

PRINCIPLES OF PROGRAMMING LANGUAGES

III B. Tech I semester (JNTUH-R15)

Ms. K. Radhika

Associate Professor

 Ms. B. Jaya Vijaya

 Assistant Professor

Mr. P. Sunil Kumar

Assistant Professor

UNIT-1

Preliminaries

Syntax and Semantics

1

CONCEPTS

 Reasons for Studying Concepts of Programming
Languages.

 Programming Domains
 Language Evaluation Criteria
 Influences on Language Design
 Language Categories
 Language Design Trade-Offs
 Implementation Methods
 Programming Environments

Unit-1(PRINCIPLES OF

1-2
PROGRAMMING LANGUAGES)

CONCEPTS

 Introduction to syntax and semantics
 The General Problem of Describing Syntax
 Formal Methods of Describing Syntax
 Attribute Grammars

 Describing the Meanings of

Programs: Dynamic Semantics

Unit-1(PRINCIPLES OF

1-3
PROGRAMMING LANGUAGES)

❖Reasons for Studying Concepts
of Programming Languages

 Increased ability to express ideas.
 Improved background for choosing appropriate languages.
 Increased ability to learn new languages.
 Better understanding of significance of implementation.
 Better use of languages that are already known.
 Overall advancement of computing.

Unit-1(PRINCIPLES OF

1-4
PROGRAMMING LANGUAGES)

❖Programming Domains

 Scientific Applications
– Large numbers of floating point computations; use of

arrays.
– Example:Fortran.

 Business Applications
– Produce reports, use decimal numbers and characters.
– Example:COBOL.

 Artificial intelligence
– Symbols rather than numbers manipulated; use of linked

lists.
– Example:LISP.

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)
1-5

❖Programming Domains

 System programming
 Need effieciency because of continous use.
 Example:C

 Web Software

-Eclectic collection of languages:
markup(example:XHTML),scripting(example:PHP),
general-purpose(example:JAVA).

6

❖Language Evaluation Criteria

 Readability:
 The ease with which programs can be read

and understood.

 Writability:

 The ease with which a language can be used to

create programs.

 Reliability:

 Conformance to specifications (i.e., performs to

its specifications).

 Cost:
➢ The ultimate total cost.

Unit-1(PRINCIPLES OF 1-7
PROGRAMMING LANGUAGES)

❖Evaluation Criteria: Readability

 Overall simplicity
 A manageable set of features and constructs.
 Minimal feature multiplicity .
 Minimal operator overloading.

 Orthogonality
 A relatively small set of primitive constructs can

be combined in a relatively small number of ways
 Every possible combination is legal

 Data types
 Adequate predefined data types.

Unit-1(PRINCIPLES OF
PROGRAMMING LANGUAGES)

❖Evaluation Criteria:Readability

 Syntax considerations

-Identifier forms:flexible composition. -
Special words and methods of forming

compound statements.

-Form and meaning:self-descriptive
constructs,meaningful keywords.

9

❖Evaluation Criteria: Writability

 Simplicity and orthogonality
– Few constructs, a small number of primitives, a small

set of rules for combining them.
 Support for abstraction

-The ability to define and use complex structures or
operations in ways that allow details to be ignored.

 Expressivity

– A set of relatively convenient ways of specifying
operations.

– Strength and number of operators and predefined
functions.

Unit-1(PRINCIPLES OF

1-10
PROGRAMMING LANGUAGES)

❖Evaluation Criteria: Reliability

Type checking
– Testing for type errors.

Exception handling
– Intercept run-time errors and take corrective measures.

Aliasing
– Presence of two or more distinct referencing methods for

the same memory location.
Readability and writability

– A language that does not support “natural” ways of
expressing an algorithm will require the use of
“unnatural” approaches, and hence reduced reliability.

Unit-1(PRINCIPLES OF

1-11
PROGRAMMING LANGUAGES)

❖Evaluation Criteria: Cost

 Training programmers to use the language

 Writing programs (closeness to

particular applications)
 Compiling programs
 Executing programs

 Language implementation system:

availability of free compilers
 Reliability: poor reliability leads to high costs
 Maintaining programs

Unit-1(PRINCIPLES OF

1-12
PROGRAMMING LANGUAGES)

Evaluation Criteria: Others

 Portability

– The ease with which programs can be moved

from one implementation to another.
 Generality

– The applicability to a wide range
of applications.

 Well-definedness

– The completeness and precision of
the language’s official definition.

Unit-1(PRINCIPLES OF

1-13
PROGRAMMING LANGUAGES)

❖Influences on Language Design

 Computer Architecture
– Languages are developed around the

prevalent computer architecture, known as
the von Neumann architecture

 Programming Methodologies
– New software development methodologies

(e.g., object-oriented software development)
led to new programming paradigms and by
extension, new programming languages

Unit-1(PRINCIPLES OF

1-14
PROGRAMMING LANGUAGES)

❖Computer Architecture Influence

 Well-known computer architecture: Von Neumann

 Imperative languages, most dominant, because of

von Neumann computers
– Data and programs stored in memory
– Memory is separate from CPU
– Instructions and data are piped from memory to CPU
– Basis for imperative languages

 Variables model memory cells

 Assignment statements model piping

 Iteration is efficient

Unit-1(PRINCIPLES OF

1-15
PROGRAMMING LANGUAGES)

❖The Von Neumann Architecture

Unit-1(PRINCIPLES OF

1-16
PROGRAMMING LANGUAGES)

❖The Von Neumann Architecture

 Fetch-execute-cycle (on a von
Neumann architecture computer)

initialize the program

counter repeat forever

fetch the instruction pointed by the

counter increment the counter

decode the instruction

execute the instruction

end repeat

Unit-1(PRINCIPLES OF

1-17
PROGRAMMING LANGUAGES)

❖Programming Methodologies
Influences

 1950s and early 1960s: Simple applications; worry
about machine efficiency

 Late 1960s: People efficiency became important;

readability, better control structures
– structured programming
– top-down design and step-wise refinement

 Late 1970s: Process-oriented to data-oriented
– data abstraction

 Middle 1980s: Object-oriented programming
– Data abstraction + inheritance + polymorphism

Unit-1(PRINCIPLES OF

1-18
PROGRAMMING LANGUAGES)

❖Language Categories

 Imperative
– Central features are variables, assignment statements, and iteration
– Include languages that support object-oriented programming
– Include scripting languages
– Include the visual languages
– Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

 Functional
– Main means of making computations is by applying functions to given

parameters
– Examples: LISP, Scheme

 Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

 Markup/programming hybrid
– Markup languages extended to support some programming
– Examples: JSTL, XSLT

Unit-1(PRINCIPLES OF

1-19
PROGRAMMING LANGUAGES)

❖Language Design Trade-Offs

 Reliability vs. cost of execution
– Example: Java demands all references to array elements be checked

for proper indexing, which leads to increased execution costs
 Readability vs. writability

Example: APL provides many powerful operators (and a large number
of new symbols), allowing complex computations to be written in a

compact program but at the cost of poor readability

 Writability (flexibility) vs. reliability
– Example: C++ pointers are powerful and very flexible but are

unreliable

Unit-1(PRINCIPLES OF

1-20
PROGRAMMING LANGUAGES)

❖Implementation Methods

 Compilation
– Programs are translated into machine language

 Pure Interpretation

– Programs are interpreted by another program known as an interpreter

 Hybrid Implementation Systems

– A compromise between compilers and pure interpreters

Unit-1(PRINCIPLES OF

1-21
PROGRAMMING LANGUAGES)

❖Layered View of Computer

The operating system

and language

implementation are

layered over machine

interface of a computer

Unit-1(PRINCIPLES OF

1-22
PROGRAMMING LANGUAGES)

Compilation

 Translate high-level program (source language) into
machine code (machine language)

 Slow translation, fast execution
 Compilation process has several phases:

– lexical analysis: converts characters in the source program into lexical
units

– syntax analysis: transforms lexical units into parse trees which
represent the syntactic structure of program

– Semantics analysis: generate intermediate code
– code generation: machine code is generated

Unit-1(PRINCIPLES OF

1-23
PROGRAMMING LANGUAGES)

The Compilation Process

Unit-1(PRINCIPLES OF

1-24
PROGRAMMING LANGUAGES)

Additional Compilation Terminologies

 Load module (executable image): the user
and system code together

 Linking and loading: the process of

collecting system program units and linking
them to a user program

Unit-1(PRINCIPLES OF

1-25
PROGRAMMING LANGUAGES)

Von Neumann Bottleneck

 Connection speed between a computer’s
memory and its processor determines the
speed of a computer

 Program instructions often can be executed

much faster than the speed of the connection;
the connection speed thus results in a bottleneck

 Known as the von Neumann bottleneck; it is the

primary limiting factor in the speed of computers

Unit-1(PRINCIPLES OF

1-26
PROGRAMMING LANGUAGES)

Pure Interpretation

 No translation

 Easier implementation of programs (run-time errors

can easily and immediately be displayed)

 Slower execution (10 to 100 times slower than

compiled programs)
 Often requires more space
 Now rare for traditional high-level languages

 Significant comeback with some Web scripting

languages (e.g., JavaScript, PHP)

Unit-1(PRINCIPLES OF

1-27
PROGRAMMING LANGUAGES)

Pure Interpretation Process

Unit-1(PRINCIPLES OF

1-28
PROGRAMMING LANGUAGES)

Hybrid Implementation Systems

 A compromise between compilers and
pure interpreters

 A high-level language program is translated to
an intermediate language that allows easy
interpretation

 Faster than pure interpretation

 Examples
– Perl programs are partially compiled to detect errors before

interpretation
– Initial implementations of Java were hybrid; the intermediate form, byte

code, provides portability to any machine that has a byte code interpreter
and a run-time system (together, these are called Java Virtual Machine)

Unit-1(PRINCIPLES OF

1-29
PROGRAMMING LANGUAGES)

Hybrid Implementation Process

Unit-1(PRINCIPLES OF

1-30
PROGRAMMING LANGUAGES)

Just-in-Time Implementation Systems

 Initially translate programs to an intermediate language

 Then compile the intermediate language of the

subprograms into machine code when they are called
 Machine code version is kept for subsequent calls
 JIT systems are widely used for Java programs
 .NET languages are implemented with a JIT system

Unit-1(PRINCIPLES OF

1-31
PROGRAMMING LANGUAGES)

Preprocessors

 Preprocessor macros (instructions) are
commonly used to specify that code from
another file is to be included

 A preprocessor processes a program
immediately before the program is compiled
to expand embedded preprocessor macros

 A well-known example: C preprocessor
– expands #include, #define, and

similar macros

Unit-1(PRINCIPLES OF

1-32
PROGRAMMING LANGUAGES)

Programming Environments

 A collection of tools used in software development
 UNIX

– An older operating system and tool collection
– Nowadays often used through a GUI (e.g., CDE, KDE, or GNOME) that

runs on top of UNIX
 Microsoft Visual Studio.NET

– A large, complex visual environment
 Used to build Web applications and non-Web applications in any .NET

language

 NetBeans
– Related to Visual Studio .NET, except for Web applications in Java

Unit-1(PRINCIPLES OF

1-33
PROGRAMMING LANGUAGES)

 Zuse’s Plankalkül
 Minimal Hardware Programming: Pseudocodes
 The IBM 704 and Fortran
 Functional Programming: LISP
 The First Step Toward Sophistication: ALGOL 60
 Computerizing Business Records: COBOL
 The Beginnings of Timesharing: BASIC

Unit-1(PRINCIPLES OF

1-34
PROGRAMMING LANGUAGES)

 Everything for Everybody: PL/I
 Two Early Dynamic Languages: APL and SNOBOL
 The Beginnings of Data Abstraction: SIMULA 67
 Orthogonal Design: ALGOL 68
 Some Early Descendants of the ALGOLs
 Programming Based on Logic: Prolog
 History's Largest Design Effort: Ada

Unit-1(PRINCIPLES OF

1-35
PROGRAMMING LANGUAGES)

 Object-Oriented Programming: Smalltalk
 Combining Imperative ad Object-

Oriented Features: C++
 An Imperative-Based Object-

Oriented Language: Java
 Scripting Languages
 A C-Based Language for the New

Millennium: C#
 Markup/Programming Hybrid Languages

Unit-1(PRINCIPLES OF

1-36
PROGRAMMING LANGUAGES)

Genealogy of Common Languages

Unit-1(PRINCIPLES OF

1-37
PROGRAMMING LANGUAGES)

Zuse’s Plankalkül

 Designed in 1945, but not published until
1972

 Never implemented
 Advanced data structures

– floating point, arrays, records
 Invariants

Unit-1(PRINCIPLES OF

1-38
PROGRAMMING LANGUAGES)

Plankalkül Syntax

 An assignment statement to assign
the expression A[4] + 1 to A[5]

| A + 1 => A

V | 4 5 (subscripts)

S | 1.n 1.n (data types)

Unit-1(PRINCIPLES OF

1-39
PROGRAMMING LANGUAGES)

Minimal Hardware Programming: Pseudocodes

 What was wrong with using machine code?
– Poor readability
– Poor modifiability
– Expression coding was tedious
– Machine deficiencies--no indexing or

floating point

Unit-1(PRINCIPLES OF

1-40
PROGRAMMING LANGUAGES)

Pseudocodes: Short Code

 Short Code developed by Mauchly in 1949 for
BINAC computers
– Expressions were coded, left to right
– Example of operations:

01 – 06 abs value 1n (n+2)nd power

02) 07 + 2n (n+2)nd root

03 = 08 pause 4n if <= n

04 / 09 (58 print and tab

Unit-1(PRINCIPLES OF

1-41
PROGRAMMING LANGUAGES)

Pseudocodes: Speedcoding

 Speedcoding developed by Backus in 1954 for
IBM 701

– Pseudo ops for arithmetic and math functions
– Conditional and unconditional branching
– Auto-increment registers for array access
– Slow!
– Only 700 words left for user program

Unit-1(PRINCIPLES OF

1-42
PROGRAMMING LANGUAGES)

Pseudocodes: Related Systems

 The UNIVAC Compiling System
– Developed by a team led by Grace Hopper
– Pseudocode expanded into machine code

 David J. Wheeler (Cambridge University)

– developed a method of using blocks of re-
locatable addresses to solve the problem
of absolute addressing

Unit-1(PRINCIPLES OF

1-43
PROGRAMMING LANGUAGES)

IBM 704 and Fortran

 Fortran 0: 1954 - not implemented
 Fortran I:1957

– Designed for the new IBM 704, which had index registers and floating
point hardware

- This led to the idea of compiled programming languages, because
there was no place to hide the cost of interpretation (no floating-point
software)

– Environment of development

 Computers were small and unreliable
 Applications were scientific
 No programming methodology or tools
 Machine efficiency was the most important concern

Unit-1(PRINCIPLES OF 1-44

PROGRAMMING LANGUAGES)

Design Process of Fortran

 Impact of environment on design of Fortran I
– No need for dynamic storage
– Need good array handling and counting loops
– No string handling, decimal arithmetic, or

powerful input/output (for business software)

Unit-1(PRINCIPLES OF

1-45
PROGRAMMING LANGUAGES)

Fortran I Overview

 First implemented version of Fortran
– Names could have up to six characters
– Post-test counting loop (DO)
– Formatted I/O
– User-defined subprograms
– Three-way selection statement (arithmetic IF)
– No data typing statements

Unit-1(PRINCIPLES OF

1-46
PROGRAMMING LANGUAGES)

Fortran I Overview (continued)

 First implemented version of FORTRAN
– No separate compilation
– Compiler released in April 1957, after 18

worker-years of effort
– Programs larger than 400 lines rarely compiled

correctly, mainly due to poor reliability of 704
– Code was very fast
– Quickly became widely used

Unit-1(PRINCIPLES OF

1-47
PROGRAMMING LANGUAGES)

Fortran II

 Distributed in 1958
– Independent compilation
– Fixed the bugs

Unit-1(PRINCIPLES OF

1-48
PROGRAMMING LANGUAGES)

Fortran IV

 Evolved during 1960-62
– Explicit type declarations
– Logical selection statement
– Subprogram names could be parameters
– ANSI standard in 1966

Unit-1(PRINCIPLES OF

1-49
PROGRAMMING LANGUAGES)

Fortran 77

 Became the new standard in 1978
– Character string handling
– Logical loop control statement
– IF-THEN-ELSE statement

Unit-1(PRINCIPLES OF

1-50
PROGRAMMING LANGUAGES)

Fortran 90

 Most significant changes from Fortran 77
– Modules
– Dynamic arrays
– Pointers
– Recursion
– CASE statement
– Parameter type checking

Unit-1(PRINCIPLES OF

1-51
PROGRAMMING LANGUAGES)

Latest versions of Fortran

 Fortran 95 – relatively minor additions, plus
some deletions

 Fortran 2003 - ditto

Unit-1(PRINCIPLES OF

1-52
PROGRAMMING LANGUAGES)

Fortran Evaluation

 Highly optimizing compilers (all versions
before 90)
– Types and storage of all variables are fixed

before run time

 Dramatically changed forever the way

computers are used

 Characterized as the lingua franca of the

computing world

Unit-1(PRINCIPLES OF

1-53
PROGRAMMING LANGUAGES)

Functional Programming: LISP

 LISt Processing language
– Designed at MIT by McCarthy

 AI research needed a language to
– Process data in lists (rather than arrays)
– Symbolic computation (rather than numeric)

 Only two data types: atoms and lists
 Syntax is based on lambda calculus

Unit-1(PRINCIPLES OF

1-54
PROGRAMMING LANGUAGES)

Representation of Two LISP Lists

Representing the lists (A B C D)

and (A (B C) D (E (F G)))

Unit-1(PRINCIPLES OF

1-55
PROGRAMMING LANGUAGES)

LISP Evaluation

 Pioneered functional programming
– No need for variables or assignment
– Control via recursion and conditional expressions

 Still the dominant language for AI

 COMMON LISP and Scheme are contemporary

dialects of LISP

 ML, Miranda, and Haskell are related

languages

Unit-1(PRINCIPLES OF

1-56
PROGRAMMING LANGUAGES)

Scheme

 Developed at MIT in mid 1970s
 Small
 Extensive use of static scoping
 Functions as first-class entities

 Simple syntax (and small size) make it ideal for

educational applications

Unit-1(PRINCIPLES OF

1-57
PROGRAMMING LANGUAGES)

COMMON LISP

 An effort to combine features of several
dialects of LISP into a single language

 Large, complex

Unit-1(PRINCIPLES OF

1-58
PROGRAMMING LANGUAGES)

The First Step Toward Sophistication: ALGOL 60

 Environment of development
– FORTRAN had (barely) arrived for IBM 70x
– Many other languages were being developed, all

for specific machines
– No portable language; all were

machine-dependent
– No universal language for communicating algorithms

 ALGOL 60 was the result of efforts to design a

universal language

Unit-1(PRINCIPLES OF

1-59
PROGRAMMING LANGUAGES)

Early Design Process

 ACM and GAMM met for four days for design
(May 27 to June 1, 1958)

 Goals of the language

– Close to mathematical notation
– Good for describing algorithms
– Must be translatable to machine code

Unit-1(PRINCIPLES OF

1-60
PROGRAMMING LANGUAGES)

ALGOL 58

 Concept of type was formalized
 Names could be any length
 Arrays could have any number of subscripts
 Parameters were separated by mode (in & out)
 Subscripts were placed in brackets
 Compound statements (begin ... end)

 Semicolon as a statement separator
 Assignment operator was :=
 if had an else-if clause

 No I/O - “would make it machine dependent”

Unit-1(PRINCIPLES OF

1-61
PROGRAMMING LANGUAGES)

ALGOL 58 Implementation

 Not meant to be implemented, but variations
of it were (MAD, JOVIAL)

 Although IBM was initially enthusiastic, all

support was dropped by mid 1959

Unit-1(PRINCIPLES OF

1-62
PROGRAMMING LANGUAGES)

ALGOL 60 Overview

 Modified ALGOL 58 at 6-day meeting in Paris
 New features

– Block structure (local scope)
– Two parameter passing methods
– Subprogram recursion
– Stack-dynamic arrays

– Still no I/O and no string handling

Unit-1(PRINCIPLES OF

1-63
PROGRAMMING LANGUAGES)

ALGOL 60 Evaluation

 Successes
– It was the standard way to publish algorithms

for over 20 years
– All subsequent imperative languages are based

on it
– First machine-independent language
– First language whose syntax was formally

defined (BNF)

Unit-1(PRINCIPLES OF

1-64
PROGRAMMING LANGUAGES)

ALGOL 60 Evaluation (continued)

 Failure
– Never widely used, especially in U.S.
– Reasons

 Lack of I/O and the character set made programs

non-portable
 Too flexible--hard to implement
 Entrenchment of Fortran
 Formal syntax description
 Lack of support from IBM

Unit-1(PRINCIPLES OF

1-65
PROGRAMMING LANGUAGES)

Computerizing Business Records: COBOL

 Environment of development
– UNIVAC was beginning to use FLOW-MATIC
– USAF was beginning to use AIMACO
– IBM was developing COMTRAN

Unit-1(PRINCIPLES OF

1-66
PROGRAMMING LANGUAGES)

COBOL Historical Background

 Based on FLOW-MATIC
 FLOW-MATIC features

– Names up to 12 characters, with
embedded hyphens

– English names for arithmetic operators
(no arithmetic expressions)

– Data and code were completely separate
– The first word in every statement was a verb

Unit-1(PRINCIPLES OF

1-67
PROGRAMMING LANGUAGES)

COBOL Design Process

 First Design Meeting (Pentagon) - May 1959
 Design goals

– Must look like simple English
– Must be easy to use, even if that means it will be less powerful
– Must broaden the base of computer users
– Must not be biased by current compiler problems

 Design committee members were all from computer

manufacturers and DoD branches

 Design Problems: arithmetic expressions? subscripts? Fights

among manufacturers

Unit-1(PRINCIPLES OF

1-68
PROGRAMMING LANGUAGES)

COBOL Evaluation

 Contributions
– First macro facility in a high-level language
– Hierarchical data structures (records)
– Nested selection statements
– Long names (up to 30 characters), with hyphens
– Separate data division

Unit-1(PRINCIPLES OF

1-69
PROGRAMMING LANGUAGES)

COBOL: DoD Influence

 First language required by DoD
– would have failed without DoD

 Still the most widely used business

applications language

Unit-1(PRINCIPLES OF

1-70
PROGRAMMING LANGUAGES)

The Beginning of Timesharing: BASIC

 Designed by Kemeny & Kurtz at Dartmouth
 Design Goals:

– Easy to learn and use for non-science students
– Must be “pleasant and friendly”
– Fast turnaround for homework
– Free and private access
– User time is more important than computer time

 Current popular dialect: Visual BASIC
 First widely used language with time sharing

Unit-1(PRINCIPLES OF

1-71
PROGRAMMING LANGUAGES)

2.8 Everything for Everybody: PL/I

 Designed by IBM and SHARE

 Computing situation in 1964 (IBM's point of

view)
– Scientific computing

 IBM 1620 and 7090 computers
 FORTRAN
 SHARE user group

– Business computing
 IBM 1401, 7080 computers
 COBOL
 GUIDE user group

Unit-1(PRINCIPLES OF

1-72
PROGRAMMING LANGUAGES)

PL/I: Background

 By 1963
– Scientific users began to need more elaborate I/O,

like COBOL had; business users began to need
floating point and arrays for MIS

– It looked like many shops would begin to need two
kinds of computers, languages, and support staff--too
costly

 The obvious solution
– Build a new computer to do both kinds of applications
– Design a new language to do both kinds

of applications

Unit-1(PRINCIPLES OF

1-73
PROGRAMMING LANGUAGES)

PL/I: Design Process

 Designed in five months by the 3 X 3
Committee
– Three members from IBM, three members from

SHARE
 Initial concept

– An extension of Fortran IV
 Initially called NPL (New Programming

Language)
 Name changed to PL/I in 1965

Unit-1(PRINCIPLES OF

1-74
PROGRAMMING LANGUAGES)

PL/I: Evaluation

 PL/I contributions
– First unit-level concurrency
– First exception handling
– Switch-selectable recursion
– First pointer data type
– First array cross sections

 Concerns
– Many new features were poorly designed
– Too large and too complex

Unit-1(PRINCIPLES OF

1-75
PROGRAMMING LANGUAGES)

Two Early Dynamic Languages: APL and SNOBOL

 Characterized by dynamic typing and dynamic
storage allocation

 Variables are untyped
– A variable acquires a type when it is assigned

a value

 Storage is allocated to a variable when it is

assigned a value

Unit-1(PRINCIPLES OF

1-76
PROGRAMMING LANGUAGES)

APL: A Programming Language

 Designed as a hardware description language
at IBM by Ken Iverson around 1960
– Highly expressive (many operators, for both

scalars and arrays of various dimensions)
– Programs are very difficult to read

 Still in use; minimal changes

Unit-1(PRINCIPLES OF

1-77
PROGRAMMING LANGUAGES)

SNOBOL

 Designed as a string manipulation language at
Bell Labs by Farber, Griswold, and Polensky in
1964

 Powerful operators for string pattern matching

 Slower than alternative languages (and thus

no longer used for writing editors)
 Still used for certain text processing tasks

Unit-1(PRINCIPLES OF

1-78
PROGRAMMING LANGUAGES)

The Beginning of Data Abstraction: SIMULA 67

 Designed primarily for system simulation
in Norway by Nygaard and Dahl

 Based on ALGOL 60 and SIMULA I
 Primary Contributions

– Coroutines - a kind of subprogram
– Classes, objects, and inheritance

Unit-1(PRINCIPLES OF

1-79
PROGRAMMING LANGUAGES)

Orthogonal Design: ALGOL 68

 From the continued development of ALGOL 60
but not a superset of that language

 Source of several new ideas (even though the

language itself never achieved widespread
use)

 Design is based on the concept of

orthogonality
– A few basic concepts, plus a few

combining mechanisms

Unit-1(PRINCIPLES OF

1-80
PROGRAMMING LANGUAGES)

ALGOL 68 Evaluation

 Contributions
– User-defined data structures
– Reference types
– Dynamic arrays (called flex arrays)

 Comments

– Less usage than ALGOL 60
– Had strong influence on subsequent

languages, especially Pascal, C, and Ada

Unit-1(PRINCIPLES OF

1-81
PROGRAMMING LANGUAGES)

Pascal - 1971

 Developed by Wirth (a former member of the
ALGOL 68 committee)

 Designed for teaching structured

programming
 Small, simple, nothing really new
 Largest impact was on teaching programming

– From mid-1970s until the late 1990s, it was
the most widely used language for teaching
programming

Unit-1(PRINCIPLES OF

1-82
PROGRAMMING LANGUAGES)

C - 1972

 Designed for systems programming (at Bell
Labs by Dennis Richie)

 Evolved primarily from BCLP, B, but also

ALGOL 68

 Powerful set of operators, but poor type

checking
 Initially spread through UNIX
 Many areas of application

Unit-1(PRINCIPLES OF

1-83
PROGRAMMING LANGUAGES)

Programming Based on Logic: Prolog

 Developed, by Comerauer and Roussel
(University of Aix-Marseille), with help
from Kowalski (University of Edinburgh)

 Based on formal logic
 Non-procedural

 Can be summarized as being an intelligent

database system that uses an inferencing
process to infer the truth of given queries

 Highly inefficient, small application areas

Unit-1(PRINCIPLES OF

1-84
PROGRAMMING LANGUAGES)

History’s Largest Design Effort: Ada

 Huge design effort, involving hundreds of
people, much money, and about eight years
– Strawman requirements (April 1975)
– Woodman requirements (August 1975)
– Tinman requirements (1976)
– Ironman equipments (1977)
– Steelman requirements (1978)

 Named Ada after Augusta Ada Byron, the

first programmer

Unit-1(PRINCIPLES OF

1-85
PROGRAMMING LANGUAGES)

Ada Evaluation

 Contributions
– Packages - support for data abstraction
– Exception handling - elaborate
– Generic program units
– Concurrency - through the tasking model

 Comments
– Competitive design
– Included all that was then known about software engineering and

language design
– First compilers were very difficult; the first really usable compiler came

nearly five years after the language design was completed

Unit-1(PRINCIPLES OF

1-86
PROGRAMMING LANGUAGES)

Ada 95

 Ada 95 (began in 1988)
– Support for OOP through type derivation
– Better control mechanisms for shared data
– New concurrency features
– More flexible libraries

 Popularity suffered because the DoD no

longer requires its use but also because
of popularity of C++

Unit-1(PRINCIPLES OF

1-87
PROGRAMMING LANGUAGES)

Object-Oriented Programming: Smalltalk

 Developed at Xerox PARC, initially by Alan Kay,
later by Adele Goldberg

 First full implementation of an object-oriented

language (data abstraction, inheritance, and
dynamic binding)

 Pioneered the graphical user interface design
 Promoted OOP

Unit-1(PRINCIPLES OF

1-88
PROGRAMMING LANGUAGES)

Combining Imperative and Object-
Oriented Programming: C++

 Developed at Bell Labs by Stroustrup in 1980
 Evolved from C and SIMULA 67

 Facilities for object-oriented programming, taken partially

from SIMULA 67
 Provides exception handling

 A large and complex language, in part because it supports

both procedural and OO programming
 Rapidly grew in popularity, along with OOP
 ANSI standard approved in November 1997
 Microsoft’s version (released with .NET in 2002): Managed

C++
– delegates, interfaces, no multiple inheritance

Unit-1(PRINCIPLES OF

1-89
PROGRAMMING LANGUAGES)

Related OOP Languages

 Eiffel (designed by Bertrand Meyer - 1992)
– Not directly derived from any other language
– Smaller and simpler than C++, but still has most

of the power
– Lacked popularity of C++ because many C++

enthusiasts were already C programmers
 Delphi (Borland)

– Pascal plus features to support OOP
– More elegant and safer than C++

Unit-1(PRINCIPLES OF

1-90
PROGRAMMING LANGUAGES)

An Imperative-Based Object-Oriented
Language: Java

 Developed at Sun in the early 1990s
– C and C++ were not satisfactory for

embedded electronic devices
 Based on C++

– Significantly simplified (does not include
struct, union, enum, pointer arithmetic,
and half of the assignment coercions of C++)

– Supports only OOP
– Has references, but not pointers
– Includes support for applets and a form

of concurrency

Unit-1(PRINCIPLES OF

1-91
PROGRAMMING LANGUAGES)

Java Evaluation

 Eliminated many unsafe features of C++
 Supports concurrency
 Libraries for applets, GUIs, database access

 Portable: Java Virtual Machine concept, JIT

compilers
 Widely used for Web programming

 Use increased faster than any previous

language
 Most recent version, 5.0, released in 2004

Unit-1(PRINCIPLES OF

1-92
PROGRAMMING LANGUAGES)

Scripting Languages for the Web

 Perl
– Designed by Larry Wall—first released in 1987
– Variables are statically typed but implicitly declared
– Three distinctive namespaces, denoted by the first character of a

variable’s name
– Powerful, but somewhat dangerous
– Gained widespread use for CGI programming on the Web
– Also used for a replacement for UNIX system administration language

 JavaScript
– Began at Netscape, but later became a joint venture of Netscape and Sun Microsystems
– A client-side HTML-embedded scripting language, often used to create dynamic HTML

documents
– Purely interpreted
– Related to Java only through similar syntax

 PHP
– PHP: Hypertext Preprocessor, designed by Rasmus Lerdorf
– A server-side HTML-embedded scripting language, often used for form processing and

database access through the Web
– Purely interpreted

Unit-1(PRINCIPLES OF

1-93
PROGRAMMING LANGUAGES)

Scripting Languages for the Web

 Python
– An OO interpreted scripting language
– Type checked but dynamically typed
– Used for CGI programming and form processing
– Dynamically typed, but type checked
– Supports lists, tuples, and hashes

 Lua
– An OO interpreted scripting language
– Type checked but dynamically typed
– Used for CGI programming and form processing
– Dynamically typed, but type checked
– Supports lists, tuples, and hashes, all with its single data structure,

the table
– Easily extendable

Unit-1(PRINCIPLES OF

1-94
PROGRAMMING LANGUAGES)

Scripting Languages for the Web

 Ruby
– Designed in Japan by Yukihiro Matsumoto (a.k.a,

“Matz”)
– Began as a replacement for Perl and Python
– A pure object-oriented scripting language

 All data are objects
– Most operators are implemented as methods,

which can be redefined by user code
– Purely interpreted

Unit-1(PRINCIPLES OF

1-95
PROGRAMMING LANGUAGES)

 C-Based Language for the New
Millennium: C#

 Part of the .NET development platform (2000)
 Based on C++ , Java, and Delphi

 Provides a language for component-based

software development

 All .NET languages use Common Type System

(CTS), which provides a common class library

Unit-1(PRINCIPLES OF

1-96
PROGRAMMING LANGUAGES)

Markup/Programming Hybrid Languages

 XSLT
– eXtensible Markup Language (XML): a metamarkup language
– eXtensible Stylesheet Language Transformation (XSTL) transforms XML

documents for display
– Programming constructs (e.g., looping)

 JSP

– Java Server Pages: a collection of technologies to support dynamic
Web documents

– servlet: a Java program that resides on a Web server and is enacted
when called by a requested HTML document; a servlet’s output is
displayed by the browser

– JSTL includes programming constructs in the form of HTML elements

Unit-1(PRINCIPLES OF

1-97
PROGRAMMING LANGUAGES)

Introduction to syntax and
semantics

 Syntax: the form or structure of the
expressions, statements, and program units

 Semantics: the meaning of the expressions,
statements, and program units

 Syntax and semantics provide a language’s
definition
– Users of a language definition

 Other language designers
 Implementers
 Programmers (the users of the language)

Unit-1(PRINCIPLES OF

1-98
PROGRAMMING LANGUAGES)

The General Problem of Describing Syntax:
Terminology

 A sentence is a string of characters over some
alphabet

 A language is a set of sentences

 A lexeme is the lowest level syntactic unit of a

language (e.g., *, sum, begin)

 A token is a category of lexemes (e.g., identifier)

Unit-1(PRINCIPLES OF

1-99
PROGRAMMING LANGUAGES)

Formal Definition of Languages

 Recognizers
– A recognition device reads input strings over the alphabet of the

language and decides whether the input strings belong to
the language

– Example: syntax analysis part of a compiler

 Detailed discussion of syntax analysis appears
in Chapter 4

 Generators
– A device that generates sentences of a language
– One can determine if the syntax of a particular sentence is syntactically

correct by comparing it to the structure of the generator

Unit-1(PRINCIPLES OF

1-100
PROGRAMMING LANGUAGES)

BNF and Context-Free Grammars

 Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s
– Language generators, meant to describe the syntax

of natural languages
– Define a class of languages called context-

free languages

 Backus-Naur Form (1959)

– Invented by John Backus to describe Algol 58
– BNF is equivalent to context-free grammars

Unit-1(PRINCIPLES OF

1-101
PROGRAMMING LANGUAGES)

BNF Fundamentals

 In BNF, abstractions are used to represent classes of syntactic structures--they act
like syntactic variables (also called nonterminal symbols, or just terminals)

 Terminals are lexemes or tokens

 A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand side

(RHS), which is a string of terminals and/or nonterminals

 Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
<ident_list> → identifier | identifier, <ident_list>

<if_stmt> → if <logic_expr> then <stmt>

 Grammar: a finite non-empty set of rules

Unit-1(PRINCIPLES OF

1-102
PROGRAMMING LANGUAGES)

BNF Rules

 An abstraction (or nonterminal symbol) can
have more than one RHS

<stmt> → <single_stmt>

| begin <stmt_list> end

Unit-1(PRINCIPLES OF

1-103
PROGRAMMING LANGUAGES)

Describing Lists

 Syntactic lists are described using recursion

<ident_list> → ident

| ident, <ident_list>

 A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

Unit-1(PRINCIPLES OF

1-104
PROGRAMMING LANGUAGES)

An Example Grammar

<program> → <stmts>

<stmts> → <stmt> | <stmt> ;

<stmts> <stmt> → <var> = <expr>

<var> → a | b | c | d

<expr> → <term> + <term> | <term> -

<term> <term> → <var> | const

Unit-1(PRINCIPLES OF

1-105
PROGRAMMING LANGUAGES)

An Example Derivation

<program> => <stmts> => <stmt>

=> <var> = <expr>

=> a = <expr>

=> a = <term> + <term>

=> a = <var> + <term>

=> a = b + <term>

=> a = b + const

Unit-1(PRINCIPLES OF

1-106
PROGRAMMING LANGUAGES)

Derivations

 Every string of symbols in a derivation is a
sentential form

 A sentence is a sentential form that has only
terminal symbols

 A leftmost derivation is one in which the
leftmost nonterminal in each sentential
form is the one that is expanded

 A derivation may be neither leftmost nor
rightmost

Unit-1(PRINCIPLES OF

1-107
PROGRAMMING LANGUAGES)

Parse Tree

 A hierarchical representation of a derivation

<program>

<stmts>

<stmt>

<var> = <expr>

a <term> + <term>

<var> const

b

Unit-1(PRINCIPLES OF

1-108
PROGRAMMING LANGUAGES)

Ambiguity in Grammars

 A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees

Unit-1(PRINCIPLES OF

1-109
PROGRAMMING LANGUAGES)

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → / | -

<expr> <expr>

<expr> <op> <expr> <expr> <op> <expr>

<expr> <op> <expr> <expr> <op> <expr>

const - const / const const - const / const

Unit-1(PRINCIPLES OF

1-110
PROGRAMMING LANGUAGES)

An Unambiguous Expression Grammar

 If we use the parse tree to indicate
precedence levels of the operators,
we cannot have ambiguity

<expr> → <expr> - <term> | <term>

<term> → <term> / const| const

<expr>

<expr> - <term>

<term> <term> / const

const const

Unit-1(PRINCIPLES OF

1-111
PROGRAMMING LANGUAGES)

Associativity of Operators

 Operator associativity can also be indicated by a grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

<expr>

<expr> + const

<expr> + const

const
Unit-1(PRINCIPLES OF

1-112
PROGRAMMING LANGUAGES)

Extended BNF

 Optional parts are placed in brackets []

<proc_call> -> ident [(<expr_list>)]

 Alternative parts of RHSs are placed inside

parentheses and separated via vertical bars

<term> → <term> (+|-) const

 Repetitions (0 or more) are placed inside

braces { }

<ident> → letter {letter|digit}

Unit-1(PRINCIPLES OF

1-113
PROGRAMMING LANGUAGES)

BNF and EBNF

 BNF

<expr> → <expr> + <term>

| <expr> - <term>

| <term>

<term> → <term> * <factor>

| <term> / <factor>

| <factor>

 EBNF

<expr> → <term> {(+ | -) <term>}

<term> → <factor> {(* | /) <factor>}

Unit-1(PRINCIPLES OF

1-114
PROGRAMMING LANGUAGES)

Recent Variations in EBNF

 Alternative RHSs are put on separate lines
 Use of a colon instead of =>

 Use of opt for optional parts
 Use of oneof for choices

Unit-1(PRINCIPLES OF

1-115
PROGRAMMING LANGUAGES)

Static Semantics

 Nothing to do with meaning

 Context-free grammars (CFGs) cannot

describe all of the syntax of programming
languages

 Categories of constructs that are trouble:

 Context-free, but cumbersome (e.g.,
types of operands in expressions)

 Non-context-free (e.g., variables must
be declared before they are used)

Unit-1(PRINCIPLES OF

1-116
PROGRAMMING LANGUAGES)

Attribute Grammars

 Attribute grammars (AGs) have additions to
CFGs to carry some semantic info on parse
tree nodes

 Primary value of AGs:

– Static semantics specification
– Compiler design (static semantics checking)

Unit-1(PRINCIPLES OF

1-117
PROGRAMMING LANGUAGES)

Attribute Grammars : Definition

 Def: An attribute grammar is a context-free
grammar G = (S, N, T, P) with the following
additions:
– For each grammar symbol x there is a set A(x)

of attribute values
– Each rule has a set of functions that define

certain attributes of the nonterminals in the rule
– Each rule has a (possibly empty) set of

predicates to check for attribute consistency

Unit-1(PRINCIPLES OF

1-118
PROGRAMMING LANGUAGES)

Attribute Grammars: Definition

 Let X0 → X1 ... Xn be a rule

 Functions of the form S(X0) = f(A(X1), ... , A(Xn))
define synthesized attributes

 Functions of the form I(Xj) = f(A(X0), ... , A(Xn)),
for i <= j <= n, define inherited attributes

 Initially, there are intrinsic attributes on the

leaves

Unit-1(PRINCIPLES OF

1-119
PROGRAMMING LANGUAGES)

Attribute Grammars: An Example

 Syntax

<assign> -> <var> = <expr>

<expr> -> <var> + <var> |

<var> <var> A | B | C

 actual_type: synthesized for <var> and
<expr>

 expected_type: inherited for <expr>

Unit-1(PRINCIPLES OF

1-120
PROGRAMMING LANGUAGES)

Attribute Grammar (continued)

 Syntax rule: <expr> → <var>[1] + <var>[2]
Semantic rules:
<expr>.actual_type ← <var>[1].actual_type

Predicate:

<var>[1].actual_type == <var>[2].actual_type

<expr>.expected_type == <expr>.actual_type

 Syntax rule: <var> → id

Semantic rule:

<var>.actual_type ← lookup (<var>.string)

Unit-1(PRINCIPLES OF

1-121
PROGRAMMING LANGUAGES)

Attribute Grammars (continued)

 How are attribute values computed?
– If all attributes were inherited, the tree could

be decorated in top-down order.
– If all attributes were synthesized, the tree could

be decorated in bottom-up order.
– In many cases, both kinds of attributes are

used, and it is some combination of top-down
and bottom-up that must be used.

Unit-1(PRINCIPLES OF

1-122
PROGRAMMING LANGUAGES)

Attribute Grammars (continued)

<expr>.expected_type ← inherited from parent

<var>[1].actual_type ← lookup (A)

<var>[2].actual_type ← lookup (B)

<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type ← <var>[1].actual_type

<expr>.actual_type =? <expr>.expected_type

Unit-1(PRINCIPLES OF

1-123
PROGRAMMING LANGUAGES)

Semantics

 There is no single widely acceptable notation
or formalism for describing semantics

 Several needs for a methodology and

notation for semantics:
– Programmers need to know what statements mean
– Compiler writers must know exactly what language constructs do
– Correctness proofs would be possible
– Compiler generators would be possible
– Designers could detect ambiguities and inconsistencies

Unit-1(PRINCIPLES OF

1-124
PROGRAMMING LANGUAGES)

Operational Semantics

 Operational Semantics
– Describe the meaning of a program by

executing its statements on a machine, either
simulated or actual. The change in the state of
the machine (memory, registers, etc.) defines
the meaning of the statement

 To use operational semantics for a high-level

language, a virtual machine is needed

Unit-1(PRINCIPLES OF

1-125
PROGRAMMING LANGUAGES)

Operational Semantics

 A hardware pure interpreter would be too
expensive

 A software pure interpreter also has problems
– The detailed characteristics of the

particular computer would make actions
difficult to understand

– Such a semantic definition would be
machine-dependent

Unit-1(PRINCIPLES OF

1-126
PROGRAMMING LANGUAGES)

Operational Semantics (continued)

 A better alternative: A complete computer
simulation

 The process:
– Build a translator (translates source code to

the machine code of an idealized computer)
– Build a simulator for the idealized computer

 Evaluation of operational semantics:
– Good if used informally (language manuals, etc.)
– Extremely complex if used formally (e.g., VDL), it

was used for describing semantics of PL/I.

Unit-1(PRINCIPLES OF

1-127
PROGRAMMING LANGUAGES)

Operational Semantics (continued)

 Uses of operational semantics:
 Language manuals and textbooks
 Teaching programming languages

 Two different levels of uses of operational semantics:

 Natural operational semantics
 Structural operational semantics

 Evaluation

 Good if used informally (language

manuals, etc.)

- Extremely complex if used formally (e.g.,VDL)

Unit-1(PRINCIPLES OF

1-128
PROGRAMMING LANGUAGES)

Denotational Semantics

 Based on recursive function theory

 The most abstract semantics description

method

 Originally developed by Scott and Strachey

(1970)

Unit-1(PRINCIPLES OF

1-129
PROGRAMMING LANGUAGES)

Denotational Semantics - continued

 The process of building a denotational
specification for a language:

 Define a mathematical object for each language

entity
– Define a function that maps instances of

the language entities onto instances of the
corresponding mathematical objects

 The meaning of language constructs are

defined by only the values of the program's
variables

Unit-1(PRINCIPLES OF

1-130
PROGRAMMING LANGUAGES)

Denotational Semantics: program state

 The state of a program is the values of all its
current variables

 = {<i1, v1>, <i2, v2>, …, <in, vn>}

 Let VARMAP be a function that, when given
a variable name and a state, returns the

current value of the variable
VARMAP(ij, s) = vj

Unit-1(PRINCIPLES OF

1-131
PROGRAMMING LANGUAGES)

Decimal Numbers

<dec_num> → '0' | '1' | '2' | '3' | '4' | '5' |

'6' | '7' | '8' | '9' |

<dec_num> ('0' | '1' | '2' | '3'

| '4' | '5' | '6' | '7'

| '8' | '9')

Mdec('0') = 0, Mdec ('1') = 1, …, Mdec ('9') = 9

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)

Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1

…

Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9

Unit-1(PRINCIPLES OF

1-132
PROGRAMMING LANGUAGES)

Expressions
 Map expressions onto Z ∪ {error}

 We assume expressions are decimal numbers,
variables, or binary expressions having one
arithmetic operator and two operands, each
of which can be an expression

Unit-1(PRINCIPLES OF

1-133
PROGRAMMING LANGUAGES)

Expressions

Me(<expr>, s) Δ=

case <expr> of
<dec_num> => Mdec(<dec_num>, s)

if VARMAP(<var>, s) == undef

then error
else VARMAP(<var>, s)

<binary_expr> =>
if (Me(<binary_expr>.<left_expr>, s) == undef OR

Me(<binary_expr>.<right_expr>, s) =

undef)
then error

else
if (<binary_expr>.<operator> == '+' then

Me(<binary_expr>.<left_expr>, s) +

Me(<binary_expr>.<right_expr>, s)
else Me(<binary_expr>.<left_expr>, s) *

Me(<binary_expr>.<right_expr>, s)

...

Unit-1(PRINCIPLES OF

1-134
PROGRAMMING LANGUAGES)

 <var> =>

Assignment Statements

 Maps state sets to state sets U {error}

Ma(x := E, s) Δ=

if Me(E, s) == error

then error

else s’ =

{<i1,v1’>,<i2,v2’>,...,<in,vn’>},

where for j = 1, 2, ..., n,

if ij == x

then vj’ = Me(E, s)

else vj’ = VARMAP(ij, s)

Unit-1(PRINCIPLES OF

1-135
PROGRAMMING LANGUAGES)

Logical Pretest Loops

 Maps state sets to state sets U {error}

Ml(while B do L, s) Δ=

if Mb(B, s) == undef

then error

else if Mb(B, s) == false

then s

else if Msl(L, s) == error

then error

else Ml(while B do L, Msl(L, s))

Unit-1(PRINCIPLES OF

1-136
PROGRAMMING LANGUAGES)

Loop Meaning

 The meaning of the loop is the value of the program variables
after the statements in the loop have been executed the
prescribed number of times, assuming there have been no
errors

 In essence, the loop has been converted from iteration to

recursion, where the recursive control is mathematically
defined by other recursive state mapping functions

 Recursion, when compared to iteration, is
easier to describe with mathematical rigor

Unit-1(PRINCIPLES OF

1-137
PROGRAMMING LANGUAGES)

Evaluation of Denotational Semantics

 Can be used to prove the correctness of
programs

 Provides a rigorous way to think about

programs
 Can be an aid to language design
 Has been used in compiler generation systems

 Because of its complexity, it are of little use to

language users

Unit-1(PRINCIPLES OF

1-138
PROGRAMMING LANGUAGES)

Axiomatic Semantics

 Based on formal logic (predicate calculus)
 Original purpose: formal program verification

 Axioms or inference rules are defined for each

statement type in the language (to allow
transformations of logic expressions into more
formal logic expressions)

 The logic expressions are called assertions

Unit-1(PRINCIPLES OF

1-139
PROGRAMMING LANGUAGES)

Axiomatic Semantics (continued)

 An assertion before a statement (a
precondition) states the relationships and
constraints among variables that are true at
that point in execution

 An assertion following a statement is a
postcondition

 A weakest precondition is the least restrictive
precondition that will guarantee the
postcondition

Unit-1(PRINCIPLES OF

1-140
PROGRAMMING LANGUAGES)

Axiomatic Semantics Form

 Pre-, post form: {P} statement {Q}

 An example

– a = b + 1 {a > 1}
– One possible precondition: {b > 10}
– Weakest precondition:{b > 0}

Unit-1(PRINCIPLES OF

1-141
PROGRAMMING LANGUAGES)

Program Proof Process

 The postcondition for the entire program is
the desired result
– Work back through the program to the

first statement. If the precondition on the
first statement is the same as the program
specification, the program is correct.

Unit-1(PRINCIPLES OF

1-142
PROGRAMMING LANGUAGES)

Axiomatic Semantics: Axioms

 An axiom for assignment statements

(x = E): {Qx->E} x = E {Q}

 The Rule of Consequence:

Unit-1(PRINCIPLES OF

1-143
PROGRAMMING LANGUAGES)

Axiomatic Semantics: Axioms

 An inference rule for sequences of the form S1; S2

{P1} S1 {P2}
{P2} S2 {P3}

Unit-1(PRINCIPLES OF

1-144
PROGRAMMING LANGUAGES)

Axiomatic Semantics: Axioms

 An inference rule for logical pretest loops

{P} while B do S end {Q}

where I is the loop invariant (the inductive hypothesis)

Unit-1(PRINCIPLES OF

1-145
PROGRAMMING LANGUAGES)

Axiomatic Semantics: Axioms

 Characteristics of the loop invariant: I must
meet the following conditions:

– P => I

– {I} B {I}

 the loop invariant must be true initially

 evaluation of the Boolean must not change the validity of I

– {I and B} S {I} -- I is not changed by executing the body of the loop

– (I and (not B)) => Q

– The loop terminates

 if I is true and B is false, Q is implied

 can be difficult to prove

Unit-1(PRINCIPLES OF

1-146
PROGRAMMING LANGUAGES)

Loop Invariant

 The loop invariant I is a weakened version of
the loop postcondition, and it is also a
precondition.

 I must be weak enough to be satisfied prior to

the beginning of the loop, but when combined
with the loop exit condition, it must be strong
enough to force the truth of the postcondition

Unit-1(PRINCIPLES OF

1-147
PROGRAMMING LANGUAGES)

Evaluation of Axiomatic Semantics

 Developing axioms or inference rules for all of
the statements in a language is difficult

 It is a good tool for correctness proofs, and an
excellent framework for reasoning about
programs, but it is not as useful for language
users and compiler writers

 Its usefulness in describing the meaning of a
programming language is limited for language
users or compiler writers

Unit-1(PRINCIPLES OF

1-148
PROGRAMMING LANGUAGES)

Denotation Semantics vs Operational Semantics

 In operational semantics, the state changes
are defined by coded algorithms

 In denotational semantics, the state changes

are defined by rigorous mathematical
functions

Unit-1(PRINCIPLES OF

1-149
PROGRAMMING LANGUAGES)

Summary

 BNF and context-free grammars are equivalent
meta-languages
– Well-suited for describing the syntax of

programming languages

 An attribute grammar is a descriptive formalism

that can describe both the syntax and the
semantics of a language

 Three primary methods of semantics description
– Operation, axiomatic, denotational

Unit-1(PRINCIPLES OF

1-150
PROGRAMMING LANGUAGES)

 Development, development environment, and
evaluation of a number of important
programming languages

 Perspective into current issues in language

design

Unit-1(PRINCIPLES OF

1-151
PROGRAMMING LANGUAGES)

 The study of programming languages is valuable for a number
of reasons:
– Increase our capacity to use different constructs
– Enable us to choose languages more intelligently
– Makes learning new languages easier

 Most important criteria for evaluating programming languages
include:
– Readability, writability, reliability, cost

 Major influences on language design have been machine
architecture and software development methodologies

 The major methods of implementing programming languages
are: compilation, pure interpretation, and hybrid
implementation

Unit-1(PRINCIPLES OF

1-152
PROGRAMMING LANGUAGES)

UNIT-2

Data Types

Expressions and Statements

1-153

CONCEPTS

 Introduction
 Primitive Data Types
 Character String Types
 User-Defined Ordinal Types
 Array Types
 Associative Arrays
 Record Types
 Union Types
 Pointer and Reference Types

Unit-2(PRINCIPLES OF

1-154
PROGRAMMING LANGUAGES)

CONCEPTS

 Introduction
 Names
 Variables
 The concept of binding
 Scope
 Scope and lifetime
 Referencing Environments
 Named constants

Unit-2(PRINCIPLES OF

1-155
PROGRAMMING LANGUAGES)

Introduction

 A data type defines a collection of data objects
and a set of predefined operations on those
objects

 A descriptor is the collection of the attributes
of a variable

 An object represents an instance of a user-
defined (abstract data) type

 One design issue for all data types: What
operations are defined and how are they
specified?

Unit-2(PRINCIPLES OF

1-156
PROGRAMMING LANGUAGES)

Primitive Data Types

 Almost all programming languages provide a
set of primitive data types

 Primitive data types: Those not defined in

terms of other data types

 Some primitive data types are merely

reflections of the hardware

 Others require only a little non-hardware

support for their implementation

Unit-2(PRINCIPLES OF

1-157
PROGRAMMING LANGUAGES)

Primitive Data Types: Integer

 Almost always an exact reflection of the
hardware so the mapping is trivial

 There may be as many as eight different

integer types in a language
 Java’s signed integer sizes: byte, short,
int, long

Unit-2(PRINCIPLES OF

1-158
PROGRAMMING LANGUAGES)

Primitive Data Types: Floating Point

 Model real numbers, but only as
approximations

 Languages for scientific use support at least
two floating-point types (e.g., float and
double; sometimes more

 Usually exactly like the hardware, but not
always

 IEEE Floating-Point
Standard 754

Unit-2(PRINCIPLES OF

1-159
PROGRAMMING LANGUAGES)

Primitive Data Types: Complex

 Some languages support a complex type, e.g.,
C99, Fortran, and Python

 Each value consists of two floats, the real part

and the imaginary part
 Literal form (in Python):

(7 + 3j), where 7 is the real part and 3 is
the imaginary part

Unit-2(PRINCIPLES OF

1-160
PROGRAMMING LANGUAGES)

Primitive Data Types: Decimal

 For business applications (money)
– Essential to COBOL
– C# offers a decimal data type

 Store a fixed number of decimal digits, in

coded form (BCD)
 Advantage: accuracy
 Disadvantages: limited range, wastes memory

Unit-2(PRINCIPLES OF

1-161
PROGRAMMING LANGUAGES)

Primitive Data Types: Boolean

 Simplest of all

 Range of values: two elements, one for “true”

and one for “false”

 Could be implemented as bits, but often as

bytes
– Advantage: readability

Unit-2(PRINCIPLES OF

1-162
PROGRAMMING LANGUAGES)

Primitive Data Types: Character

 Stored as numeric codings
 Most commonly used coding: ASCII
 An alternative, 16-bit coding: Unicode (UCS-2)

– Includes characters from most natural languages
– Originally used in Java
– C# and JavaScript also support Unicode

 32-bit Unicode (UCS-4)
– Supported by Fortran, starting with 2003

Unit-2(PRINCIPLES OF

1-163
PROGRAMMING LANGUAGES)

Character String Types

 Values are sequences of characters
 Design issues:

– Is it a primitive type or just a special kind of array?
– Should the length of strings be static or dynamic?

Unit-2(PRINCIPLES OF

1-164
PROGRAMMING LANGUAGES)

Character String Types Operations

 Typical operations:
– Assignment and copying
– Comparison (=, >, etc.)
– Catenation
– Substring reference
– Pattern matching

Unit-2(PRINCIPLES OF

1-165
PROGRAMMING LANGUAGES)

Character String Type in Certain Languages

 C and C++
– Not primitive
– Use char arrays and a library of functions that provide operations

 SNOBOL4 (a string manipulation language)
– Primitive
– Many operations, including elaborate pattern matching

 Fortran and Python
– Primitive type with assignment and several operations

 Java
– Primitive via the String class

 Perl, JavaScript, Ruby, and PHP

 Provide built-in pattern matching, using
regular expressions

Unit-2(PRINCIPLES OF

1-166
PROGRAMMING LANGUAGES)

Character String Length Options

 Static: COBOL, Java’s String class
 Limited Dynamic Length: C and C++

– In these languages, a special character is used
to indicate the end of a string’s characters,
rather than maintaining the length

 Dynamic (no maximum): SNOBOL4, Perl,

JavaScript
 Ada supports all three string length options

Unit-2(PRINCIPLES OF

1-167
PROGRAMMING LANGUAGES)

Character String Type Evaluation

 Aid to writability

 As a primitive type with static length, they are

inexpensive to provide--why not have them?

 Dynamic length is nice, but is it worth the

expense?

Unit-2(PRINCIPLES OF

1-168
PROGRAMMING LANGUAGES)

Character String Implementation

 Static length: compile-time descriptor

 Limited dynamic length: may need a run-time

descriptor for length (but not in C and C++)

 Dynamic length: need run-time descriptor;

allocation/de-allocation is the biggest
implementation problem

Unit-2(PRINCIPLES OF

1-169
PROGRAMMING LANGUAGES)

Compile- and Run-Time Descriptors

Compile-time Run-time

descriptor for descriptor for

static strings limited dynamic

 strings

Unit-2(PRINCIPLES OF

1-170
PROGRAMMING LANGUAGES)

User-Defined Ordinal Types

 An ordinal type is one in which the range of
possible values can be easily associated
with the set of positive integers

 Examples of primitive ordinal types in Java
– integer
– char
– boolean

Unit-2(PRINCIPLES OF

1-171
PROGRAMMING LANGUAGES)

Enumeration Types

 All possible values, which are named
constants, are provided in the definition

 C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

 Design issues
– Is an enumeration constant allowed to appear

in more than one type definition, and if so, how
is the type of an occurrence of that constant
checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?

Unit-2(PRINCIPLES OF

1-172
PROGRAMMING LANGUAGES)

Evaluation of Enumerated Type

 Aid to readability, e.g., no need to code a color
as a number

 Aid to reliability, e.g., compiler can check:
– operations (don’t allow colors to be added)
– No enumeration variable can be assigned a

value outside its defined range
– Ada, C#, and Java 5.0 provide better support for

enumeration than C++ because enumeration
type variables in these languages are not coerced
into integer types

Unit-2(PRINCIPLES OF

1-173
PROGRAMMING LANGUAGES)

Subrange Types

 An ordered contiguous subsequence of an
ordinal type
– Example: 12..18 is a subrange of integer type

 Ada’s design

type Days is (mon, tue, wed, thu, fri, sat,

sun); subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Day2 := Day1;

Unit-2(PRINCIPLES OF

1-174
PROGRAMMING LANGUAGES)

Subrange Evaluation

 Aid to readability
– Make it clear to the readers that variables of

subrange can store only certain range of values
 Reliability

– Assigning a value to a subrange variable that is
outside the specified range is detected as an error

Unit-2(PRINCIPLES OF

1-175
PROGRAMMING LANGUAGES)

Implementation of User-Defined Ordinal Types

 Enumeration types are implemented as
integers

 Subrange types are implemented like the

parent types with code inserted (by the
compiler) to restrict assignments to subrange
variables

Unit-2(PRINCIPLES OF

1-176
PROGRAMMING LANGUAGES)

Array Types

 An array is an aggregate of homogeneous data
elements in which an individual element is
identified by its position in the aggregate,
relative to the first element.

Unit-2(PRINCIPLES OF

1-177
PROGRAMMING LANGUAGES)

Array Design Issues

 What types are legal for subscripts?

 Are subscripting expressions in element

references range checked?
 When are subscript ranges bound?
 When does allocation take place?
 What is the maximum number of subscripts?
 Can array objects be initialized?
 Are any kind of slices supported?

Unit-2(PRINCIPLES OF

1-178
PROGRAMMING LANGUAGES)

Array Indexing

 Indexing (or subscripting) is a mapping from

indices to elements

array_name (index_value_list) → an element

 Index Syntax
– FORTRAN, PL/I, Ada use parentheses

 Ada explicitly uses parentheses to show

uniformity between array references and function
calls because both are mappings

– Most other languages use brackets

Unit-2(PRINCIPLES OF

1-179
PROGRAMMING LANGUAGES)

Arrays Index (Subscript) Types

 FORTRAN, C: integer only
 Ada: integer or enumeration (includes Boolean and char)
 Java: integer types only
 Index range checking

 C, C++, Perl, and Fortran do not specify

range checking

 Java, ML, C# specify range checking

 In Ada, the default is to require range
checking, but it can be turned off

Unit-2(PRINCIPLES OF

1-180
PROGRAMMING LANGUAGES)

Subscript Binding and Array Categories

 Static: subscript ranges are statically bound
and storage allocation is static (before run-
time)
– Advantage: efficiency (no dynamic allocation)

 Fixed stack-dynamic: subscript ranges are

statically bound, but the allocation is done
at declaration time
– Advantage: space efficiency

Unit-2(PRINCIPLES OF

1-181
PROGRAMMING LANGUAGES)

Subscript Binding and Array Categories
(continued)

 Stack-dynamic: subscript ranges are
dynamically bound and the storage
allocation is dynamic (done at run-time)
– Advantage: flexibility (the size of an array need

not be known until the array is to be used)
 Fixed heap-dynamic: similar to fixed stack-

dynamic: storage binding is dynamic but
fixed after allocation (i.e., binding is done
when requested and storage is allocated from
heap, not stack)

Unit-2(PRINCIPLES OF

1-182
PROGRAMMING LANGUAGES)

Subscript Binding and Array Categories
(continued)

 Heap-dynamic: binding of subscript ranges
and storage allocation is dynamic and can
change any number of times
– Advantage: flexibility (arrays can grow or

shrink during program execution)

Unit-2(PRINCIPLES OF

1-183
PROGRAMMING LANGUAGES)

Subscript Binding and Array Categories
(continued)

 C and C++ arrays that include static
modifier are static

 C and C++ arrays without static modifier are

fixed stack-dynamic
 C and C++ provide fixed heap-dynamic arrays

 C# includes a second array class ArrayList

that provides fixed heap-dynamic

 Perl, JavaScript, Python, and Ruby support

heap-dynamic arrays

Unit-2(PRINCIPLES OF

1-184
PROGRAMMING LANGUAGES)

Array Initialization

 Some language allow initialization at the time of
storage allocation

– C, C++, Java, C# example

int list [] = {4, 5, 7, 83}

– Character strings in C and C++
char name [] = “freddie”;

– Arrays of strings in C and C++

char *names [] = {“Bob”, “Jake”, “Joe”];

– Java initialization of String objects

String[] names = {“Bob”, “Jake”, “Joe”};

Unit-2(PRINCIPLES OF

1-185
PROGRAMMING LANGUAGES)

Heterogeneous Arrays

 A heterogeneous array is one in which the
elements need not be of the same type

 Supported by Perl, Python, JavaScript, and

Ruby

Unit-2(PRINCIPLES OF

1-186
PROGRAMMING LANGUAGES)

Array Initialization

 C-based languages
– int list [] = {1, 3, 5, 7}
– char *names [] = {“Mike”, “Fred”,“Mary Lou”};

 Ada
– List : array (1..5) of Integer :=

(1 => 17, 3 => 34, others => 0);

 Python

– List comprehensions

list = [x ** 2 for x in range(12) if x % 3 ==

0] puts [0, 9, 36, 81] in list

Unit-2(PRINCIPLES OF

1-187
PROGRAMMING LANGUAGES)

Arrays Operations

 APL provides the most powerful array processing operations
for vectors and matrixes as well as unary operators (for
example, to reverse column elements)

 Ada allows array assignment but also catenation

 Python’s array assignments, but they are only reference

changes. Python also supports array catenation and
element membership operations

 Ruby also provides array catenation

 Fortran provides elemental operations because they are

between pairs of array elements
– For example, + operator between two arrays results in an array of the

sums of the element pairs of the two arrays

Unit-2(PRINCIPLES OF

1-188
PROGRAMMING LANGUAGES)

Rectangular and Jagged Arrays

 A rectangular array is a multi-dimensioned array
in which all of the rows have the same number
of elements and all columns have the same
number of elements

 A jagged matrix has rows with varying number of
elements
– Possible when multi-dimensioned arrays

actually appear as arrays of arrays

 C, C++, and Java support jagged arrays
 Fortran, Ada, and C# support rectangular arrays

(C# also supports jagged arrays)

Unit-2(PRINCIPLES OF

1-189
PROGRAMMING LANGUAGES)

Slices

 A slice is some substructure of an array;
nothing more than a referencing mechanism

 Slices are only useful in languages that have

array operations

Unit-2(PRINCIPLES OF

1-190
PROGRAMMING LANGUAGES)

Slice Examples

 Fortran 95

Integer, Dimension (10) :: Vector

Integer, Dimension (3, 3) :: Mat

Integer, Dimension (3, 3) :: Cube

Vector (3:6) is a four element array

 Ruby supports slices with the slice method

list.slice(2, 2) returns the third and fourth
elements of list Unit-2(PRINCIPLES OF 1-191

PROGRAMMING LANGUAGES)

Slices Examples in Fortran 95

Unit-2(PRINCIPLES OF

1-192
PROGRAMMING LANGUAGES)

Implementation of Arrays

 Access function maps subscript expressions to
an address in the array

 Access function for single-dimensioned arrays:

address(list[k]) = address (list[lower_bound])
 ((k-lower_bound) * element_size)

Unit-2(PRINCIPLES OF

1-193
PROGRAMMING LANGUAGES)

Accessing Multi-dimensioned Arrays

 Two common ways:
– Row major order (by rows) – used in

most languages
– column major order (by columns) – used

in Fortran

Unit-2(PRINCIPLES OF

1-194
PROGRAMMING LANGUAGES)

Locating an Element in a Multi-dimensioned
Array

•General format

Location (a[I,j]) = address of a [row_lb,col_lb] + (((I -
row_lb) * n) + (j - col_lb)) * element_size

Unit-2(PRINCIPLES OF

1-195
PROGRAMMING LANGUAGES)

Compile-Time Descriptors

Single-dimensioned array Multi-dimensional array

Unit-2(PRINCIPLES OF

1-196
PROGRAMMING LANGUAGES)

Associative Arrays

 An associative array is an unordered
collection of data elements that are indexed
by an equal number of values called keys
– User-defined keys must be stored

 Design issues:
 What is the form of references to elements?

 Is the size static or dynamic?

 Built-in type in Perl, Python, Ruby, and Lua
– In Lua, they are supported by tables

Unit-2(PRINCIPLES OF

1-197
PROGRAMMING LANGUAGES)

Associative Arrays in Perl

 Names begin with %; literals are delimited

by parentheses

%hi_temps = ("Mon" => 77, "Tue"

=> 79, “Wed” => 65, …);

 Subscripting is done using braces and keys

$hi_temps{"Wed"} = 83;

– Elements can be removed with delete

delete $hi_temps{"Tue"};

Unit-2(PRINCIPLES OF

1-198
PROGRAMMING LANGUAGES)

Record Types

 A record is a possibly heterogeneous
aggregate of data elements in which the
individual elements are identified by names

 Design issues:
– What is the syntactic form of references to

the field?
– Are elliptical references allowed

Unit-2(PRINCIPLES OF

1-199
PROGRAMMING LANGUAGES)

Definition of Records in COBOL

 COBOL uses level numbers to show nested
records; others use recursive definition
 EMP-REC.

02 EMP-NAME.

05 FIRST PIC X(20).

05 MID PIC X(10).

05 LAST PIC X(20).

02 HOURLY-RATE PIC 99V99.

Unit-2(PRINCIPLES OF

1-200
PROGRAMMING LANGUAGES)

Definition of Records in Ada

 Record structures are indicated in an orthogonal
way
type Emp_Rec_Type is record

First: String (1..20);
Mid: String (1..10);
Last: String (1..20);

Hourly_Rate: Float;

end record; Emp_Rec:

Emp_Rec_Type;

Unit-2(PRINCIPLES OF

1-201
PROGRAMMING LANGUAGES)

References to Records

 Record field references

1. COBOL

field_name OF record_name_1 OF ... OF record_name_n

2. Others (dot notation)

record_name_1.record_name_2. ... record_name_n.field_name

 Fully qualified references must include all record names

 Elliptical references allow leaving out record names as long as the

reference is unambiguous, for example in COBOL
FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are
elliptical references to the employee’s first name

Unit-2(PRINCIPLES OF

1-202
PROGRAMMING LANGUAGES)

Operations on Records

 Assignment is very common if the types are
identical

 Ada allows record comparison

 Ada records can be initialized with aggregate

literals
 COBOL provides MOVE CORRESPONDING

– Copies a field of the source record to the

corresponding field in the target record

Unit-2(PRINCIPLES OF

1-203
PROGRAMMING LANGUAGES)

Evaluation and Comparison
to Arrays

 Records are used when collection of data
values is heterogeneous

 Access to array elements is much slower than
access to record fields, because subscripts are
dynamic (field names are static)

 Dynamic subscripts could be used with record
field access, but it would disallow type
checking and it would be much slower

Unit-2(PRINCIPLES OF

1-204
PROGRAMMING LANGUAGES)

Implementation of Record Type

Offset address relative to

the beginning of the records

is associated with each field

Unit-2(PRINCIPLES OF

1-205
PROGRAMMING LANGUAGES)

Unions Types

 A union is a type whose variables are allowed
to store different type values at different
times during execution

 Design issues
– Should type checking be required?
– Should unions be embedded in records?

Unit-2(PRINCIPLES OF

1-206
PROGRAMMING LANGUAGES)

Discriminated vs. Free Unions

 Fortran, C, and C++ provide union constructs
in which there is no language support for
type checking; the union in these languages is
called free union

 Type checking of unions require that each

union include a type indicator called a
discriminant
– Supported by Ada

Unit-2(PRINCIPLES OF

1-207
PROGRAMMING LANGUAGES)

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);

type Colors is (Red, Green, Blue);

type Figure (Form: Shape) is record

Filled: Boolean;

Color: Colors;

case Form is

when Circle => Diameter:

Float; when Triangle =>

Leftside, Rightside: Integer;

Angle: Float;

when Rectangle => Side1, Side2: Integer;

end case;

end record;

Unit-2(PRINCIPLES OF

1-208
PROGRAMMING LANGUAGES)

Ada Union Type Illustrated

A discriminated union of three shape variables

Unit-2(PRINCIPLES OF

1-209
PROGRAMMING LANGUAGES)

Evaluation of Unions

 Free unions are unsafe
– Do not allow type checking

 Java and C# do not support unions
– Reflective of growing concerns for safety

in programming language
 Ada’s descriminated unions are safe

Unit-2(PRINCIPLES OF

1-210
PROGRAMMING LANGUAGES)

Pointer and Reference Types

 A pointer type variable has a range of values
that consists of memory addresses and a
special value, nil

 Provide the power of indirect addressing
 Provide a way to manage dynamic memory

 A pointer can be used to access a location in

the area where storage is dynamically
created (usually called a heap)

Unit-2(PRINCIPLES OF

1-211
PROGRAMMING LANGUAGES)

Design Issues of Pointers

 What are the scope of and lifetime of a
pointer variable?

 What is the lifetime of a heap-dynamic
variable?

 Are pointers restricted as to the type of value
to which they can point?

 Are pointers used for dynamic storage
management, indirect addressing, or both?

 Should the language support pointer types,
reference types, or both?

Unit-2(PRINCIPLES OF

1-212
PROGRAMMING LANGUAGES)

Pointer Operations

 Two fundamental operations: assignment and
dereferencing

 Assignment is used to set a pointer variable’s
value to some useful address

 Dereferencing yields the value stored at the
location represented by the pointer’s value
– Dereferencing can be explicit or implicit
– C++ uses an explicit operation via

* j = *ptr
sets j to the value located at ptr

Unit-2(PRINCIPLES OF

1-213
PROGRAMMING LANGUAGES)

Pointer Assignment Illustrated

The assignment operation j = *ptr

Unit-2(PRINCIPLES OF

1-214
PROGRAMMING LANGUAGES)

Problems with Pointers

 Dangling pointers (dangerous)
– A pointer points to a heap-dynamic variable that has been

deallocated
 Lost heap-dynamic variable

– An allocated heap-dynamic variable that is no longer accessible to the
user program (often called garbage)

 Pointer p1 is set to point to a newly created heap-dynamic variable

 Pointer p1 is later set to point to another newly created
heap-dynamic variable

 The process of losing heap-dynamic variables is called

memory leakage

Unit-2(PRINCIPLES OF

1-215
PROGRAMMING LANGUAGES)

Pointers in Ada

 Some dangling pointers are disallowed because
dynamic objects can be automatically
deallocated at the end of pointer's type scope

 The lost heap-dynamic variable problem is not

eliminated by Ada (possible with
UNCHECKED_DEALLOCATION)

Unit-2(PRINCIPLES OF

1-216
PROGRAMMING LANGUAGES)

Pointers in C and C++

 Extremely flexible but must be used with care

 Pointers can point at any variable regardless of when or where

it was allocated
 Used for dynamic storage management and addressing
 Pointer arithmetic is possible
 Explicit dereferencing and address-of operators
 Domain type need not be fixed (void *)

void * can point to any type and can be type

checked (cannot be de-referenced)

Unit-2(PRINCIPLES OF

1-217
PROGRAMMING LANGUAGES)

Pointer Arithmetic in C and C++

float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and
p[5]

*(p+i) is equivalent to stuff[i]
and p[i]

Unit-2(PRINCIPLES OF

1-218
PROGRAMMING LANGUAGES)

Reference Types

 C++ includes a special kind of pointer type
called a reference type that is used primarily
for formal parameters
– Advantages of both pass-by-reference and

pass-by-value
 Java extends C++’s reference variables and

allows them to replace pointers entirely
– References are references to objects, rather

than being addresses
 C# includes both the references of Java and

the pointers of C++

Unit-2(PRINCIPLES OF

1-219
PROGRAMMING LANGUAGES)

Evaluation of Pointers

 Dangling pointers and dangling objects are
problems as is heap management

 Pointers are like goto's--they widen the range
of cells that can be accessed by a variable

 Pointers or references are necessary for

dynamic data structures--so we can't design
a language without them

Unit-2(PRINCIPLES OF

1-220
PROGRAMMING LANGUAGES)

Representations of Pointers

 Large computers use single values

 Intel microprocessors use segment and

offset

Unit-2(PRINCIPLES OF

1-221
PROGRAMMING LANGUAGES)

Dangling Pointer Problem

 Tombstone: extra heap cell that is a pointer to the heap-
dynamic variable
– The actual pointer variable points only at tombstones
– When heap-dynamic variable de-allocated, tombstone remains but set

to nil
– Costly in time and space

. Locks-and-keys: Pointer values are represented as (key,
address) pairs

– Heap-dynamic variables are represented as variable plus cell for
integer lock value

– When heap-dynamic variable allocated, lock value is created and
placed in lock cell and key cell of pointer

Unit-2(PRINCIPLES OF

1-222
PROGRAMMING LANGUAGES)

Heap Management

 A very complex run-time process
 Single-size cells vs. variable-size cells
 Two approaches to reclaim garbage

– Reference counters (eager approach):
reclamation is gradual

– Mark-sweep (lazy approach): reclamation occurs
when the list of variable space becomes empty

Unit-2(PRINCIPLES OF

1-223
PROGRAMMING LANGUAGES)

Reference Counter

 Reference counters: maintain a counter in
every cell that store the number of
pointers currently pointing at the cell
– Disadvantages: space required, execution

time required, complications for cells
connected circularly

– Advantage: it is intrinsically incremental, so

significant delays in the application execution
are avoided

Unit-2(PRINCIPLES OF

1-224
PROGRAMMING LANGUAGES)

Mark-Sweep

 The run-time system allocates storage cells as requested
and disconnects pointers from cells as necessary; mark-
sweep then begins
– Every heap cell has an extra bit used by collection algorithm
– All cells initially set to garbage
– All pointers traced into heap, and reachable cells marked as not

garbage
– All garbage cells returned to list of available cells
– Disadvantages: in its original form, it was done too infrequently.

When done, it caused significant delays in application execution.
Contemporary mark-sweep algorithms avoid this by doing it more
often—called incremental mark-sweep

Unit-2(PRINCIPLES OF

1-225
PROGRAMMING LANGUAGES)

Marking Algorithm

Unit-2(PRINCIPLES OF

1-226
PROGRAMMING LANGUAGES)

Variable-Size Cells

 All the difficulties of single-size cells plus more
 Required by most programming languages

 If mark-sweep is used, additional problems

occur
– The initial setting of the indicators of all cells

in the heap is difficult
– The marking process in nontrivial
– Maintaining the list of available space is

another source of overhead

Unit-2(PRINCIPLES OF

1-227
PROGRAMMING LANGUAGES)

Type Checking

 Generalize the concept of operands and operators to include subprograms
and assignments

 Type checking is the activity of ensuring that the operands of an operator

are of compatible types

 A compatible type is one that is either legal for the operator, or is allowed

under language rules to be implicitly converted, by compiler- generated
code, to a legal type
– This automatic conversion is called a coercion.

 A type error is the application of an operator to an operand of an

inappropriate type

Unit-2(PRINCIPLES OF

1-228
PROGRAMMING LANGUAGES)

Type Checking (continued)

 If all type bindings are static, nearly all type
checking can be static

 If type bindings are dynamic, type checking

must be dynamic

 A programming language is strongly typed if

type errors are always detected

 Advantage of strong typing: allows the

detection of the misuses of variables that
result in type errors

Unit-2(PRINCIPLES OF

1-229
PROGRAMMING LANGUAGES)

Strong Typing

Language examples:

– FORTRAN 95 is not: parameters, EQUIVALENCE

– C and C++ are not: parameter type checking
can be avoided; unions are not type checked

– Ada is, almost (UNCHECKED CONVERSION

is loophole)

(Java and C# are similar to Ada)

Unit-2(PRINCIPLES OF

1-230
PROGRAMMING LANGUAGES)

Strong Typing (continued)

 Coercion rules strongly affect strong typing--
they can weaken it considerably (C++ versus
Ada)

 Although Java has just half the assignment

coercions of C++, its strong typing is still
far less effective than that of Ada

Unit-2(PRINCIPLES OF

1-231
PROGRAMMING LANGUAGES)

Name Type Equivalence

 Name type equivalence means the two
variables have equivalent types if they are in
either the same declaration or in declarations
that use the same type name

 Easy to implement but highly restrictive:
– Subranges of integer types are not equivalent

with integer types
– Formal parameters must be the same type as

their corresponding actual parameters

Unit-2(PRINCIPLES OF

1-232
PROGRAMMING LANGUAGES)

Structure Type Equivalence

 Structure type equivalence means that two
variables have equivalent types if their
types have identical structures

 More flexible, but harder to implement

Unit-2(PRINCIPLES OF

1-233
PROGRAMMING LANGUAGES)

Type Equivalence (continued)
 Consider the problem of two structured types:

– Are two record types equivalent if they are
structurally the same but use different
field names?

– Are two array types equivalent if they are the
same except that the subscripts are different?
(e.g. [1..10] and [0..9])

– Are two enumeration types equivalent if
their components are spelled differently?

– With structural type equivalence, you cannot
differentiate between types of the same structure
(e.g. different units of speed, both float)

Unit-2(PRINCIPLES OF

1-234
PROGRAMMING LANGUAGES)

Theory and Data Types

 Type theory is a broad area of study in
mathematics, logic, computer science, and
philosophy

 Two branches of type theory in computer
science:
– Practical – data types in commercial languages
– Abstract – typed lambda calculus

 A type system is a set of types and the rules

that govern their use in programs

Unit-2(PRINCIPLES OF

1-235
PROGRAMMING LANGUAGES)

Theory and Data Types (continued)

 Formal model of a type system is a set of
types and a collection of functions that
define the type rules
– Either an attribute grammar or a type map

could be used for the functions
– Finite mappings – model arrays and functions
– Cartesian products – model tuples and records
– Set unions – model union types
– Subsets – model subtypes

Unit-2(PRINCIPLES OF

1-236
PROGRAMMING LANGUAGES)

Introduction

 Imperative languages are abstractions of von
Neumann architecture
– Memory
– Processor

 Variables characterized by attributes
– To design a type, must consider scope,

lifetime, type checking, initialization, and type
compatibility

Unit-2(PRINCIPLES OF

1-237
PROGRAMMING LANGUAGES)

Names

 Design issues for names:
– Are names case sensitive?
– Are special words reserved words or keywords?

Unit-2(PRINCIPLES OF

1-238
PROGRAMMING LANGUAGES)

Names (continued)

 Length
– If too short, they cannot be connotative
– Language examples:

 FORTRAN 95: maximum of 31

 C99: no limit but only the first 63 are significant;
also, external names are limited to a maximum of 31

 C#, Ada, and Java: no limit, and all are significant
 C++: no limit, but implementers often impose one

Unit-2(PRINCIPLES OF

1-239
PROGRAMMING LANGUAGES)

Names (continued)

 Special characters
– PHP: all variable names must begin with

dollar signs
– Perl: all variable names begin with special

characters, which specify the variable’s type
– Ruby: variable names that begin with @ are

instance variables; those that begin with @@
are class variables

Unit-2(PRINCIPLES OF

1-240
PROGRAMMING LANGUAGES)

Names (continued)

 Case sensitivity
– Disadvantage: readability (names that look

alike are different)
 Names in the C-based languages are case sensitive
 Names in others are not
 Worse in C++, Java, and C# because predefined

names
are mixed case (e.g.
IndexOutOfBoundsException)

Unit-2(PRINCIPLES OF

1-241
PROGRAMMING LANGUAGES)

Names (continued)

 Special words
– An aid to readability; used to delimit or

separate statement clauses

 A keyword is a word that is special only in certain
contexts, e.g., in Fortran

– Real VarName (Real is a data type followed with a name, therefore
Real is a keyword)

– Real = 3.4 (Real is a variable)

– A reserved word is a special word that cannot be used
as a user-defined name

– Potential problem with reserved words: If there are
too many, many collisions occur (e.g., COBOL has 300
reserved words!)

Unit-2(PRINCIPLES OF

1-242
PROGRAMMING LANGUAGES)

Variables

 A variable is an abstraction of a memory cell

 Variables can be characterized as a sextuple of

attributes:
– Name
– Address
– Value
– Type
– Lifetime
– Scope

Unit-2(PRINCIPLES OF

1-243
PROGRAMMING LANGUAGES)

Variables Attributes

 Name - not all variables have them
 Address - the memory address with which it is associated

– A variable may have different addresses at different times during
execution

– A variable may have different addresses at different places in a
program

– If two variable names can be used to access the same memory
location, they are called aliases

– Aliases are created via pointers, reference variables, C and C++ unions
– Aliases are harmful to readability (program

readers must remember all of them)

Unit-2(PRINCIPLES OF

1-244
PROGRAMMING LANGUAGES)

Variables Attributes (continued)

 Type - determines the range of values of variables and the set
of operations that are defined for values of that type; in the
case of floating point, type also determines the precision

 Value - the contents of the location with which the variable is

associated
 The l-value of a variable is its address
 The r-value of a variable is its value

 Abstract memory cell - the physical cell or collection of cells

associated with a variable

Unit-2(PRINCIPLES OF

1-245
PROGRAMMING LANGUAGES)

The Concept of Binding

A binding is an association, such as
between an attribute and an entity, or
between an operation and a symbol

 Binding time is the time at which a binding
takes place.

Unit-2(PRINCIPLES OF

1-246
PROGRAMMING LANGUAGES)

Possible Binding Times

 Language design time -- bind operator
symbols to operations

 Language implementation time-- bind floating

point type to a representation

 Compile time -- bind a variable to a type in C

or Java
 Load time -- bind a C or C++ static variable

to a memory cell)

 Runtime -- bind a nonstatic local variable to a

memory cell

Unit-2(PRINCIPLES OF

1-247
PROGRAMMING LANGUAGES)

Static and Dynamic Binding

 A binding is static if it first occurs before run
time and remains unchanged throughout
program execution.

 A binding is dynamic if it first occurs during

execution or can change during execution of
the program

Unit-2(PRINCIPLES OF

1-248
PROGRAMMING LANGUAGES)

Type Binding

 How is a type specified?
 When does the binding take place?

 If static, the type may be specified by either

an explicit or an implicit declaration

Unit-2(PRINCIPLES OF

1-249
PROGRAMMING LANGUAGES)

Explicit/Implicit Declaration

 An explicit declaration is a program statement
used for declaring the types of variables

 An implicit declaration is a default mechanism
for specifying types of variables (the first
appearance of the variable in the program)

 FORTRAN, BASIC, and Perl provide implicit
declarations (Fortran has both explicit and
implicit)
– Advantage: writability
– Disadvantage: reliability (less trouble with Perl)

Unit-2(PRINCIPLES OF

1-250
PROGRAMMING LANGUAGES)

Dynamic Type Binding

 Dynamic Type Binding (JavaScript and PHP)

 Specified through an assignment statement

e.g., JavaScript
list = [2, 4.33, 6, 8];

list = 17.3;
– Advantage: flexibility (generic program units)
– Disadvantages:

 High cost (dynamic type checking and interpretation)
 Type error detection by the compiler is difficult

Unit-2(PRINCIPLES OF

1-251
PROGRAMMING LANGUAGES)

Variable Attributes (continued)

 Type Inferencing (ML, Miranda, and Haskell)
– Rather than by assignment statement, types are

determined (by the compiler) from the context
of the reference

 Storage Bindings & Lifetime
– Allocation - getting a cell from some pool

of available cells
– Deallocation - putting a cell back into the pool

 The lifetime of a variable is the time during
which it is bound to a particular memory cell

Unit-2(PRINCIPLES OF

1-252
PROGRAMMING LANGUAGES)

Categories of Variables by Lifetimes

 Static--bound to memory cells before
execution begins and remains bound to the
same memory cell throughout execution, e.g.,
C and C++ static variables
– Advantages: efficiency (direct addressing),

history-sensitive subprogram support
– Disadvantage: lack of flexibility (no recursion)

Unit-2(PRINCIPLES OF

1-253
PROGRAMMING LANGUAGES)

Categories of Variables by Lifetimes

 Stack-dynamic--Storage bindings are created for variables
when their declaration statements are elaborated.

(A declaration is elaborated when the executable
code associated with it is executed)

 If scalar, all attributes except address are statically bound
– local variables in C subprograms and Java methods

 Advantage: allows recursion; conserves storage
 Disadvantages:

– Overhead of allocation and deallocation
– Subprograms cannot be history sensitive
– Inefficient references (indirect addressing)

Unit-2(PRINCIPLES OF

1-254
PROGRAMMING LANGUAGES)

Categories of Variables by Lifetimes

 Explicit heap-dynamic -- Allocated and deallocated by explicit
directives, specified by the programmer, which take effect
during execution

 Referenced only through pointers or references, e.g. dynamic

objects in C++ (via new and delete), all objects in Java
 Advantage: provides for dynamic storage management
 Disadvantage: inefficient and unreliable

Unit-2(PRINCIPLES OF

1-255
PROGRAMMING LANGUAGES)

Categories of Variables by Lifetimes

 Implicit heap-dynamic--Allocation and
deallocation caused by assignment
statements
– all variables in APL; all strings and arrays in

Perl, JavaScript, and PHP
 Advantage: flexibility (generic code)
 Disadvantages:

– Inefficient, because all attributes are dynamic
– Loss of error detection

Unit-2(PRINCIPLES OF

1-256
PROGRAMMING LANGUAGES)

Variable Attributes: Scope

 The scope of a variable is the range of
statements over which it is visible

 The nonlocal variables of a program unit are

those that are visible but not declared there

 The scope rules of a language determine how

references to names are associated with
variables

Unit-2(PRINCIPLES OF

1-257
PROGRAMMING LANGUAGES)

Static Scope

 Based on program text

 To connect a name reference to a variable, you (or the

compiler) must find the declaration
 Search process: search declarations, first locally, then in

increasingly larger enclosing scopes, until one is found for
the given name

 Enclosing static scopes (to a specific scope) are called its

static ancestors; the nearest static ancestor is called a
static parent

 Some languages allow nested subprogram definitions, which

create nested static scopes (e.g., Ada, JavaScript, Fortran
2003, and PHP)

Unit-2(PRINCIPLES OF

1-258
PROGRAMMING LANGUAGES)

Scope (continued)

 Variables can be hidden from a unit by having
a "closer" variable with the same name

 Ada allows access to these "hidden" variables
– E.g., unit.name

Unit-2(PRINCIPLES OF

1-259
PROGRAMMING LANGUAGES)

Blocks

– A method of creating static scopes inside program units--from

ALGOL 60

– Example in C:

void sub() {

int count;

while (...) {

int count;

count++;

...

}

…

}

 Note: legal in C and C++, but not in

Java and C# - too error-prone

Unit-2(PRINCIPLES OF

1-260
PROGRAMMING LANGUAGES)

Declaration Order

 C99, C++, Java, and C# allow variable declarations
to appear anywhere a statement can appear
– In C99, C++, and Java, the scope of all local variables

is from the declaration to the end of the block
– In C#, the scope of any variable declared in a block

is the whole block, regardless of the position of the
declaration in the block

 However, a variable still must be declared before it can
be used

Unit-2(PRINCIPLES OF

1-261
PROGRAMMING LANGUAGES)

Declaration Order (continued)

 In C++, Java, and C#, variables can be declared
in for statements
– The scope of such variables is restricted to the
for construct

Unit-2(PRINCIPLES OF

1-262
PROGRAMMING LANGUAGES)

Global Scope

 C, C++, PHP, and Python support a program
structure that consists of a sequence of
function definitions in a file
– These languages allow variable declarations

to appear outside function definitions

 C and C++have both declarations (just attributes)

and definitions (attributes and storage)
– A declaration outside a function definition

specifies that it is defined in another file

Unit-2(PRINCIPLES OF

1-263
PROGRAMMING LANGUAGES)

Global Scope (continued)

 PHP
– Programs are embedded in XHTML markup

documents, in any number of fragments, some
statements and some function definitions

– The scope of a variable (implicitly) declared in
a function is local to the function

– The scope of a variable implicitly declared outside
functions is from the declaration to the end of the

program, but skips over any intervening functions
 Global variables can be accessed in a function through

the $GLOBALS array or by declaring it global

Unit-2(PRINCIPLES OF

1-264
PROGRAMMING LANGUAGES)

Global Scope (continued)

 Python
– A global variable can be referenced in functions,

but can be assigned in a function only if it has
been declared to be global in the function

Unit-2(PRINCIPLES OF

1-265
PROGRAMMING LANGUAGES)

Evaluation of Static Scoping

 Works well in many situations
 Problems:

– In most cases, too much access is possible
– As a program evolves, the initial structure is

destroyed and local variables often become
global; subprograms also gravitate toward
become global, rather than nested

Unit-2(PRINCIPLES OF

1-266
PROGRAMMING LANGUAGES)

Dynamic Scope

 Based on calling sequences of program units,
not their textual layout (temporal versus
spatial)

 References to variables are connected to

declarations by searching back through
the chain of subprogram calls that forced
execution to this point

Unit-2(PRINCIPLES OF

1-267
PROGRAMMING LANGUAGES)

Scope Example

Big

 declaration of X
Sub1
 declaration of X -
...
call Sub2
...

Sub2

...

- reference to X -

...

...

call Sub1
…

Big calls Sub1

Sub1 calls

Sub2

Sub2 uses X

Unit-2(PRINCIPLES OF

1-268
PROGRAMMING LANGUAGES)

Scope Example

 Static scoping
– Reference to X is to Big's X

 Dynamic scoping
– Reference to X is to Sub1's X

 Evaluation of Dynamic Scoping:
– Advantage: convenience
– Disadvantages:

 While a subprogram is executing, its variables are
visible to all subprograms it calls

 Impossible to statically type check
 Poor readability- it is not possible to statically

determine the type of a variable

Unit-2(PRINCIPLES OF

1-269
PROGRAMMING LANGUAGES)

Scope and Lifetime

 Scope and lifetime are sometimes closely
related, but are different concepts

 Consider a static variable in a C or C++
function

Unit-2(PRINCIPLES OF

1-270
PROGRAMMING LANGUAGES)

Referencing Environments

 The referencing environment of a statement is the collection
of all names that are visible in the statement

 In a static-scoped language, it is the local variables plus all of

the visible variables in all of the enclosing scopes

 A subprogram is active if its execution has begun but has not

yet terminated

 In a dynamic-scoped language, the referencing environment is

the local variables plus all visible variables in all active
subprograms

Unit-2(PRINCIPLES OF

1-271
PROGRAMMING LANGUAGES)

Named Constants

 A named constant is a variable that is bound to a value only
when it is bound to storage

 Advantages: readability and modifiability
 Used to parameterize programs
 The binding of values to named constants can be either static

(called manifest constants) or dynamic
 Languages:

– FORTRAN 95: constant-valued expressions
– Ada, C++, and Java: expressions of any kind
– C# has two kinds, readonly and const

 the values of const named constants are bound at
compile time

 The values of readonly named constants
are dynamically bound

Unit-2(PRINCIPLES OF

1-272
PROGRAMMING LANGUAGES)

Summary

 Case sensitivity and the relationship of names to special
words represent design issues of names

 Variables are characterized by the sextuples: name, address,

value, type, lifetime, scope
 Binding is the association of attributes with program entities

 Scalar variables are categorized as: static, stack dynamic,

explicit heap dynamic, implicit heap dynamic
 Strong typing means detecting all type errors

Unit-2(PRINCIPLES OF

1-273
PROGRAMMING LANGUAGES)

 Introduction
 Arithmetic Expressions
 Overloaded Operators
 Type Conversions
 Relational and Boolean Expressions
 Short-Circuit Evaluation
 Assignment Statements
 Mixed-Mode Assignment

Unit-2(PRINCIPLES OF

1-274
PROGRAMMING LANGUAGES)

Introduction

 Expressions are the fundamental means of
specifying computations in a
programming language

 To understand expression evaluation, need to

be familiar with the orders of operator and
operand evaluation

 Essence of imperative languages is dominant

role of assignment statements

Unit-2(PRINCIPLES OF

1-275
PROGRAMMING LANGUAGES)

Arithmetic Expressions

 Arithmetic evaluation was one of the
motivations for the development of the
first programming languages

 Arithmetic expressions consist of operators,

operands, parentheses, and function calls

Unit-2(PRINCIPLES OF

1-276
PROGRAMMING LANGUAGES)

Arithmetic Expressions: Design Issues

 Design issues for arithmetic expressions
– Operator precedence rules?
– Operator associativity rules?
– Order of operand evaluation?
– Operand evaluation side effects?
– Operator overloading?
– Type mixing in expressions?

Unit-2(PRINCIPLES OF

1-277
PROGRAMMING LANGUAGES)

Arithmetic Expressions: Operators

 A unary operator has one operand
 A binary operator has two operands
 A ternary operator has three operands

Unit-2(PRINCIPLES OF

1-278
PROGRAMMING LANGUAGES)

Arithmetic Expressions: Operator Precedence
Rules

 The operator precedence rules for
expression evaluation define the order
in which “adjacent” operators of
different precedence levels are evaluated

 Typical precedence levels
– parentheses
– unary operators
– ** (if the language supports it)
– *, /
– +, -

Unit-2(PRINCIPLES OF

1-279
PROGRAMMING LANGUAGES)

Arithmetic Expressions: Operator Associativity
Rule

 The operator associativity rules for expression evaluation
define the order in which adjacent operators with the
same precedence level are evaluated

 Typical associativity rules
– Left to right, except **, which is right to left
– Sometimes unary operators associate right to left (e.g., in FORTRAN)

 APL is different; all operators have equal precedence and all
operators associate right to left

 Precedence and associativity rules can be overriden with
parentheses

Unit-2(PRINCIPLES OF

1-280
PROGRAMMING LANGUAGES)

Ruby Expressions

 All arithmetic, relational, and assignment
operators, as well as array indexing, shifts,
and bit-wise logic operators, are implemented
as methods

 One result of this is that these operators can

all be overriden by application programs

Unit-2(PRINCIPLES OF

1-281
PROGRAMMING LANGUAGES)

Arithmetic Expressions: Conditional Expressions

 Conditional Expressions
– C-based languages (e.g., C, C++)
– An example:

average = (count == 0)? 0 : sum / count

– Evaluates as if written like

if (count == 0)

average = 0

else

average = sum /count

Unit-2(PRINCIPLES OF

1-282
PROGRAMMING LANGUAGES)

Arithmetic Expressions: Operand Evaluation
Order

 Operand evaluation order
 Variables: fetch the value from memory

 Constants: sometimes a fetch from

memory; sometimes the constant is in the
machine language instruction

 Parenthesized expressions: evaluate all

operands and operators first

 The most interesting case is when an operand
is a function call

Unit-2(PRINCIPLES OF

1-283
PROGRAMMING LANGUAGES)

Arithmetic Expressions: Potentials for
Side Effects

 Functional side effects: when a function changes a two-way
parameter or a non-local variable

 Problem with functional side effects:
– When a function referenced in an expression alters another operand

of the expression; e.g., for a parameter change:

a = 10;

/* assume that fun changes its parameter */

b = a + fun(&a);

Unit-2(PRINCIPLES OF

1-284
PROGRAMMING LANGUAGES)

Functional Side Effects

 Two possible solutions to the problem
 Write the language definition to disallow functional side effects

 No two-way parameters in functions
 No non-local references in functions
 Advantage: it works!

 Disadvantage: inflexibility of one-way parameters and lack of

non-local references

 Write the language definition to demand that operand
evaluation order be fixed
 Disadvantage: limits some compiler optimizations

 Java requires that operands appear to be evaluated in left-to-

right order

Unit-2(PRINCIPLES OF

1-285
PROGRAMMING LANGUAGES)

Overloaded Operators

 Use of an operator for more than one purpose
is called operator overloading

 Some are common (e.g., + for int and
float)

 Some are potential trouble (e.g., * in C and
C++)
– Loss of compiler error detection (omission of

an operand should be a detectable error)
– Some loss of readability

Unit-2(PRINCIPLES OF

1-286
PROGRAMMING LANGUAGES)

Overloaded Operators (continued)

 C++ and C# allow user-defined overloaded
operators

 Potential problems:
– Users can define nonsense operations
– Readability may suffer, even when the

operators make sense

Unit-2(PRINCIPLES OF

1-287
PROGRAMMING LANGUAGES)

Type Conversions

 A narrowing conversion is one that converts
an object to a type that cannot include all of
the values of the original type e.g., float to
int

 A widening conversion is one in which an

object is converted to a type that can include
at least approximations to all of the values of
the original type e.g., int to
float

Unit-2(PRINCIPLES OF

1-288
PROGRAMMING LANGUAGES)

Type Conversions: Mixed Mode

 A mixed-mode expression is one that has operands of
different types

 A coercion is an implicit type conversion
 Disadvantage of coercions:

– They decrease in the type error detection ability of the compiler

 In most languages, all numeric types are coerced in

expressions, using widening conversions
 In Ada, there are virtually no coercions in expressions

Unit-2(PRINCIPLES OF

1-289
PROGRAMMING LANGUAGES)

Explicit Type Conversions

 Called casting in C-based languages
 Examples

– C: (int)angle
– Ada: Float (Sum)

Note that Ada’s syntax is similar to that
of function calls

Unit-2(PRINCIPLES OF

1-290
PROGRAMMING LANGUAGES)

Type Conversions: Errors in Expressions

 Causes

– Inherent limitations of
arithmetic e.g., division by zero

– Limitations of computer arithmetic e.g. overflow

 Often ignored by the run-time system

Unit-2(PRINCIPLES OF

1-291
PROGRAMMING LANGUAGES)

Relational and Boolean Expressions

 Relational Expressions
– Use relational operators and operands of

various types
– Evaluate to some Boolean representation
– Operator symbols used vary somewhat

among languages (!=, /=, ~=, .NE., <>, #)
 JavaScript and PHP have two additional

relational operator, === and !==

 Similar to their cousins, == and !=, except that they do
not coerce their operands

Unit-2(PRINCIPLES OF

1-292
PROGRAMMING LANGUAGES)

Relational and Boolean Expressions

 Boolean Expressions
– Operands are Boolean and the result is Boolean
– Example operators

FORTRAN 77 FORTRAN 90 C Ada

.AND. and && and

.OR. or || or

.NOT. not ! not

xor

Unit-2(PRINCIPLES OF

1-293
PROGRAMMING LANGUAGES)

Relational and Boolean Expressions: No Boolean
Type in C

 C89 has no Boolean type--it uses int type
with 0 for false and nonzero for true

 One odd characteristic of C’s expressions:
a < b < c is a legal expression, but the result
is not what you might expect:
– Left operator is evaluated, producing 0 or 1
– The evaluation result is then compared with

the third operand (i.e., c)

Unit-2(PRINCIPLES OF

1-294
PROGRAMMING LANGUAGES)

Short Circuit Evaluation

 An expression in which the result is
determined without evaluating all of
the operands and/or operators

 Example: (13*a) * (b/13–1)
If a is zero, there is no need to evaluate (b/13-1)

 Problem with non-short-circuit evaluation
index = 1;

while (index <= length) && (LIST[index] !=

value) index++;

– When index=length, LIST [index] will cause an indexing
problem (assuming LIST has length -1 elements)

Unit-2(PRINCIPLES OF

1-295
PROGRAMMING LANGUAGES)

Short Circuit Evaluation
(continued)

 C, C++, and Java: use short-circuit evaluation for the usual
Boolean operators (&& and ||), but also provide bitwise
Boolean operators that are not short circuit (& and |)

 Ada: programmer can specify either (short-circuit is specified

with and then and or else)

 Short-circuit evaluation exposes the potential problem of side

effects in expressions
e.g. (a > b) || (b++ / 3)

Unit-2(PRINCIPLES OF

1-296
PROGRAMMING LANGUAGES)

Assignment Statements

 The general syntax

<target_var> <assign_operator> <expression>

 The assignment operator

 FORTRAN, BASIC, the C-based
languages := ALGOLs, Pascal, Ada

 = can be bad when it is overloaded for the

relational operator for equality (that’s why the
C-based languages use == as the
relational operator)

Unit-2(PRINCIPLES OF

1-297
PROGRAMMING LANGUAGES)

Assignment Statements: Conditional Targets

 Conditional targets (Perl)
($flag ? $total : $subtotal) = 0

Which is equivalent to

if ($flag){

$total = 0

} else {

$subtotal = 0

}

Unit-2(PRINCIPLES OF

1-298
PROGRAMMING LANGUAGES)

Assignment Statements: Compound Operators

 A shorthand method of specifying a
commonly needed form of assignment

 Introduced in ALGOL; adopted by C
 Example

a = a + b

is written as

a += b

Unit-2(PRINCIPLES OF

1-299
PROGRAMMING LANGUAGES)

Assignment Statements: Unary Assignment
Operators

 Unary assignment operators in C-based
languages combine increment and
decrement operations with assignment

 Examples

sum = ++count (count incremented, added to
sum)

sum = count++ (count incremented, added
to sum)

count++ (count incremented)

-count++ (count incremented then negated)

Unit-2(PRINCIPLES OF

1-300
PROGRAMMING LANGUAGES)

Assignment as an Expression

 In C, C++, and Java, the assignment statement
produces a result and can be used as operands

 An example:

while ((ch = getchar())!=

EOF){…}

ch = getchar() is carried out; the result
(assigned to ch) is used as a conditional value
for the while statement

Unit-2(PRINCIPLES OF

1-301
PROGRAMMING LANGUAGES)

List Assignments

 Perl and Ruby support list assignments

e.g.,

($first, $second, $third) = (20, 30, 40);

Unit-2(PRINCIPLES OF

1-302
PROGRAMMING LANGUAGES)

Mixed-Mode Assignment

 Assignment statements can also be mixed-
mode

 In Fortran, C, and C++, any numeric type

value can be assigned to any numeric type
variable

 In Java, only widening assignment

coercions are done
 In Ada, there is no assignment coercion

Unit-2(PRINCIPLES OF

1-303
PROGRAMMING LANGUAGES)

Summary

 Expressions
 Operator precedence and associativity
 Operator overloading
 Mixed-type expressions
 Various forms of assignment

Unit-2(PRINCIPLES OF

1-304
PROGRAMMING LANGUAGES)

 Introduction
 Selection Statements
 Iterative Statements
 Unconditional Branching
 Guarded Commands
 Conclusions

Unit-2(PRINCIPLES OF

1-305
PROGRAMMING LANGUAGES)

Levels of Control Flow

– Within expressions (Chapter 7)

– Among program units (Chapter 9)

– Among program statements (this chapter)

Unit-2(PRINCIPLES OF

1-306
PROGRAMMING LANGUAGES)

Control Statements: Evolution

 FORTRAN I control statements were based
directly on IBM 704 hardware

 Much research and argument in the 1960s

about the issue
– One important result: It was proven that all

algorithms represented by flowcharts can be
coded with only two-way selection and
pretest logical loops

Unit-2(PRINCIPLES OF

1-307
PROGRAMMING LANGUAGES)

Control Structure

 A control structure is a control statement and
the statements whose execution it controls

 Design question
– Should a control structure have multiple entries?

Unit-2(PRINCIPLES OF

1-308
PROGRAMMING LANGUAGES)

Selection Statements

 A selection statement provides the means of
choosing between two or more paths of
execution

 Two general categories:
– Two-way selectors
– Multiple-way selectors

Unit-2(PRINCIPLES OF

1-309
PROGRAMMING LANGUAGES)

Two-Way Selection Statements

 General form:
if control_expression

then clause
else clause

 Design Issues:
– What is the form and type of the control

expression?
– How are the then and else clauses specified?
– How should the meaning of nested selectors be

specified?

Unit-2(PRINCIPLES OF

1-310
PROGRAMMING LANGUAGES)

The Control Expression

 If the then reserved word or some other
syntactic marker is not used to introduce the
then clause, the control expression is placed in
parentheses

 In C89, C99, Python, and C++, the control

expression can be arithmetic

 In languages such as Ada, Java, Ruby, and C#,

the control expression must be Boolean

Unit-2(PRINCIPLES OF

1-311
PROGRAMMING LANGUAGES)

Clause Form

 In many contemporary languages, the then and else clauses
can be single statements or compound statements

 In Perl, all clauses must be delimited by braces (they must be

compound)

 In Fortran 95, Ada, and Ruby, clauses are statement

sequences
 Python uses indentation to define clauses

if x > y :

x = y

print "case 1"

Unit-2(PRINCIPLES OF

1-312
PROGRAMMING LANGUAGES)

Nesting Selectors

 Java example

if (sum == 0)

if (count == 0)

result = 0;

else result = 1;

 Which if gets the else?

 Java's static semantics rule: else matches

with the nearest if

Unit-2(PRINCIPLES OF

1-313
PROGRAMMING LANGUAGES)

Nesting Selectors (continued)

 To force an alternative semantics, compound

statements may be used:

if (sum == 0) {

if (count == 0)

result = 0;

}

else result = 1;

 The above solution is used in C, C++, and C#
 Perl requires that all then and else clauses to be compound

Unit-2(PRINCIPLES OF

1-314
PROGRAMMING LANGUAGES)

Nesting Selectors (continued)

 Statement sequences as clauses: Ruby

if sum == 0 then

if count == 0 then

result = 0

else

result = 1

end

end

Unit-2(PRINCIPLES OF

1-315
PROGRAMMING LANGUAGES)

Nesting Selectors (continued)

 Python

if sum == 0 :

if count == 0 :

result = 0

else :

result = 1

Unit-2(PRINCIPLES OF

1-316
PROGRAMMING LANGUAGES)

Multiple-Way Selection Statements

 Allow the selection of one of any number of statements or
statement groups

 Design Issues:
 What is the form and type of the control expression?
 How are the selectable segments specified?

 Is execution flow through the structure restricted to include just

a single selectable segment?
 How are case values specified?
 What is done about unrepresented expression values?

Unit-2(PRINCIPLES OF

1-317
PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

 C, C++, and Java

switch (expression) {

case const_expr_1: stmt_1;

…

case const_expr_n: stmt_n;

[default: stmt_n+1]

}

Unit-2(PRINCIPLES OF

1-318
PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

 Design choices for C’s switch statement
 Control expression can be only an integer type

 Selectable segments can be statement sequences, blocks,

or compound statements

 Any number of segments can be executed in one execution
of the construct (there is no implicit branch at the end of
selectable segments)

 default clause is for unrepresented values (if there is
no default, the whole statement does nothing)

Unit-2(PRINCIPLES OF

1-319
PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

 C#
– Differs from C in that it has a static semantics

rule that disallows the implicit execution of more
than one segment

– Each selectable segment must end with
an unconditional branch (goto or break)

– Also, in C# the control expression and the

case constants can be strings
Unit-2(PRINCIPLES OF

1-320
PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

 Ada

case expression is

when choice list => stmt_sequence;

…

when choice list => stmt_sequence;

when others => stmt_sequence;]

end case;

 More reliable than C’s switch (once a stmt_sequence
execution is completed, control is passed to the
first statement after the case statement

Unit-2(PRINCIPLES OF

1-321
PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

 Ada design choices:
 Expression can be any ordinal type
 Segments can be single or compound

 Only one segment can be executed per execution of the

construct
 Unrepresented values are not allowed

 Constant List Forms:
 A list of constants
 Can include:

 Subranges
 Boolean OR operators (|)

Unit-2(PRINCIPLES OF

1-322
PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

 Ruby has two forms of case statements

1. One form uses when conditions

leap = case

when year % 400 == 0 then true

when year % 100 == 0 then

false else year % 4 == 0

end

2. The other uses a case value and when values
case in_val

when -1 then neg_count++

when 0 then zero_count++

when 1 then pos_count++

else puts "Error – in_val is out of range"

end

Unit-2(PRINCIPLES OF

1-323
PROGRAMMING LANGUAGES)

Multiple-Way Selection Using if

 Multiple Selectors can appear as direct
extensions to two-way selectors, using else-if
clauses, for example in Python:

if count < 10 :

bag1 = True

elif count < 100 :

bag2 = True

elif count < 1000 :

bag3 = True

Unit-2(PRINCIPLES OF

1-324
PROGRAMMING LANGUAGES)

Multiple-Way Selection Using if

 The Python example can be written as a Ruby
case

case

when count < 10 then bag1 = true

when count < 100 then bag2 = true

when count < 1000 then bag3 = true

end

Unit-2(PRINCIPLES OF

1-325
PROGRAMMING LANGUAGES)

Iterative Statements

 The repeated execution of a statement or
compound statement is accomplished
either by iteration or recursion

 General design issues for iteration control

statements:
 How is iteration controlled?
 Where is the control mechanism in the loop?

Unit-2(PRINCIPLES OF

1-326
PROGRAMMING LANGUAGES)

Counter-Controlled Loops

 A counting iterative statement has a loop
variable, and a means of specifying the
initial and terminal, and stepsize values

 Design Issues:
 What are the type and scope of the loop variable?

 Should it be legal for the loop variable or loop

parameters to be changed in the loop body, and if
so, does the change affect loop control?

 Should the loop parameters be evaluated only
once, or once for every iteration?

Unit-2(PRINCIPLES OF

1-327
PROGRAMMING LANGUAGES)

Iterative Statements: Examples

 FORTRAN 95 syntax

DO label var = start, finish [, stepsize]

 Stepsize can be any value but zero
 Parameters can be expressions
 Design choices:

 Loop variable must be INTEGER

 The loop variable cannot be changed in the loop, but the
parameters can; because they are evaluated only once, it does not
affect loop control

 Loop parameters are evaluated only once

Unit-2(PRINCIPLES OF

1-328
PROGRAMMING LANGUAGES)

Iterative Statements: Examples

 FORTRAN 95 : a second form:

[name:] Do variable = initial, terminal [,stepsize]

…

End Do [name]

 Cannot branch into either of Fortran’s Do statements

Unit-2(PRINCIPLES OF

1-329
PROGRAMMING LANGUAGES)

Iterative Statements: Examples

 Ada
for var in [reverse] discrete_range loop

...

end loop

 Design choices:
 Type of the loop variable is that of the discrete range (A

discrete range is a sub-range of an integer or
enumeration type).

 Loop variable does not exist outside the loop
 The loop variable cannot be changed in the loop, but the

discrete range can; it does not affect loop control
 The discrete range is evaluated just once

 Cannot branch into the loop body

Unit-2(PRINCIPLES OF

1-330
PROGRAMMING LANGUAGES)

Iterative Statements: Examples

 C-based languages

for ([expr_1] ; [expr_2] ; [expr_3]) statement

 The expressions can be whole statements, or even statement
sequences, with the statements separated by commas
– The value of a multiple-statement expression is the value of the last statement

in the expression
– If the second expression is absent, it is an infinite loop

 Design choices:
 There is no explicit loop variable
 Everything can be changed in the loop
 The first expression is evaluated once, but the other two are evaluated

with each iteration

Unit-2(PRINCIPLES OF

1-331
PROGRAMMING LANGUAGES)

Iterative Statements: Examples

 C++ differs from C in two ways:
 The control expression can also be Boolean

 The initial expression can include variable

definitions (scope is from the definition to
the end of the loop body)

 Java and C#

– Differs from C++ in that the control expression
must be Boolean

Unit-2(PRINCIPLES OF

1-332
PROGRAMMING LANGUAGES)

Iterative Statements: Examples

 Python
for loop_variable in object:

 loop body
[else:
 else clause]

– The object is often a range, which is either a list of values in brackets
([2, 4, 6]), or a call to the range function (range(5), which returns 0,
1, 2, 3, 4

– The loop variable takes on the values specified in the given range, one
for each iteration

– The else clause, which is optional, is executed if the loop terminates
normally

Unit-2(PRINCIPLES OF

1-333
PROGRAMMING LANGUAGES)

Iterative Statements:
Logically-Controlled Loops

 Repetition control is based on a Boolean
expression

 Design issues:
– Pretest or posttest?
– Should the logically controlled loop be a special

case of the counting loop statement or a
separate statement?

Unit-2(PRINCIPLES OF

1-334
PROGRAMMING LANGUAGES)

Iterative Statements: Logically-Controlled
Loops: Examples

 C and C++ have both pretest and posttest
forms, in which the control expression can be
arithmetic:

while (ctrl_expr) do

loop body loop body

while (ctrl_expr)

 Java is like C and C++, except the control
expression must be Boolean (and the body can
only be entered at the beginning -- Java has
no goto

Unit-2(PRINCIPLES OF

1-335
PROGRAMMING LANGUAGES)

Iterative Statements: Logically-Controlled
Loops: Examples

 Ada has a pretest version, but no posttest

 FORTRAN 95 has neither

 Perl and Ruby have two pretest logical loops,
while and until. Perl also has two
posttest loops

Unit-2(PRINCIPLES OF

1-336
PROGRAMMING LANGUAGES)

Iterative Statements: User-Located Loop
Control Mechanisms

 Sometimes it is convenient for the
programmers to decide a location for
loop control (other than top or bottom of
the loop)

 Simple design for single loops (e.g., break)
 Design issues for nested loops

 Should the conditional be part of the exit?

 Should control be transferable out of more
than one loop?

Unit-2(PRINCIPLES OF

1-337
PROGRAMMING LANGUAGES)

Iterative Statements: User-Located Loop Control
Mechanisms break and continue

 C , C++, Python, Ruby, and C# have unconditional
unlabeled exits (break)

 Java and Perl have unconditional labeled exits

(break in Java, last in Perl)

 C, C++, and Python have an unlabeled control

statement, continue, that skips the remainder of
the current iteration, but does not exit the loop

 Java and Perl have labeled versions of continue

Unit-2(PRINCIPLES OF

1-338
PROGRAMMING LANGUAGES)

Iterative Statements: Iteration Based on Data
Structures

 Number of elements of in a data structure
control loop iteration

 Control mechanism is a call to an iterator
function that returns the next element in
some chosen order, if there is one; else loop is
terminate

 C's for can be used to build a user-defined
iterator:
for (p=root; p==NULL;

traverse(p)){
}

Unit-2(PRINCIPLES OF

1-339
PROGRAMMING LANGUAGES)

Iterative Statements: Iteration Based on Data
Structures (continued)

PHP

 current points at one element of the array
 next moves current to the next element
 reset moves current to the first element

 Java
 For any collection that implements the Iterator interface
 next moves the pointer into the collection
 hasNext is a predicate
 remove deletes an element

 Perl has a built-in iterator for arrays and hashes, foreach

Unit-2(PRINCIPLES OF

1-340
PROGRAMMING LANGUAGES)

Iterative Statements: Iteration Based
on Data Structures (continued)

 Java 5.0 (uses for, although it is called foreach)

- For arrays and any other class that implements

Iterable interface, e.g., ArrayList

for (String myElement : myList) { … }

 C#’s foreach statement iterates on the elements of arrays and

other collections:

Strings[] = strList = {"Bob", "Carol",

"Ted"}; foreach (Strings name in strList)

Console.WriteLine ("Name: {0}", name);

 The notation {0} indicates the position in the string to be displayed

Unit-2(PRINCIPLES OF

1-341
PROGRAMMING LANGUAGES)

Iterative Statements: Iteration Based on
Data Structures (continued)

 Lua
– Lua has two forms of its iterative statement,

one like Fortran’s Do, and a more general form:

for variable_1 [, variable_2] in iterator(table) do

…

end

– The most commonly used iterators are pairs

and ipairs

Unit-2(PRINCIPLES OF

1-342
PROGRAMMING LANGUAGES)

Unconditional Branching

 Transfers execution control to a specified place in the program

 Represented one of the most heated debates in 1960’s and

1970’s
 Major concern: Readability
 Some languages do not support goto statement (e.g., Java)
 C# offers goto statement (can be used in switch

statements)

 Loop exit statements are restricted and somewhat

camouflaged goto’s

Unit-2(PRINCIPLES OF

1-343
PROGRAMMING LANGUAGES)

Guarded Commands

 Designed by Dijkstra

 Purpose: to support a new programming

methodology that supported verification
(correctness) during development

 Basis for two linguistic mechanisms for
concurrent programming (in CSP and Ada)

 Basic Idea: if the order of evaluation is not
important, the program should not specify
one

Unit-2(PRINCIPLES OF

1-344
PROGRAMMING LANGUAGES)

Selection Guarded Command

 Form

if <Boolean exp> -> <statement>

[] <Boolean exp> -> <statement>

...

[] <Boolean exp> -> <statement>

fi

 Semantics: when construct is reached,
– Evaluate all Boolean expressions
– If more than one are true, choose one

non-deterministically
– If none are true, it is a runtime error

Unit-2(PRINCIPLES OF

1-345
PROGRAMMING LANGUAGES)

Loop Guarded Command

 Form

do <Boolean> -> <statement>
[] <Boolean> -> <statement>

...

[] <Boolean> -> <statement>

od

 Semantics: for each iteration
– Evaluate all Boolean expressions
– If more than one are true, choose one non-

deterministically; then start loop again
– If none are true, exit loop 1-346

Unit-2(PRINCIPLES OF

Guarded Commands: Rationale

 Connection between control statements and
program verification is intimate

 Verification is impossible with goto
statements

 Verification is possible with only selection and

logical pretest loops

 Verification is relatively simple with only

guarded commands

Unit-2(PRINCIPLES OF

1-347
PROGRAMMING LANGUAGES)

Summary

 The data types of a language are a large part of what
determines that language’s style and usefulness

 The primitive data types of most imperative languages include

numeric, character, and Boolean types
 The user-defined enumeration and subrange types are

convenient and add to the readability and reliability
of programs

 Arrays and records are included in most languages

 Pointers are used for addressing flexibility and to control

dynamic storage management

Unit-2(PRINCIPLES OF

1-348
PROGRAMMING LANGUAGES)

Conclusion

 Variety of statement-level structures

 Choice of control statements beyond selection

and logical pretest loops is a trade-off
between language size and writability

 Functional and logic programming languages

are quite different control structures

Unit-2(PRINCIPLES OF

1-349
PROGRAMMING LANGUAGES)

Unit-3

Subprograms and Blocks

350

CONCEPTS

 Introduction
 Fundamentals of Subprograms
 Design Issues for Subprograms
 Local Referencing Environments
 Parameter-Passing Methods
 Parameters That Are Subprograms
 Overloaded Subprograms
 Generic Subprograms
 Design Issues for Functions
 User-Defined Overloaded Operators

 Coroutines
Unit-3 (PRINCIPLES OF

1-351
PROGRAMMING LANGUAGE)

 The General Semantics of Calls and Returns
 Implementing “Simple” Subprograms

 Implementing Subprograms with Stack-Dynamic Local

Variables
 Nested Subprograms
 Blocks
 Implementing Dynamic Scoping

Unit-3 (PRINCIPLES OF

1-352
PROGRAMMING LANGUAGE)

Introduction

 Two fundamental abstraction facilities
– Process abstraction

 Emphasized from early days
– Data abstraction

 Emphasized in the1980s

Unit-3 (PRINCIPLES OF

1-353
PROGRAMMING LANGUAGE)

Fundamentals of Subprograms

 Each subprogram has a single entry point

 The calling program is suspended during

execution of the called subprogram

 Control always returns to the caller when the

called subprogram’s execution terminates

Unit-3 (PRINCIPLES OF

1-354
PROGRAMMING LANGUAGE)

Basic Definitions

 A subprogram definition describes the interface to and the actions of the
subprogram abstraction

 In Python, function definitions are executable; in
all other languages, they are non-executable

 A subprogram call is an explicit request that the subprogram be executed

 A subprogram header is the first part of the definition, including the name,

the kind of subprogram, and the formal parameters

 The parameter profile (aka signature) of a subprogram is the number,

order, and types of its parameters

 The protocol is a subprogram’s parameter profile and, if it is a function, its

return type

Unit-3 (PRINCIPLES OF

1-355
PROGRAMMING LANGUAGE)

Basic Definitions (continued)

 Function declarations in C and C++ are often called prototypes

 A subprogram declaration provides the protocol, but not the

body, of the subprogram

 A formal parameter is a dummy variable listed in the

subprogram header and used in the subprogram

 An actual parameter represents a value or address used in the

subprogram call statement

Unit-3 (PRINCIPLES OF

1-356
PROGRAMMING LANGUAGE)

Actual/Formal Parameter
Correspondence

 Positional
– The binding of actual parameters to formal parameters is by position:

the first actual parameter is bound to the first formal parameter and
so forth

– Safe and effective
 Keyword

– The name of the formal parameter to which an actual parameter is to
be bound is specified with the actual parameter

– Advantage: Parameters can appear in any order, thereby avoiding
parameter correspondence errors

– Disadvantage: User must know the formal parameter’s names

Unit-3 (PRINCIPLES OF

1-357
PROGRAMMING LANGUAGE)

Formal Parameter Default Values

 In certain languages (e.g., C++, Python, Ruby, Ada, PHP), formal
parameters can have default values (if no actual parameter is passed)
– In C++, default parameters must appear last because parameters are

positionally associated

 Variable numbers of parameters

– C# methods can accept a variable number of parameters as long as they are of the same
type—the corresponding formal parameter is an array preceded by params

– In Ruby, the actual parameters are sent as elements of a hash literal and the
corresponding formal parameter is preceded by an asterisk.

– In Python, the actual is a list of values and the corresponding formal parameter is a
name with an asterisk

– In Lua, a variable number of parameters is represented as a formal parameter with three
periods; they are accessed with a for statement or with a multiple assignment from the
three periods

Unit-3 (PRINCIPLES OF

1-358
PROGRAMMING LANGUAGE)

Ruby Blocks

 Ruby includes a number of iterator functions, which are often
used to process the elements of arrays

 Iterators are implemented with blocks, which can also be
defined by applications

 Blocks are attached methods calls; they can have parameters
(in vertical bars); they are executed when the method
executes a yield statement

def fibonacci(last)

first, second = 1, 1

while first <= last

yield first

first, second = second, first + second

end

end

puts "Fibonacci numbers less than 100 are:"

fibonacci(100) {|num| print num, " "} puts

Unit-3 (PRINCIPLES OF

1-359
PROGRAMMING LANGUAGE)

Procedures and Functions

 There are two categories of subprograms
– Procedures are collection of statements

that define parameterized computations
– Functions structurally resemble procedures

but are semantically modeled on
mathematical functions
 They are expected to produce no side effects
 In practice, program functions have side effects

Unit-3 (PRINCIPLES OF

1-360
PROGRAMMING LANGUAGE)

Design Issues for Subprograms

 Are local variables static or dynamic?

 Can subprogram definitions appear in other subprogram

definitions?
 What parameter passing methods are provided?
 Are parameter types checked?

 If subprograms can be passed as parameters and subprograms

can be nested, what is the referencing environment of a
passed subprogram?

 Can subprograms be overloaded?
 Can subprogram be generic?

Unit-3 (PRINCIPLES OF

1-361
PROGRAMMING LANGUAGE)

Local Referencing Environments

 Local variables can be stack-dynamic

 Advantages
 Support for recursion
 Storage for locals is shared among some subprograms

– Disadvantages
 Allocation/de-allocation, initialization time
 Indirect addressing
 Subprograms cannot be history sensitive

 Local variables can be static
– Advantages and disadvantages are the opposite of those for stack-

dynamic local variables

Unit-3 (PRINCIPLES OF

1-362
PROGRAMMING LANGUAGE)

Semantic Models of Parameter Passing

 In mode
 Out mode
 Inout mode

Unit-3 (PRINCIPLES OF

1-363
PROGRAMMING LANGUAGE)

Models of Parameter Passing

Unit-3 (PRINCIPLES OF

1-364
PROGRAMMING LANGUAGE)

Conceptual Models of Transfer

 Physically move a path
 Move an access path

Unit-3 (PRINCIPLES OF

1-365
PROGRAMMING LANGUAGE)

Pass-by-Value (In Mode)

 The value of the actual parameter is used to initialize the
corresponding formal parameter
– Normally implemented by copying
– Can be implemented by transmitting an access path but not

recommended (enforcing write protection is not easy)
– Disadvantages (if by physical move): additional storage is required

(stored twice) and the actual move can be costly (for large
parameters)

– Disadvantages (if by access path method): must write-protect in the
called subprogram and accesses cost more (indirect addressing)

Unit-3 (PRINCIPLES OF

1-366
PROGRAMMING LANGUAGE)

Pass-by-Result (Out Mode)

 When a parameter is passed by result, no
value is transmitted to the subprogram; the
corresponding formal parameter acts as a
local variable; its value is transmitted to
caller’s actual parameter when control is
returned to the caller, by physical move
– Require extra storage location and copy operation

 Potential problem: sub(p1, p1);
whichever formal parameter is copied
back will represent the current value of p1

Unit-3 (PRINCIPLES OF

1-367
PROGRAMMING LANGUAGE)

Pass-by-Value-Result (inout Mode)

 A combination of pass-by-value and pass-by-
result

 Sometimes called pass-by-copy
 Formal parameters have local storage
 Disadvantages:

– Those of pass-by-result
– Those of pass-by-value

Unit-3 (PRINCIPLES OF

1-368
PROGRAMMING LANGUAGE)

Pass-by-Reference (Inout Mode)

 Pass an access path
 Also called pass-by-sharing

 Advantage: Passing process is efficient (no

copying and no duplicated storage)
 Disadvantages

– Slower accesses (compared to pass-by-value)
to formal parameters

– Potentials for unwanted side effects (collisions)
– Unwanted aliases (access broadened)

Unit-3 (PRINCIPLES OF

1-369
PROGRAMMING LANGUAGE)

Pass-by-Name (Inout Mode)

 By textual substitution

 Formals are bound to an access method at

the time of the call, but actual binding to a
value or address takes place at the time of a
reference or assignment

 Allows flexibility in late binding

Unit-3 (PRINCIPLES OF

1-370
PROGRAMMING LANGUAGE)

Implementing Parameter-Passing Methods

 In most language parameter communication
takes place thru the run-time stack

 Pass-by-reference are the simplest to
implement; only an address is placed in
the stack

 A subtle but fatal error can occur with pass-
by-reference and pass-by-value-result: a
formal parameter corresponding to a constant
can mistakenly be changed

Unit-3 (PRINCIPLES OF

1-371
PROGRAMMING LANGUAGE)

Parameter Passing Methods of Major Languages

 C

– Pass-by-value

– Pass-by-reference is achieved by using pointers
as parameters

 C++

– A special pointer type called reference type
for pass-by-reference

 Java

– All parameters are passed are passed by value

– Object parameters are passed by reference
 Ada

– Three semantics modes of parameter
transmission: in, out, in out; in is the
default mode

– Formal parameters declared out can be assigned
Unit-3 (PRINCIPLES OF

but not referenced; those declared in can be

1-372 PROGRAMMING LANGUAGE)

Parameter Passing Methods of Major
Languages (continued)

 Fortran 95
 Parameters can be declared to be in, out, or inout mode

 C#
 Default method: pass-by-value
– Pass-by-reference is specified by preceding both a formal parameter

and its actual parameter with ref
 PHP: very similar to C#

 Perl: all actual parameters are implicitly placed in a

predefined array named @_

 Python and Ruby use pass-by-assignment (all data values are

objects)

Unit-3 (PRINCIPLES OF

1-373
PROGRAMMING LANGUAGE)

Type Checking Parameters

 Considered very important for reliability
 FORTRAN 77 and original C: none
 Pascal, FORTRAN 90, Java, and Ada: it is always required
 ANSI C and C++: choice is made by the user

– Prototypes

 Relatively new languages Perl, JavaScript, and PHP do not

require type checking

 In Python and Ruby, variables do not have types (objects do),

so parameter type checking is not possible

Unit-3 (PRINCIPLES OF

1-374
PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters

 If a multidimensional array is passed to a
subprogram and the subprogram is
separately compiled, the compiler needs to
know the declared size of that array to build
the storage mapping function

Unit-3 (PRINCIPLES OF

1-375
PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters: C and
C++

 Programmer is required to include the
declared sizes of all but the first subscript in
the actual parameter

 Disallows writing flexible subprograms

 Solution: pass a pointer to the array and the

sizes of the dimensions as other parameters;
the user must include the storage mapping
function in terms of the size parameters

Unit-3 (PRINCIPLES OF

1-376
PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters: Ada

 Ada – not a problem
– Constrained arrays – size is part of the

array’s type
– Unconstrained arrays - declared size is part of

the object declaration

Unit-3 (PRINCIPLES OF

1-377
PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters: Fortran

 Formal parameter that are arrays have a
declaration after the header
– For single-dimension arrays, the subscript

is irrelevant
– For multidimensional arrays, the sizes are sent

as parameters and used in the declaration of the
formal parameter, so those variables are used in
the storage mapping function

Unit-3 (PRINCIPLES OF

1-378
PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters: Java
and C#

 Similar to Ada

 Arrays are objects; they are all single-

dimensioned, but the elements can be arrays
 Each array inherits a named constant

(length in Java, Length in C#) that is set
to the length of the array when the array
object is created

Unit-3 (PRINCIPLES OF

1-379
PROGRAMMING LANGUAGE)

Design Considerations for Parameter Passing

 Two important considerations
– Efficiency
– One-way or two-way data transfer

 But the above considerations are in conflict
– Good programming suggest limited access

to variables, which means one-way
whenever possible

– But pass-by-reference is more efficient to
pass structures of significant size

Unit-3 (PRINCIPLES OF

1-380
PROGRAMMING LANGUAGE)

Parameters that are
Subprogram Names

 It is sometimes convenient to pass
subprogram names as parameters

 Issues:
 Are parameter types checked?

 What is the correct referencing environment for

a subprogram that was sent as a parameter?

Unit-3 (PRINCIPLES OF

1-381
PROGRAMMING LANGUAGE)

Parameters that are Subprogram Names:
Parameter Type Checking

 C and C++: functions cannot be passed as parameters but
pointers to functions can be passed and their types
include the types of the parameters, so parameters can be
type checked

 FORTRAN 95 type checks

 Ada does not allow subprogram parameters; an alternative is

provided via Ada’s generic facility

 Java does not allow method names to be passed as

parameters

Unit-3 (PRINCIPLES OF

1-382
PROGRAMMING LANGUAGE)

Parameters that are Subprogram
Names: Referencing Environment

 Shallow binding: The environment of the call
statement that enacts the passed subprogram
- Most natural for dynamic-scoped

languages

 Deep binding: The environment of the
definition of the passed subprogram
- Most natural for static-scoped languages

 Ad hoc binding: The environment of the call
statement that passed the subprogram

Unit-3 (PRINCIPLES OF

1-383
PROGRAMMING LANGUAGE)

Overloaded Subprograms

 An overloaded subprogram is one that has the same name as
another subprogram in the same referencing environment
– Every version of an overloaded subprogram has a unique protocol

 C++, Java, C#, and Ada include predefined overloaded
subprograms

 In Ada, the return type of an overloaded function can be used
to disambiguate calls (thus two overloaded functions can
have the same parameters)

 Ada, Java, C++, and C# allow users to write multiple versions
of subprograms with the same name

Unit-3 (PRINCIPLES OF

1-384
PROGRAMMING LANGUAGE)

Generic Subprograms

 A generic or polymorphic subprogram takes parameters of
different types on different activations

 Overloaded subprograms provide ad hoc polymorphism

 A subprogram that takes a generic parameter that is used in a

type expression that describes the type of the parameters of
the subprogram provides parametric polymorphism
 A cheap compile-time substitute for dynamic binding

Unit-3 (PRINCIPLES OF

1-385
PROGRAMMING LANGUAGE)

Generic Subprograms (continued)

 Ada
– Versions of a generic subprogram are created

by the compiler when explicitly instantiated by
a declaration statement

– Generic subprograms are preceded by a

generic clause that lists the generic variables,
which can be types or other subprograms

Unit-3 (PRINCIPLES OF

1-386
PROGRAMMING LANGUAGE)

Generic Subprograms (continued)

 C++
– Versions of a generic subprogram are created

implicitly when the subprogram is named in a call
or when its address is taken with the & operator

– Generic subprograms are preceded by a

template clause that lists the generic variables,
which can be type names or class names

Unit-3 (PRINCIPLES OF

1-387
PROGRAMMING LANGUAGE)

Generic Subprograms (continued)

 Java 5.0
- Differences between generics in Java 5.0 and those of
C++ and Ada:
1. Generic parameters in Java 5.0 must be classes

 Java 5.0 generic methods are instantiated just once as truly
generic methods
3. Restrictions can be specified on the range of classes that
can be passed to the generic method as generic
parameters 4. Wildcard types of generic parameters

Unit-3 (PRINCIPLES OF

1-388
PROGRAMMING LANGUAGE)

Generic Subprograms (continued)

 C# 2005
 Supports generic methods that are similar
to those of Java 5.0
 One difference: actual type parameters in
a call can be omitted if the compiler can infer
the unspecified type

Unit-3 (PRINCIPLES OF

1-389
PROGRAMMING LANGUAGE)

Examples of parametric
polymorphism: C++

template <class Type>

Type max(Type first, Type second) {

return first > second ? first : second;

}

 The above template can be instantiated for any type for which
operator > is defined

int max (int first, int second) { return

first > second? first : second;

}

Unit-3 (PRINCIPLES OF

1-390
PROGRAMMING LANGUAGE)

Design Issues for Functions

 Are side effects allowed?
– Parameters should always be in-mode to reduce side effect (like

Ada)
 What types of return values are allowed?

– Most imperative languages restrict the return types
– C allows any type except arrays and functions
– C++ is like C but also allows user-defined types
– Ada subprograms can return any type (but Ada subprograms are not

types, so they cannot be returned)
– Java and C# methods can return any type (but because methods are

not types, they cannot be returned)
– Python and Ruby treat methods as first-class objects, so they can be

returned, as well as any other class
– Lua allows functions to return multiple values

Unit-3 (PRINCIPLES OF

1-391
PROGRAMMING LANGUAGE)

User-Defined Overloaded
Operators

 Operators can be overloaded in Ada, C++,
Python, and Ruby

 An Ada example

function "*" (A,B: in Vec_Type): return
Integer is
Sum: Integer := 0;

begin

for Index in A'range loop
Sum := Sum + A(Index) * B(Index)

end loop
return sum;

end "*";
…

c = a * b; -- a, b, and c are of type Vec_Type

Unit-3 (PRINCIPLES OF

1-392
PROGRAMMING LANGUAGE)

Coroutines

 A coroutine is a subprogram that has multiple entries and
controls them itself – supported directly in Lua

 Also called symmetric control: caller and called coroutines are
on a more equal basis

 A coroutine call is named a resume

 The first resume of a coroutine is to its beginning, but

subsequent calls enter at the point just after the last
executed statement in the coroutine

 Coroutines repeatedly resume each other, possibly forever

 Coroutines provide quasi-concurrent execution of program

units (the coroutines); their execution is interleaved, but
not overlapped

Unit-3 (PRINCIPLES OF

1-393
PROGRAMMING LANGUAGE)

Coroutines Illustrated: Possible
Execution Controls

Unit-3 (PRINCIPLES OF

1-394
PROGRAMMING LANGUAGE)

Coroutines Illustrated: Possible
Execution Controls

Unit-3 (PRINCIPLES OF

1-395
PROGRAMMING LANGUAGE)

Coroutines Illustrated: Possible Execution
Controls with Loops

Unit-3 (PRINCIPLES OF

1-396
PROGRAMMING LANGUAGE)

The General Semantics of Calls
and Returns

 The subprogram call and return operations of
a language are together called its
subprogram linkage

 General semantics of subprogram calls
– Parameter passing methods
– Stack-dynamic allocation of local variables
– Save the execution status of calling program
– Transfer of control and arrange for the return
– If subprogram nesting is supported, access

to nonlocal variables must be arranged

Unit-3 (PRINCIPLES OF

1-397
PROGRAMMING LANGUAGE)

The General Semantics of Calls and Returns

 General semantics of subprogram returns:

– In mode and inout mode parameters must
have their values returned

– Deallocation of stack-dynamic locals
– Restore the execution status
– Return control to the caller

Unit-3 (PRINCIPLES OF

1-398
PROGRAMMING LANGUAGE)

Implementing “Simple” Subprograms:
Call Semantics

 Call Semantics:

 Save the execution status of the caller
 Pass the parameters
 Pass the return address to the callee
 Transfer control to the callee

Unit-3 (PRINCIPLES OF

1-399
PROGRAMMING LANGUAGE)

Implementing “Simple” Subprograms:
Return Semantics

 Return Semantics:
– If pass-by-value-result or out mode parameters are

used, move the current values of those parameters
to their corresponding actual parameters

– If it is a function, move the functional value to a
place the caller can get it

– Restore the execution status of the caller
– Transfer control back to the caller

 Required storage:

– Status information, parameters, return address,
return value for functions

Unit-3 (PRINCIPLES OF

1-400
PROGRAMMING LANGUAGE)

Implementing “Simple” Subprograms:
Parts

 Two separate parts: the actual code and the non-
code part (local variables and data that can
change)

 The format, or layout, of the non-code part of an

executing subprogram is called an activation
record

 An activation record instance is a concrete

example of an activation record (the collection
of data for a particular subprogram activation)

Unit-3 (PRINCIPLES OF

1-401
PROGRAMMING LANGUAGE)

An Activation Record for
“Simple” Subprograms

Unit-3 (PRINCIPLES OF

1-402
PROGRAMMING LANGUAGE)

Code and Activation Records of a Program with

“Simple” Subprograms

Unit-3 (PRINCIPLES OF

1-403
PROGRAMMING LANGUAGE)

Implementing Subprograms
with Stack-Dynamic Local

Variables

 More complex activation record
– The compiler must generate code to

cause implicit allocation and deallocation
of local variables

– Recursion must be supported (adds the
possibility of multiple simultaneous activations of
a subprogram)

Unit-3 (PRINCIPLES OF

1-404
PROGRAMMING LANGUAGE)

Typical Activation Record for a Language with
Stack-Dynamic Local Variables

Unit-3 (PRINCIPLES OF

1-405
PROGRAMMING LANGUAGE)

Implementing Subprograms with Stack-Dynamic
Local Variables: Activation Record

 The activation record format is static, but its size may be
dynamic

 The dynamic link points to the top of an instance of the
activation record of the caller

 An activation record instance is dynamically created when a

subprogram is called
 Activation record instances reside on the run-time stack

 The Environment Pointer (EP) must be maintained by the run-

time system. It always points at the base of the activation
record instance of the currently executing program unit

Unit-3 (PRINCIPLES OF

1-406
PROGRAMMING LANGUAGE)

An Example: C Function

void sub(float total, int part)

{

int list[5];

float sum;

…

}

[4]

[3]

[2]

[1]

[0]

Unit-3 (PRINCIPLES OF

1-407
PROGRAMMING LANGUAGE)

An Example Without Recursion

void A(int x) {

int y;

...

C(y);

...

}

void B(float r) {

int s, t;

...

A(s);

...

}

void C(int q) {

...

}

void main() {

float p;

...

B(p);

...

}

main calls B

B calls A

A calls C

Unit-3 (PRINCIPLES OF

1-408
PROGRAMMING LANGUAGE)

An Example Without Recursion

Unit-3 (PRINCIPLES OF

1-409
PROGRAMMING LANGUAGE)

Dynamic Chain and Local Offset

 The collection of dynamic links in the stack at a given time is
called the dynamic chain, or call chain

 Local variables can be accessed by their offset from the

beginning of the activation record, whose address is in the
EP. This offset is called the local_offset

 The local_offset of a local variable can be determined by the

compiler at compile time

Unit-3 (PRINCIPLES OF

1-410
PROGRAMMING LANGUAGE)

An Example With Recursion

 The activation record used in the previous
example supports recursion, e.g.

int factorial (int n) {

<----------------------------- 1

if (n <= 1) return 1;

else return (n * factorial(n - 1));

<----------------------------- 2

}

void main() {

int value;

value = factorial(3);

<----------------------------- 3

}

Unit-3 (PRINCIPLES OF

1-411
PROGRAMMING LANGUAGE)

Activation Record for factorial

Unit-3 (PRINCIPLES OF

1-412
PROGRAMMING LANGUAGE)

Nested Subprograms

 Some non-C-based static-scoped languages (e.g., Fortran 95,
Ada, Python, JavaScript, Ruby, and Lua) use stack-dynamic
local variables and allow subprograms to be nested

 All variables that can be non-locally accessed reside in some

activation record instance in the stack
 The process of locating a non-local reference:

 Find the correct activation record instance
 Determine the correct offset within that activation record instance

Unit-3 (PRINCIPLES OF

1-413
PROGRAMMING LANGUAGE)

Locating a Non-local Reference

 Finding the offset is easy
 Finding the correct activation record instance

– Static semantic rules guarantee that all non-
local variables that can be referenced have been
allocated in some activation record instance
that is on the stack when the reference is made

Unit-3 (PRINCIPLES OF

1-414
PROGRAMMING LANGUAGE)

Static Scoping

 A static chain is a chain of static links that connects certain
activation record instances

 The static link in an activation record instance for subprogram

A points to one of the activation record instances of A's static
parent

 The static chain from an activation record instance connects

it to all of its static ancestors

 Static_depth is an integer associated with a static scope

whose value is the depth of nesting of that scope

Unit-3 (PRINCIPLES OF

1-415
PROGRAMMING LANGUAGE)

Static Scoping (continued)

 The chain_offset or nesting_depth of a nonlocal reference is
the difference between the static_depth of the reference
and that of the scope when it is declared

 A reference to a variable can be represented by the pair:

(chain_offset, local_offset),
where local_offset is the offset in the activation
record of the variable being referenced

Unit-3 (PRINCIPLES OF

1-416
PROGRAMMING LANGUAGE)

Example Ada Program

procedure Main_2 is
X : Integer;
procedure Bigsub is

A, B, C : Integer;
procedure Sub1 is

A, D : Integer;
begin -- of Sub1
A := B + C; <----------------------- 1

end; -- of Sub1

procedure Sub2(X : Integer) is

B, E : Integer;

procedure Sub3 is

 C, E : Integer;

 begin -- of Sub3

 Sub1;

 E := B + A: <-------------------- 2
 end; -- of Sub3

begin -- of Sub2

Sub3;

A := D + E; <----------------------- 3
end; -- of Sub2 }

begin -- of Bigsub

Sub2(7);

end; -- of Bigsub

begin

Bigsub;

end; of Main_2 }

Unit-3 (PRINCIPLES OF

1-417
PROGRAMMING LANGUAGE)

Example Ada Program (continued)

 Call sequence for Main_2

Main_2 calls Bigsub
Bigsub calls Sub2
Sub2 calls Sub3
Sub3 calls Sub1

Unit-3 (PRINCIPLES OF

1-418
PROGRAMMING LANGUAGE)

Stack Contents
at Position 1

Unit-3 (PRINCIPLES OF

1-419
PROGRAMMING LANGUAGE)

Static Chain Maintenance

 At the call,
 The activation record instance must be built
 The dynamic link is just the old stack top pointer
 The static link must point to the most recent ari of the
static parent

 Two methods:
 Search the dynamic chain
 Treat subprogram calls and

definitions like variable
references and definitions

Unit-3 (PRINCIPLES OF

1-420
PROGRAMMING LANGUAGE)

Evaluation of Static Chains

 Problems:
 A nonlocal areference is slow if

the nesting depth is large
 Time-critical code is difficult:

 Costs of nonlocal references
are difficult to determine

 Code changes can change the nesting
depth, and therefore the cost

Unit-3 (PRINCIPLES OF

1-421
PROGRAMMING LANGUAGE)

Displays

 An alternative to static chains that solves the
problems with that approach

 Static links are stored in a single array called a

display

 The contents of the display at any given time

is a list of addresses of the accessible
activation record instances

Unit-3 (PRINCIPLES OF

1-422
PROGRAMMING LANGUAGE)

Blocks

 Blocks are user-specified local scopes for variables
 An example in C
{int temp;
temp = list [upper];
list [upper] = list [lower];

list [lower] = temp
}

 The lifetime of temp in the above example begins when
control enters the block

 An advantage of using a local variable like temp is that it
cannot interfere with any other variable with the same name

Unit-3 (PRINCIPLES OF

1-423
PROGRAMMING LANGUAGE)

Implementing Blocks

 Two Methods:

 Treat blocks as parameter-less subprograms
that are always called from the same location

– Every block has an activation record; an instance is

created every time the block is executed

 Since the maximum storage required for a block
can be statically determined, this amount of
space can be allocated after the local variables
in the activation record

Unit-3 (PRINCIPLES OF

1-424
PROGRAMMING LANGUAGE)

Implementing Dynamic Scoping

 Deep Access: non-local references are found
by searching the activation record instances
on the dynamic chain

- Length of the chain cannot be
statically determined

 Every activation record instance
must have variable names

 Shallow Access: put locals in a central place
– One stack for each variable name
– Central table with an entry for each variable name

Unit-3 (PRINCIPLES OF

1-425
PROGRAMMING LANGUAGE)

Using Shallow Access to
Implement Dynamic

Scoping

void sub3() {

int x, z;

x = u + v;

…

}

void sub2() {

int w, x;

…

}

void sub1() {

int v, w;

…

}

void main() {

int v, u;

…

}

Unit-3 (PRINCIPLES OF

1-426
PROGRAMMING LANGUAGE)

Summary

 A subprogram definition describes the actions represented by
the subprogram

 Subprograms can be either functions or procedures
 Local variables in subprograms can be stack-dynamic or static

 Three models of parameter passing: in mode, out mode, and

inout mode
 Some languages allow operator overloading
 Subprograms can be generic
 A coroutine is a special subprogram with multiple entries

Unit-3 (PRINCIPLES OF

1-427
PROGRAMMING LANGUAGE)

Summary

 Subprogram linkage semantics requires many
action by the implementation

 Simple subprograms have relatively basic
actions

 Stack-dynamic languages are more complex

 Subprograms with stack-dynamic local

variables and nested subprograms have
two components
– actual code
– activation record

Unit-3 (PRINCIPLES OF

1-428
PROGRAMMING LANGUAGE)

Summary

 Activation record instances contain formal
parameters and local variables among
other things

 Static chains are the primary method of
implementing accesses to non-local
variables in static-scoped languages with
nested subprograms

 Access to non-local variables in dynamic-
scoped languages can be implemented by use
of the dynamic chain or thru some central
variable table method

Unit-3 (PRINCIPLES OF

1-429
PROGRAMMING LANGUAGE)

Unit-4

Abstract Data Types

Concurrency

Exception Handling

Logic Programming Language

430

CONCEPTS

 Abstract Data types
 Concurrency
 Exception Handling
 Logic Programming Language

Unit-4(PRINCIPLES OF PROGRAMMING
431

LANGUAGE)

CONCEPTS

Introduction to logic programming

language A Brief Introduction to Predicate

Calculus Predicate Calculus and Proving

Theorems An Overview of Logic

Programming The Origins of Prolog

The Basic Elements of Prolog

Deficiencies of Prolog Applications

of Logic Programming

Unit-4(PRINCIPLES OF PROGRAMMING
432

LANGUAGE)

Abstract Data types

 An abstraction is a view or representation of an entity that
includes only the most significant attributes.

 The concept of abstraction is fundamental in programming

(and computer science).

 Nearly all programming languages support process

abstraction with subprograms.

 Nearly all programming languages designed since 1980

support data abstraction.

Unit-4(PRINCIPLES OF PROGRAMMING
433

LANGUAGE)

Introduction to Data Abstraction

An abstract data type is a user-defined data type that
satisfies the following two conditions:

–The representation of, and operations on, objects of the
type are defined in a single syntactic unit.

–The representation of objects of the type is hidden from the
program units that use these objects, so the only operations
possible are those provided in the type's definition.

Unit-4(PRINCIPLES OF PROGRAMMING
434

LANGUAGE)

Encapsulation

Original motivation :

Large programs have two special needs:

 Some means of organization, other than simply division into
subprograms.

 Some means of partial compilation (compilation units that are

smaller than the whole program).

Obvious solution : a grouping of subprograms that are
logically related into a unit that can be separately compiled.
These are called encapsulations.

Unit-4(PRINCIPLES OF PROGRAMMING
435

LANGUAGE)

Examples of Encapsulation
Mechanisms

 Nested subprograms in some ALGOL-like
languages (e.g., Pascal).

 FORTRAN 77 and C - Files containing one or

more subprograms can be independently
compiled.

 FORTRAN 90, C++, Ada (and other

contemporary languages) -
separately compilable modules.

Unit-4(PRINCIPLES OF PROGRAMMING
436

LANGUAGE)

Language Requirements for
Data Abstraction

 A syntactic unit in which to encapsulate the type definition.

 A method of making type names and subprogram headers

visible to clients, while hiding actual definitions.

 Some primitive operations must be built into the language

processor (usually just assignment and comparisons for
equality and inequality).

 Some operations are commonly needed, but must be
defined by the type designer.
 e.g., iterators, constructors, destructors.

Unit-4(PRINCIPLES OF PROGRAMMING
437

LANGUAGE)

Language Design Issues

 Encapsulate a single type, or something
more?

 What types can be abstract?
 Can abstract types be parameterized?
 What access controls are provided?

Unit-4(PRINCIPLES OF PROGRAMMING
438

LANGUAGE)

Language Examples

1. Simula 67

 Provided encapsulation, but no
information Hiding.
2. Ada
 The encapsulation construct is the package
 Packages usually have two parts:

 Specification package (the interface)

 Body package (implementation of the entities
named in the specification.

Unit-4(PRINCIPLES OF PROGRAMMING
439

LANGUAGE)

Evaluation of Ada Abstract Data Types

 Lack of restriction to pointers is better -
Cost is recompilation of clients when the

representation is changed.

 Cannot import specific entities from other
Packages.

Unit-4(PRINCIPLES OF PROGRAMMING
440

LANGUAGE)

Parameterized Abstract Data Types

1. Ada Generic Packages

 Make the stack type more flexible by making
the element type and the size of the stack
generic.

---> SHOW GENERIC_STACK package and
two instantiations .

Unit-4(PRINCIPLES OF PROGRAMMING
441

LANGUAGE)

C++ Templated Classes

 Classes can be somewhat generic by writing parameterized
constructor functions.

stack (int size) {

stk_ptr = new int [size];

max_len = size - 1;

top = -1;

}

stack (100) stk;

 The stack element type can be parameterized by making the class
a templated class.

---> SHOW the templated class stack .

- Java does not support generic abstract data types

Unit-4(PRINCIPLES OF PROGRAMMING
442

LANGUAGE)

Object Oriented Programming
in Smalltalk

Type Checking and Polymorphism:

 All bindings of messages to methods is dynamic.

 The process is to search the object to which the message is

sent for the method; if not found, search the superclass, etc.
 Because all variables are typeless, methods are all polymorphic
 Inheritance.
 All subclasses are subtypes (nothing can be hidden).
 All inheritance is implementation inheritance.
 No multiple inheritance.
 Methods can be redefined, but the two are not related.

Unit-4(PRINCIPLES OF PROGRAMMING
443

LANGUAGE)

C++
General Characteristics:

 Mixed typing system.
 Constructors and destructors.
 Elaborate access controls to class entities.
 Inheritance:
 A class need not be subclasses of any class.
 Access controls for members are:

 Private (visible only in the class and friends).
 Public (visible in subclasses and clients).
 Protected (visible in the class and in subclasses).

- In addition, the subclassing process can be declared with access
controls, which define potential changes in access by subclasses.

- Multiple inheritance is supportedUnit-4(PRINCIPLES. OF PROGRAMMING
444

LANGUAGE)

Java

Dynamic Binding

 In Java, all messages are dynamically bound to methods,
unless the method is final.

 Encapsulation
 Two constructs, classes and packages.
 Packages provide a container for classes that are related.

 Entities defined without an scope (access) modifier have

package scope, which makes them visible throughout
the package in which they are defined

 Every class in a package is a friend to the package scope

entities elsewhere in the package.

Unit-4(PRINCIPLES OF PROGRAMMING
445

LANGUAGE)

Ada 95

Example:

with PERSON_PKG; use PERSON_PKG;

package STUDENT_PKG is

type STUDENT is new PERSON with

record

GRADE_POINT_AVERAGE : FLOAT;

GRADE_LEVEL : INTEGER;

end record;

procedure DISPLAY (ST: in STUDENT);

end STUDENT_PKG;

 DISPLAY is being overriden from PERSON_PKG
 All subclasses are subtypes
 Single inheritance only, except through generics

Unit-4(PRINCIPLES OF PROGRAMMING
446

LANGUAGE)

Concurrency

Def: A thread of control in a program is the sequence of program
points reached as control flows through the program.

Categories of Concurrency:

 Physical concurrency - Multiple independent processors
(multiple threads of control).

 Logical concurrency - The appearance of physical concurrency

is presented by timesharing one processor (software can be
designed as if there were multiple threads of control).

- Coroutines provide only quasiconcurrency.

Unit-4(PRINCIPLES OF PROGRAMMING
447

LANGUAGE)

Reasons to Study Concurrency

 It involves a new way of designing software
that can be very useful--many real-world
situations involve concurrency.

 Computers capable of physical concurrency

are now widely used.

Unit-4(PRINCIPLES OF PROGRAMMING
448

LANGUAGE)

Design Issues for Concurrency

 How is cooperation synchronization
provided?
 How is competition synchronization provided?

 How and when do tasks begin and end
execution?
 Are tasks statically or dynamically created?

Unit-4(PRINCIPLES OF PROGRAMMING
449

LANGUAGE)

Methods of Providing Synchronization

 Semaphores
 Monitors
 Message Passing

Unit-4(PRINCIPLES OF PROGRAMMING
450

LANGUAGE)

Semaphores

Semaphores (Dijkstra - 1965).

 A semaphore is a data structure consisting of a
counter and a queue for storing task descriptors.

 Semaphores can be used to implement guards on

the code that accesses shared data structures.

 Semaphores have only two operations, wait and

release (originally called P and V by Dijkstra).

 Semaphores can be used to provide both
competition and cooperation synchronization

Unit-4(PRINCIPLES OF PROGRAMMING
451

LANGUAGE)

Example

wait(aSemaphore)

if aSemaphore’s counter > 0 then
Decrement aSemaphore’s counter

else

Put the caller in aSemaphore’s queue

Attempt to transfer control to
some ready task

(If the task ready queue is empty,

deadlock
occurs) end

Unit-4(PRINCIPLES OF PROGRAMMING
452

LANGUAGE)

Example

release(aSemaphore)

if aSemaphore’s queue is empty then
Increment aSemaphore’s counter

else

Put the calling task in the task
ready queue

Transfer control to a task
from aSemaphore’s queue

end

Unit-4(PRINCIPLES OF PROGRAMMING
453

LANGUAGE)

Monitors

 Competition Synchronization with Monitors:
 Access to the shared data in the monitor is

limited by the implementation to a single
process at a time; therefore, mutually
exclusive access is inherent in the semantic
definition of the monitor.

- Multiple calls are queued.

Unit-4(PRINCIPLES OF PROGRAMMING
454

LANGUAGE)

Monitors

Cooperation Synchronization with Monitors:

 Cooperation is still required - done with semaphores, using the queue
data type and the built-in operations, delay (similar to send) and continue
(similar to release).

 delay takes a queue type parameter; it puts the process that calls it in the

specified queue and removes its exclusive access rights to the monitor’s
data structure.

 Differs from send because delay always blocks the caller.

 continue takes a queue type parameter; it disconnects the caller from

the monitor, thus freeing the monitor for use by another process.

-It also takes a process from the parameter.

-queue (if the queue isn’t empty) and starts it.

-Differs from release because it always has some effect (release does
nothing if the queue is empty).

Unit-4(PRINCIPLES OF PROGRAMMING
455

LANGUAGE)

Message Passing

Competition Synchronization with Message Passing:

 Example:
 a shared buffer.
 Encapsulate the buffer and its operations in a task.

 Competition synchronization is implicit in

the semantics of accept clauses.

 Only one accept clause in a task can be active at

any given time.

Unit-4(PRINCIPLES OF PROGRAMMING
456

LANGUAGE)

Java Threads

Competition Synchronization with Java Threads:

 A method that includes the synchronized modifier
disallows any other method from running on the object
while it is in execution.

 If only a part of a method must be run without interference,

it can be synchronized.
 Cooperation Synchronization with Java Threads:

 The wait and notify methods are defined in Object, which is the

root class in Java, so all objects inherit them.

 The wait method must be called in a loop.

Example - the queue.

Unit-4(PRINCIPLES OF PROGRAMMING
457

LANGUAGE)

Exception Handling

In a language without exception handling:

➢When an exception occurs, control goes
to the

operating system, where a message is
displayed and the program is terminated.

In a language with exception handling:

➢Programs are allowed to trap some
exceptions, thereby providing the possibility
of fixing the problem and continuing.

Unit-4(PRINCIPLES OF PROGRAMMING
458

LANGUAGE)

Design Issues for Exception Handling

 How and where are exception handlers specified and what is
their scope?

 How is an exception occurrence bound to an exception handler?

 Where does execution continue, if at all, after an exception

handler completes its execution?
 How are user-defined exceptions specified?

 Should there be default exception handlers for programs that do

not provide their own?
 Can built-in exceptions be explicitly raised?

 Are hardware-detectable errors treated as exceptions that can be

handled?
 Are there any built-in exceptions?
 How can exceptions be disabled, if at all?

Unit-4(PRINCIPLES OF PROGRAMMING
459

LANGUAGE)

Ada Exception Handling

Def: The frame of an exception handler in Ada is either a subprogram body,
a package body, a task, or a block.

 Because exception handlers are usually local to the code in which
the exception can be raised, they do not have parameters.

 Handler form:

exception

when exception_name {| exception_name} =>

statement_sequence

...

when ...

...

[when others =>statement_sequence]

- Handlers are placed at the end of the block or unit in which they occur.

Unit-4(PRINCIPLES OF PROGRAMMING
460

LANGUAGE)

Binding Exceptions to Handlers

➢If the block or unit in which an exception is raised
does not have a handler for that exception, the
exception is propagated elsewhere to be handled.

 Procedures - propagate it to the caller.
 Blocks - propagate it to the scope in which it occurs.

 Package body - propagate it to the declaration part of

the unit that declared the package (if it is a library
unit (no static parent), the program is terminated).

 Task - no propagation; if it has no handler, execute it;
in either case, mark it "completed“.

Unit-4(PRINCIPLES OF PROGRAMMING
461

LANGUAGE)

C++ Exception Handling

try {

 code that is expected to raise an
exception} catch (formal parameter) {
 handler code

}…..

catch (formal parameter) {

 handler code
}

 catch is the name of all handlers--it is an overloaded name, so the
formal parameter of each must be unique.

 The formal parameter need not have a variable.
 It can be simply a type name to distinguish the handler it is in from others.
 The formal parameter can be used to transfer information to the handler.

Unit-4(PRINCIPLES OF PROGRAMMING
462

LANGUAGE)

Java Exception Handling

The finally Clause:

 Can appear at the end of a try construct
 Form:

finally {

...

}

 Purpose: To specify code that is to be executed, regardless of what
happens in the try construct.

 A try construct with a finally clause can be used outside exception
handling try {
for (index = 0; index < 100; index++) {
…
if (…) {
return;
}

Unit-4(PRINCIPLES OF PROGRAMMING
463

LANGUAGE)

Evaluation

 The types of exceptions makes more
sense than in the case of C++.
 The throws clause is better than that of C++

(The throw clause in C++ says little to
the programmer).

 The finally clause is often useful.
 The Java interpreter throws a variety of

exceptions that can be handled by user
programs.

Unit-4(PRINCIPLES OF PROGRAMMING
464

LANGUAGE)

Introduction to logic programming

Logic programming languages, sometimes called declarative
programming Languages.

Express programs in a form of symbolic logic.

Use a logical inferencing process to produce results.

Declarative rather that procedural:

–Only specification of results are stated (not detailed procedures for producing them).

Proposition:

A logical statement that may or may not be true.

–Consists of objects and relationships of objects to each other.

Symbolic Logic:

Logic which can be used for the basic needs of formal logic:

–Express propositions.

–Express relationships between propositions.

–Describe how new propositions can be inferred from other propositions.
(Particular form of symbolic logic used for logic programming called predicate
Calculus)

Unit-4(PRINCIPLES OF PROGRAMMING
465

LANGUAGE)

Object Representation

Objects in propositions are represented by simple terms: either constants
or variables.

Constant: a symbol that represents an object.

Variable: a symbol that can represent different objects at different times.

–Different from variables in imperative languages.

Compound Terms:

Atomic propositions consist of compound terms.

Compound term: one element of a mathematical relation, written like
a mathematical function.

–Mathematical function is a mapping.

–Can be written as a table.

Parts of a Compound Term:

Compound term composed of two parts:

Unit-4(PRINCIPLES OF PROGRAMMING
466

LANGUAGE)

Example

Functor: function symbol that names
the relationship.

–Ordered list of parameters (tuple).

Examples:

student(jon)

like(seth, OSX)

like(nick, windows)

like(jim, linux)

Unit-4(PRINCIPLES OF PROGRAMMING
467

LANGUAGE)

Forms of a Proposition

Propositions can be stated in two forms:

–Fact: proposition is assumed to be true.

–Query: truth of proposition is to
be determined.

Compound proposition:

–Have two or more atomic propositions.

–Propositions are connected by operators.

Unit-4(PRINCIPLES OF PROGRAMMING
468

LANGUAGE)

Clausal Form

Too many ways to state the same thing

-Use a standard form for propositions.

Clausal form:

–B1 B2 … Bn A1 A2 … Am

–means if all the As are true, then at least one
B is true.

Antecedent: right side.

Consequent: left side.

Unit-4(PRINCIPLES OF PROGRAMMING
469

LANGUAGE)

Predicate Calculus and Proving Theorems

-use of propositions is to discover new theorems that can
be inferred from known axioms and theorems.

Resolution: an inference principle that allows inferred
propositions to be computed from given propositions
resolution.

Unification: finding values for variables in propositions
that allows matching process to succeed.

Instantiation: assigning temporary values to variables to allow
unification to succeed after instantiating a variable with a
value, if matching fails, may need to backtrack and
instantiate with a different value.

Unit-4(PRINCIPLES OF PROGRAMMING
470

LANGUAGE)

Theorem Proving

-Basis for logic programming.

-When propositions used for resolution,
only restricted form can be used.

Horn clause - can have only two forms.

–Headed: single atomic proposition on left side.

–Headless: empty left side (used to state facts).
-Most propositions can be stated as Horn

clauses.

Unit-4(PRINCIPLES OF PROGRAMMING
471

LANGUAGE)

Basic Elements of Prolog

Terms:

-Edinburgh Syntax.

Term: a constant, variable, or structure.

Constant: an atom or an integer.

Atom: symbolic value of Prolog.

Atom consists of either:

–a string of letters, digits, and underscores
beginning with a lowercase letter.

–a string of printable ASCII characters delimited
by apostrophes.

Unit-4(PRINCIPLES OF PROGRAMMING
472

LANGUAGE)

Terms: Variables and Structures

-Variable: any string of letters, digits, and
underscores beginning with an
uppercase letter.

-Instantiation: binding of a variable to a value.

–Lasts only as long as it takes to satisfy
one complete goal.

-Structure: represents atomic proposition

functor(parameter list).

Unit-4(PRINCIPLES OF PROGRAMMING
473

LANGUAGE)

Fact Statements

-Used for the hypotheses.

-Headless Horn clauses:

female(shelley).

male(bill).

father(bill, jake).

Unit-4(PRINCIPLES OF PROGRAMMING
474

LANGUAGE)

Rule Statements

-Used for the hypotheses.

-Headed Horn clause:

Right side: antecedent (if part)

–May be single term or conjunction.

Left side: consequent (then part).

–Must be single term.

Conjunction: multiple terms separated by logical AND operations (implied)

Example Rules:

ancestor(mary,shelley):- mother(mary,shelley).

Can use variables (universal objects) to generalize meaning:

parent(X,Y):- mother(X,Y).

parent(X,Y):- father(X,Y).

grandparent(X,Z):- parent(X,Y), parent(Y,Z).

sibling(X,Y):- mother(M,X), mother(M,Y),
father(F,X), father(F,Y).

Unit-4(PRINCIPLES OF PROGRAMMING
475

LANGUAGE)

Goal Statements

-For theorem proving, theorem is in form of
proposition that we want system to prove or
disprove – goal statement.

-Same format as headless
Horn eg: man(fred)

-Conjunctive propositions and propositions
with variables also legal goals.

eg: father(X,mike)

Unit-4(PRINCIPLES OF PROGRAMMING
476

LANGUAGE)

Inferencing Process of Prolog

-Queries are called goals.

-If a goal is a compound proposition, each of the facts is
a subgoal.

-To prove a goal is true, must find a chain of inference
rules and/or facts.

For goal Q:

 :- A
 :- B
…
 :- P

-Process of proving a subgoal called matching, satisfying, or
resolution. Unit-4(PRINCIPLES OF PROGRAMMING

477 LANGUAGE)

Simple Arithmetic

-Prolog supports integer variables and integer arithmetic.

-is operator: takes an arithmetic expression as right operand and variable
as left operand.

eg: A is B / 17 + C

-Not the same as an assignment statement!

Example: speed(ford,100).

speed(chevy,105).

speed(dodge,95).

speed(volvo,80).

time(ford,20).

time(chevy,21).

time(dodge,24).

time(volvo,24).

distance(X,Y) :- speed(X,Speed),

time(X,Time),

Y is Speed * Time. Unit-4(PRINCIPLES OF PROGRAMMING
478

LANGUAGE)

Trace

-Built-in structure that displays instantiations
at each step.

-Tracing model of execution - four events:

–Call (beginning of attempt to satisfy goal).

–Exit (when a goal has been satisfied).

–Redo (when backtrack occurs).

–Fail (when goal fails).

Unit-4(PRINCIPLES OF PROGRAMMING
479

LANGUAGE)

Example

likes(jake,chocolate).

likes(jake,apricots).

likes(darcie,licorice).

likes(darcie,apricots).

trace.

likes(jake,X),

likes(darcie,X).

Unit-4(PRINCIPLES OF PROGRAMMING
480

LANGUAGE)

Bindings and scope

 A PROLOG program consists of one or more
relations.

 The scope of every relation is the entire

program.

 It is not possible in PROLOG to define a

relation locally to another relation, nor
to group relations into packages.

Unit-4(PRINCIPLES OF PROGRAMMING
481

LANGUAGE)

Control

 In principle, the order in which resolution is
done should not affect the set of answers
yielded by a query (although it will affect the
order in which these answers are found).

 In practical logic programming, however, the

order is very important

Unit-4(PRINCIPLES OF PROGRAMMING
482

LANGUAGE)

Deficiencies of prolog

 Resolution order control
 Closed word assumption: When an assertion is

tested, therefore, success means true and failure
means either unknown or false. As this is rather
inconvenient, PROLOG bends the rules of logic by
ignoring the distinction between unknown and false.
In other words, an assertion is assumed to be false if
it cannot be inferred to be true. This is called the

closed world assumption

 Negation problem.

Unit-4(PRINCIPLES OF PROGRAMMING
483

LANGUAGE)

Applications of Logic Programming

Relational database management system:

 RDBMS stores data in the form of tables and queries.

 Prolog can replace the DML,DDL and query language

which are implanted in imperative languages.

Expert Systems

 Expert systems consists of database of facts, an
inferencing process, a human interface to look like
an expert human consultant.

 Logical programming helps to solve the

incompleteness of database.

Unit-4(PRINCIPLES OF PROGRAMMING
484

LANGUAGE)

Applications of logic
programming(cont..)

Natural language processing

 Few kinds of natural processing languages can be
done using logical programming

Unit-4(PRINCIPLES OF PROGRAMMING
485

LANGUAGE)

Unit-5

Functional Programming Languages

Scripting Language

486

CONCEPTS

 Introduction
 Fundamentals of FPL
 LISP
 ML
 HASKELL
 Applications of FPL
 Scripting languages

UNIT-5 (PRINCIPLES OF PROGRAMMING
487

LANGUAGES)

FUNTIONAL PROGRAMMING LANGUAGE

 The design of the imperative languages is
based directly on Von Nuemann
Architechture.

 The design of the functional language is based

on mathematical functions.

UNIT-5 (PRINCIPLES OF PROGRAMMING
488

LANGUAGES)

MATHEMATICAL FUNCTION

Def: A mathematical function is a mapping of

members of one set, called the domain set,

to another set, called the range set.

 A lambda expression specifies the parameter(s)

and the mapping of a function in the following

form l(x) x * x * x
For the function cube (x) = x * x * x
 Lambda expressions describe nameless functions

UNIT-5 (PRINCIPLES OF PROGRAMMING
489

LANGUAGES)

Mathematical function(cont..)

 Lambda expressions are applied to parameter(s)
by placing the parameter(s) after the expression

 e.g. (l(x) x * x * x)(3) which evaluates to 27

A Function for Constructing Functions

DEFINE - Two forms:

 To bind a symbol to an expression
e.g.,
(DEFINE pi 3.141593)
(DEFINE two_pi (* 2 pi))

UNIT-5 (PRINCIPLES OF PROGRAMMING
490

LANGUAGES)

Fundamentals of Functional
Programming Languages

 The objective of the design of a FPL is to
mimic mathematical functions to the
greatest extent possible.

 The basic process of computation is
fundamentally different in a FPL than in
an imperative language.

 In an imperative language, operations are done
and the results are stored in variables for later
use

UNIT-5 (PRINCIPLES OF PROGRAMMING
491

LANGUAGES)

Fundamentals of FPL(cont..)

 Management of variables is a constant
concern and source of complexity for
imperative programming.

 In an FPL, variables are not necessary, as is the
case in mathematics.

 In an FPL, the evaluation of a function always
produces the same result given the same
parameters.

 This is called referential transparency.

UNIT-5 (PRINCIPLES OF PROGRAMMING
492

LANGUAGES)

LISP

 The first functional programming language.

 Data object types: originally only atoms and

lists.

 List form: parenthesized collections of sublists

and/or atoms

E.g., (A B (C D) E)

UNIT-5 (PRINCIPLES OF PROGRAMMING
493

LANGUAGES)

A Bit of LISP

 Originally, LISP was a typeless language.
 There were only two data types, atom and list.

 LISP lists are stored internally as single-linked

lists.

 Lambda notation is used to specify functions

and function definitions, function
applications,and data all have the same form.

UNIT-5 (PRINCIPLES OF PROGRAMMING
494

LANGUAGES)

INTRODUCTION TO SCHEME

 A mid-1970s dialect of LISP, designed to be
cleaner, more modern, and simpler version
than the contemporary dialects of LISP.

 Uses only static scoping.
 Functions are first-class entities.

-They can be the values of expressions
and elements of lists

 They can be assigned to variables and
passed as parameters

UNIT-5 (PRINCIPLES OF PROGRAMMING 495

LANGUAGES)

Primitive Functions:

 Arithmetic: +, -, *, /, ABS, SQRT
e.g., (+ 5 2) yields 7

 QUOTE -takes one parameter; returns the parameter

without evaluation.

 QUOTE is required because the Scheme interpreter,
named EVAL, always evaluates parameters to
function applications before applying the function.
QUOTE is used to avoid parameter evaluation
when it is not appropriate.

UNIT-5 (PRINCIPLES OF PROGRAMMING
496

LANGUAGES)

QUOTE

 QUOTE can be abbreviated with the apostrophe
prefix operator

e.g., '(A B) is equivalent to (QUOTE (A B))

 CAR takes a list parameter; returns the first
element of that list
e.g., (CAR '(A B C)) yields A (CAR

'((A B) C D)) yields (A B)
 CDR takes a list parameter; returns the list
after removing its first element

UNIT-5 (PRINCIPLES OF PROGRAMMING
497

LANGUAGES)

e.g., (CDR '(A B C)) yields (B C)

(CDR '((A B) C D)) yields (C D)

 CONS takes two parameters, the first of which
can be either an atom or a list and the second
of which is a list; returns a new list that
includes the first parameter as its first element
and the second parameter as the remainder of
its result

UNIT-5 (PRINCIPLES OF PROGRAMMING
498

LANGUAGES)

e.g., (CONS 'A '(B C)) returns (A B C)

 LIST - takes any number of parameters; returns a
list with the parameters as elements.

Predicate Functions: (#T and () are true and false)

 1. EQ? takes two symbolic parameters; it returns
#T if both parameters are atoms and the two
are the same.

 e.g., (EQ? 'A 'A) yields #T

(EQ? 'A '(A B)) yields ()

UNIT-5 (PRINCIPLES OF PROGRAMMING
499

LANGUAGES)

 LIST? takes one parameter; it returns #T if the
parameter is an list; otherwise ()

 NULL? takes one parameter; it returns #T if the

parameter is the empty list; otherwise ()

Note that NULL? returns #T if the parameter is ()

 Numeric Predicate Functions =, <>, >, <, >=, <=,
EVEN?, ODD?, ZERO?

5. Output Utility Functions:

(DISPLAY expression)
(NEWLINE) LANGUAGES)
 UNIT-5 (PRINCIPLES OF PROGRAMMING

500

Lambda Expressions:

Form is based on l notation e.g.,

(LAMBDA (L) (CAR (CAR L))) L is

called a bound variable Lambda

expressions can be applied

e.g., ((LAMBDA (L) (CAR (CAR L))) '((A B) C D))

UNIT-5 (PRINCIPLES OF PROGRAMMING
501

LANGUAGES)

 To bind names to lambda expressions
e.g.,(DEFINE (cube x) (* x x x))
Example use:(cube 4)
- Evaluation process (for normal functions):

 Parameters are evaluated, in no
particular order.

 The values of the parameters are

substituted into the function body.
 The function body is evaluated.
 The value of the last expression in the

body is the value of the function.
UNIT-5 (PRINCIPLES OF PROGRAMMING

502
LANGUAGES)

Control Flow:

 Selection- the special form, IF

(IF predicate then_exp

else_exp) e.g.,(IF (<> count 0)

(/ sum
count) 0
)

UNIT-5 (PRINCIPLES OF PROGRAMMING
503

LANGUAGES)

 Multiple Selection - the special form, COND
- General form:
- (COND

(predicate_1 expr {expr})
(predicate_1 expr {expr})

...

(predicate_1 expr {expr})
(ELSE expr {expr})
)

 Returns the value of the last expr in the first pair
whose predicate evaluates to true

UNIT-5 (PRINCIPLES OF PROGRAMMING 504 LANGUAGES)

COMMON LISP

 A combination of many of the features of the
popular dialects of LISP around in the early 1980s.

 A large and complex language--the opposite of

Scheme.
 Includes: records, arrays, Complex numbers,

character strings, powerful i/o capabilities,
packages with access control, imperative features
like those of Scheme ,iterative control statements.

UNIT-5 (PRINCIPLES OF PROGRAMMING
505

LANGUAGES)

ML

 A static-scoped functional language with
syntax that is closer to Pascal than to LISP

 Uses type declarations, but also does type

inferencing to determine the types of
undeclared

 It is strongly typed (whereas Scheme is

essentially typeless) and has no type
coercions

UNIT-5 (PRINCIPLES OF PROGRAMMING
506

LANGUAGES)

ML(cont..)

 Includes exception handling and a module facility
for implementing abstract data types

 Includes lists and list operations

 The val statement binds a name to a value
(similar to DEFINE in Scheme)
 Function declaration form:

fun function_name (formal_parameters)
= function_body_expression;

e.g., fun cube (x : int) = x * x * x;

UNIT-5 (PRINCIPLES OF PROGRAMMING
507

LANGUAGES)

ML(cont..)

 Functions that use arithmetic or relational
operators cannot be polymorphic--those
with only list operations can be polymorphic

UNIT-5 (PRINCIPLES OF PROGRAMMING
508

LANGUAGES)

Haskell

 Similar to ML (syntax, static scoped, strongly
typed, type inferencing)

 Different from ML (and most other functional
languages) in that it is PURELY functional

(e.g., no variables, no assignment
statements, and no side effects of any kind)

Most Important Features
 Uses lazy evaluation
 Has “list comprehensions,” which allow it to
 deal with infinite lists

UNIT-5 (PRINCIPLES OF PROGRAMMING
509

LANGUAGES)

HASKELL(cont..)

Examples

 Fibonacci numbers (illustrates function definitions with
different parameter forms)
fib 0 = 1
fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

2.Lazy evaluation
Infinite lists
e.g., positives = [0..]

squares = [n * n | n ¨ [0..]]
(only compute those that are necessary)

UNIT-5 (PRINCIPLES OF PROGRAMMING
510

LANGUAGES)

Applications of Functional Languages

 APL is used for throw-away programs.
 LISP is used for artificial intelligence

 Knowledge representation
 Machine learning
 Natural language processing
 Modeling of speech and vision

 Scheme is used to teach introductory
programming at a significant number
of universities.

UNIT-5 (PRINCIPLES OF PROGRAMMING
511

LANGUAGES)

Comparing Functional and
Imperative Languages

Imperative Languages:
 Efficient execution
 Complex semantics
 Complex syntax
 Concurrency is programmer
designed Functional Languages:
 Simple semantics
 Simple syntax
 Inefficient execution
 Programs can automatically be made concurrent

UNIT-5 (PRINCIPLES OF PROGRAMMING
512

LANGUAGES)

Scripting languages

Pragmatics

 Scripting is a paradigm characterized by:

-use of scripts to glue subsystems together;

-rapid development and evolution of scripts;

-modest efficiency requirements;

-very high-level functionality in application-
specific areas.

UNIT-5 (PRINCIPLES OF PROGRAMMING
513

LANGUAGES)

Scripting languages(cont.)

 A software system often consists of a number
of subsystems controlled or connected by a
script.

 In such a system, the script is said to glue the

sub systems together.

UNIT-5 (PRINCIPLES OF PROGRAMMING
514

LANGUAGES)

Python

 PYTHON was designed in the early 1990s by
Guido van Rossum.

 PYTHON borrows ideas from languages as

diverse as PERL ,HASKELL ,and the object-
oriented languages, skillfully integrating these
ideas into a coherent whole.

 PYTHON scripts are concise but readable, and

highly expressive.

UNIT-5 (PRINCIPLES OF PROGRAMMING
515

LANGUAGES)

Values and types

 PYTHON has a limited repertoire of primitive
types: integer, real, and complex Numbers.

 It has no specific character type; single-
character strings are used instead.

 its boolean values (named False and True) are
just small integers.

 PYTHON has a rich repertoire of composite
types: tuples, strings, lists, dictionaries, and
objects.

UNIT-5 (PRINCIPLES OF PROGRAMMING
516

LANGUAGES)

Variables, storage, and control

 PYTHON supports global and local variables.

 Variables are not explicitly declared,simply

initialized by assignment.

 PYTHON adopts reference semantics. This is

especially significant for mutable values,
which can be selectively updated.

 Primitive values and strings are immutable; lists,

dictionaries, and objects are mutable; tuples are
mutable if any of their components are mutable.

UNIT-5 (PRINCIPLES OF PROGRAMMING
517

LANGUAGES)

 PYTHON’s repertoire of commands include
assignments, procedure calls, con-ditional (if-
but not case-) commands, iterative (while- and
for-) commands, and exception-handling
commands.

 PYTHON if- and while-commands are

conventional.

UNIT-5 (PRINCIPLES OF PROGRAMMING
518

LANGUAGES)

Pythons reserved words

and assert break class continue def del

elif

else except exec finally for from global if

import in is lambda not or pass

print

raise return try while yield

UNIT-5 (PRINCIPLES OF PROGRAMMING
519

LANGUAGES)

Dynamically typed language

 Python is a dynamically typed language. Based
on the value, type of the variable is during the

execution of the program.

Python(dynamic)

C = 1

C = [1,2,3]

C(static)

Double c; c = 5.2;

UNIT-5 (PRINCIPLES OF PROGRAMMING
520

LANGUAGES)

Strongly typed python language:

 Weakly vs strongly typed python language

differ in their automatic conversions.

Perl(weak)

$b = `1.2`

$c = 5 * $b;

Python(strong)

 =`1.2`
c= 5* b;

UNIT-5 (PRINCIPLES OF PROGRAMMING
521

LANGUAGES)

Bindings and scope

 A PYTHON program consists of a number of
modules, which may be grouped into packages.

 Within a module we may initialize variables,

define procedures, and declare classes

 Within a procedure we may initialize local

variables and define local procedures.

 Within a class we may initialize variable

components and define procedures (methods).

 PYTHON was originally a dynamically-scoped

language, but it is now statically scoped.

UNIT-5 (PRINCIPLES OF PROGRAMMING
522

LANGUAGES)

Binding and scope

 In python, variables defined inside the function are
local to that function. In order to change them as
global variables, they must be declared as global
inside the function as given below.

S = 1
Def myfunc(x,y);
Z = 0

Global s;
S = 2
Return y-1 , z+1;

UNIT-5 (PRINCIPLES OF PROGRAMMING
523

LANGUAGES)

Procedural abstraction

 PYTHON supports function procedures and
proper procedures.

 The only difference is that a function

procedure returns a value, while a
proper procedure returns nothing.

 Since PYTHON is dynamically typed, a

procedure definition states the name but
not the type of each formal parameter.

UNIT-5 (PRINCIPLES OF PROGRAMMING
524

LANGUAGES)

Python procedure

Eg :Def gcd (m, n):

p,q=m,n

while p%q!=0:

p,q=q,p%q

return q

UNIT-5 (PRINCIPLES OF PROGRAMMING
525

LANGUAGES)

Python procedure with Dynamic Typing

Eg: def minimax (vals):

min = max = vals[0]

for val in vals:

if val < min:

min = val

elif val > max:

max = val

return min, max

UNIT-5 (PRINCIPLES OF PROGRAMMING
526

LANGUAGES)

Data Abstraction

 PYTHON has three different constructs
relevant to data abstraction: packages
,modules , and classes

 Modules and classes support encapsulation,
using a naming convention to distinguish
between public and private components.

 A Package is simply a group of modules

 A Module is a group of components that may

be variables, procedures, and classes

UNIT-5 (PRINCIPLES OF PROGRAMMING
527

LANGUAGES)

Data abstraction(cont..)

 A Class is a group of components that may be
class variables, class methods ,and instance
methods.

 A procedure defined in a class declaration acts

as an instance method if its first formal
parameter is named self and refers to an
object of the class being declared. Otherwise
the procedure acts as a class method.

UNIT-5 (PRINCIPLES OF PROGRAMMING
528

LANGUAGES)

Data abstraction(cont..)

 To achieve the effect of a constructor, we
usually equip each class with an initialization
method named ‘‘_init_’’; this method is
automatically called when an object of the
class is constructed.

 PYTHON supports multiple inheritance: a class

may designate any number of superclasses.

UNIT-5 (PRINCIPLES OF PROGRAMMING
529

LANGUAGES)

Separate Compilation

 PYTHON modules are compiled separately.

 Each module must explicitly import every

other module on which it depends

 Each module’s source code is stored in a text

file. Eg: program.py

 When that module is first imported, it is

compiled and its object code is stored in a
file named program.pyc

UNIT-5 (PRINCIPLES OF PROGRAMMING
530

LANGUAGES)

Separate Compilation(cont..)

 Compilation is completely automatic

 The PYTHON compiler does not reject code that

refers to undeclared identifiers.Such code
simply fails if and when it is executed

 The compiler will not reject code that might fail
with a type error,nor even code that will
certainly fail, such as:

def fail (x):
print x+1, x[0]

UNIT-5 (PRINCIPLES OF PROGRAMMING
531

LANGUAGES)

Module Library

 PYTHON is equipped with a very rich module
library, which supports string handling ,markup ,
mathematics, cryptography, multimedia, GUIs,
operating system services ,internet services,
compilation, and so on.

 Unlike older scripting languages, PYTHON

does not have built-in high-level string
processing or GUI support , so module library
provides it.

UNIT-5 (PRINCIPLES OF PROGRAMMING
532

LANGUAGES)

