(Ton = td + tr\)
- \(Toff = ts + tf\)
Breakdown mechanisms in BJTs

• The breakdown voltage of a BJT also depends on the chosen circuit configuration:

• In a common base mode (i.e. operation where the base is grounded and forms the common electrode between the emitter-base input and collector-base output of the device) the breakdown resembles that of a p-n diode.

• In a common emitter mode (i.e. operation where the emitter is grounded and forms the common electrode between the base-emitter input and the collector-emitter output of the device) the transistor action further influences the $I-V$ characteristics and breakdown voltage.

• Avalanche breakdown of the base-collector junction is further influenced by transistor action in common-emitter mode of operation, since the holes generated by impact ionization are pulled back into the base region which results in an additional base current. This additional base current causes an even larger additional flow of electrons through the base and into the collector due to the current gain of the BJT. This larger flow of electrons in the base collector junction causes an even larger generation of electron-hole pairs.
SCR

- A **Silicon Controlled Rectifier** (or **Semiconductor Controlled Rectifier**) is a four layer solid state device that controls current flow.
- The name “silicon controlled rectifier” is a trade name for the type of **thyristor** commercialized at General Electric in 1957.
Sampling Gates

- Sampling Gates are also called as Transmission gates, linear gates and selection circuits, in which the output is exact reproduction of the input during a selected time interval and zero otherwise.
- It has two inputs – gating signal, rectangular wave
- Two types
 - Unidirectional
 - Bidirectional
Principle of operation of a linear gate:

- Principle of operation of a linear gate: Linear gates can use (a) a series switch or (b) a shunt switch.

![Diagram of linear gates](image)

Fig. Linear gates

In (a) the switch closes for transmitting the signal whereas in (b) the switch is open for transmission to take place.
Unidirectional Gate

- Unidirectional sampling gates are those which transmit signals of only one polarity (i.e., either positive or negative).
- The gating signal is also known as control pulse, selector pulse or an enabling pulse. It is a negative signal, the magnitude of which changes abruptly between $-V_2$ and $-V_1$.
Unidirectional gate

- Consider the instant at which the gate signal is $-V_1$ which is a reasonably large negative voltage. Even if an input pulse is present at this time instant, the diode remains OFF as the input pulse amplitude may not be sufficiently large so as to forward bias it. Hence there is no output. Now consider the duration when the gate signal has a value $-V_2$ and when the input is also present (coincidence occurs).
Output waveform

- When the control signal shifted to upward
pedestal

- When the control signal is shifted to positive value, so it will be superimposed on input and control signals. So the pedestal occurs.
Unidirectional diode coincidence gate

- When any of the control voltages is at \(-V_1\), point \(X\) is at a large negative voltage, even if the input pulse \(V_s\) is present, \(D_0\) is reverse biased. Hence there is no signal at the output.

- When all the control voltages, on the other hand, are at \(-V_2\), if an input signal \(V_s\) is present, \(D_0\) is forward biased and the output is a pulse of 5V. Hence this circuit is a coincidence circuit or AND circuit.
Bidirectional Sampling gate

- Bidirectional sampling gates are those which transmit signals of both the polarities.
Bidirectional Sampling gate using Transistor

- Bidirectional sampling gates are those which transmit signals of both the polarities.
Circuit that minimizes the pedestal

- Circuit that minimizes the pedestal
• The control signal applied to the base of Q2 is of opposite polarity to that applied to the base of Q1. When the gating signal connected to Q1 is negative, Q1 is OFF and at the same time the gating signal connected to Q2 drives Q2 ON and draws current IC. As a result there is a dc voltage Vdc at the collector. But when the gate voltage at the base of Q1 drives Q1 ON, Q2 goes OFF. But during this gate period if the input signal is present, it is amplified and is available at the output, with phase inversion. But the dc reference level practically is Vdc. As such the pedestal is either eliminated or minimized.
Two Diode Sampling gate

- When the control signals are at V1, D1 and D2 are OFF, no input signal is transmitted to the output. But when control signals are at V2, diode D1 conducts if the input is positive pulses and diode D2 conducts if the input is negative pulses. Hence these bidirectional inputs are transmitted to the output. This arrangement eliminates pedestal, because of the circuit symmetry.
Four Diode Sampling gate

- When the control signals are at V1, D1 and D2 are OFF, no input signal is transmitted to the output. But when control signals are at V2, diode D1 conducts if the input is positive pulses and diode D2 conducts if the input is negative pulses. Hence these bidirectional inputs are transmitted to the output. This arrangement eliminates pedestal, because of the circuit symmetry.
Applications

- Chopper Amplifier
- Multiplexers
- ADC
- Sampling Scope
- Sample and hold circuits
Chopper Amplifier

- Sometimes it becomes necessary to amplify a signal v that has very small dv/dt and that the amplitude of the signal itself is very small, typically of the order of millivolts. Neither, ac amplifiers using large coupling condensers nor dc amplifiers with the associated drift would be useful for such an application. A chopper stabilized amplifier employing sampling gates can be a useful choice in such an applications.
UNIT -4

MULTIVIBRATORS

and

TIME BASE GENERATORS
Multivibrators

- **Multivibrator** – A circuit designed to have zero, one, or two stable output states.
- There are three types of multivibrators.
 - **Astable** (or Free-Running Multivibrator)
 - **Monostable** (or One-Shot)
 - **Bistable** (or Flip-Flop)
Bistable Multivibrators

- **Bistable multivibrator** – A switching circuit with two stable output states. The bistable multivibrator has two absolutely stable states
 - Also referred to as a flip-flop.
 - The output changes state when it receives a valid input trigger signal, and remains in that state until another valid trigger signal is received.

![Bistable Multivibrator Diagram](image-url)
Bistable Multivibrator Waveform
Monostable Multivibrator

- Multivibrators have two different electrical states, an output “HIGH” state and an output “LOW” state giving them either a stable or quasi-stable state depending upon the type of multivibrator. One such type of a two state pulse generator configuration are called Monostable Multivibrators.

- **Monostable Multivibrators** have only ONE stable state (hence their name: “Mono”), and produce a single output pulse when it is triggered externally. Monostable Multivibrators only return back to their first original and stable state after a period of time determined by the time constant of the RC coupled circuit.
Waveforms
Astable Multivibrator

Diagram showing the circuit and waveforms of an astable multivibrator.
Waveforms
Commutating Capacitors

- Conduction transfers takes two phases
 - 1) Transition time
 - 2) Settling time

\[
f_{\text{max}} = \frac{1}{2C_1(R_1 \parallel R_2)} = \frac{(R_1 + R_2)}{2C_1R_1R_2}
\]
Triggering the binary

- Two types of triggering
 1) Symmetrical 2) Unsymmetrical

- In unsymmetrical triggering, two triggers are required. One to set the circuit in particular stable state and other is to reset

- In Symmetrical triggering, uses only one trigger pulse input to the any of the one transistor
Triggering the binary

- Unsymmetrical
symmetrical
Schmitt Triggers

- **Schmitt trigger** – A voltage-level detector.
- The output of a Schmitt trigger changes state when
 - When a positive-going input passes the upper trigger point (UTP) voltage.
 - When a negative-going input passes the lower trigger point (LTP) voltage.

Note: The symbol shown in the block is commonly used to represent Schmitt trigger circuits.
Trigger Point Voltages

- Trigger point voltages may be equal or unequal in magnitude, and are opposite in polarity.
Hysteresis

- **Hysteresis** – A term that is often used to describe the range of voltages between the UTP and LTP of a Schmitt trigger.
Schmitt trigger using transistor
Astable multivibrator to generate a square wave of 1 kHz:

\[h_{fe} = 25 \]

- Assume NPN transistor with
- Let \(I_c = 5 \text{mA} \)
 \(V_{cc} = 12 \text{V} \)
 \(T_1 = T_2 = T/2 \)

- Assume symmetrical square wave i.e.
- Neglect the junction voltages.
- We have \(f = 1 \text{ kHz} \)
- So, \(T = 1/1 \text{kHz} = 1 \text{ms} \)
\[\frac{Q_2}{Q_1} \]

- Let \(Q_1 \) ON and \(Q_2 \) OFF. Then

\[R_{c2} = \frac{(12-0)/\Omega_5}{R_{c1}} \]

\[i_{B2(\text{min})} = \frac{2.4k}{h_{fe}} \]

\[= 5/25 \]

\[= 0.2\text{mA} \]
Q_2

- When $i_{B2} = 1.5 x i_{B2} (\text{min})$

\[= 1.5 \times 0.2 \]
\[= 0.3 \text{mA} \]
Applications

- Oscillator
- Timer
- Voltage-to-frequency converter
- Voltage controlled oscillator
- Clock source
- Square wave generator
General features of time base generator
Time base generator
Constant current charging
- A capacitor is charged with constant current source.
- As it charged with constant current, it is charged linearly.

Miller circuit:
- Integrator is used to convert a step waveform to ramp waveform.

Bootstrap circuits
- A constant current source is obtained by maintaining nearly constant voltage across the fixed resistor in series with capacitor.

Compensating network is used to improve the linearity of bootstrap and miller time base generator
Exponential sweep circuit
Transistor miller time base generator
Input and output waveforms

\[T_s \leq T_\phi \]
Transistor bootstrap time base generator
Input and output waveforms
Comparison of Miller and Bootstrap time base generator

Bootstrap sweep circuit

1) The circuit employs positive feedback.
2) The circuit generates positive going ramp.
3) The circuit employs an emitter follower whose gain is nearly unity.
4) The amplifiers must have high input resistance.

Miller sweep circuit

1) The circuit employs negative feedback.
2) The circuit generates negative going ramp.
3) The circuit requires an amplifier whose gain is very very large (ideally infinite).
4) Amplifier with high input resistance is not very essential.
UNIT-5

SYNCHRONIZATION AND FREQUENCY DIVISION &

LOGIC GATES
PULDE SYNCHRONIZATION OF RELAXATION DEVICES
SHOWS THE SITUATION WHEN SYNCHRONIZATION PULSES ARE APPLIED

(a) $T_p < T_0$: Synchronization results
SHOWS THE CASE WHEN TP > TO
FREQUENCY DIVISION
ASTABLE RELAXATION CIRCUIT
WAVEFORMS WHEN POSITIVE PULSES ARE APPLIED TO B1
MONOSTABLE RELAXATION CIRCUIT
WAVEFORM AT B2 WITH NO PULSE OVERSHOOT AND WITH PULSE OVERSHOOT
METHOD FOR ACHIEVING DIVISION WITH PHASE JITTER
WAVEFORMS WITHOUT PHASE JITTER

Diagram showing different waveforms with annotations and numbering.
SYNCHRONIZATION WITH SINE WAVE

\[V_P = \text{Breakdown Voltage in presence of Sync Signal} \]

\[V_{PD} = \text{Quiescent Breakdown Voltage} \]

\[V_V = \text{Valley (or) maintaining Voltage} \]

\[T = T_0 \]
FREQUENCY DIVISION WITH SYNC SIGNAL
REALIZATION OF LOGIC GATES USING DIODES AND TRANSISTORS

- OR GATE
- OR GATE PERFORMS LOGICAL ADDITION.
- THE OR OPERATOR IS INDICATED BY A PLUS (+) SIGN.
OR GATE USING DIODES

OPERATION:

 ASSUME THE INPUT VOLTAGES ARE EITHER 0V (LOW) OR 5V (HIGH).

BOTH A AND B ARE LOW:

 THE DIODES ARE OFF AND WE CAN REPLACE THE
Contd.

A IS LOW AND B IS HIGH:
- When A is low the corresponding diode will be off and, B is high so the diode corresponds to the input B will be on.
- Now we can replace the on diode by the short circuit equivalent and the output C = 5V.

B IS LOW AND A IS HIGH:
- When B is low the corresponding diode will be off and, A is high so the diode corresponds to the input A will be on.
- Now we can replace the on diode by the short circuit equivalent and the output C = 5V.

BOTH A AND B ARE HIGH:
- When both the inputs are high both the diodes will be on and the output C = 5V.
AND Gate

- THE AND GATE PERFORMS LOGICAL MULTIPLICATION.
- THE AND OPERATOR IS INDICATED BY USING A DOT (.) SIGN OR BY NOT SHOWING ANY OPERATOR SYMBOL AT ALL.
AND GATE USING DIODES

- Assume the input voltages are either 0V (LOW) or 5V (HIGH).

Both A and B are Low:
- When both A and B are low both the diodes are on and we can replace the diodes by short circuit equivalent.
- Hence point X is connected to ground and output \(C = 0V \).

A is low and B is high:
- When A is low the corresponding diode will be on and, B is high so the diode corresponds to the input B will be off.

- Now we can replace the on diode by the short circuit equivalent; hence point X is connected to ground and the output \(C = 0V \).
Contd.

B IS LOW AND A IS HIGH:

- WHEN B IS LOW THE CORRESPONDING DIODE WILL BE ON AND, A IS HIGH SO THE DIODE CORRESPONDS TO THE INPUT A WILL BE OFF.

- NOW WE CAN REPLACE THE ON DIODE BY THE SHORT CIRCUIT EQUIVALENT; HENCE POINT X IS CONNECTED TO GROUND AND THE OUTPUT C = 0V.

BOTH A AND B ARE HIGH:

- BOTH THE DIODES WILL BE OFF AND THE OUTPUT C = 5V.
• THE OUTPUT OF A NOT GATE IS THE COMPLEMENT OF THE INPUT.

• THE BUBBLE REPRESENTS INVERSION OR COMPLEMENT.
REALIZATION OF NOT GATE USING TRANSISTOR

A IS HIGH:

- When +5v is applied to a, the transistor will be fully on.
- So maximum collector current will flow and vcc =icr, making vc or voltage at point b as zero. [Recall ce loop kvl: vc=vcc-icr].

A IS LOW:

When 0v is applied to a, the transistor will be cut-off.
So ic=0ma and vc or voltage at point b is equal to vcc.
TTL (Transistor Transistor Logic) Integrated-circuit technology that uses the bipolar transistor as the principal circuit element.

CMOS (Complimentary Metal Oxide Semiconductor) Integrated-circuit technology that uses the field-effect transistor as the principal circuit element.

ECL (Emitter Coupled Logic) Integrated-circuit technology that uses the bipolar transistors configured as a differential amplifier. This eliminates saturation and improves speed but uses more power than other families.
OTHER DIGITAL IC SPECIFICATIONS

• Drive Capabilities- sometimes referred to as fan-in or fan-out.

• Fan out- number of inputs of a logic family that can be driven by a single output. The drive capability of outputs.

• Fan in- the load an input places on an output.

• Propagation delay- has to do with the “speed” of the logic element. Lower propagation delays mean higher speed which is a desirable characteristic.

• Power Dissipation- generally, as propagation delays decrease, power consumption and heat generation increase. CMOS is noted for low power consumption.
Logic families: fanout

Fanout: the maximum number of logic inputs (of the same logic family) that an output can drive reliably

$$\text{DC fanout} = \min\left(\frac{I_{OH}}{I_{IH}}, \frac{I_{OL}}{I_{IL}} \right)$$
Logic families: propagation delay

$T_{PD,HL}$ – input-to-output propagation delay from HI to LO output
$T_{PD,LH}$ – input-to-output propagation delay from LO to HI output

Speed-power product: $T_{PD} \times P_{\text{avg}}$
Logic families: noise margin

HI state noise margin:
$$V_{NH} = V_{OH}(\text{min}) - V_{IH}(\text{min})$$

LO state noise margin:
$$V_{NL} = V_{IL}(\text{max}) - V_{OL}(\text{max})$$

Noise margin:
$$V_N = \min(V_{NH}, V_{NL})$$
TOTEM POLE NAND GATE

- First introduced by in 1964 (Texas Instruments)
- TTL has shaped digital technology in many ways
- Standard TTL family (e.g. 7400) is obsolete
- Newer TTL families still used (e.g. 74ALS00)
Open collector gate

- An open collector is a common type of output found on many integrated circuits (IC).

- Instead of outputting a signal of a specific voltage or current, the output signal is applied to the base of an internal NPN transistor whose collector is externalized (open) on a pin of the IC. The emitter of the transistor is connected internally to the ground pin. If the output device is a MOSFET the output is called open drain and it functions in a similar way.

![Circuit diagram of open-collector inverter.](image)

Figure 9.2 Circuit diagram of open-collector inverter.
Tristate TTL

- Tristate means a state of logic other than ‘1’ and ‘0’ in which there is a high impedance state and there is no isource or isink at the output stage transistor (or MOSFET). A gate capable of being in ‘1’ ‘0’ and tristate is know
Direct-coupled transistor logic (DCTL)

- **Direct-coupled transistor logic (DCTL)** is similar to *resistor–transistor logic* (RTL) but the input *transistor* bases are connected directly to the collector outputs without any base *resistors*. Consequently, DCTL *gates* have fewer components, are more economical, and are simpler to fabricate onto *integrated circuits* than RTL gates. Unfortunately, DCTL has much smaller signal levels, has more susceptibility to ground noise, and requires matched transistor characteristics. The transistors are also heavily overdriven; that is a good feature in that it reduces the saturation voltage of the output transistors, but it also slows the circuit down due to a high stored charge in the base.[1] Gate *fan-out* is limited due to "current hogging": if the transistor base-emitter voltages (V_{BE}) are not well matched, then the base-emitter junction of one transistor may conduct most of the input drive current at such a low base-emitter voltage that other input transistors fail to turn on.
ECL

Emitter-Coupled Logic (ECL)

• **PROS**: Fastest logic family available (~1ns)
• **CONS**: low noise margin and high power dissipation
• Operated in emitter coupled geometry (recall differential amplifier or emitter-follower), transistors are biased and operate near their Q-point (never near saturation!)
• Logic levels. “0”: –1.7V. “1”: –0.8V
• Such strange logic levels require extra effort when interfacing to TTL/CMOS logic families.
• **Open LTspice example: ECL inverter**…
Figure 8-30 (a) ECL NOR/OR circuit; (b) logic symbol.
LOGIC FAMILIES AND INTRODUCTION

• WE HAVE SEEN THAT DIFFERENT DEVICES USE DIFFERENT VOLTAGES RANGES FOR THEIR LOGIC LEVELS.

• THEY ALSO DIFFER IN OTHER CHARACTERISTICS

• IN ORDER TO ASSURE CORRECT OPERATION WHEN GATES ARE INTERCONNECTED THEY ARE NORMALLY PRODUCED IN LOGIC FAMILIES

• THE MOSTLY WIDELY USED FAMILIES ARE
 – COMPLEMENTARY METAL OXIDE (CMOS)
 – TRANSISTOR-TRANSISTOR LOGIC (TTL)
 – EMITTER COUPLED LOGIC (ECL)
Comparison of Logic Families

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CMOS</th>
<th>TTL</th>
<th>ECL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic gate</td>
<td>NAND/NOR</td>
<td>NAND</td>
<td>OR/NOR</td>
</tr>
<tr>
<td>Fan-out</td>
<td>>50</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Power per gate (mW)</td>
<td>1 @ 1 MHz</td>
<td>1 - 22</td>
<td>4 - 55</td>
</tr>
<tr>
<td>Noise immunity</td>
<td>Excellent</td>
<td>Very good</td>
<td>Good</td>
</tr>
<tr>
<td>t_{PD} (ns)</td>
<td>1 - 200</td>
<td>1.5 – 33</td>
<td>1 - 4</td>
</tr>
</tbody>
</table>