
PRINCIPLES OF

PROGRAMMING LANGUAGES

Prepared By:

Mrs.B.DHANALAXMI
Associate Professor

IT Department

1

2

 CONCEPTS
❖ Reasons for Studying Concepts of Programming

Languages.

❖ Programming Domains

❖ Language Evaluation Criteria

❖ Influences on Language Design

❖ Language Categories

❖ Language Design Trade-Offs

❖ Implementation Methods

❖ Programming Environments

1-3
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

CONCEPTS

• Introduction to syntax and semantics

• The General Problem of Describing Syntax

• Formal Methods of Describing Syntax

• Attribute Grammars

• Describing the Meanings of Programs:
Dynamic Semantics

1-4
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Reasons for Studying Concepts of
Programming Languages

● Increased ability to express ideas.

● Improved background for choosing appropriate languages.

● Increased ability to learn new languages.

● Better understanding of significance of implementation.

● Better use of languages that are already known.

● Overall advancement of computing.

1-5
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Programming Domains

• Scientific Applications
– Large numbers of floating point computations; use of

arrays.
– Example:Fortran.

• Business Applications
– Produce reports, use decimal numbers and characters.
– Example:COBOL.

• Artificial intelligence
– Symbols rather than numbers manipulated; use of linked

lists.
– Example:LISP.

1-6

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

7

❖Programming Domains

● System programming
 - Need effieciency because of continous use.

 - Example:C

● Web Software
 -Eclectic collection of languages:
markup(example:XHTML),scripting(example:PHP),
general-purpose(example:JAVA).

❖Language Evaluation Criteria

● Readability:
➢ The ease with which programs can be read and

understood.

● Writability:
➢ The ease with which a language can be used to create

programs.

● Reliability:
➢ Conformance to specifications (i.e., performs to its

specifications).

● Cost:
➢ The ultimate total cost.

1-8
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Evaluation Criteria: Readability

➔ Overall simplicity
◆ A manageable set of features and constructs.
◆ Minimal feature multiplicity .
◆ Minimal operator overloading.

➔ Orthogonality
◆ A relatively small set of primitive constructs can be

combined in a relatively small number of ways
◆ Every possible combination is legal

➔ Data types
◆ Adequate predefined data types.

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

10

❖Evaluation Criteria:Readability

➔Syntax considerations

 -Identifier forms:flexible composition.

 -Special words and methods of forming

compound statements.

 -Form and meaning:self-descriptive

constructs,meaningful keywords.

❖Evaluation Criteria: Writability

• Simplicity and orthogonality
– Few constructs, a small number of primitives, a small

set of rules for combining them.

● Support for abstraction

 -The ability to define and use complex structures or

operations in ways that allow details to be ignored.

● Expressivity
– A set of relatively convenient ways of specifying

operations.

– Strength and number of operators and predefined
functions.

1-11
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Evaluation Criteria: Reliability

• Type checking
– Testing for type errors.

• Exception handling
– Intercept run-time errors and take corrective measures.

• Aliasing
– Presence of two or more distinct referencing methods for

the same memory location.

• Readability and writability
– A language that does not support “natural” ways of

expressing an algorithm will require the use of
“unnatural” approaches, and hence reduced reliability.

1-12

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Evaluation Criteria: Cost

• Training programmers to use the language

• Writing programs (closeness to particular
applications)

• Compiling programs

• Executing programs

• Language implementation system:
availability of free compilers

• Reliability: poor reliability leads to high costs

• Maintaining programs

1-13
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Evaluation Criteria: Others

• Portability

– The ease with which programs can be moved
from one implementation to another.

• Generality

– The applicability to a wide range of
applications.

• Well-definedness

– The completeness and precision of the
language’s official definition.

1-14
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Influences on Language Design

• Computer Architecture
– Languages are developed around the prevalent

computer architecture, known as the von
Neumann architecture

• Programming Methodologies
– New software development methodologies (e.g.,

object-oriented software development) led to
new programming paradigms and by extension,
new programming languages

1-15
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Computer Architecture Influence

• Well-known computer architecture: Von Neumann

• Imperative languages, most dominant, because of von
Neumann computers

– Data and programs stored in memory

– Memory is separate from CPU

– Instructions and data are piped from memory to CPU

– Basis for imperative languages

• Variables model memory cells

• Assignment statements model piping

• Iteration is efficient

1-16
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖The Von Neumann Architecture

1-17
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖The Von Neumann Architecture

• Fetch-execute-cycle (on a von Neumann
architecture computer)

initialize the program counter

repeat forever

 fetch the instruction pointed by the counter

 increment the counter

 decode the instruction

 execute the instruction

end repeat

1-18
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Programming Methodologies
Influences

• 1950s and early 1960s: Simple applications; worry about
machine efficiency

• Late 1960s: People efficiency became important; readability,
better control structures
– structured programming

– top-down design and step-wise refinement

• Late 1970s: Process-oriented to data-oriented
– data abstraction

• Middle 1980s: Object-oriented programming
– Data abstraction + inheritance + polymorphism

1-19
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Language Categories
• Imperative

– Central features are variables, assignment statements, and iteration
– Include languages that support object-oriented programming
– Include scripting languages
– Include the visual languages
– Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

• Functional
– Main means of making computations is by applying functions to given

parameters
– Examples: LISP, Scheme

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Markup/programming hybrid
– Markup languages extended to support some programming
– Examples: JSTL, XSLT

1-20
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Language Design Trade-Offs

• Reliability vs. cost of execution
– Example: Java demands all references to array elements be checked

for proper indexing, which leads to increased execution costs

• Readability vs. writability
Example: APL provides many powerful operators (and a large number of

new symbols), allowing complex computations to be written in a
compact program but at the cost of poor readability

• Writability (flexibility) vs. reliability
– Example: C++ pointers are powerful and very flexible but are

unreliable

1-21
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Implementation Methods

• Compilation
– Programs are translated into machine language

• Pure Interpretation
– Programs are interpreted by another program known as an interpreter

• Hybrid Implementation Systems
– A compromise between compilers and pure interpreters

1-22
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

❖Layered View of Computer
The operating system and

language implementation

are layered over

machine interface of a

computer

1-23
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Compilation

• Translate high-level program (source language) into machine
code (machine language)

• Slow translation, fast execution

• Compilation process has several phases:
– lexical analysis: converts characters in the source program into lexical

units

– syntax analysis: transforms lexical units into parse trees which
represent the syntactic structure of program

– Semantics analysis: generate intermediate code

– code generation: machine code is generated

1-24
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

The Compilation Process

1-25
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Additional Compilation Terminologies

• Load module (executable image): the user and
system code together

• Linking and loading: the process of collecting
system program units and linking them to a
user program

1-26
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Von Neumann Bottleneck

• Connection speed between a computer’s
memory and its processor determines the speed
of a computer

• Program instructions often can be executed much
faster than the speed of the connection; the
connection speed thus results in a bottleneck

• Known as the von Neumann bottleneck; it is the
primary limiting factor in the speed of computers

1-27
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pure Interpretation

• No translation

• Easier implementation of programs (run-time errors can
easily and immediately be displayed)

• Slower execution (10 to 100 times slower than compiled
programs)

• Often requires more space

• Now rare for traditional high-level languages

• Significant comeback with some Web scripting languages
(e.g., JavaScript, PHP)

1-28
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pure Interpretation Process

1-29
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Hybrid Implementation Systems

• A compromise between compilers and pure
interpreters

• A high-level language program is translated to an
intermediate language that allows easy
interpretation

• Faster than pure interpretation
• Examples

– Perl programs are partially compiled to detect errors before
interpretation

– Initial implementations of Java were hybrid; the intermediate form, byte
code, provides portability to any machine that has a byte code interpreter
and a run-time system (together, these are called Java Virtual Machine)

1-30
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Hybrid Implementation Process

1-31
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Just-in-Time Implementation Systems

• Initially translate programs to an intermediate language

• Then compile the intermediate language of the subprograms
into machine code when they are called

• Machine code version is kept for subsequent calls

• JIT systems are widely used for Java programs

• .NET languages are implemented with a JIT system

1-32
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Preprocessors

• Preprocessor macros (instructions) are
commonly used to specify that code from
another file is to be included

• A preprocessor processes a program
immediately before the program is compiled
to expand embedded preprocessor macros

• A well-known example: C preprocessor
– expands #include, #define, and similar

macros

1-33
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Programming Environments
• A collection of tools used in software development

• UNIX
– An older operating system and tool collection

– Nowadays often used through a GUI (e.g., CDE, KDE, or GNOME) that
runs on top of UNIX

• Microsoft Visual Studio.NET
– A large, complex visual environment

• Used to build Web applications and non-Web applications in any .NET
language

• NetBeans
– Related to Visual Studio .NET, except for Web applications in Java

1-34
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Programming Environments

• Zuse’s Plankalkül

• Minimal Hardware Programming: Pseudocodes

• The IBM 704 and Fortran

• Functional Programming: LISP

• The First Step Toward Sophistication: ALGOL 60

• Computerizing Business Records: COBOL

• The Beginnings of Timesharing: BASIC

1-35
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Programming Environments

• Everything for Everybody: PL/I

• Two Early Dynamic Languages: APL and SNOBOL

• The Beginnings of Data Abstraction: SIMULA 67

• Orthogonal Design: ALGOL 68

• Some Early Descendants of the ALGOLs

• Programming Based on Logic: Prolog

• History's Largest Design Effort: Ada

1-36
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Programming Environments

• Object-Oriented Programming: Smalltalk
• Combining Imperative ad Object-Oriented

Features: C++
• An Imperative-Based Object-Oriented

Language: Java
• Scripting Languages
• A C-Based Language for the New Millennium:

C#
• Markup/Programming Hybrid Languages

1-37
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Genealogy of Common Languages

1-38
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Zuse’s Plankalkül

• Designed in 1945, but not published until
1972

• Never implemented

• Advanced data structures

– floating point, arrays, records

• Invariants

1-39
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Plankalkül Syntax

• An assignment statement to assign the
expression A[4] + 1 to A[5]

 | A + 1 => A

 V | 4 5 (subscripts)

 S | 1.n 1.n (data types)

1-40
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Minimal Hardware Programming: Pseudocodes

• What was wrong with using machine code?

– Poor readability

– Poor modifiability

– Expression coding was tedious

– Machine deficiencies--no indexing or floating
point

1-41
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pseudocodes: Short Code

• Short Code developed by Mauchly in 1949 for
BINAC computers

– Expressions were coded, left to right

– Example of operations:

 01 – 06 abs value 1n (n+2)nd power
 02) 07 + 2n (n+2)nd root

 03 = 08 pause 4n if <= n

 04 / 09 (58 print and tab

1-42
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pseudocodes: Speedcoding

• Speedcoding developed by Backus in 1954 for
IBM 701

– Pseudo ops for arithmetic and math functions

– Conditional and unconditional branching

– Auto-increment registers for array access

– Slow!

– Only 700 words left for user program

 1-43

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pseudocodes: Related Systems

• The UNIVAC Compiling System

– Developed by a team led by Grace Hopper

– Pseudocode expanded into machine code

• David J. Wheeler (Cambridge University)

– developed a method of using blocks of re-
locatable addresses to solve the problem of
absolute addressing

1-44
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

IBM 704 and Fortran

• Fortran 0: 1954 - not implemented
• Fortran I:1957

– Designed for the new IBM 704, which had index registers and floating
point hardware

 - This led to the idea of compiled programming languages, because
there was no place to hide the cost of interpretation (no floating-point
software)

– Environment of development
• Computers were small and unreliable

• Applications were scientific

• No programming methodology or tools

• Machine efficiency was the most important concern

1-45
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Design Process of Fortran

• Impact of environment on design of Fortran I

– No need for dynamic storage

– Need good array handling and counting loops

– No string handling, decimal arithmetic, or powerful
input/output (for business software)

1-46
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Fortran I Overview

• First implemented version of Fortran

– Names could have up to six characters

– Post-test counting loop (DO)

– Formatted I/O

– User-defined subprograms

– Three-way selection statement (arithmetic IF)

– No data typing statements

1-47
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Fortran I Overview (continued)

• First implemented version of FORTRAN

– No separate compilation

– Compiler released in April 1957, after 18 worker-
years of effort

– Programs larger than 400 lines rarely compiled
correctly, mainly due to poor reliability of 704

– Code was very fast

– Quickly became widely used

1-48
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Fortran II

• Distributed in 1958

– Independent compilation

– Fixed the bugs

1-49
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Fortran IV

• Evolved during 1960-62

– Explicit type declarations

– Logical selection statement

– Subprogram names could be parameters

– ANSI standard in 1966

1-50
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Fortran 77

• Became the new standard in 1978

– Character string handling

– Logical loop control statement

– IF-THEN-ELSE statement

1-51
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Fortran 90

• Most significant changes from Fortran 77

– Modules

– Dynamic arrays

– Pointers

– Recursion

– CASE statement

– Parameter type checking

1-52
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Latest versions of Fortran

• Fortran 95 – relatively minor additions, plus
some deletions

• Fortran 2003 - ditto

1-53
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Fortran Evaluation

• Highly optimizing compilers (all versions
before 90)

– Types and storage of all variables are fixed before
run time

• Dramatically changed forever the way
computers are used

• Characterized as the lingua franca of the
computing world

1-54
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Functional Programming: LISP

• LISt Processing language

– Designed at MIT by McCarthy

• AI research needed a language to

– Process data in lists (rather than arrays)

– Symbolic computation (rather than numeric)

• Only two data types: atoms and lists

• Syntax is based on lambda calculus

1-55
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Representation of Two LISP Lists

Representing the lists (A B C D)

and (A (B C) D (E (F G)))

1-56
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

LISP Evaluation

• Pioneered functional programming

– No need for variables or assignment

– Control via recursion and conditional expressions

• Still the dominant language for AI

• COMMON LISP and Scheme are contemporary
dialects of LISP

• ML, Miranda, and Haskell are related
languages

1-57
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Scheme

• Developed at MIT in mid 1970s

• Small

• Extensive use of static scoping

• Functions as first-class entities

• Simple syntax (and small size) make it ideal for
educational applications

1-58
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

COMMON LISP

• An effort to combine features of several
dialects of LISP into a single language

• Large, complex

1-59
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

The First Step Toward Sophistication: ALGOL 60

• Environment of development
– FORTRAN had (barely) arrived for IBM 70x

– Many other languages were being developed, all for
specific machines

– No portable language; all were machine-
dependent

– No universal language for communicating algorithms

• ALGOL 60 was the result of efforts to design a
universal language

1-60
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Early Design Process

• ACM and GAMM met for four days for design
(May 27 to June 1, 1958)

• Goals of the language

– Close to mathematical notation

– Good for describing algorithms

– Must be translatable to machine code

1-61
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

ALGOL 58
• Concept of type was formalized

• Names could be any length

• Arrays could have any number of subscripts

• Parameters were separated by mode (in & out)

• Subscripts were placed in brackets

• Compound statements (begin ... end)

• Semicolon as a statement separator

• Assignment operator was :=

• if had an else-if clause

• No I/O - “would make it machine dependent”

1-62
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

ALGOL 58 Implementation

• Not meant to be implemented, but variations
of it were (MAD, JOVIAL)

• Although IBM was initially enthusiastic, all
support was dropped by mid 1959

1-63
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

ALGOL 60 Overview

• Modified ALGOL 58 at 6-day meeting in Paris

• New features

– Block structure (local scope)

– Two parameter passing methods

– Subprogram recursion

– Stack-dynamic arrays

– Still no I/O and no string handling

1-64
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

ALGOL 60 Evaluation

• Successes

– It was the standard way to publish algorithms for
over 20 years

– All subsequent imperative languages are based on
it

– First machine-independent language

– First language whose syntax was formally defined
(BNF)

1-65
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

ALGOL 60 Evaluation (continued)

• Failure

– Never widely used, especially in U.S.

– Reasons
• Lack of I/O and the character set made programs non-

portable

• Too flexible--hard to implement

• Entrenchment of Fortran

• Formal syntax description

• Lack of support from IBM

1-66
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Computerizing Business Records: COBOL

• Environment of development

– UNIVAC was beginning to use FLOW-MATIC

– USAF was beginning to use AIMACO

– IBM was developing COMTRAN

1-67
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

COBOL Historical Background

• Based on FLOW-MATIC

• FLOW-MATIC features

– Names up to 12 characters, with embedded
hyphens

– English names for arithmetic operators (no
arithmetic expressions)

– Data and code were completely separate

– The first word in every statement was a verb

1-68
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

COBOL Design Process

• First Design Meeting (Pentagon) - May 1959

• Design goals
– Must look like simple English

– Must be easy to use, even if that means it will be less powerful

– Must broaden the base of computer users

– Must not be biased by current compiler problems

• Design committee members were all from computer
manufacturers and DoD branches

• Design Problems: arithmetic expressions? subscripts? Fights
among manufacturers

1-69
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

COBOL Evaluation

• Contributions

– First macro facility in a high-level language

– Hierarchical data structures (records)

– Nested selection statements

– Long names (up to 30 characters), with hyphens

– Separate data division

1-70
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

COBOL: DoD Influence

• First language required by DoD

– would have failed without DoD

• Still the most widely used business
applications language

1-71
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

The Beginning of Timesharing: BASIC

• Designed by Kemeny & Kurtz at Dartmouth

• Design Goals:
– Easy to learn and use for non-science students

– Must be “pleasant and friendly”

– Fast turnaround for homework

– Free and private access

– User time is more important than computer time

• Current popular dialect: Visual BASIC

• First widely used language with time sharing

1-72
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

 Everything for Everybody: PL/I

• Designed by IBM and SHARE

• Computing situation in 1964 (IBM's point of
view)
– Scientific computing

• IBM 1620 and 7090 computers

• FORTRAN

• SHARE user group

– Business computing
• IBM 1401, 7080 computers

• COBOL

• GUIDE user group

1-73
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

PL/I: Background

• By 1963
– Scientific users began to need more elaborate I/O, like

COBOL had; business users began to need floating
point and arrays for MIS

– It looked like many shops would begin to need two
kinds of computers, languages, and support staff--too
costly

• The obvious solution
– Build a new computer to do both kinds of applications
– Design a new language to do both kinds of

applications

1-74
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

PL/I: Design Process

• Designed in five months by the 3 X 3
Committee
– Three members from IBM, three members from

SHARE

• Initial concept
– An extension of Fortran IV

• Initially called NPL (New Programming
Language)

• Name changed to PL/I in 1965

1-75
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

PL/I: Evaluation

• PL/I contributions
– First unit-level concurrency

– First exception handling

– Switch-selectable recursion

– First pointer data type

– First array cross sections

• Concerns
– Many new features were poorly designed

– Too large and too complex

 1-76

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Two Early Dynamic Languages: APL and SNOBOL

• Characterized by dynamic typing and dynamic
storage allocation

• Variables are untyped

– A variable acquires a type when it is assigned a
value

• Storage is allocated to a variable when it is
assigned a value

1-77
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

APL: A Programming Language

• Designed as a hardware description language
at IBM by Ken Iverson around 1960

– Highly expressive (many operators, for both
scalars and arrays of various dimensions)

– Programs are very difficult to read

• Still in use; minimal changes

1-78
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

SNOBOL

• Designed as a string manipulation language at
Bell Labs by Farber, Griswold, and Polensky in
1964

• Powerful operators for string pattern matching

• Slower than alternative languages (and thus
no longer used for writing editors)

• Still used for certain text processing tasks

1-79
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

The Beginning of Data Abstraction: SIMULA 67

• Designed primarily for system simulation
in Norway by Nygaard and Dahl

• Based on ALGOL 60 and SIMULA I

• Primary Contributions

– Coroutines - a kind of subprogram

– Classes, objects, and inheritance

1-80
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Orthogonal Design: ALGOL 68

• From the continued development of ALGOL 60
but not a superset of that language

• Source of several new ideas (even though the
language itself never achieved widespread
use)

• Design is based on the concept of
orthogonality

– A few basic concepts, plus a few combining
mechanisms

1-81

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

ALGOL 68 Evaluation

• Contributions
– User-defined data structures

– Reference types

– Dynamic arrays (called flex arrays)

• Comments
– Less usage than ALGOL 60

– Had strong influence on subsequent languages,
especially Pascal, C, and Ada

1-82
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pascal - 1971

• Developed by Wirth (a former member of the
ALGOL 68 committee)

• Designed for teaching structured
programming

• Small, simple, nothing really new

• Largest impact was on teaching programming

– From mid-1970s until the late 1990s, it was the
most widely used language for teaching
programming

1-83

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

C - 1972

• Designed for systems programming (at Bell
Labs by Dennis Richie)

• Evolved primarily from BCLP, B, but also
ALGOL 68

• Powerful set of operators, but poor type
checking

• Initially spread through UNIX

• Many areas of application

1-84
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Programming Based on Logic: Prolog

• Developed, by Comerauer and Roussel
(University of Aix-Marseille), with help from
Kowalski (University of Edinburgh)

• Based on formal logic

• Non-procedural

• Can be summarized as being an intelligent
database system that uses an inferencing
process to infer the truth of given queries

• Highly inefficient, small application areas

1-85
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

History’s Largest Design Effort: Ada

• Huge design effort, involving hundreds of
people, much money, and about eight years

– Strawman requirements (April 1975)

– Woodman requirements (August 1975)

– Tinman requirements (1976)

– Ironman equipments (1977)

– Steelman requirements (1978)

• Named Ada after Augusta Ada Byron, the
first programmer

1-86
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Ada Evaluation

• Contributions
– Packages - support for data abstraction

– Exception handling - elaborate

– Generic program units

– Concurrency - through the tasking model

• Comments
– Competitive design

– Included all that was then known about software engineering and
language design

– First compilers were very difficult; the first really usable compiler came
nearly five years after the language design was completed

1-87
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Ada 95

• Ada 95 (began in 1988)

– Support for OOP through type derivation

– Better control mechanisms for shared data

– New concurrency features

– More flexible libraries

• Popularity suffered because the DoD no
longer requires its use but also because of
popularity of C++

1-88
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Object-Oriented Programming: Smalltalk

• Developed at Xerox PARC, initially by Alan Kay,
later by Adele Goldberg

• First full implementation of an object-oriented
language (data abstraction, inheritance, and
dynamic binding)

• Pioneered the graphical user interface design

• Promoted OOP

1-89
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Combining Imperative and Object-Oriented
Programming: C++

• Developed at Bell Labs by Stroustrup in 1980

• Evolved from C and SIMULA 67

• Facilities for object-oriented programming, taken partially
from SIMULA 67

• Provides exception handling

• A large and complex language, in part because it supports
both procedural and OO programming

• Rapidly grew in popularity, along with OOP

• ANSI standard approved in November 1997

• Microsoft’s version (released with .NET in 2002): Managed
C++
– delegates, interfaces, no multiple inheritance

1-90
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Related OOP Languages

• Eiffel (designed by Bertrand Meyer - 1992)

– Not directly derived from any other language

– Smaller and simpler than C++, but still has most of
the power

– Lacked popularity of C++ because many C++
enthusiasts were already C programmers

• Delphi (Borland)

– Pascal plus features to support OOP

– More elegant and safer than C++

1-91
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

An Imperative-Based Object-Oriented
Language: Java

• Developed at Sun in the early 1990s
– C and C++ were not satisfactory for embedded

electronic devices

• Based on C++
– Significantly simplified (does not include
struct, union, enum, pointer arithmetic,
and half of the assignment coercions of C++)

– Supports only OOP
– Has references, but not pointers
– Includes support for applets and a form of

concurrency

1-92
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Java Evaluation

• Eliminated many unsafe features of C++

• Supports concurrency

• Libraries for applets, GUIs, database access

• Portable: Java Virtual Machine concept, JIT
compilers

• Widely used for Web programming

• Use increased faster than any previous
language

• Most recent version, 5.0, released in 2004

1-93
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Scripting Languages for the Web

• Perl
– Designed by Larry Wall—first released in 1987
– Variables are statically typed but implicitly declared
– Three distinctive namespaces, denoted by the first character of a
 variable’s name
– Powerful, but somewhat dangerous
– Gained widespread use for CGI programming on the Web
– Also used for a replacement for UNIX system administration language

• JavaScript
– Began at Netscape, but later became a joint venture of Netscape and Sun Microsystems
– A client-side HTML-embedded scripting language, often used to create dynamic HTML

documents
– Purely interpreted
– Related to Java only through similar syntax

• PHP
– PHP: Hypertext Preprocessor, designed by Rasmus Lerdorf
– A server-side HTML-embedded scripting language, often used for form processing and

database access through the Web
– Purely interpreted

1-94
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Scripting Languages for the Web

• Python
– An OO interpreted scripting language
– Type checked but dynamically typed
– Used for CGI programming and form processing
– Dynamically typed, but type checked
– Supports lists, tuples, and hashes

• Lua
– An OO interpreted scripting language
– Type checked but dynamically typed
– Used for CGI programming and form processing
– Dynamically typed, but type checked
– Supports lists, tuples, and hashes, all with its single data structure,
 the table
– Easily extendable

1-95
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Scripting Languages for the Web

• Ruby

– Designed in Japan by Yukihiro Matsumoto (a.k.a,
“Matz”)

– Began as a replacement for Perl and Python

– A pure object-oriented scripting language

 - All data are objects

– Most operators are implemented as methods,
which can be redefined by user code

– Purely interpreted

1-96
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

A C-Based Language for the New Millennium:
C#

• Part of the .NET development platform (2000)

• Based on C++ , Java, and Delphi

• Provides a language for component-based
software development

• All .NET languages use Common Type System
(CTS), which provides a common class library

1-97
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Markup/Programming Hybrid Languages

• XSLT
– eXtensible Markup Language (XML): a metamarkup language
– eXtensible Stylesheet Language Transformation (XSTL) transforms XML

documents for display
– Programming constructs (e.g., looping)

• JSP
– Java Server Pages: a collection of technologies to support dynamic

Web documents
– servlet: a Java program that resides on a Web server and is enacted

when called by a requested HTML document; a servlet’s output is
displayed by the browser

– JSTL includes programming constructs in the form of HTML elements

1-98
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Introduction to syntax and
semantics

• Syntax: the form or structure of the
expressions, statements, and program units

• Semantics: the meaning of the expressions,
statements, and program units

• Syntax and semantics provide a language’s
definition
– Users of a language definition

• Other language designers
• Implementers
• Programmers (the users of the language)

1-99
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

The General Problem of Describing Syntax:
Terminology

• A sentence is a string of characters over some
alphabet

• A language is a set of sentences

• A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin)

• A token is a category of lexemes (e.g., identifier)

1-100
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Formal Definition of Languages

• Recognizers
– A recognition device reads input strings over the alphabet of the

language and decides whether the input strings belong to the
language

– Example: syntax analysis part of a compiler

 - Detailed discussion of syntax analysis appears in

 Chapter 4

• Generators
– A device that generates sentences of a language

– One can determine if the syntax of a particular sentence is
syntactically correct by comparing it to the structure of the generator

1-101
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

BNF and Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s

– Language generators, meant to describe the syntax of
natural languages

– Define a class of languages called context-free
languages

• Backus-Naur Form (1959)
– Invented by John Backus to describe Algol 58

– BNF is equivalent to context-free grammars

1-102
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

BNF Fundamentals

• In BNF, abstractions are used to represent classes of syntactic structures--they act
like syntactic variables (also called nonterminal symbols, or just terminals)

• Terminals are lexemes or tokens

• A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand side

(RHS), which is a string of terminals and/or nonterminals

• Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
 <ident_list> → identifier | identifier, <ident_list>

 <if_stmt> → if <logic_expr> then <stmt>

• Grammar: a finite non-empty set of rules

1-103
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

BNF Rules

• An abstraction (or nonterminal symbol) can
have more than one RHS

 <stmt> → <single_stmt>

 | begin <stmt_list> end

1-104
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Describing Lists

• Syntactic lists are described using recursion

 <ident_list> → ident
 | ident, <ident_list>

• A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

1-105
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

An Example Grammar
 <program> → <stmts>

 <stmts> → <stmt> | <stmt> ; <stmts>

 <stmt> → <var> = <expr>

 <var> → a | b | c | d

 <expr> → <term> + <term> | <term> - <term>

 <term> → <var> | const

1-106
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

An Example Derivation

 <program> => <stmts> => <stmt>

 => <var> = <expr>

 => a = <expr>

 => a = <term> + <term>

 => a = <var> + <term>

 => a = b + <term>

 => a = b + const

1-107
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Derivations
• Every string of symbols in a derivation is a

sentential form

• A sentence is a sentential form that has only
terminal symbols

• A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
is the one that is expanded

• A derivation may be neither leftmost nor
rightmost

1-108
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Parse Tree

• A hierarchical representation of a derivation

<program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>

1-109
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Ambiguity in Grammars

• A grammar is ambiguous if and only if it
generates a sentential form that has two or
more distinct parse trees

1-110
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const - - / /

<op>

1-111
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

An Unambiguous Expression Grammar

• If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr> → <expr> - <term> | <term>

<term> → <term> / const| const

 <expr>

<expr> <term>

<term> <term>

const const

const /

-

1-112
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Associativity of Operators

• Operator associativity can also be indicated by a grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

<expr> <expr>

<expr>

<expr> const

const

const

+

+

1-113
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Extended BNF

• Optional parts are placed in brackets []
 <proc_call> -> ident [(<expr_list>)]

• Alternative parts of RHSs are placed inside
parentheses and separated via vertical bars

 <term> → <term> (+|-) const

• Repetitions (0 or more) are placed inside
braces { }

 <ident> → letter {letter|digit}

1-114
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

BNF and EBNF

• BNF
 <expr> → <expr> + <term>

 | <expr> - <term>

 | <term>

 <term> → <term> * <factor>

 | <term> / <factor>

 | <factor>

• EBNF
 <expr> → <term> {(+ | -) <term>}

 <term> → <factor> {(* | /) <factor>}

1-115
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Recent Variations in EBNF

• Alternative RHSs are put on separate lines

• Use of a colon instead of =>

• Use of opt for optional parts

• Use of oneof for choices

1-116
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Static Semantics

• Nothing to do with meaning

• Context-free grammars (CFGs) cannot
describe all of the syntax of programming
languages

• Categories of constructs that are trouble:

 - Context-free, but cumbersome (e.g.,

 types of operands in expressions)

 - Non-context-free (e.g., variables must

 be declared before they are used)

1-117
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Attribute Grammars

• Attribute grammars (AGs) have additions to
CFGs to carry some semantic info on parse
tree nodes

• Primary value of AGs:

– Static semantics specification

– Compiler design (static semantics checking)

1-118
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Attribute Grammars : Definition

 * Def: An attribute grammar is a context-free
grammar G = (S, N, T, P) with the following
additions:

– For each grammar symbol x there is a set A(x) of
attribute values

– Each rule has a set of functions that define certain
attributes of the nonterminals in the rule

– Each rule has a (possibly empty) set of predicates
to check for attribute consistency

1-119
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Attribute Grammars: Definition

• Let X0 → X1 ... Xn be a rule

• Functions of the form S(X0) = f(A(X1), ... , A(Xn))
define synthesized attributes

• Functions of the form I(Xj) = f(A(X0), ... , A(Xn)),
for i <= j <= n, define inherited attributes

• Initially, there are intrinsic attributes on the
leaves

1-120
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Attribute Grammars: An Example

• Syntax
<assign> -> <var> = <expr>

<expr> -> <var> + <var> | <var>

<var> A | B | C

• actual_type: synthesized for <var> and
<expr>

• expected_type: inherited for <expr>

1-121
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Attribute Grammar (continued)

• Syntax rule: <expr> → <var>[1] + <var>[2]

 Semantic rules:

 <expr>.actual_type ← <var>[1].actual_type

 Predicate:
 <var>[1].actual_type == <var>[2].actual_type

 <expr>.expected_type == <expr>.actual_type

• Syntax rule: <var> → id

 Semantic rule:

 <var>.actual_type ← lookup (<var>.string)

1-122
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Attribute Grammars (continued)

• How are attribute values computed?

– If all attributes were inherited, the tree could be
decorated in top-down order.

– If all attributes were synthesized, the tree could be
decorated in bottom-up order.

– In many cases, both kinds of attributes are used,
and it is some combination of top-down and
bottom-up that must be used.

1-123
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Attribute Grammars (continued)

<expr>.expected_type ← inherited from parent

<var>[1].actual_type ← lookup (A)

<var>[2].actual_type ← lookup (B)

<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type ← <var>[1].actual_type

<expr>.actual_type =? <expr>.expected_type

1-124
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Semantics

• There is no single widely acceptable notation
or formalism for describing semantics

• Several needs for a methodology and
notation for semantics:
– Programmers need to know what statements mean

– Compiler writers must know exactly what language constructs do

– Correctness proofs would be possible

– Compiler generators would be possible

– Designers could detect ambiguities and inconsistencies

1-125
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Operational Semantics

• Operational Semantics

– Describe the meaning of a program by executing
its statements on a machine, either simulated or
actual. The change in the state of the machine
(memory, registers, etc.) defines the meaning of
the statement

• To use operational semantics for a high-level
language, a virtual machine is needed

1-126
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Operational Semantics

• A hardware pure interpreter would be too
expensive

• A software pure interpreter also has problems

– The detailed characteristics of the particular
computer would make actions difficult to
understand

– Such a semantic definition would be machine-
dependent

1-127
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Operational Semantics (continued)

• A better alternative: A complete computer
simulation

• The process:
– Build a translator (translates source code to the

machine code of an idealized computer)

– Build a simulator for the idealized computer

• Evaluation of operational semantics:
– Good if used informally (language manuals, etc.)

– Extremely complex if used formally (e.g., VDL), it was
used for describing semantics of PL/I.

1-128
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Operational Semantics (continued)
• Uses of operational semantics:

 - Language manuals and textbooks

 - Teaching programming languages

• Two different levels of uses of operational semantics:

 - Natural operational semantics

 - Structural operational semantics

• Evaluation

 - Good if used informally (language

 manuals, etc.)

 - Extremely complex if used formally (e.g.,VDL)

 1-129

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Denotational Semantics

• Based on recursive function theory

• The most abstract semantics description
method

• Originally developed by Scott and Strachey
(1970)

1-130
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Denotational Semantics - continued

• The process of building a denotational
specification for a language:

 - Define a mathematical object for each language

 entity

– Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects

• The meaning of language constructs are
defined by only the values of the program's
variables

1-131
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Denotational Semantics: program state

• The state of a program is the values of all its
current variables

 s = {<i1, v1>, <i2, v2>, …, <in, vn>}

• Let VARMAP be a function that, when given
a variable name and a state, returns the
current value of the variable

 VARMAP(ij, s) = vj

1-132
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Decimal Numbers

<dec_num> → '0' | '1' | '2' | '3' | '4' | '5' |

 '6' | '7' | '8' | '9' |

 <dec_num> ('0' | '1' | '2' | '3' |

 '4' | '5' | '6' | '7' |

 '8' | '9')

Mdec('0') = 0, Mdec ('1') = 1, …, Mdec ('9') = 9

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)

Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1

…

Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9

1-133
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Expressions

• Map expressions onto Z ∪ {error}

• We assume expressions are decimal numbers,
variables, or binary expressions having one
arithmetic operator and two operands, each
of which can be an expression

1-134
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Expressions

Me(<expr>, s) Δ=
 case <expr> of
 <dec_num> => Mdec(<dec_num>, s)
 <var> =>
 if VARMAP(<var>, s) == undef
 then error
 else VARMAP(<var>, s)
 <binary_expr> =>
 if (Me(<binary_expr>.<left_expr>, s) == undef
 OR Me(<binary_expr>.<right_expr>, s) =
 undef)
 then error

 else

 if (<binary_expr>.<operator> == '+' then

 Me(<binary_expr>.<left_expr>, s) +

 Me(<binary_expr>.<right_expr>, s)

 else Me(<binary_expr>.<left_expr>, s) *

 Me(<binary_expr>.<right_expr>, s)

...

1-135
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Assignment Statements

• Maps state sets to state sets U {error}

Ma(x := E, s) Δ=

 if Me(E, s) == error

 then error

 else s’ =

 {<i1,v1’>,<i2,v2’>,...,<in,vn’>},

 where for j = 1, 2, ..., n,

 if ij == x

 then vj’ = Me(E, s)

 else vj’ = VARMAP(ij, s)

1-136
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Logical Pretest Loops

• Maps state sets to state sets U {error}

 Ml(while B do L, s) Δ=

 if Mb(B, s) == undef

 then error

 else if Mb(B, s) == false

 then s

 else if Msl(L, s) == error

 then error

 else Ml(while B do L, Msl(L, s))

1-137
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Loop Meaning

• The meaning of the loop is the value of the program variables
after the statements in the loop have been executed the
prescribed number of times, assuming there have been no
errors

• In essence, the loop has been converted from iteration to
recursion, where the recursive control is mathematically
defined by other recursive state mapping functions

 - Recursion, when compared to iteration, is easier

 to describe with mathematical rigor

1-138
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Evaluation of Denotational Semantics

• Can be used to prove the correctness of
programs

• Provides a rigorous way to think about
programs

• Can be an aid to language design

• Has been used in compiler generation systems

• Because of its complexity, it are of little use to
language users

1-139

Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Axiomatic Semantics

• Based on formal logic (predicate calculus)

• Original purpose: formal program verification

• Axioms or inference rules are defined for each
statement type in the language (to allow
transformations of logic expressions into more
formal logic expressions)

• The logic expressions are called assertions

1-140
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Axiomatic Semantics (continued)

• An assertion before a statement (a
precondition) states the relationships and
constraints among variables that are true at
that point in execution

• An assertion following a statement is a
postcondition

• A weakest precondition is the least restrictive
precondition that will guarantee the
postcondition

1-141
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Axiomatic Semantics Form

• Pre-, post form: {P} statement {Q}

• An example
– a = b + 1 {a > 1}

– One possible precondition: {b > 10}

– Weakest precondition: {b > 0}

1-142
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Program Proof Process

• The postcondition for the entire program is
the desired result

– Work back through the program to the first
statement. If the precondition on the first
statement is the same as the program
specification, the program is correct.

1-143
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Axiomatic Semantics: Axioms

• An axiom for assignment statements
(x = E): {Qx->E} x = E {Q}

• The Rule of Consequence:

1-144
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Axiomatic Semantics: Axioms

• An inference rule for sequences of the form S1; S2

 {P1} S1 {P2}

 {P2} S2 {P3}

1-145
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Axiomatic Semantics: Axioms
• An inference rule for logical pretest loops

 {P} while B do S end {Q}

 where I is the loop invariant (the inductive hypothesis)

1-146
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Axiomatic Semantics: Axioms

• Characteristics of the loop invariant: I must
meet the following conditions:

– P => I -- the loop invariant must be true initially

– {I} B {I} -- evaluation of the Boolean must not change the validity of I

– {I and B} S {I} -- I is not changed by executing the body of the loop

– (I and (not B)) => Q -- if I is true and B is false, Q is implied

– The loop terminates -- can be difficult to prove

1-147
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Loop Invariant

• The loop invariant I is a weakened version of
the loop postcondition, and it is also a
precondition.

• I must be weak enough to be satisfied prior to
the beginning of the loop, but when combined
with the loop exit condition, it must be strong
enough to force the truth of the postcondition

1-148
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all of
the statements in a language is difficult

• It is a good tool for correctness proofs, and an
excellent framework for reasoning about
programs, but it is not as useful for language
users and compiler writers

• Its usefulness in describing the meaning of a
programming language is limited for language
users or compiler writers

1-149
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Denotation Semantics Vs Operational Semantics

• In operational semantics, the state changes
are defined by coded algorithms

• In denotational semantics, the state changes
are defined by rigorous mathematical
functions

1-150
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Summary

• BNF and context-free grammars are equivalent
meta-languages

– Well-suited for describing the syntax of programming
languages

• An attribute grammar is a descriptive formalism
that can describe both the syntax and the
semantics of a language

• Three primary methods of semantics description

– Operation, axiomatic, denotational

1-151
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Summary

• Development, development environment, and
evaluation of a number of important
programming languages

• Perspective into current issues in language
design

1-152
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Summary

• The study of programming languages is valuable for a number
of reasons:
– Increase our capacity to use different constructs
– Enable us to choose languages more intelligently
– Makes learning new languages easier

• Most important criteria for evaluating programming languages
include:
– Readability, writability, reliability, cost

• Major influences on language design have been machine
architecture and software development methodologies

• The major methods of implementing programming languages
are: compilation, pure interpretation, and hybrid
implementation

1-153
Unit-1(PRINCIPLES OF

PROGRAMMING LANGUAGES)

154

 UNIT- 2

 CONCEPTS

• Introduction
• Primitive Data Types
• Character String Types
• User-Defined Ordinal Types
• Array Types
• Associative Arrays
• Record Types
• Union Types
• Pointer and Reference Types

1-155
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

CONCEPTS

● Introduction

● Names

● Variables

● The concept of binding

● Scope

● Scope and lifetime

● Referencing Environments

● Named constants

1-156
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Introduction

• A data type defines a collection of data
objects and a set of predefined operations on
those objects

• A descriptor is the collection of the attributes
of a variable

• An object represents an instance of a user-
defined (abstract data) type

• One design issue for all data types: What
operations are defined and how are they
specified?

1-157

Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Primitive Data Types

• Almost all programming languages provide a
set of primitive data types

• Primitive data types: Those not defined in
terms of other data types

• Some primitive data types are merely
reflections of the hardware

• Others require only a little non-hardware
support for their implementation

1-158
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Primitive Data Types: Integer

• Almost always an exact reflection of the
hardware so the mapping is trivial

• There may be as many as eight different
integer types in a language

• Java’s signed integer sizes: byte, short,
int, long

1-159
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Primitive Data Types: Floating Point

• Model real numbers, but only as
approximations

• Languages for scientific use support at least
two floating-point types (e.g., float and
double; sometimes more

• Usually exactly like the hardware, but not
always

• IEEE Floating-Point

 Standard 754

1-160
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Primitive Data Types: Complex

• Some languages support a complex type, e.g.,
C99, Fortran, and Python

• Each value consists of two floats, the real part
and the imaginary part

• Literal form (in Python):

 (7 + 3j), where 7 is the real part and 3 is the
imaginary part

1-161
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Primitive Data Types: Decimal

• For business applications (money)

– Essential to COBOL

– C# offers a decimal data type

• Store a fixed number of decimal digits, in
coded form (BCD)

• Advantage: accuracy

• Disadvantages: limited range, wastes memory

1-162
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Primitive Data Types: Boolean

• Simplest of all

• Range of values: two elements, one for “true”
and one for “false”

• Could be implemented as bits, but often as
bytes

– Advantage: readability

1-163
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Primitive Data Types: Character

• Stored as numeric codings

• Most commonly used coding: ASCII

• An alternative, 16-bit coding: Unicode (UCS-2)

– Includes characters from most natural languages

– Originally used in Java

– C# and JavaScript also support Unicode

• 32-bit Unicode (UCS-4)

– Supported by Fortran, starting with 2003

1-164
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Character String Types

• Values are sequences of characters

• Design issues:

– Is it a primitive type or just a special kind of array?

– Should the length of strings be static or dynamic?

1-165
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Character String Types Operations

• Typical operations:

– Assignment and copying

– Comparison (=, >, etc.)

– Catenation

– Substring reference

– Pattern matching

1-166
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Character String Type in Certain Languages

• C and C++
– Not primitive

– Use char arrays and a library of functions that provide operations

• SNOBOL4 (a string manipulation language)
– Primitive

– Many operations, including elaborate pattern matching

• Fortran and Python
– Primitive type with assignment and several operations

• Java
– Primitive via the String class

• Perl, JavaScript, Ruby, and PHP

 - Provide built-in pattern matching, using regular

 expressions

1-167
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Character String Length Options

• Static: COBOL, Java’s String class

• Limited Dynamic Length: C and C++

– In these languages, a special character is used to
indicate the end of a string’s characters, rather
than maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl,
JavaScript

• Ada supports all three string length options

1-168
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Character String Type Evaluation

• Aid to writability

• As a primitive type with static length, they are
inexpensive to provide--why not have them?

• Dynamic length is nice, but is it worth the
expense?

1-169
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Character String Implementation

• Static length: compile-time descriptor

• Limited dynamic length: may need a run-time
descriptor for length (but not in C and C++)

• Dynamic length: need run-time descriptor;
allocation/de-allocation is the biggest
implementation problem

1-170
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Compile- and Run-Time Descriptors

Compile-time

descriptor for

static strings

Run-time

descriptor for

limited dynamic

strings

1-171
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

User-Defined Ordinal Types

• An ordinal type is one in which the range of
possible values can be easily associated with
the set of positive integers

• Examples of primitive ordinal types in Java
– integer

– char

– boolean

1-172
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Enumeration Types

• All possible values, which are named
constants, are provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in

more than one type definition, and if so, how is
the type of an occurrence of that constant
checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?

1-173
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a color
as a number

• Aid to reliability, e.g., compiler can check:
– operations (don’t allow colors to be added)

– No enumeration variable can be assigned a value
outside its defined range

– Ada, C#, and Java 5.0 provide better support for
enumeration than C++ because enumeration type
variables in these languages are not coerced into
integer types

1-174
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Subrange Types

• An ordered contiguous subsequence of an
ordinal type

– Example: 12..18 is a subrange of integer type

• Ada’s design
type Days is (mon, tue, wed, thu, fri, sat, sun);

subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Day2 := Day1;

1-175

Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Subrange Evaluation

• Aid to readability

– Make it clear to the readers that variables of
subrange can store only certain range of values

• Reliability

– Assigning a value to a subrange variable that is
outside the specified range is detected as an error

1-176
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Implementation of User-Defined Ordinal Types

• Enumeration types are implemented as
integers

• Subrange types are implemented like the
parent types with code inserted (by the
compiler) to restrict assignments to subrange
variables

1-177
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Array Types

• An array is an aggregate of homogeneous data
elements in which an individual element is
identified by its position in the aggregate,
relative to the first element.

1-178
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Array Design Issues

• What types are legal for subscripts?

• Are subscripting expressions in element
references range checked?

• When are subscript ranges bound?

• When does allocation take place?

• What is the maximum number of subscripts?

• Can array objects be initialized?

• Are any kind of slices supported?

1-179
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Array Indexing

• Indexing (or subscripting) is a mapping from
indices to elements

 array_name (index_value_list) → an element

• Index Syntax

– FORTRAN, PL/I, Ada use parentheses
• Ada explicitly uses parentheses to show uniformity

between array references and function calls because
both are mappings

– Most other languages use brackets

1-180
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arrays Index (Subscript) Types

• FORTRAN, C: integer only

• Ada: integer or enumeration (includes Boolean and char)

• Java: integer types only

• Index range checking

 - C, C++, Perl, and Fortran do not specify

 range checking

 - Java, ML, C# specify range checking

 - In Ada, the default is to require range

 checking, but it can be turned off

1-181
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Subscript Binding and Array Categories

• Static: subscript ranges are statically bound
and storage allocation is static (before run-
time)

– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are
statically bound, but the allocation is done at
declaration time

– Advantage: space efficiency

1-182
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Subscript Binding and Array Categories
(continued)

• Stack-dynamic: subscript ranges are
dynamically bound and the storage allocation
is dynamic (done at run-time)
– Advantage: flexibility (the size of an array need not

be known until the array is to be used)

• Fixed heap-dynamic: similar to fixed stack-
dynamic: storage binding is dynamic but fixed
after allocation (i.e., binding is done when
requested and storage is allocated from heap,
not stack)

1-183
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Subscript Binding and Array Categories
(continued)

• Heap-dynamic: binding of subscript ranges
and storage allocation is dynamic and can
change any number of times

– Advantage: flexibility (arrays can grow or shrink
during program execution)

1-184
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Subscript Binding and Array Categories
(continued)

• C and C++ arrays that include static
modifier are static

• C and C++ arrays without static modifier are
fixed stack-dynamic

• C and C++ provide fixed heap-dynamic arrays

• C# includes a second array class ArrayList
that provides fixed heap-dynamic

• Perl, JavaScript, Python, and Ruby support
heap-dynamic arrays

1-185
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Array Initialization

• Some language allow initialization at the time of
storage allocation
– C, C++, Java, C# example

int list [] = {4, 5, 7, 83}

– Character strings in C and C++

char name [] = “freddie”;

– Arrays of strings in C and C++

char *names [] = {“Bob”, “Jake”, “Joe”];

– Java initialization of String objects

String[] names = {“Bob”, “Jake”, “Joe”};

1-186
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Heterogeneous Arrays

• A heterogeneous array is one in which the
elements need not be of the same type

• Supported by Perl, Python, JavaScript, and
Ruby

1-187
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Array Initialization

• C-based languages
– int list [] = {1, 3, 5, 7}

– char *names [] = {“Mike”, “Fred”,“Mary Lou”};

• Ada
– List : array (1..5) of Integer :=

 (1 => 17, 3 => 34, others => 0);

• Python

– List comprehensions
 list = [x ** 2 for x in range(12) if x % 3 == 0]

 puts [0, 9, 36, 81] in list

1-188
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arrays Operations
• APL provides the most powerful array processing operations

for vectors and matrixes as well as unary operators (for
example, to reverse column elements)

• Ada allows array assignment but also catenation

• Python’s array assignments, but they are only reference
changes. Python also supports array catenation and element
membership operations

• Ruby also provides array catenation

• Fortran provides elemental operations because they are
between pairs of array elements
– For example, + operator between two arrays results in an array of the

sums of the element pairs of the two arrays

1-189
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned array
in which all of the rows have the same number of
elements and all columns have the same number
of elements

• A jagged matrix has rows with varying number of
elements
– Possible when multi-dimensioned arrays actually

appear as arrays of arrays

• C, C++, and Java support jagged arrays
• Fortran, Ada, and C# support rectangular arrays

(C# also supports jagged arrays)

1-190
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Slices

• A slice is some substructure of an array;
nothing more than a referencing mechanism

• Slices are only useful in languages that have
array operations

1-191
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Slice Examples

• Fortran 95
Integer, Dimension (10) :: Vector

Integer, Dimension (3, 3) :: Mat

Integer, Dimension (3, 3) :: Cube

Vector (3:6) is a four element array

• Ruby supports slices with the slice method

list.slice(2, 2) returns the third and fourth
elements of list

1-192
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Slices Examples in Fortran 95

1-193
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Implementation of Arrays

• Access function maps subscript expressions to
an address in the array

• Access function for single-dimensioned arrays:

 address(list[k]) = address (list[lower_bound])

 + ((k-lower_bound) * element_size)

1-194
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Accessing Multi-dimensioned Arrays

• Two common ways:

– Row major order (by rows) – used in most
languages

– column major order (by columns) – used in
Fortran

1-195
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Locating an Element in a Multi-dimensioned
Array

•General format

Location (a[I,j]) = address of a [row_lb,col_lb] + (((I -

row_lb) * n) + (j - col_lb)) * element_size

1-196
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Compile-Time Descriptors

Single-dimensioned array Multi-dimensional array

1-197
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Associative Arrays

• An associative array is an unordered
collection of data elements that are indexed
by an equal number of values called keys
– User-defined keys must be stored

• Design issues:

 - What is the form of references to elements?

 - Is the size static or dynamic?

• Built-in type in Perl, Python, Ruby, and Lua
– In Lua, they are supported by tables

1-198
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Associative Arrays in Perl

• Names begin with %; literals are delimited
by parentheses
%hi_temps = ("Mon" => 77, "Tue" =>

79, “Wed” => 65, …);

• Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

– Elements can be removed with delete

 delete $hi_temps{"Tue"};

1-199
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Record Types

• A record is a possibly heterogeneous
aggregate of data elements in which the
individual elements are identified by names

• Design issues:

– What is the syntactic form of references to the
field?

– Are elliptical references allowed

1-200
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Definition of Records in COBOL

• COBOL uses level numbers to show nested
records; others use recursive definition
01 EMP-REC.

 02 EMP-NAME.

 05 FIRST PIC X(20).

 05 MID PIC X(10).

 05 LAST PIC X(20).

 02 HOURLY-RATE PIC 99V99.

1-201
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Definition of Records in Ada
• Record structures are indicated in an orthogonal

way

 type Emp_Rec_Type is record

 First: String (1..20);

 Mid: String (1..10);

 Last: String (1..20);

 Hourly_Rate: Float;

 end record;

 Emp_Rec: Emp_Rec_Type;

1-202
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

References to Records
• Record field references

1. COBOL

field_name OF record_name_1 OF ... OF record_name_n

2. Others (dot notation)

record_name_1.record_name_2. ... record_name_n.field_name

• Fully qualified references must include all record names

• Elliptical references allow leaving out record names as long as the
reference is unambiguous, for example in COBOL

 FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are elliptical
references to the employee’s first name

1-203
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Operations on Records

• Assignment is very common if the types are
identical

• Ada allows record comparison

• Ada records can be initialized with aggregate
literals

• COBOL provides MOVE CORRESPONDING

– Copies a field of the source record to the
corresponding field in the target record

1-204
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Evaluation and Comparison to
Arrays

• Records are used when collection of data
values is heterogeneous

• Access to array elements is much slower than
access to record fields, because subscripts are
dynamic (field names are static)

• Dynamic subscripts could be used with record
field access, but it would disallow type
checking and it would be much slower

1-205
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Implementation of Record Type

Offset address relative to the

beginning of the records is

associated with each field

1-206
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Unions Types

• A union is a type whose variables are allowed
to store different type values at different
times during execution

• Design issues

– Should type checking be required?

– Should unions be embedded in records?

1-207
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Discriminated vs. Free Unions

• Fortran, C, and C++ provide union constructs
in which there is no language support for type
checking; the union in these languages is
called free union

• Type checking of unions require that each
union include a type indicator called a
discriminant

– Supported by Ada

1-208
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);

type Colors is (Red, Green, Blue);

type Figure (Form: Shape) is record

 Filled: Boolean;

 Color: Colors;

 case Form is

 when Circle => Diameter: Float;

 when Triangle =>

 Leftside, Rightside: Integer;

 Angle: Float;

 when Rectangle => Side1, Side2: Integer;

 end case;

end record;

1-209
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Ada Union Type Illustrated

A discriminated union of three shape variables

1-210
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Evaluation of Unions

• Free unions are unsafe

– Do not allow type checking

• Java and C# do not support unions

– Reflective of growing concerns for safety in
programming language

• Ada’s descriminated unions are safe

1-211
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pointer and Reference Types

• A pointer type variable has a range of values
that consists of memory addresses and a
special value, nil

• Provide the power of indirect addressing

• Provide a way to manage dynamic memory

• A pointer can be used to access a location in
the area where storage is dynamically created
(usually called a heap)

1-212
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Design Issues of Pointers

• What are the scope of and lifetime of a
pointer variable?

• What is the lifetime of a heap-dynamic
variable?

• Are pointers restricted as to the type of value
to which they can point?

• Are pointers used for dynamic storage
management, indirect addressing, or both?

• Should the language support pointer types,
reference types, or both?

1-213
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pointer Operations
• Two fundamental operations: assignment and

dereferencing

• Assignment is used to set a pointer variable’s
value to some useful address

• Dereferencing yields the value stored at the
location represented by the pointer’s value
– Dereferencing can be explicit or implicit

– C++ uses an explicit operation via *

 j = *ptr

 sets j to the value located at ptr

1-214
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pointer Assignment Illustrated

The assignment operation j = *ptr

1-215
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Problems with Pointers

• Dangling pointers (dangerous)
– A pointer points to a heap-dynamic variable that has been

deallocated

• Lost heap-dynamic variable
– An allocated heap-dynamic variable that is no longer accessible to the

user program (often called garbage)

• Pointer p1 is set to point to a newly created heap-dynamic variable

• Pointer p1 is later set to point to another newly created heap-
dynamic variable

• The process of losing heap-dynamic variables is called memory
leakage

1-216
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pointers in Ada

• Some dangling pointers are disallowed
because dynamic objects can be automatically
deallocated at the end of pointer's type scope

• The lost heap-dynamic variable problem is not
eliminated by Ada (possible with
UNCHECKED_DEALLOCATION)

1-217
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pointers in C and C++

• Extremely flexible but must be used with care

• Pointers can point at any variable regardless of when or where
it was allocated

• Used for dynamic storage management and addressing

• Pointer arithmetic is possible

• Explicit dereferencing and address-of operators

• Domain type need not be fixed (void *)

 void * can point to any type and can be type

 checked (cannot be de-referenced)

1-218
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Pointer Arithmetic in C and C++

float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and
p[5]

*(p+i) is equivalent to stuff[i] and
p[i]

1-219
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Reference Types
 • C++ includes a special kind of pointer type

called a reference type that is used primarily
for formal parameters
– Advantages of both pass-by-reference and pass-

by-value

• Java extends C++’s reference variables and
allows them to replace pointers entirely
– References are references to objects, rather than

being addresses

• C# includes both the references of Java and
the pointers of C++

1-220
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Evaluation of Pointers

• Dangling pointers and dangling objects are
problems as is heap management

• Pointers are like goto's--they widen the range
of cells that can be accessed by a variable

• Pointers or references are necessary for
dynamic data structures--so we can't design a
language without them

1-221
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Representations of Pointers

• Large computers use single values

• Intel microprocessors use segment and
offset

1-222
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Dangling Pointer Problem

• Tombstone: extra heap cell that is a pointer to the heap-
dynamic variable
– The actual pointer variable points only at tombstones

– When heap-dynamic variable de-allocated, tombstone remains but set
to nil

– Costly in time and space

. Locks-and-keys: Pointer values are represented as (key, address)
pairs
– Heap-dynamic variables are represented as variable plus cell for

integer lock value

– When heap-dynamic variable allocated, lock value is created and
placed in lock cell and key cell of pointer

 1-223

Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Heap Management

• A very complex run-time process

• Single-size cells vs. variable-size cells

• Two approaches to reclaim garbage

– Reference counters (eager approach):
reclamation is gradual

– Mark-sweep (lazy approach): reclamation occurs
when the list of variable space becomes empty

1-224
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Reference Counter

• Reference counters: maintain a counter in
every cell that store the number of pointers
currently pointing at the cell

– Disadvantages: space required, execution time
required, complications for cells connected
circularly

– Advantage: it is intrinsically incremental, so
significant delays in the application execution are
avoided

1-225
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Mark-Sweep

• The run-time system allocates storage cells as requested
and disconnects pointers from cells as necessary; mark-
sweep then begins
– Every heap cell has an extra bit used by collection algorithm

– All cells initially set to garbage

– All pointers traced into heap, and reachable cells marked as not
garbage

– All garbage cells returned to list of available cells

– Disadvantages: in its original form, it was done too infrequently.
When done, it caused significant delays in application execution.
Contemporary mark-sweep algorithms avoid this by doing it more
often—called incremental mark-sweep

1-226
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Marking Algorithm

1-227
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Variable-Size Cells

• All the difficulties of single-size cells plus more

• Required by most programming languages

• If mark-sweep is used, additional problems
occur
– The initial setting of the indicators of all cells in

the heap is difficult

– The marking process in nontrivial

– Maintaining the list of available space is another
source of overhead

1-228
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Type Checking

• Generalize the concept of operands and operators to include subprograms
and assignments

• Type checking is the activity of ensuring that the operands of an operator
are of compatible types

• A compatible type is one that is either legal for the operator, or is allowed
under language rules to be implicitly converted, by compiler- generated
code, to a legal type

– This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand of an
inappropriate type

1-229
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Type Checking (continued)

• If all type bindings are static, nearly all type
checking can be static

• If type bindings are dynamic, type checking
must be dynamic

• A programming language is strongly typed if
type errors are always detected

• Advantage of strong typing: allows the
detection of the misuses of variables that
result in type errors

 1-230
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Strong Typing

Language examples:
– FORTRAN 95 is not: parameters, EQUIVALENCE

– C and C++ are not: parameter type checking can
be avoided; unions are not type checked

– Ada is, almost (UNCHECKED CONVERSION is
loophole)

 (Java and C# are similar to Ada)

1-231
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Strong Typing (continued)

• Coercion rules strongly affect strong typing--
they can weaken it considerably (C++ versus
Ada)

• Although Java has just half the assignment
coercions of C++, its strong typing is still far
less effective than that of Ada

1-232
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Name Type Equivalence

• Name type equivalence means the two
variables have equivalent types if they are in
either the same declaration or in declarations
that use the same type name

• Easy to implement but highly restrictive:

– Subranges of integer types are not equivalent with
integer types

– Formal parameters must be the same type as their
corresponding actual parameters

1-233

Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Structure Type Equivalence

• Structure type equivalence means that two
variables have equivalent types if their types
have identical structures

• More flexible, but harder to implement

1-234
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Type Equivalence (continued)
• Consider the problem of two structured types:

– Are two record types equivalent if they are
structurally the same but use different field
names?

– Are two array types equivalent if they are the
same except that the subscripts are different?

 (e.g. [1..10] and [0..9])

– Are two enumeration types equivalent if their
components are spelled differently?

– With structural type equivalence, you cannot
differentiate between types of the same structure
(e.g. different units of speed, both float)

1-235

Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Theory and Data Types
• Type theory is a broad area of study in

mathematics, logic, computer science, and
philosophy

• Two branches of type theory in computer
science:
– Practical – data types in commercial languages

– Abstract – typed lambda calculus

• A type system is a set of types and the rules
that govern their use in programs

1-236
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Theory and Data Types (continued)

• Formal model of a type system is a set of
types and a collection of functions that define
the type rules

– Either an attribute grammar or a type map could
be used for the functions

– Finite mappings – model arrays and functions

– Cartesian products – model tuples and records

– Set unions – model union types

– Subsets – model subtypes

1-237
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Introduction

• Imperative languages are abstractions of von
Neumann architecture

– Memory

– Processor

• Variables characterized by attributes

– To design a type, must consider scope, lifetime,
type checking, initialization, and type
compatibility

1-238
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Names

• Design issues for names:

– Are names case sensitive?

– Are special words reserved words or keywords?

1-239
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Names (continued)

• Length

– If too short, they cannot be connotative

– Language examples:
• FORTRAN 95: maximum of 31

• C99: no limit but only the first 63 are significant; also,
external names are limited to a maximum of 31

• C#, Ada, and Java: no limit, and all are significant

• C++: no limit, but implementers often impose one

1-240
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Names (continued)

• Special characters

– PHP: all variable names must begin with dollar
signs

– Perl: all variable names begin with special
characters, which specify the variable’s type

– Ruby: variable names that begin with @ are
instance variables; those that begin with @@ are
class variables

1-241
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Names (continued)

• Case sensitivity

– Disadvantage: readability (names that look alike
are different)

• Names in the C-based languages are case sensitive

• Names in others are not

• Worse in C++, Java, and C# because predefined names
are mixed case (e.g.
IndexOutOfBoundsException)

1-242
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Names (continued)

• Special words
– An aid to readability; used to delimit or separate

statement clauses
• A keyword is a word that is special only in certain contexts,

e.g., in Fortran
– Real VarName (Real is a data type followed with a name, therefore
Real is a keyword)

– Real = 3.4 (Real is a variable)

– A reserved word is a special word that cannot be used
as a user-defined name

– Potential problem with reserved words: If there are
too many, many collisions occur (e.g., COBOL has 300
reserved words!)

1-243
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Variables

• A variable is an abstraction of a memory cell

• Variables can be characterized as a sextuple of
attributes:
– Name

– Address

– Value

– Type

– Lifetime

– Scope

1-244
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Variables Attributes

• Name - not all variables have them

• Address - the memory address with which it is associated
– A variable may have different addresses at different times during

execution

– A variable may have different addresses at different places in a
program

– If two variable names can be used to access the same memory
location, they are called aliases

– Aliases are created via pointers, reference variables, C and C++ unions

– Aliases are harmful to readability (program
readers must remember all of them)

1-245
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Variables Attributes (continued)

• Type - determines the range of values of variables and the set
of operations that are defined for values of that type; in the
case of floating point, type also determines the precision

• Value - the contents of the location with which the variable is
associated

 - The l-value of a variable is its address

 - The r-value of a variable is its value

• Abstract memory cell - the physical cell or collection of cells
associated with a variable

1-246
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

The Concept of Binding

 A binding is an association, such as between
an attribute and an entity, or between an
operation and a symbol

• Binding time is the time at which a binding
takes place.

1-247
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Possible Binding Times

• Language design time -- bind operator
symbols to operations

• Language implementation time-- bind floating
point type to a representation

• Compile time -- bind a variable to a type in C
or Java

• Load time -- bind a C or C++ static variable
to a memory cell)

• Runtime -- bind a nonstatic local variable to a
memory cell

1-248
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Static and Dynamic Binding

• A binding is static if it first occurs before run
time and remains unchanged throughout
program execution.

• A binding is dynamic if it first occurs during
execution or can change during execution of
the program

1-249
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Type Binding

• How is a type specified?

• When does the binding take place?

• If static, the type may be specified by either
an explicit or an implicit declaration

1-250
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Explicit/Implicit Declaration

• An explicit declaration is a program statement
used for declaring the types of variables

• An implicit declaration is a default mechanism
for specifying types of variables (the first
appearance of the variable in the program)

• FORTRAN, BASIC, and Perl provide implicit
declarations (Fortran has both explicit and
implicit)
– Advantage: writability

– Disadvantage: reliability (less trouble with Perl)

1-251
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Dynamic Type Binding

• Dynamic Type Binding (JavaScript and PHP)

• Specified through an assignment statement
e.g., JavaScript

 list = [2, 4.33, 6, 8];

 list = 17.3;

– Advantage: flexibility (generic program units)

– Disadvantages:
• High cost (dynamic type checking and interpretation)

• Type error detection by the compiler is difficult

1-252
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Variable Attributes (continued)

• Type Inferencing (ML, Miranda, and Haskell)
– Rather than by assignment statement, types are

determined (by the compiler) from the context of
the reference

• Storage Bindings & Lifetime
– Allocation - getting a cell from some pool of

available cells
– Deallocation - putting a cell back into the pool

• The lifetime of a variable is the time during
which it is bound to a particular memory cell

1-253
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Categories of Variables by Lifetimes

• Static--bound to memory cells before
execution begins and remains bound to the
same memory cell throughout execution, e.g.,
C and C++ static variables

– Advantages: efficiency (direct addressing),
history-sensitive subprogram support

– Disadvantage: lack of flexibility (no recursion)

1-254
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Categories of Variables by Lifetimes
• Stack-dynamic--Storage bindings are created for variables

when their declaration statements are elaborated.

 (A declaration is elaborated when the executable code
associated with it is executed)

• If scalar, all attributes except address are statically bound
– local variables in C subprograms and Java methods

• Advantage: allows recursion; conserves storage

• Disadvantages:

– Overhead of allocation and deallocation

– Subprograms cannot be history sensitive

– Inefficient references (indirect addressing)

1-255
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Categories of Variables by Lifetimes
• Explicit heap-dynamic -- Allocated and deallocated by explicit

directives, specified by the programmer, which take effect
during execution

• Referenced only through pointers or references, e.g. dynamic
objects in C++ (via new and delete), all objects in Java

• Advantage: provides for dynamic storage management

• Disadvantage: inefficient and unreliable

1-256
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Categories of Variables by Lifetimes

• Implicit heap-dynamic--Allocation and
deallocation caused by assignment
statements
– all variables in APL; all strings and arrays in Perl,

JavaScript, and PHP

• Advantage: flexibility (generic code)

• Disadvantages:
– Inefficient, because all attributes are dynamic

– Loss of error detection

1-257
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Variable Attributes: Scope

• The scope of a variable is the range of
statements over which it is visible

• The nonlocal variables of a program unit are
those that are visible but not declared there

• The scope rules of a language determine how
references to names are associated with
variables

1-258
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Static Scope

• Based on program text

• To connect a name reference to a variable, you (or the
compiler) must find the declaration

• Search process: search declarations, first locally, then in
increasingly larger enclosing scopes, until one is found for the
given name

• Enclosing static scopes (to a specific scope) are called its
static ancestors; the nearest static ancestor is called a static
parent

• Some languages allow nested subprogram definitions, which
create nested static scopes (e.g., Ada, JavaScript, Fortran
2003, and PHP)

1-259
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Scope (continued)

• Variables can be hidden from a unit by having
a "closer" variable with the same name

• Ada allows access to these "hidden" variables
– E.g., unit.name

1-260
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Blocks

– A method of creating static scopes inside program units--from
ALGOL 60

– Example in C:
 void sub() {

 int count;

 while (...) {

 int count;

 count++;

 ...

 }

 …

 }

 - Note: legal in C and C++, but not in Java

 and C# - too error-prone

1-261
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Declaration Order

• C99, C++, Java, and C# allow variable declarations
to appear anywhere a statement can appear
– In C99, C++, and Java, the scope of all local variables is

from the declaration to the end of the block

– In C#, the scope of any variable declared in a block is
the whole block, regardless of the position of the
declaration in the block

• However, a variable still must be declared before it can be
used

1-262
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Declaration Order (continued)

• In C++, Java, and C#, variables can be declared
in for statements

– The scope of such variables is restricted to the for
construct

1-263
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Global Scope

• C, C++, PHP, and Python support a program
structure that consists of a sequence of function
definitions in a file
– These languages allow variable declarations to

appear outside function definitions

• C and C++have both declarations (just attributes)
and definitions (attributes and storage)
– A declaration outside a function definition specifies

that it is defined in another file

1-264
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Global Scope (continued)

• PHP
– Programs are embedded in XHTML markup

documents, in any number of fragments, some
statements and some function definitions

– The scope of a variable (implicitly) declared in a
function is local to the function

– The scope of a variable implicitly declared outside
functions is from the declaration to the end of the
program, but skips over any intervening functions

• Global variables can be accessed in a function through the
$GLOBALS array or by declaring it global

1-265
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Global Scope (continued)

• Python

– A global variable can be referenced in functions,
but can be assigned in a function only if it has
been declared to be global in the function

1-266
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Evaluation of Static Scoping

• Works well in many situations

• Problems:

– In most cases, too much access is possible

– As a program evolves, the initial structure is
destroyed and local variables often become
global; subprograms also gravitate toward become
global, rather than nested

1-267
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Dynamic Scope

• Based on calling sequences of program units,
not their textual layout (temporal versus
spatial)

• References to variables are connected to
declarations by searching back through the
chain of subprogram calls that forced
execution to this point

1-268
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Scope Example
Big

 - declaration of X

 Sub1

 - declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 - reference to X -

 ...

 ...

 call Sub1

 …

Big calls Sub1

Sub1 calls

Sub2

Sub2 uses X

1-269
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Scope Example
• Static scoping

– Reference to X is to Big's X

• Dynamic scoping
– Reference to X is to Sub1's X

• Evaluation of Dynamic Scoping:
– Advantage: convenience

– Disadvantages:
1. While a subprogram is executing, its variables are visible

to all subprograms it calls

2. Impossible to statically type check

3. Poor readability- it is not possible to statically

 determine the type of a variable

1-270
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Scope and Lifetime

• Scope and lifetime are sometimes closely
related, but are different concepts

• Consider a static variable in a C or C++
function

1-271
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Referencing Environments

• The referencing environment of a statement is the collection
of all names that are visible in the statement

• In a static-scoped language, it is the local variables plus all of
the visible variables in all of the enclosing scopes

• A subprogram is active if its execution has begun but has not
yet terminated

• In a dynamic-scoped language, the referencing environment is
the local variables plus all visible variables in all active
subprograms

1-272
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Named Constants

• A named constant is a variable that is bound to a value only
when it is bound to storage

• Advantages: readability and modifiability
• Used to parameterize programs
• The binding of values to named constants can be either static

(called manifest constants) or dynamic
• Languages:

– FORTRAN 95: constant-valued expressions
– Ada, C++, and Java: expressions of any kind
– C# has two kinds, readonly and const
 - the values of const named constants are bound at
 compile time
 - The values of readonly named constants are
 dynamically bound

1-273
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Summary

• Case sensitivity and the relationship of names to special
words represent design issues of names

• Variables are characterized by the sextuples: name, address,
value, type, lifetime, scope

• Binding is the association of attributes with program entities

• Scalar variables are categorized as: static, stack dynamic,
explicit heap dynamic, implicit heap dynamic

• Strong typing means detecting all type errors

1-274
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Expressions & Statements

• Introduction

• Arithmetic Expressions

• Overloaded Operators

• Type Conversions

• Relational and Boolean Expressions

• Short-Circuit Evaluation

• Assignment Statements

• Mixed-Mode Assignment

1-275
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Introduction

• Expressions are the fundamental means of
specifying computations in a programming
language

• To understand expression evaluation, need to
be familiar with the orders of operator and
operand evaluation

• Essence of imperative languages is dominant
role of assignment statements

1-276
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arithmetic Expressions

• Arithmetic evaluation was one of the
motivations for the development of the first
programming languages

• Arithmetic expressions consist of operators,
operands, parentheses, and function calls

1-277
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arithmetic Expressions: Design Issues

• Design issues for arithmetic expressions

– Operator precedence rules?

– Operator associativity rules?

– Order of operand evaluation?

– Operand evaluation side effects?

– Operator overloading?

– Type mixing in expressions?

1-278
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arithmetic Expressions: Operators

• A unary operator has one operand

• A binary operator has two operands

• A ternary operator has three operands

1-279
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arithmetic Expressions: Operator Precedence
Rules

• The operator precedence rules for
expression evaluation define the order in
which “adjacent” operators of different
precedence levels are evaluated

• Typical precedence levels
– parentheses

– unary operators

– ** (if the language supports it)

– *, /

– +, -

1-280
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arithmetic Expressions: Operator Associativity
Rule

• The operator associativity rules for expression evaluation
define the order in which adjacent operators with the same
precedence level are evaluated

• Typical associativity rules
– Left to right, except **, which is right to left

– Sometimes unary operators associate right to left (e.g., in FORTRAN)

• APL is different; all operators have equal precedence and all
operators associate right to left

• Precedence and associativity rules can be overriden with
parentheses

1-281
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Ruby Expressions

• All arithmetic, relational, and assignment
operators, as well as array indexing, shifts, and
bit-wise logic operators, are implemented as
methods

 - One result of this is that these operators can all

 be overriden by application programs

1-282
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arithmetic Expressions: Conditional Expressions

• Conditional Expressions
– C-based languages (e.g., C, C++)

– An example:
 average = (count == 0)? 0 : sum / count

– Evaluates as if written like
 if (count == 0)

 average = 0

 else

 average = sum /count

1-283
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arithmetic Expressions: Operand Evaluation
Order

• Operand evaluation order

1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory;
sometimes the constant is in the machine
language instruction

3. Parenthesized expressions: evaluate all operands
and operators first

4. The most interesting case is when an operand is
a function call

1-284
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Arithmetic Expressions: Potentials for Side
Effects

• Functional side effects: when a function changes a two-way
parameter or a non-local variable

• Problem with functional side effects:
– When a function referenced in an expression alters another operand

of the expression; e.g., for a parameter change:

 a = 10;

 /* assume that fun changes its parameter */

 b = a + fun(&a);

1-285
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Functional Side Effects

• Two possible solutions to the problem
1. Write the language definition to disallow functional side effects

• No two-way parameters in functions

• No non-local references in functions

• Advantage: it works!

• Disadvantage: inflexibility of one-way parameters and lack of non-
local references

2. Write the language definition to demand that operand evaluation
order be fixed

• Disadvantage: limits some compiler optimizations

• Java requires that operands appear to be evaluated in left-to-right
order

1-286
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Overloaded Operators

• Use of an operator for more than one purpose
is called operator overloading

• Some are common (e.g., + for int and
float)

• Some are potential trouble (e.g., * in C and
C++)
– Loss of compiler error detection (omission of an

operand should be a detectable error)

– Some loss of readability

1-287
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Overloaded Operators (continued)

• C++ and C# allow user-defined overloaded
operators

• Potential problems:

– Users can define nonsense operations

– Readability may suffer, even when the operators
make sense

1-288
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Type Conversions

• A narrowing conversion is one that converts
an object to a type that cannot include all of
the values of the original type e.g., float to
int

• A widening conversion is one in which an
object is converted to a type that can include
at least approximations to all of the values of
the original type e.g., int to
float

1-289
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Type Conversions: Mixed Mode

• A mixed-mode expression is one that has operands of
different types

• A coercion is an implicit type conversion

• Disadvantage of coercions:
– They decrease in the type error detection ability of the compiler

• In most languages, all numeric types are coerced in
expressions, using widening conversions

• In Ada, there are virtually no coercions in expressions

1-290
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Explicit Type Conversions

• Called casting in C-based languages

• Examples
– C: (int)angle

– Ada: Float (Sum)

 Note that Ada’s syntax is similar to that of
function calls

1-291
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Type Conversions: Errors in Expressions

• Causes

– Inherent limitations of arithmetic
e.g., division by zero

– Limitations of computer arithmetic e.g.
overflow

• Often ignored by the run-time system

1-292
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Relational and Boolean Expressions

• Relational Expressions
– Use relational operators and operands of various

types

– Evaluate to some Boolean representation

– Operator symbols used vary somewhat among
languages (!=, /=, ~=, .NE., <>, #)

• JavaScript and PHP have two additional
relational operator, === and !==

 - Similar to their cousins, == and !=, except that they do not
coerce their operands

1-293
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Relational and Boolean Expressions

• Boolean Expressions

– Operands are Boolean and the result is Boolean

– Example operators

FORTRAN 77 FORTRAN 90 C Ada

 .AND. and && and

 .OR. or || or

 .NOT. not ! not

 xor

1-294
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Relational and Boolean Expressions: No Boolean
Type in C

• C89 has no Boolean type--it uses int type
with 0 for false and nonzero for true

• One odd characteristic of C’s expressions:
a < b < c is a legal expression, but the result
is not what you might expect:

– Left operator is evaluated, producing 0 or 1

– The evaluation result is then compared with the
third operand (i.e., c)

1-295
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Short Circuit Evaluation

• An expression in which the result is
determined without evaluating all of the
operands and/or operators

• Example: (13*a) * (b/13–1)
If a is zero, there is no need to evaluate (b/13-1)

• Problem with non-short-circuit evaluation
index = 1;

while (index <= length) && (LIST[index] != value)

 index++;
– When index=length, LIST [index] will cause an indexing

problem (assuming LIST has length -1 elements)

1-296
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Short Circuit Evaluation
(continued)

• C, C++, and Java: use short-circuit evaluation for the usual
Boolean operators (&& and ||), but also provide bitwise
Boolean operators that are not short circuit (& and |)

• Ada: programmer can specify either (short-circuit is specified
with and then and or else)

• Short-circuit evaluation exposes the potential problem of side
effects in expressions
e.g. (a > b) || (b++ / 3)

1-297
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Assignment Statements

• The general syntax
<target_var> <assign_operator> <expression>

• The assignment operator
= FORTRAN, BASIC, the C-based languages

:= ALGOLs, Pascal, Ada

• = can be bad when it is overloaded for the
relational operator for equality (that’s why the
C-based languages use == as the relational
operator)

1-298
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Assignment Statements: Conditional Targets

• Conditional targets (Perl)
($flag ? $total : $subtotal) = 0

Which is equivalent to

if ($flag){

 $total = 0

} else {

 $subtotal = 0

}

1-299
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Assignment Statements: Compound Operators

• A shorthand method of specifying a
commonly needed form of assignment

• Introduced in ALGOL; adopted by C

• Example

a = a + b

is written as

a += b

 1-300
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Assignment Statements: Unary Assignment
Operators

• Unary assignment operators in C-based
languages combine increment and decrement
operations with assignment

• Examples
sum = ++count (count incremented, added to
sum)

sum = count++ (count incremented, added to
sum)

count++ (count incremented)

-count++ (count incremented then negated)

1-301
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Assignment as an Expression

• In C, C++, and Java, the assignment statement
produces a result and can be used as operands

• An example:

 while ((ch = getchar())!=
EOF){…}

 ch = getchar() is carried out; the result
(assigned to ch) is used as a conditional value for
the while statement

1-302
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

List Assignments

• Perl and Ruby support list assignments

 e.g.,

 ($first, $second, $third) = (20, 30, 40);

1-303
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Mixed-Mode Assignment

• Assignment statements can also be mixed-
mode

• In Fortran, C, and C++, any numeric type
value can be assigned to any numeric type
variable

• In Java, only widening assignment
coercions are done

• In Ada, there is no assignment coercion

1-304
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Summary

• Expressions

• Operator precedence and associativity

• Operator overloading

• Mixed-type expressions

• Various forms of assignment

1-305
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Statements

• Introduction

• Selection Statements

• Iterative Statements

• Unconditional Branching

• Guarded Commands

• Conclusions

1-306
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Levels of Control Flow

– Within expressions

– Among program units

– Among program statements

1-307
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Control Statements: Evolution

• FORTRAN I control statements were based
directly on IBM 704 hardware

• Much research and argument in the 1960s
about the issue

– One important result: It was proven that all
algorithms represented by flowcharts can be
coded with only two-way selection and pretest
logical loops

1-308
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Control Structure

• A control structure is a control statement and
the statements whose execution it controls

• Design question

– Should a control structure have multiple entries?

1-309
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Selection Statements

• A selection statement provides the means of
choosing between two or more paths of
execution

• Two general categories:

– Two-way selectors

– Multiple-way selectors

1-310
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Two-Way Selection Statements

• General form:
 if control_expression

 then clause

 else clause

• Design Issues:
– What is the form and type of the control

expression?
– How are the then and else clauses specified?
– How should the meaning of nested selectors be

specified?

1-311
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

The Control Expression

• If the then reserved word or some other
syntactic marker is not used to introduce the
then clause, the control expression is placed in
parentheses

• In C89, C99, Python, and C++, the control
expression can be arithmetic

• In languages such as Ada, Java, Ruby, and C#,
the control expression must be Boolean

1-312
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Clause Form

• In many contemporary languages, the then and else clauses
can be single statements or compound statements

• In Perl, all clauses must be delimited by braces (they must be
compound)

• In Fortran 95, Ada, and Ruby, clauses are statement
sequences

• Python uses indentation to define clauses

 if x > y :
 x = y

 print "case 1"

1-313
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Nesting Selectors

• Java example
 if (sum == 0)

 if (count == 0)

 result = 0;

 else result = 1;

• Which if gets the else?

• Java's static semantics rule: else matches
with the nearest if

1-314
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Nesting Selectors (continued)

• To force an alternative semantics, compound
statements may be used:

 if (sum == 0) {

 if (count == 0)

 result = 0;

 }

 else result = 1;

• The above solution is used in C, C++, and C#

• Perl requires that all then and else clauses to be compound

1-315
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Nesting Selectors (continued)

• Statement sequences as clauses: Ruby

 if sum == 0 then
 if count == 0 then

 result = 0

 else

 result = 1

 end

 end

1-316
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Nesting Selectors (continued)

• Python

 if sum == 0 :
 if count == 0 :

 result = 0

 else :

 result = 1

1-317
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Multiple-Way Selection Statements

• Allow the selection of one of any number of statements or
statement groups

• Design Issues:
1. What is the form and type of the control expression?

2. How are the selectable segments specified?

3. Is execution flow through the structure restricted to include just a
single selectable segment?

4. How are case values specified?

5. What is done about unrepresented expression values?

1-318
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

• C, C++, and Java
 switch (expression) {

 case const_expr_1: stmt_1;

 …

 case const_expr_n: stmt_n;

 [default: stmt_n+1]

 }

1-319
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

• Design choices for C’s switch statement
1. Control expression can be only an integer type

2. Selectable segments can be statement sequences, blocks, or
compound statements

3. Any number of segments can be executed in one execution of
the construct (there is no implicit branch at the end of
selectable segments)

4. default clause is for unrepresented values (if there is no
default, the whole statement does nothing)

1-320
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

• C#

– Differs from C in that it has a static semantics rule
that disallows the implicit execution of more than
one segment

– Each selectable segment must end with an
unconditional branch (goto or break)

– Also, in C# the control expression and the case
constants can be strings

1-321
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

• Ada

 case expression is

 when choice list => stmt_sequence;

 …

 when choice list => stmt_sequence;

 when others => stmt_sequence;]

 end case;

• More reliable than C’s switch (once a stmt_sequence
execution is completed, control is passed to the first
statement after the case statement

1-322
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

• Ada design choices:

 1. Expression can be any ordinal type

 2. Segments can be single or compound

 3. Only one segment can be executed per execution of the
construct

 4. Unrepresented values are not allowed

• Constant List Forms:

 1. A list of constants

 2. Can include:

 - Subranges

 - Boolean OR operators (|)

1-323
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Multiple-Way Selection: Examples

• Ruby has two forms of case statements

 1. One form uses when conditions

 leap = case

 when year % 400 == 0 then true

 when year % 100 == 0 then false

 else year % 4 == 0

 end

 2. The other uses a case value and when values
 case in_val

 when -1 then neg_count++

 when 0 then zero_count++

 when 1 then pos_count++

 else puts "Error – in_val is out of range"

 end

1-324
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Multiple-Way Selection Using if

• Multiple Selectors can appear as direct
extensions to two-way selectors, using else-if
clauses, for example in Python:
 if count < 10 :

 bag1 = True

 elif count < 100 :

 bag2 = True

 elif count < 1000 :

 bag3 = True

1-325
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Multiple-Way Selection Using if

• The Python example can be written as a Ruby
case

 case
 when count < 10 then bag1 = true

 when count < 100 then bag2 = true

 when count < 1000 then bag3 = true

 end

1-326
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements

• The repeated execution of a statement or
compound statement is accomplished either
by iteration or recursion

• General design issues for iteration control
statements:

1. How is iteration controlled?

2. Where is the control mechanism in the loop?

1-327
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Counter-Controlled Loops
• A counting iterative statement has a loop

variable, and a means of specifying the initial
and terminal, and stepsize values

• Design Issues:
1. What are the type and scope of the loop variable?

2. Should it be legal for the loop variable or loop
parameters to be changed in the loop body, and if
so, does the change affect loop control?

3. Should the loop parameters be evaluated only once,
or once for every iteration?

1-328
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Examples

• FORTRAN 95 syntax

 DO label var = start, finish [, stepsize]

• Stepsize can be any value but zero

• Parameters can be expressions

• Design choices:
1. Loop variable must be INTEGER

2. The loop variable cannot be changed in the loop, but the parameters
can; because they are evaluated only once, it does not affect loop
control

3. Loop parameters are evaluated only once

1-329
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Examples

• FORTRAN 95 : a second form:
 [name:] Do variable = initial, terminal [,stepsize]

 …

 End Do [name]

 - Cannot branch into either of Fortran’s Do statements

1-330
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Examples

• Ada
 for var in [reverse] discrete_range loop

...

 end loop

• Design choices:
 - Type of the loop variable is that of the discrete range (A

discrete range is a sub-range of an integer or enumeration
type).

 - Loop variable does not exist outside the loop
 - The loop variable cannot be changed in the loop, but the

discrete range can; it does not affect loop control
 - The discrete range is evaluated just once
• Cannot branch into the loop body

1-331
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Examples

• C-based languages
for ([expr_1] ; [expr_2] ; [expr_3]) statement

 - The expressions can be whole statements, or even statement sequences,
with the statements separated by commas
– The value of a multiple-statement expression is the value of the last statement

in the expression

– If the second expression is absent, it is an infinite loop

• Design choices:

 - There is no explicit loop variable

 - Everything can be changed in the loop

 - The first expression is evaluated once, but the other two are evaluated
with each iteration

1-332
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Examples

• C++ differs from C in two ways:

1. The control expression can also be Boolean

2. The initial expression can include variable
definitions (scope is from the definition to the
end of the loop body)

• Java and C#

– Differs from C++ in that the control expression
must be Boolean

1-333
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Examples

• Python
 for loop_variable in object:
 - loop body
 [else:
 - else clause]

– The object is often a range, which is either a list of values in brackets

([2, 4, 6]), or a call to the range function (range(5), which returns 0, 1,
2, 3, 4

– The loop variable takes on the values specified in the given range, one

for each iteration

– The else clause, which is optional, is executed if the loop terminates
normally

1-334
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Logically-
Controlled Loops

• Repetition control is based on a Boolean
expression

• Design issues:

– Pretest or posttest?

– Should the logically controlled loop be a special
case of the counting loop statement or a
separate statement?

1-335
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Logically-Controlled
Loops: Examples

• C and C++ have both pretest and posttest
forms, in which the control expression can be
arithmetic:

 while (ctrl_expr) do

 loop body loop body

 while (ctrl_expr)

• Java is like C and C++, except the control
expression must be Boolean (and the body can
only be entered at the beginning -- Java has no
goto

1-336
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Logically-Controlled Loops
Examples

• Ada has a pretest version, but no posttest

• FORTRAN 95 has neither

• Perl and Ruby have two pretest logical loops,
while and until. Perl also has two posttest
loops

1-337
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: User-Located Loop Control
Mechanisms

• Sometimes it is convenient for the
programmers to decide a location for loop
control (other than top or bottom of the
loop)

• Simple design for single loops (e.g., break)

• Design issues for nested loops
1. Should the conditional be part of the exit?

2. Should control be transferable out of more than
one loop?

1-338
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: User-Located Loop Control
Mechanisms break and continue

• C , C++, Python, Ruby, and C# have unconditional
unlabeled exits (break)

• Java and Perl have unconditional labeled exits
(break in Java, last in Perl)

• C, C++, and Python have an unlabeled control
statement, continue, that skips the remainder of
the current iteration, but does not exit the loop

• Java and Perl have labeled versions of continue

1-339
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Iteration Based on Data
Structures

• Number of elements of in a data structure
control loop iteration

• Control mechanism is a call to an iterator
function that returns the next element in some
chosen order, if there is one; else loop is
terminate

• C's for can be used to build a user-defined
iterator:

 for (p=root; p==NULL;
traverse(p)){

 }

1-340
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Iteration Based on Data
Structures (continued)

 PHP

 - current points at one element of the array

 - next moves current to the next element

 - reset moves current to the first element

• Java

 - For any collection that implements the Iterator interface

 - next moves the pointer into the collection

 - hasNext is a predicate

 - remove deletes an element

• Perl has a built-in iterator for arrays and hashes

1-341
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Iteration Based on

Data Structures (continued)

• Java 5.0 (uses for, although it is called foreach)

 - For arrays and any other class that implements

 Iterable interface, e.g., ArrayList

 for (String myElement : myList) { … }

• C#’s foreach statement iterates on the elements of arrays and

 other collections:

 Strings[] = strList = {"Bob", "Carol", "Ted"};

 foreach (Strings name in strList)

 Console.WriteLine ("Name: {0}", name);

 - The notation {0} indicates the position in the string to be displayed

 1-342
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Iterative Statements: Iteration Based on
Data Structures (continued)

• Lua

– Lua has two forms of its iterative statement, one
like Fortran’s Do, and a more general form:

 for variable_1 [, variable_2] in iterator(table) do

 …

 end

– The most commonly used iterators are pairs

 and ipairs

1-343
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Unconditional Branching

• Transfers execution control to a specified place in the program

• Represented one of the most heated debates in 1960’s and
1970’s

• Major concern: Readability

• Some languages do not support goto statement (e.g., Java)

• C# offers goto statement (can be used in switch
statements)

• Loop exit statements are restricted and somewhat
camouflaged goto’s

1-344
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Guarded Commands

• Designed by Dijkstra

• Purpose: to support a new programming
methodology that supported verification
(correctness) during development

• Basis for two linguistic mechanisms for
concurrent programming (in CSP and Ada)

• Basic Idea: if the order of evaluation is not
important, the program should not specify
one

1-345
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Selection Guarded Command

• Form
if <Boolean exp> -> <statement>

[] <Boolean exp> -> <statement>

 ...

[] <Boolean exp> -> <statement>

fi

• Semantics: when construct is reached,
– Evaluate all Boolean expressions
– If more than one are true, choose one non-

deterministically
– If none are true, it is a runtime error

1-346
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Loop Guarded Command

• Form
do <Boolean> -> <statement>

[] <Boolean> -> <statement>

 ...

[] <Boolean> -> <statement>

od

• Semantics: for each iteration
– Evaluate all Boolean expressions

– If more than one are true, choose one non-
deterministically; then start loop again

– If none are true, exit loop

1-347
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Guarded Commands: Rationale

• Connection between control statements and
program verification is intimate

• Verification is impossible with goto
statements

• Verification is possible with only selection and
logical pretest loops

• Verification is relatively simple with only
guarded commands

1-348
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Summary

• The data types of a language are a large part of what
determines that language’s style and usefulness

• The primitive data types of most imperative languages include
numeric, character, and Boolean types

• The user-defined enumeration and subrange types are
convenient and add to the readability and reliability of
programs

• Arrays and records are included in most languages

• Pointers are used for addressing flexibility and to control
dynamic storage management

1-349
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

Conclusion

• Variety of statement-level structures

• Choice of control statements beyond selection
and logical pretest loops is a trade-off
between language size and writability

• Functional and logic programming languages
are quite different control structures

1-350
Unit-2(PRINCIPLES OF

PROGRAMMING LANGUAGES)

351

 UNIT-3

CONCEPTS
• Introduction
• Fundamentals of Subprograms
• Design Issues for Subprograms
• Local Referencing Environments
• Parameter-Passing Methods
• Parameters That Are Subprograms
• Overloaded Subprograms
• Generic Subprograms
• Design Issues for Functions
• User-Defined Overloaded Operators
• Coroutines

1-352
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

CONCEPTS
• The General Semantics of Calls and Returns

• Implementing “Simple” Subprograms

• Implementing Subprograms with Stack-Dynamic Local
Variables

• Nested Subprograms

• Blocks

• Implementing Dynamic Scoping

1-353
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Introduction

• Two fundamental abstraction facilities

– Process abstraction
• Emphasized from early days

– Data abstraction
• Emphasized in the1980s

1-354
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Fundamentals of Subprograms

• Each subprogram has a single entry point

• The calling program is suspended during
execution of the called subprogram

• Control always returns to the caller when the
called subprogram’s execution terminates

1-355
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Basic Definitions

• A subprogram definition describes the interface to and the actions of the
subprogram abstraction

 - In Python, function definitions are executable; in

 all other languages, they are non-executable

• A subprogram call is an explicit request that the subprogram be executed

• A subprogram header is the first part of the definition, including the name,
the kind of subprogram, and the formal parameters

• The parameter profile (aka signature) of a subprogram is the number,
order, and types of its parameters

• The protocol is a subprogram’s parameter profile and, if it is a function, its
return type

1-356
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Basic Definitions (continued)

• Function declarations in C and C++ are often called prototypes

• A subprogram declaration provides the protocol, but not the
body, of the subprogram

• A formal parameter is a dummy variable listed in the
subprogram header and used in the subprogram

• An actual parameter represents a value or address used in the
subprogram call statement

1-357
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Actual/Formal Parameter
Correspondence

• Positional
– The binding of actual parameters to formal parameters is by position:

the first actual parameter is bound to the first formal parameter and
so forth

– Safe and effective

• Keyword
– The name of the formal parameter to which an actual parameter is to

be bound is specified with the actual parameter

– Advantage: Parameters can appear in any order, thereby avoiding
parameter correspondence errors

– Disadvantage: User must know the formal parameter’s names

1-358
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Formal Parameter Default Values

• In certain languages (e.g., C++, Python, Ruby, Ada, PHP), formal
parameters can have default values (if no actual parameter is passed)
– In C++, default parameters must appear last because parameters are

positionally associated

• Variable numbers of parameters
– C# methods can accept a variable number of parameters as long as they are of the same

type—the corresponding formal parameter is an array preceded by params

– In Ruby, the actual parameters are sent as elements of a hash literal and the
corresponding formal parameter is preceded by an asterisk.

– In Python, the actual is a list of values and the corresponding formal parameter is a
name with an asterisk

– In Lua, a variable number of parameters is represented as a formal parameter with three
periods; they are accessed with a for statement or with a multiple assignment from the
three periods

1-359
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Ruby Blocks
• Ruby includes a number of iterator functions, which are often

used to process the elements of arrays
• Iterators are implemented with blocks, which can also be

defined by applications
• Blocks are attached methods calls; they can have parameters

(in vertical bars); they are executed when the method
executes a yield statement

 def fibonacci(last)
 first, second = 1, 1

 while first <= last

 yield first

 first, second = second, first + second

 end

 end

 puts "Fibonacci numbers less than 100 are:"

 fibonacci(100) {|num| print num, " "}

 puts

1-360
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Procedures and Functions

• There are two categories of subprograms

– Procedures are collection of statements that
define parameterized computations

– Functions structurally resemble procedures but
are semantically modeled on mathematical
functions

• They are expected to produce no side effects

• In practice, program functions have side effects

1-361
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Design Issues for Subprograms

• Are local variables static or dynamic?

• Can subprogram definitions appear in other subprogram
definitions?

• What parameter passing methods are provided?

• Are parameter types checked?

• If subprograms can be passed as parameters and subprograms
can be nested, what is the referencing environment of a
passed subprogram?

• Can subprograms be overloaded?

• Can subprogram be generic?

1-362
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Local Referencing Environments
• Local variables can be stack-dynamic

 - Advantages

• Support for recursion

• Storage for locals is shared among some subprograms

– Disadvantages

• Allocation/de-allocation, initialization time

• Indirect addressing

• Subprograms cannot be history sensitive

• Local variables can be static
– Advantages and disadvantages are the opposite of those for stack-

dynamic local variables

1-363
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Semantic Models of Parameter Passing

• In mode

• Out mode

• Inout mode

1-364
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Models of Parameter Passing

1-365
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Conceptual Models of Transfer

• Physically move a path

• Move an access path

1-366
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Pass-by-Value (In Mode)

• The value of the actual parameter is used to initialize the
corresponding formal parameter
– Normally implemented by copying

– Can be implemented by transmitting an access path but not
recommended (enforcing write protection is not easy)

– Disadvantages (if by physical move): additional storage is required
(stored twice) and the actual move can be costly (for large
parameters)

– Disadvantages (if by access path method): must write-protect in the
called subprogram and accesses cost more (indirect addressing)

1-367
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Pass-by-Result (Out Mode)
• When a parameter is passed by result, no

value is transmitted to the subprogram; the
corresponding formal parameter acts as a
local variable; its value is transmitted to
caller’s actual parameter when control is
returned to the caller, by physical move
– Require extra storage location and copy operation

• Potential problem: sub(p1, p1);
whichever formal parameter is copied back
will represent the current value of p1

1-368
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Pass-by-Value-Result (inout Mode)

• A combination of pass-by-value and pass-by-
result

• Sometimes called pass-by-copy

• Formal parameters have local storage

• Disadvantages:

– Those of pass-by-result

– Those of pass-by-value

1-369
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Pass-by-Reference (Inout Mode)

• Pass an access path

• Also called pass-by-sharing

• Advantage: Passing process is efficient (no
copying and no duplicated storage)

• Disadvantages
– Slower accesses (compared to pass-by-value) to

formal parameters

– Potentials for unwanted side effects (collisions)

– Unwanted aliases (access broadened)

1-370
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Pass-by-Name (Inout Mode)

• By textual substitution

• Formals are bound to an access method at
the time of the call, but actual binding to a
value or address takes place at the time of a
reference or assignment

• Allows flexibility in late binding

1-371
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Implementing Parameter-Passing Methods

• In most language parameter communication
takes place thru the run-time stack

• Pass-by-reference are the simplest to
implement; only an address is placed in the
stack

• A subtle but fatal error can occur with pass-
by-reference and pass-by-value-result: a
formal parameter corresponding to a constant
can mistakenly be changed

1-372
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Parameter Passing Methods of Major Languages
• C

– Pass-by-value
– Pass-by-reference is achieved by using pointers as

parameters
• C++

– A special pointer type called reference type for
pass-by-reference

• Java

– All parameters are passed are passed by value
– Object parameters are passed by reference

• Ada

– Three semantics modes of parameter
transmission: in, out, in out; in is the
default mode

– Formal parameters declared out can be assigned
but not referenced; those declared in can be
referenced but not assigned; in out

1-373
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Parameter Passing Methods of Major Languages
(continued)

• Fortran 95
- Parameters can be declared to be in, out, or inout mode

• C#
- Default method: pass-by-value

– Pass-by-reference is specified by preceding both a formal parameter
and its actual parameter with ref

• PHP: very similar to C#

• Perl: all actual parameters are implicitly placed in a
predefined array named @_

• Python and Ruby use pass-by-assignment (all data values are
objects)

1-374
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Type Checking Parameters

• Considered very important for reliability

• FORTRAN 77 and original C: none

• Pascal, FORTRAN 90, Java, and Ada: it is always required

• ANSI C and C++: choice is made by the user
– Prototypes

• Relatively new languages Perl, JavaScript, and PHP do not
require type checking

• In Python and Ruby, variables do not have types (objects do),
so parameter type checking is not possible

1-375
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters

• If a multidimensional array is passed to a
subprogram and the subprogram is separately
compiled, the compiler needs to know the
declared size of that array to build the storage
mapping function

1-376
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters: C and
C++

• Programmer is required to include the
declared sizes of all but the first subscript in
the actual parameter

• Disallows writing flexible subprograms

• Solution: pass a pointer to the array and the
sizes of the dimensions as other parameters;
the user must include the storage mapping
function in terms of the size parameters

1-377
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters: Ada

• Ada – not a problem

– Constrained arrays – size is part of the array’s
type

– Unconstrained arrays - declared size is part of the
object declaration

1-378
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters: Fortran

• Formal parameter that are arrays have a
declaration after the header
– For single-dimension arrays, the subscript is

irrelevant

– For multidimensional arrays, the sizes are sent as
parameters and used in the declaration of the
formal parameter, so those variables are used in
the storage mapping function

1-379
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Multidimensional Arrays as Parameters: Java
and C#

• Similar to Ada

• Arrays are objects; they are all single-
dimensioned, but the elements can be arrays

• Each array inherits a named constant
(length in Java, Length in C#) that is set to
the length of the array when the array object
is created

1-380
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Design Considerations for Parameter Passing

• Two important considerations

– Efficiency

– One-way or two-way data transfer

• But the above considerations are in conflict

– Good programming suggest limited access to
variables, which means one-way whenever
possible

– But pass-by-reference is more efficient to pass
structures of significant size

1-381

Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Parameters that are Subprogram
Names

• It is sometimes convenient to pass
subprogram names as parameters

• Issues:

1. Are parameter types checked?

2. What is the correct referencing environment for
a subprogram that was sent as a parameter?

1-382
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Parameters that are Subprogram Names:
Parameter Type Checking

• C and C++: functions cannot be passed as parameters but
pointers to functions can be passed and their types include
the types of the parameters, so parameters can be type
checked

• FORTRAN 95 type checks

• Ada does not allow subprogram parameters; an alternative
is provided via Ada’s generic facility

• Java does not allow method names to be passed as
parameters

1-383
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Parameters that are Subprogram
Names: Referencing Environment

• Shallow binding: The environment of the call
statement that enacts the passed subprogram
- Most natural for dynamic-scoped

 languages

• Deep binding: The environment of the
definition of the passed subprogram
- Most natural for static-scoped languages

• Ad hoc binding: The environment of the call
statement that passed the subprogram

1-384
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Overloaded Subprograms

• An overloaded subprogram is one that has the same name as
another subprogram in the same referencing environment
– Every version of an overloaded subprogram has a unique protocol

• C++, Java, C#, and Ada include predefined overloaded
subprograms

• In Ada, the return type of an overloaded function can be used
to disambiguate calls (thus two overloaded functions can have
the same parameters)

• Ada, Java, C++, and C# allow users to write multiple versions
of subprograms with the same name

1-385
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Generic Subprograms

• A generic or polymorphic subprogram takes parameters of
different types on different activations

• Overloaded subprograms provide ad hoc polymorphism

• A subprogram that takes a generic parameter that is used in a

type expression that describes the type of the parameters of
the subprogram provides parametric polymorphism
 - A cheap compile-time substitute for dynamic binding

1-386
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Generic Subprograms (continued)

• Ada

– Versions of a generic subprogram are created by
the compiler when explicitly instantiated by a
declaration statement

– Generic subprograms are preceded by a generic
clause that lists the generic variables, which can
be types or other subprograms

1-387
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Generic Subprograms (continued)

• C++

– Versions of a generic subprogram are created
implicitly when the subprogram is named in a call
or when its address is taken with the & operator

– Generic subprograms are preceded by a template
clause that lists the generic variables, which can
be type names or class names

1-388
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Generic Subprograms (continued)

• Java 5.0
- Differences between generics in Java 5.0 and those of C++
and Ada:
1. Generic parameters in Java 5.0 must be classes

 2. Java 5.0 generic methods are instantiated just once as truly
generic methods
3. Restrictions can be specified on the range of classes that
can be passed to the generic method as generic parameters
4. Wildcard types of generic parameters

1-389
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Generic Subprograms (continued)

• C# 2005
- Supports generic methods that are similar to
those of Java 5.0
- One difference: actual type parameters in a
call can be omitted if the compiler can infer
the unspecified type

1-390
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Examples of parametric
polymorphism: C++

template <class Type>

Type max(Type first, Type second) {

 return first > second ? first : second;

}

• The above template can be instantiated for any type for which
operator > is defined

int max (int first, int second) {

 return first > second? first : second;

}

1-391
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Design Issues for Functions

• Are side effects allowed?
– Parameters should always be in-mode to reduce side effect (like

Ada)

• What types of return values are allowed?
– Most imperative languages restrict the return types

– C allows any type except arrays and functions

– C++ is like C but also allows user-defined types

– Ada subprograms can return any type (but Ada subprograms are not
types, so they cannot be returned)

– Java and C# methods can return any type (but because methods are
not types, they cannot be returned)

– Python and Ruby treat methods as first-class objects, so they can be
returned, as well as any other class

– Lua allows functions to return multiple values
1-392

Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

User-Defined Overloaded
Operators

• Operators can be overloaded in Ada, C++,
Python, and Ruby

• An Ada example
function "*" (A,B: in Vec_Type): return Integer
is

 Sum: Integer := 0;

 begin
 for Index in A'range loop
 Sum := Sum + A(Index) * B(Index)

 end loop
 return sum;
end "*";
…

c = a * b; -- a, b, and c are of type Vec_Type

1-393
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Coroutines

• A coroutine is a subprogram that has multiple entries and
controls them itself – supported directly in Lua

• Also called symmetric control: caller and called coroutines are
on a more equal basis

• A coroutine call is named a resume

• The first resume of a coroutine is to its beginning, but
subsequent calls enter at the point just after the last
executed statement in the coroutine

• Coroutines repeatedly resume each other, possibly forever

• Coroutines provide quasi-concurrent execution of program
units (the coroutines); their execution is interleaved, but not
overlapped

1-394
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Coroutines Illustrated: Possible Execution
Controls

1-395
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Coroutines Illustrated: Possible Execution
Controls

1-396
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Coroutines Illustrated: Possible Execution
Controls with Loops

1-397
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

The General Semantics of Calls and
Returns

• The subprogram call and return operations of
a language are together called its subprogram
linkage

• General semantics of subprogram calls
– Parameter passing methods
– Stack-dynamic allocation of local variables
– Save the execution status of calling program
– Transfer of control and arrange for the return
– If subprogram nesting is supported, access to

nonlocal variables must be arranged

1-398
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

The General Semantics of Calls and Returns

• General semantics of subprogram returns:

– In mode and inout mode parameters must have
their values returned

– Deallocation of stack-dynamic locals

– Restore the execution status

– Return control to the caller

1-399
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Implementing “Simple” Subprograms:
Call Semantics

• Call Semantics:

- Save the execution status of the caller
- Pass the parameters
- Pass the return address to the callee
- Transfer control to the callee

1-400
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Implementing “Simple” Subprograms:
Return Semantics

• Return Semantics:
– If pass-by-value-result or out mode parameters

are used, move the current values of those
parameters to their corresponding actual
parameters

– If it is a function, move the functional value to a
place the caller can get it

– Restore the execution status of the caller
– Transfer control back to the caller

• Required storage:

– Status information, parameters, return address,
return value for functions

1-401
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Implementing “Simple” Subprograms:
Parts

• Two separate parts: the actual code and the non-
code part (local variables and data that can
change)

• The format, or layout, of the non-code part of an
executing subprogram is called an activation
record

• An activation record instance is a concrete
example of an activation record (the collection of
data for a particular subprogram activation)

1-402
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

An Activation Record for “Simple”
Subprograms

1-403
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Code and Activation Records of a Program with
“Simple” Subprograms

1-404
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Implementing Subprograms with
Stack-Dynamic Local Variables

• More complex activation record

– The compiler must generate code to cause
implicit allocation and deallocation of local
variables

– Recursion must be supported (adds the possibility
of multiple simultaneous activations of a
subprogram)

1-405
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Typical Activation Record for a Language with
Stack-Dynamic Local Variables

1-406
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Implementing Subprograms with Stack-Dynamic Local
Variables: Activation Record

• The activation record format is static, but its size may be
dynamic

• The dynamic link points to the top of an instance of the
activation record of the caller

• An activation record instance is dynamically created when a
subprogram is called

• Activation record instances reside on the run-time stack

• The Environment Pointer (EP) must be maintained by the run-
time system. It always points at the base of the activation
record instance of the currently executing program unit

1-407
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

An Example: C Function

void sub(float total, int part)

{

 int list[5];

 float sum;

 …

}

[4]

[3]

[2]

[1]

[0]

1-408
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

An Example Without Recursion

void A(int x) {

 int y;

 ...

 C(y);

 ...

}

void B(float r) {

 int s, t;

 ...

 A(s);

 ...

}

void C(int q) {

 ...

}

void main() {

 float p;

 ...

 B(p);

 ...

}

main calls B

B calls A

A calls C

1-409
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

An Example Without Recursion

1-410
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Dynamic Chain and Local Offset
• The collection of dynamic links in the stack at a given time is

called the dynamic chain, or call chain

• Local variables can be accessed by their offset from the
beginning of the activation record, whose address is in the EP.
This offset is called the local_offset

• The local_offset of a local variable can be determined by the
compiler at compile time

1-411
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

An Example With Recursion

• The activation record used in the previous
example supports recursion, e.g.

 int factorial (int n) {

 <-----------------------------1

 if (n <= 1) return 1;

 else return (n * factorial(n - 1));

 <-----------------------------2

 }

 void main() {

 int value;

 value = factorial(3);

 <-----------------------------3

 }

1-412
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Activation Record for factorial

1-413
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Nested Subprograms
• Some non-C-based static-scoped languages (e.g., Fortran

95, Ada, Python, JavaScript, Ruby, and Lua) use stack-
dynamic local variables and allow subprograms to be nested

• All variables that can be non-locally accessed reside in some
activation record instance in the stack

• The process of locating a non-local reference:
1. Find the correct activation record instance

2. Determine the correct offset within that activation record instance

1-414
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Locating a Non-local Reference

• Finding the offset is easy

• Finding the correct activation record instance

– Static semantic rules guarantee that all non-local
variables that can be referenced have been
allocated in some activation record instance that
is on the stack when the reference is made

1-415
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Static Scoping
• A static chain is a chain of static links that connects certain

activation record instances

• The static link in an activation record instance for subprogram

A points to one of the activation record instances of A's static
parent

• The static chain from an activation record instance connects

it to all of its static ancestors

• Static_depth is an integer associated with a static scope

whose value is the depth of nesting of that scope

1-416
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Static Scoping (continued)

• The chain_offset or nesting_depth of a nonlocal reference is
the difference between the static_depth of the reference and
that of the scope when it is declared

• A reference to a variable can be represented by the pair:
 (chain_offset, local_offset),
 where local_offset is the offset in the activation
 record of the variable being referenced

1-417
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Example Ada Program
procedure Main_2 is
 X : Integer;
 procedure Bigsub is
 A, B, C : Integer;
 procedure Sub1 is
 A, D : Integer;
 begin -- of Sub1
 A := B + C; <-----------------------1
 end; -- of Sub1
 procedure Sub2(X : Integer) is
 B, E : Integer;
 procedure Sub3 is
 C, E : Integer;
 begin -- of Sub3
 Sub1;
 E := B + A: <--------------------2
 end; -- of Sub3
 begin -- of Sub2
 Sub3;
 A := D + E; <-----------------------3
 end; -- of Sub2 }
 begin -- of Bigsub
 Sub2(7);
 end; -- of Bigsub
 begin
 Bigsub;
end; of Main_2 }

1-418
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Example Ada Program (continued)

• Call sequence for Main_2

 Main_2 calls Bigsub
 Bigsub calls Sub2
 Sub2 calls Sub3
 Sub3 calls Sub1

1-419
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Stack Contents at
Position 1

1-420
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Static Chain Maintenance

• At the call,
- The activation record instance must be built
- The dynamic link is just the old stack top pointer
- The static link must point to the most recent ari of the static
parent
 - Two methods:
 1. Search the dynamic chain
 2. Treat subprogram calls and
 definitions like variable references
 and definitions

1-421
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Evaluation of Static Chains

• Problems:
1. A nonlocal areference is slow if the
 nesting depth is large
2. Time-critical code is difficult:
 a. Costs of nonlocal references are
 difficult to determine
 b. Code changes can change the
 nesting depth, and therefore the cost

1-422
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Displays

• An alternative to static chains that solves the
problems with that approach

• Static links are stored in a single array called a
display

• The contents of the display at any given time
is a list of addresses of the accessible
activation record instances

1-423
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Blocks

• Blocks are user-specified local scopes for variables
• An example in C
 {int temp;

 temp = list [upper];

 list [upper] = list [lower];

 list [lower] = temp

 }

• The lifetime of temp in the above example begins when
control enters the block

• An advantage of using a local variable like temp is that it
cannot interfere with any other variable with the same name

1-424
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Implementing Blocks

• Two Methods:

1. Treat blocks as parameter-less subprograms that
are always called from the same location
– Every block has an activation record; an instance is

created every time the block is executed

2. Since the maximum storage required for a block
can be statically determined, this amount of
space can be allocated after the local variables in
the activation record

1-425
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Implementing Dynamic Scoping

• Deep Access: non-local references are found
by searching the activation record instances
on the dynamic chain
 - Length of the chain cannot be statically
 determined
 - Every activation record instance must

 have variable names

• Shallow Access: put locals in a central place
– One stack for each variable name

– Central table with an entry for each variable name

1-426
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Using Shallow Access to
Implement Dynamic Scoping

void sub3() {

 int x, z;

 x = u + v;

 …

}

void sub2() {

 int w, x;

 …

}

void sub1() {

 int v, w;

 …

}

void main() {

 int v, u;

 …

}

1-427
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Summary

• A subprogram definition describes the actions represented by
the subprogram

• Subprograms can be either functions or procedures

• Local variables in subprograms can be stack-dynamic or static

• Three models of parameter passing: in mode, out mode, and
inout mode

• Some languages allow operator overloading

• Subprograms can be generic

• A coroutine is a special subprogram with multiple entries

1-428
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Summary

• Subprogram linkage semantics requires many
action by the implementation

• Simple subprograms have relatively basic
actions

• Stack-dynamic languages are more complex

• Subprograms with stack-dynamic local
variables and nested subprograms have two
components
– actual code

– activation record

1-429
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

Summary
• Activation record instances contain formal

parameters and local variables among other
things

• Static chains are the primary method of
implementing accesses to non-local variables
in static-scoped languages with nested
subprograms

• Access to non-local variables in dynamic-
scoped languages can be implemented by use
of the dynamic chain or thru some central
variable table method

1-430
Unit-3 (PRINCIPLES OF

PROGRAMMING LANGUAGE)

431

 UNIT-4

CONCEPTS

• Abstract Data types

• Concurrency

• Exception Handling

• Logic Programming Language

432
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Introduction to logic programming language

A Brief Introduction to Predicate Calculus

Predicate Calculus and Proving Theorems

An Overview of Logic Programming

The Origins of Prolog

The Basic Elements of Prolog

Deficiencies of Prolog

Applications of Logic Programming

433
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

CONCEPTS

Abstract Data types

➢An abstraction is a view or representation of an entity that
includes only the most significant attributes.

➢The concept of abstraction is fundamental in programming
(and computer science).

➢Nearly all programming languages support process
abstraction with subprograms.

➢Nearly all programming languages designed since 1980
support data abstraction.

434
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Introduction to Data Abstraction

An abstract data type is a user-defined data type that satisfies

the following two conditions:

–The representation of, and operations on, objects of the type
are defined in a single syntactic unit.

–The representation of objects of the type is hidden from the
program units that use these objects, so the only operations
possible are those provided in the type's definition.

435
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Encapsulation

 Original motivation :

 Large programs have two special needs:

 1. Some means of organization, other than simply division into
subprograms.

 2. Some means of partial compilation (compilation units that are
smaller than the whole program).

 Obvious solution : a grouping of subprograms that are
logically related into a unit that can be separately compiled.

 These are called encapsulations.

436
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Examples of Encapsulation
Mechanisms

1. Nested subprograms in some ALGOL-like
languages (e.g., Pascal).

2. FORTRAN 77 and C - Files containing one or
more subprograms can be independently
compiled.

3. FORTRAN 90, C++, Ada (and other
contemporary languages) - separately
compilable modules.

437
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Language Requirements for
Data Abstraction

1. A syntactic unit in which to encapsulate the type definition.

2. A method of making type names and subprogram headers
visible to clients, while hiding actual definitions.

3. Some primitive operations must be built into the language
processor (usually just assignment and comparisons for
equality and inequality).

 - Some operations are commonly needed, but must be defined
by the type designer.

 - e.g., iterators, constructors, destructors.

438
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Language Design Issues

1. Encapsulate a single type, or something
more?

2. What types can be abstract?

3. Can abstract types be parameterized?

4. What access controls are provided?

439
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Language Examples

1. Simula 67

- Provided encapsulation, but no information

Hiding.

2. Ada

- The encapsulation construct is the package

- Packages usually have two parts:

1. Specification package (the interface)

2. Body package (implementation of the entities

named in the specification.

440
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Evaluation of Ada Abstract Data Types

1. Lack of restriction to pointers is better

- Cost is recompilation of clients when the

 representation is changed.

2. Cannot import specific entities from other

Packages.

441
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Parameterized Abstract Data Types

1. Ada Generic Packages

 - Make the stack type more flexible by making
the element type and the size of the stack
generic.

 ---> SHOW GENERIC_STACK package and two
instantiations .

442
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

C++ Templated Classes

- Classes can be somewhat generic by writing parameterized constructor
functions.

stack (int size) {

stk_ptr = new int [size];

max_len = size - 1;

top = -1;

}

stack (100) stk;

- The stack element type can be parameterized by making the class a
templated class.

---> SHOW the templated class stack .

- Java does not support generic abstract data types

443
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Object Oriented Programming in
Smalltalk

Type Checking and Polymorphism:

- All bindings of messages to methods is dynamic.

- The process is to search the object to which the message is sent
for the method; if not found, search the superclass, etc.

- Because all variables are typeless, methods are all polymorphic

- Inheritance.

- All subclasses are subtypes (nothing can be hidden).

- All inheritance is implementation inheritance.

- No multiple inheritance.

- Methods can be redefined, but the two are not related.

444
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

C++
General Characteristics:

- Mixed typing system.

- Constructors and destructors.

- Elaborate access controls to class entities.

- Inheritance:

- A class need not be subclasses of any class.

- Access controls for members are:

1. Private (visible only in the class and friends).

2. Public (visible in subclasses and clients).

3. Protected (visible in the class and in subclasses).

- In addition, the subclassing process can be declared with access
controls, which define potential changes in access by subclasses.

- Multiple inheritance is supported.
445

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Java
Dynamic Binding
- In Java, all messages are dynamically bound to methods, unless

the method is final.

- Encapsulation

- Two constructs, classes and packages.

- Packages provide a container for classes that are related.

- Entities defined without an scope (access) modifier have
package scope, which makes them visible throughout the
package in which they are defined

- Every class in a package is a friend to the package scope entities

elsewhere in the package.

446
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Ada 95

Example:

with PERSON_PKG; use PERSON_PKG;

package STUDENT_PKG is

type STUDENT is new PERSON with

record

GRADE_POINT_AVERAGE : FLOAT;

GRADE_LEVEL : INTEGER;

end record;

procedure DISPLAY (ST: in STUDENT);

end STUDENT_PKG;

- DISPLAY is being overriden from PERSON_PKG

- All subclasses are subtypes

- Single inheritance only, except through generics

447
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Concurrency

Def: A thread of control in a program is the sequence of program
points reached as control flows through the program.

Categories of Concurrency:

1. Physical concurrency - Multiple independent processors

(multiple threads of control).

2. Logical concurrency - The appearance of physical concurrency
is presented by timesharing one processor (software can be
designed as if there were multiple threads of control).

- Coroutines provide only quasiconcurrency.

448
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Reasons to Study Concurrency

1. It involves a new way of designing software
that can be very useful--many real-world
situations involve concurrency.

2. Computers capable of physical concurrency
are now widely used.

449
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Design Issues for Concurrency

1. How is cooperation synchronization

provided?

2. How is competition synchronization provided?

3. How and when do tasks begin and end

execution?

4. Are tasks statically or dynamically created?

450
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Methods of Providing Synchronization

1. Semaphores

2. Monitors

3. Message Passing

451
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Semaphores

 Semaphores (Dijkstra - 1965).

- A semaphore is a data structure consisting of a

counter and a queue for storing task descriptors.

- Semaphores can be used to implement guards on the
code that accesses shared data structures.

- Semaphores have only two operations, wait and
release (originally called P and V by Dijkstra).

- Semaphores can be used to provide both

competition and cooperation synchronization

452
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Example

wait(aSemaphore)

if aSemaphore’s counter > 0 then

Decrement aSemaphore’s counter

else

Put the caller in aSemaphore’s queue

Attempt to transfer control to some

ready task

(If the task ready queue is empty,

deadlock occurs)

end
453

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Example

release(aSemaphore)

if aSemaphore’s queue is empty then

Increment aSemaphore’s counter

else

Put the calling task in the task ready

queue

Transfer control to a task from

aSemaphore’s queue

end 454
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Monitors

- Competition Synchronization with Monitors:

- Access to the shared data in the monitor is

 limited by the implementation to a single
process at a time; therefore, mutually
exclusive access is inherent in the semantic
definition of the monitor.

- Multiple calls are queued.

455
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Monitors

Cooperation Synchronization with Monitors:

- Cooperation is still required - done with semaphores, using the queue data
type and the built-in operations, delay (similar to send) and continue
(similar to release).

- delay takes a queue type parameter; it puts the process that calls it in the
specified queue and removes its exclusive access rights to the monitor’s
data structure.

- Differs from send because delay always blocks the caller.

- continue takes a queue type parameter; it disconnects the caller from the
monitor, thus freeing the monitor for use by another process.

-It also takes a process from the parameter.

-queue (if the queue isn’t empty) and starts it.

-Differs from release because it always has some effect (release does nothing
if the queue is empty).

456

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Message Passing

Competition Synchronization with Message Passing:

- Example:

- a shared buffer.

- Encapsulate the buffer and its operations in a task.

- Competition synchronization is implicit in the
semantics of accept clauses.

- Only one accept clause in a task can be active at any
given time.

457
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Java Threads
Competition Synchronization with Java Threads:

- A method that includes the synchronized modifier disallows
any other method from running on the object while it is in
execution.

- If only a part of a method must be run without interference, it

can be synchronized.

- Cooperation Synchronization with Java Threads:
- The wait and notify methods are defined in Object, which is the

root class in Java, so all objects inherit them.

- The wait method must be called in a loop.

 Example - the queue.

458
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Exception Handling

In a language without exception handling:

➢When an exception occurs, control goes to
the

operating system, where a message is displayed

and the program is terminated.

In a language with exception handling:

➢Programs are allowed to trap some
exceptions, thereby providing the possibility
of fixing the problem and continuing.

459
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Design Issues for Exception Handling
1. How and where are exception handlers specified and what is

their scope?

2. How is an exception occurrence bound to an exception handler?

3. Where does execution continue, if at all, after an exception
handler completes its execution?

4. How are user-defined exceptions specified?

5. Should there be default exception handlers for programs that do
not provide their own?

6. Can built-in exceptions be explicitly raised?

7. Are hardware-detectable errors treated as exceptions that can be
handled?

8. Are there any built-in exceptions?

9. How can exceptions be disabled, if at all?

460
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Ada Exception Handling
Def: The frame of an exception handler in Ada is either a subprogram body, a

package body, a task, or a block.

- Because exception handlers are usually local to the code in which the
exception can be raised, they do not have parameters.

- Handler form:

exception

when exception_name {| exception_name} =>

statement_sequence

 ...

when ...

...

[when others =>statement_sequence]

- Handlers are placed at the end of the block or unit in which they occur.

461
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Binding Exceptions to Handlers

➢If the block or unit in which an exception is raised
does not have a handler for that exception, the
exception is propagated elsewhere to be handled.

1. Procedures - propagate it to the caller.

2. Blocks - propagate it to the scope in which it occurs.

3. Package body - propagate it to the declaration part
of the unit that declared the package (if it is a library
unit (no static parent), the program is terminated).

4. Task - no propagation; if it has no handler, execute it;
in either case, mark it "completed“.

462
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

C++ Exception Handling

try {

-- code that is expected to raise an exception}

catch (formal parameter) {

-- handler code

}…..

catch (formal parameter) {

-- handler code

}

- catch is the name of all handlers--it is an overloaded name, so the formal
parameter of each must be unique.

- The formal parameter need not have a variable.

- It can be simply a type name to distinguish the handler it is in from others.

- The formal parameter can be used to transfer information to the handler.

463
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Java Exception Handling
The finally Clause:

- Can appear at the end of a try construct

- Form:

finally {

...

}

- Purpose: To specify code that is to be executed, regardless of what happens
in the try construct.

- A try construct with a finally clause can be used outside exception handling

try {

for (index = 0; index < 100; index++) {

…

if (…) {

return;

}

464
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Evaluation

- The types of exceptions makes more sense

than in the case of C++.

- The throws clause is better than that of C++

(The throw clause in C++ says little to the
programmer).

- The finally clause is often useful.

- The Java interpreter throws a variety of

exceptions that can be handled by user
programs.

465
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Introduction to logic programming
Logic programming languages, sometimes called declarative programming

Languages.

Express programs in a form of symbolic logic.

Use a logical inferencing process to produce results.

Declarative rather that procedural:

–Only specification of results are stated (not detailed procedures for producing them).

Proposition:

A logical statement that may or may not be true.

–Consists of objects and relationships of objects to each other.

Symbolic Logic:

Logic which can be used for the basic needs of formal logic:

–Express propositions.

–Express relationships between propositions.

–Describe how new propositions can be inferred from other propositions.

 (Particular form of symbolic logic used for logic programming called predicate

Calculus)
 466

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Object Representation

Objects in propositions are represented by simple terms: either constants or

variables.

Constant: a symbol that represents an object.

Variable: a symbol that can represent different objects at different times.

–Different from variables in imperative languages.

Compound Terms:

Atomic propositions consist of compound terms.

Compound term: one element of a mathematical relation, written like a
mathematical function.

–Mathematical function is a mapping.

–Can be written as a table.

Parts of a Compound Term:

Compound term composed of two parts:

 467

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Example

Functor: function symbol that names the
relationship.

–Ordered list of parameters (tuple).

Examples:

student(jon)

like(seth, OSX)

like(nick, windows)

like(jim, linux)

468
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Forms of a Proposition

Propositions can be stated in two forms:

–Fact: proposition is assumed to be true.

–Query: truth of proposition is to be
determined.

Compound proposition:

–Have two or more atomic propositions.

–Propositions are connected by operators.

469
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Clausal Form

Too many ways to state the same thing

-Use a standard form for propositions.

Clausal form:

–B1 B2 … Bn A1 A2 … Am

–means if all the As are true, then at least one B
is true.

Antecedent: right side.

Consequent: left side.

470
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Predicate Calculus and Proving Theorems

-use of propositions is to discover new theorems that can be

inferred from known axioms and theorems.

Resolution: an inference principle that allows inferred
propositions to be computed from given propositions
resolution.

 Unification: finding values for variables in propositions that
allows matching process to succeed.

Instantiation: assigning temporary values to variables to allow
unification to succeed after instantiating a variable with a
value, if matching fails, may need to backtrack and instantiate
with a different value.

471
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

 Theorem Proving

-Basis for logic programming.

-When propositions used for resolution, only
restricted form can be used.

Horn clause - can have only two forms.

–Headed: single atomic proposition on left side.

–Headless: empty left side (used to state facts).

-Most propositions can be stated as Horn
clauses.

472

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Basic Elements of Prolog
Terms:

-Edinburgh Syntax.

Term: a constant, variable, or structure.

Constant: an atom or an integer.

Atom: symbolic value of Prolog.

Atom consists of either:

–a string of letters, digits, and underscores beginning
with a lowercase letter.

–a string of printable ASCII characters delimited by
apostrophes.

473

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Terms: Variables and Structures

-Variable: any string of letters, digits, and
underscores beginning with an uppercase
letter.

-Instantiation: binding of a variable to a value.

–Lasts only as long as it takes to satisfy one
complete goal.

-Structure: represents atomic proposition

functor(parameter list).

474
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Fact Statements

-Used for the hypotheses.

-Headless Horn clauses:

 female(shelley).

 male(bill).

 father(bill, jake).

475
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Rule Statements

 -Used for the hypotheses.

-Headed Horn clause:

Right side: antecedent (if part)

–May be single term or conjunction.

Left side: consequent (then part).

–Must be single term.

Conjunction: multiple terms separated by logical AND operations (implied)

Example Rules:

ancestor(mary,shelley):- mother(mary,shelley).

Can use variables (universal objects) to generalize meaning:

parent(X,Y):- mother(X,Y).

parent(X,Y):- father(X,Y).

grandparent(X,Z):- parent(X,Y), parent(Y,Z).

sibling(X,Y):- mother(M,X), mother(M,Y),

father(F,X), father(F,Y).
 476

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Goal Statements

-For theorem proving, theorem is in form of

proposition that we want system to prove or
disprove – goal statement.

-Same format as headless Horn

 eg: man(fred)

-Conjunctive propositions and propositions with
variables also legal goals.

eg: father(X,mike)

477
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Inferencing Process of Prolog

-Queries are called goals.

-If a goal is a compound proposition, each of the facts is a
subgoal.

-To prove a goal is true, must find a chain of inference rules
and/or facts.

For goal Q:

B :- A

C :- B

…

Q :- P

-Process of proving a subgoal called matching, satisfying, or
resolution.

478

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Simple Arithmetic
-Prolog supports integer variables and integer arithmetic.

-is operator: takes an arithmetic expression as right operand and variable as

left operand.

 eg: A is B / 17 + C

-Not the same as an assignment statement!

Example: speed(ford,100).

speed(chevy,105).

speed(dodge,95).

speed(volvo,80).

time(ford,20).

time(chevy,21).

time(dodge,24).

time(volvo,24).

distance(X,Y) :- speed(X,Speed),

time(X,Time),

Y is Speed * Time.

479
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Trace

-Built-in structure that displays instantiations at

each step.

-Tracing model of execution - four events:

–Call (beginning of attempt to satisfy goal).

–Exit (when a goal has been satisfied).

–Redo (when backtrack occurs).

–Fail (when goal fails).

480
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Example

likes(jake,chocolate).

likes(jake,apricots).

likes(darcie,licorice).

likes(darcie,apricots).

trace.

likes(jake,X),

likes(darcie,X).

481
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Bindings and scope

• A PROLOG program consists of one or more
relations.

• The scope of every relation is the entire
program.

• It is not possible in PROLOG to define a
relation locally to another relation, nor to
group relations into packages.

482
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Control

• In principle, the order in which resolution is
done should not affect the set of answers
yielded by a query (although it will affect the
order in which these answers are found).

• In practical logic programming, however, the
order is very important

483
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Deficiencies of prolog

• Resolution order control

• Closed word assumption: When an assertion is
tested, therefore, success means true and failure
means either unknown or false. As this is rather
inconvenient, PROLOG bends the rules of logic by
ignoring the distinction between unknown and false.
In other words, an assertion is assumed to be false if
it cannot be inferred to be true. This is called the
closed world assumption

• Negation problem.
 484

Unit-4(PRINCIPLES OF PROGRAMMING
LANGUAGE)

Applications of Logic Programming
Relational database management system:

• RDBMS stores data in the form of tables and queries.

• Prolog can replace the DML,DDL and query language

which are implanted in imperative languages.

Expert Systems

• Expert systems consists of database of facts, an
inferencing process, a human interface to look like an
expert human consultant.

• Logical programming helps to solve the
incompleteness of database.

485
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

Applications of logic
programming(cont..)

Natural language processing
• Few kinds of natural processing languages can be

done using logical programming

486
Unit-4(PRINCIPLES OF PROGRAMMING

LANGUAGE)

487

 UNIT-5

CONCEPTS

• Introduction

• Fundamentals of FPL

• LISP

• ML

• HASKELL

• Applications of FPL

• Scripting languages

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

488

FUNTIONAL PROGRAMMING LANGUAGE

• The design of the imperative languages is
based directly on Von Nuemann
Architechture.

• The design of the functional language is based
on mathematical functions.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

489

MATHEMATICAL FUNCTION

Def: A mathematical function is a mapping of

members of one set, called the domain set, to

another set, called the range set.

• A lambda expression specifies the parameter(s)

and the mapping of a function in the following form

 l(x) x * x * x

For the function cube (x) = x * x * x

• Lambda expressions describe nameless functions

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

490

Mathematical function(cont..)

• Lambda expressions are applied to parameter(s)
by placing the parameter(s) after the expression

• e.g. (l(x) x * x * x)(3) which evaluates to 27

A Function for Constructing Functions
DEFINE - Two forms:

1. To bind a symbol to an expression

e.g.,

(DEFINE pi 3.141593)

(DEFINE two_pi (* 2 pi))

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

491

Fundamentals of Functional
Programming Languages

• The objective of the design of a FPL is to
mimic mathematical functions to the greatest
extent possible.

• The basic process of computation is
fundamentally different in a FPL than in an
imperative language.

• In an imperative language, operations are
done and the results are stored in variables for
later use

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

492

Fundamentals of FPL(cont..)

• Management of variables is a constant
concern and source of complexity for
imperative programming.

• In an FPL, variables are not necessary, as is the
case in mathematics.

• In an FPL, the evaluation of a function always
produces the same result given the same
parameters.

• This is called referential transparency.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

493

LISP

• The first functional programming language.

• Data object types: originally only atoms and
lists.

• List form: parenthesized collections of sublists
and/or atoms

E.g., (A B (C D) E)

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

494

A Bit of LISP

• Originally, LISP was a typeless language.

• There were only two data types, atom and list.

• LISP lists are stored internally as single-linked
lists.

• Lambda notation is used to specify functions
and function definitions, function
applications,and data all have the same form.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

495

INTRODUCTION TO SCHEME
• A mid-1970s dialect of LISP, designed to be

cleaner, more modern, and simpler version
than the contemporary dialects of LISP.

• Uses only static scoping.

• Functions are first-class entities.

 -They can be the values of expressions and
elements of lists

 - They can be assigned to variables and passed

 as parameters

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

496

Primitive Functions:
1. Arithmetic: +, -, *, /, ABS, SQRT

e.g., (+ 5 2) yields 7

2. QUOTE -takes one parameter; returns the parameter
without evaluation.

1. QUOTE is required because the Scheme interpreter,
named EVAL, always evaluates parameters to
function applications before applying the function.
QUOTE is used to avoid parameter evaluation when
it is not appropriate.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

497

QUOTE
• QUOTE can be abbreviated with the apostrophe

prefix operator

 e.g., '(A B) is equivalent to (QUOTE (A B))

3. CAR takes a list parameter; returns the first
element of that list

 e.g., (CAR '(A B C)) yields A

 (CAR '((A B) C D)) yields (A B)

4. CDR takes a list parameter; returns the list

after removing its first element

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

498

Examples

 e.g., (CDR '(A B C)) yields (B C)

 (CDR '((A B) C D)) yields (C D)

5. CONS takes two parameters, the first of which
can be either an atom or a list and the second
of which is a list; returns a new list that
includes the first parameter as its first element
and the second parameter as the remainder of
its result

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

499

Examples

 e.g., (CONS 'A '(B C)) returns (A B C)

6. LIST - takes any number of parameters; returns a
list with the parameters as elements.

 Predicate Functions: (#T and () are true and false)

• 1. EQ? takes two symbolic parameters; it returns
#T if both parameters are atoms and the two are
the same.

• e.g., (EQ? 'A 'A) yields #T

 (EQ? 'A '(A B)) yields ()

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

500

Examples

2. LIST? takes one parameter; it returns #T if the
parameter is an list; otherwise ()

3. NULL? takes one parameter; it returns #T if the
parameter is the empty list; otherwise ()

Note that NULL? returns #T if the parameter is ()

4. Numeric Predicate Functions =, <>, >, <, >=, <=,
EVEN?, ODD?, ZERO?

5. Output Utility Functions:

 (DISPLAY expression)

 (NEWLINE) UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

501

Examples

Lambda Expressions:

Form is based on l notation

e.g., (LAMBDA (L) (CAR (CAR L)))

L is called a bound variable

Lambda expressions can be applied

e.g., ((LAMBDA (L) (CAR (CAR L))) '((A B) C D))

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

502

Examples

2. To bind names to lambda expressions

e.g.,(DEFINE (cube x) (* x x x))

Example use:(cube 4)

- Evaluation process (for normal functions):

 1. Parameters are evaluated, in no particular

 order.

 2. The values of the parameters are

 substituted into the function body.

 3. The function body is evaluated.

 4. The value of the last expression in the

 body is the value of the function. UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

503

Examples

Control Flow:

1. Selection- the special form, IF

(IF predicate then_exp else_exp)

e.g.,(IF (<> count 0)

 (/ sum count)

 0

)

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

504

Examples
2. Multiple Selection - the special form, COND

- General form:

- (COND

 (predicate_1 expr {expr})

 (predicate_1 expr {expr})

 ...

 (predicate_1 expr {expr})

 (ELSE expr {expr})

)

- Returns the value of the last expr in the first pair
whose predicate evaluates to true

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

505

COMMON LISP

• A combination of many of the features of the
popular dialects of LISP around in the early 1980s.

• A large and complex language--the opposite of
Scheme.

• Includes: records, arrays, Complex numbers,
character strings, powerful i/o capabilities,
packages with access control, imperative features
like those of Scheme ,iterative control statements.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

506

ML

• A static-scoped functional language with
syntax that is closer to Pascal than to LISP

• Uses type declarations, but also does type
inferencing to determine the types of
undeclared

• It is strongly typed (whereas Scheme is

 essentially typeless) and has no type
coercions

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

507

ML(cont..)

• Includes exception handling and a module facility
for implementing abstract data types

• Includes lists and list operations

• The val statement binds a name to a value

(similar to DEFINE in Scheme)

• Function declaration form:

 fun function_name (formal_parameters) =

 function_body_expression;

e.g., fun cube (x : int) = x * x * x;

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

508

ML(cont..)

• Functions that use arithmetic or relational
operators cannot be polymorphic--those with
only list operations can be polymorphic

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

509

Haskell

• Similar to ML (syntax, static scoped, strongly
typed, type inference)

• Different from ML (and most other functional
languages) in that it is PURELY functional

 (e.g., no variables, no assignment statements,
and no side effects of any kind)

Most Important Features
• Uses lazy evaluation
• Has “list comprehensions,” which allow it to
• deal with infinite lists

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

510

HASKELL(cont..)
Examples
1. Fibonacci numbers (illustrates function definitions with

different parameter forms)
 fib 0 = 1
 fib 1 = 1
 fib (n + 2) = fib (n + 1) + fib n
2.Lazy evaluation
Infinite lists
e.g., positives = [0..]
 squares = [n * n | n ¨ [0..]]
 (only compute those that are necessary)

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

511

Applications of Functional Languages

• APL is used for throw-away programs.

• LISP is used for artificial intelligence

 - Knowledge representation

 - Machine learning

 - Natural language processing

 - Modeling of speech and vision

• Scheme is used to teach introductory
programming at a significant number of
universities.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

512

Comparing Functional and Imperative
Languages

Imperative Languages:
- Efficient execution
- Complex semantics
- Complex syntax
- Concurrency is programmer designed
Functional Languages:
- Simple semantics
- Simple syntax
- Inefficient execution
- Programs can automatically be made concurrent

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

513

Scripting languages

Pragmatics

• Scripting is a paradigm characterized by:

 -use of scripts to glue subsystems together;

 -rapid development and evolution of scripts;

 -modest efficiency requirements;

 -very high-level functionality in application-
specific areas.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

514

Scripting languages(cont.)

• A software system often consists of a number
of subsystems controlled or connected by a
script.

• In such a system, the script is said to glue the
sub systems together.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

515

PYTHON

• PYTHON was designed in the early 1990s by
Guido van Rossum.

• PYTHON borrows ideas from languages as
diverse as PERL ,HASKELL ,and the object-
oriented languages, skillfully integrating these
ideas into a coherent whole.

• PYTHON scripts are concise but readable, and
highly expressive.

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
516

Values and types

• PYTHON has a limited repertoire of primitive
types: integer, real, and complex Numbers.

• It has no specific character type; single-
character strings are used instead.

• its boolean values (named False and True) are
just small integers.

• PYTHON has a rich repertoire of composite
types: tuples, strings, lists, dictionaries, and
objects.

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
517

Variables, storage, and control

• PYTHON supports global and local variables.

• Variables are not explicitly declared, simply
initialized by assignment.

• PYTHON adopts reference semantics. This is
especially significant for mutable values, which
can be selectively updated.

• Primitive values and strings are immutable; lists,
dictionaries, and objects are mutable; tuples are
mutable if any of their components are mutable.

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
518

Examples

• PYTHON’s repertoire of commands include
assignments, procedure calls, conditional (if-
but not case-) commands, iterative (while- and
for-) commands, and exception-handling
commands.

• PYTHON if- and while-commands are
conventional.

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
519

Pythons reserved words

and assert break class continue def del

elif

else except exec finally for from global if

import in is lambda not or pass

print

raise return try while yield

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

520

Dynamically typed language

• Python is a dynamically typed language. Based
on the value, type of the variable is during the
execution of the program.

Python(dynamic)

C = 1

C = [1,2,3]

C(static)

Double c; c = 5.2;

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
521

Strongly typed python language:

• Weakly Vs strongly typed python language
differ in their automatic conversions.

Perl(weak)

 $b = `1.2`

 $c = 5 * $b;
Python(strong)

 b =`1.2`

 c= 5* b;

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
522

Bindings and scope

• A PYTHON program consists of a number of
modules, which may be grouped into packages.

• Within a module we may initialize variables,
define procedures, and declare classes

• Within a procedure we may initialize local
variables and define local procedures.

• Within a class we may initialize variable
components and define procedures (methods).

• PYTHON was originally a dynamically-scoped
language, but it is now statically scoped.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

523

Binding and scope
• In python, variables defined inside the function are

local to that function. In order to change them as
global variables, they must be declared as global inside
the function as given below.

 S = 1
 Def myfunc(x,y);
 Z = 0

Global s;
S = 2
Return y-1 , z+1;

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

524

Procedural abstraction

• PYTHON supports function procedures and
proper procedures.

• The only difference is that a function
procedure returns a value, while a proper
procedure returns nothing.

• Since PYTHON is dynamically typed, a
procedure definition states the name but not
the type of each formal parameter.

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
525

Python procedure

Eg :Def gcd (m, n):

 p,q=m,n

 while p%q!=0:

 p,q=q,p%q

 return q

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

526

Python procedure with Dynamic Typing

Eg: def minimax (vals):

 min = max = vals[0]

 for val in vals:

 if val < min:

 min = val

 elif val > max:

 max = val

 return min, max

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
527

Data Abstraction

• PYTHON has three different constructs
relevant to data abstraction: packages
,modules , and classes

• Modules and classes support encapsulation,
using a naming convention to distinguish
between public and private components.

• A Package is simply a group of modules

• A Module is a group of components that may
be variables, procedures, and classes

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
528

Data abstraction(cont..)

• A Class is a group of components that may be
class variables, class methods ,and instance
methods.

• A procedure defined in a class declaration acts
as an instance method if its first formal
parameter is named self and refers to an
object of the class being declared. Otherwise
the procedure acts as a class method.

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
529

Data abstraction(cont..)

• To achieve the effect of a constructor, we
usually equip each class with an initialization
method named ‘‘_init_’’; this method is
automatically called when an object of the
class is constructed.

• PYTHON supports multiple inheritance: a class
may designate any number of superclasses.

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

530

Separate Compilation

• PYTHON modules are compiled separately.

• Each module must explicitly import every
other module on which it depends

• Each module’s source code is stored in a text
file. Eg: program.py

• When that module is first imported, it is
compiled and its object code is stored in a file
named program.pyc

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

531

Separate Compilation(cont..)

• Compilation is completely automatic

• The PYTHON compiler does not reject code that
refers to undeclared identifiers.Such code simply
fails if and when it is executed

• The compiler will not reject code that might fail
with a type error,nor even code that will certainly
fail, such as:

 def fail (x):

 print x+1, x[0]

UNIT-5 (PRINCIPLES OF PROGRAMMING
LANGUAGES)

532

Module Library

• PYTHON is equipped with a very rich module
library, which supports string handling
,markup , mathematics, cryptography,
multimedia, GUIs, operating system services
,internet services, compilation, and so on.

• Unlike older scripting languages, PYTHON
does not have built-in high-level string
processing or GUI support , so module library
provides it.

UNIT-5 (PRINCIPLES OF PROGRAMMING

LANGUAGES)
533

