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Single Random Variables and Probability Distributions 



Basic Concepts
 An experiment is the process by which an 

observation (or measurement) is obtained.

Experiment: Record an age

Experiment: Toss a die

Experiment: Record an opinion (yes, no)

Experiment: Toss two coins



 A simple event is the outcome that is observed 
on a single repetition of the experiment. 

 The basic element to which probability is 
applied.

 One and only one simple event can occur 
when the experiment is performed.

 A simple event is denoted by E with a 
subscript.



 Each simple event will be assigned a probability, 
measuring “how often” it occurs. 

 The set of all simple events of an experiment is called 
the sample space, S.



Example
 The die toss:
 Simple events: Sample space:

1

2

3

4

5

6

E1

E2

E3

E4

E5

E6

S ={E1, E2, E3, E4, E5, E6}

S
•E1

•E6
•E2

•E3

•E4

•E5



 An event is a collection of one or more simple 
events. 

•The die toss:
–A: an odd number

–B: a number > 2

S

A ={E1, E3, E5}

B ={E3, E4, E5, E6}

B
A

•E1

•E6
•E2

•E3

•E4

•E5



 Two events are mutually exclusive if, when one event 
occurs, the other cannot, and vice versa.

•Experiment: Toss a die

–A: observe an odd number

–B: observe a number greater than 2

–C: observe a 6

–D: observe a 3

Not Mutually 

Exclusive

Mutually 

Exclusive
B and  C?

B and D?



 The probability of an event A measures “how 
often” we think A will occur. We write P(A). 

 Suppose that an experiment is performed n
times. The relative frequency for an event A is 

Number of times A occurs f

n n


n

f
AP

n
lim)(




•If we let n get infinitely large, 



 P(A) must be between 0 and 1. 
 If event A can never occur, P(A) = 0. If event A always 

occurs when the experiment is performed, P(A) =1.

 The sum of the probabilities for all simple events in S 
equals 1.

•The probability of an event A is 

found by adding the probabilities of all 

the simple events contained in A. 



–10% of the U.S. population has red hair. 

Select a person at random.

Finding Probabilities
 Probabilities can be found using

 Estimates from empirical studies

 Common sense estimates based on equally likely 
events.

P(Head) = 1/2

P(Red hair) = .10

•Examples: 

–Toss a fair coin.



Example

Toss a fair coin twice. What is the 
probability of observing at least one head?

H

1st Coin     2nd Coin     Ei P(Ei)

H

T

T

H

T

HH

HT

TH

TT

1/4

1/4

1/4

1/4

P(at least 1 head) 

= P(E1) + P(E2) + P(E3)

= 1/4 + 1/4 + 1/4 = 3/4



Example
 A bowl contains three M&Ms®, one red, one 

blue and one green. A child selects two M&Ms 
at random. What is the probability that at least 
one is red?

1st M&M     2nd M&M     Ei P(Ei)

RB

RG

BR

BG

1/6

1/6

1/6

1/6

1/6

1/6

P(at least 1 red) 

= P(RB) + P(BR)+ P(RG) + 

P(GR)

= 4/6 = 2/3

m

m

m

m

m

m

m

m

m
GB

GR



Counting Rules
 If the simple events in an experiment are equally 

likely, you can calculate

events simple ofnumber  total

Ain  events simple ofnumber 
)( 

N

n
AP A

• You can use counting rules to find 

nA and N.



The mn Rule
 If an experiment is performed in two stages, 

with m ways to accomplish the first stage 
and n ways to accomplish the second stage, 
then there are mn ways to accomplish the 
experiment.

This rule is easily extended to k stages, with 
the number of ways equal to 

n1 n2 n3 … nk

Example: Toss two coins. The total number 

of simple events is:
2  2 = 4



Examples
Example: Toss three coins. The total 

number of simple events is:
2  2  2 = 8

Example: Two M&Ms are drawn from a dish 

containing two red and two blue candies. The 

total number of simple events is:

6  6 = 36

Example: Toss two dice. The total number of 

simple events is:

4  3 = 12



Permutations
 The number of ways you can arrange
n distinct objects, taking them r at a time is

Example: How many 3-digit lock 

combinations can we make from the 

numbers 1, 2, 3, and 4?

24)2)(3(4
!1

!44

3 P
The order of the choice is 

important!

.1!0 and )1)(2)...(2)(1(! where

)!(

!






nnnn

rn

n
Pn

r



Combinations
 The number of distinct combinations of n distinct 

objects that can be formed, taking them r at a time is

Example: Three members of a 5-person committee 

must be chosen to form a subcommittee. How many 

different subcommittees could be formed?

)!(!

!

rnr

n
C n

r




10
1)2(

)4(5

1)2)(1)(2(3

1)2)(3)(4(5

)!35(!3

!55

3 


CThe order of 

the choice is 

not important!



Example
 A box contains six M&Ms®, four red 
 and two green. A child selects two M&Ms at 

random. What is the probability that exactly 
one is red?

The order of 

the choice is 

not important! Ms.&M 2 choose  toways

15
)1(2

)5(6

!4!2

!66

2 C

M.&Mgreen  1

 choose  toways

2
!1!1

!22

1 C

M.&M red 1

 choose  toways

4
!3!1

!44

1 C 4  2 =8 ways to 

choose 1 red and 1 

green M&M.

P( exactly one 

red) = 8/15



S

Event Relations
 The union of  two events, A and B, is the event that either 

A or B or both occur when the experiment is performed.  
We write 

A B

A BA B



S

A B

Event Relations
 The intersection of two events, A and B, is 

the event that both A and B occur when the 
experiment is performed. We write A B.

A B

• If two events A and B are mutually 
exclusive, then P(A B) = 0.



S

Event Relations
The complement of an event A consists 

of all outcomes of the experiment that do 
not result in event A.  We write AC.

A

AC



Calculating Probabilities for 
Unions and Complements
There are special rules that will allow you to 

calculate probabilities for composite events.
 The Additive Rule for Unions:

 For any two events, A and B, the probability of their 
union, P(A B), is

)()()()( BAPBPAPBAP 
A B



Calculating Probabilities 
for Complements
 We know that for any event A:

 P(A AC) = 0

 Since either A or AC must occur, 

P(A AC) =1

 so that P(A AC) = P(A)+ P(AC) = 1

P(AC) = 1 – P(A)

A

AC



Calculating Probabilities for 
Intersections

 In the previous example, we found P(A  B) 
directly from the table. Sometimes this is 
impractical or impossible. The rule for 
calculating P(A  B) depends on the idea of 
independent and dependent events.

Two events, A and B, are said to be 
independent if and only if the 
probability that event A occurs does 
not change, depending on whether or 
not event B has occurred.



Conditional Probabilities
 The probability that A occurs, given 

that event B has occurred is called the 
conditional probability of A given B 
and is defined as 

0)( if 
)(

)(
)|( 


 BP

BP

BAP
BAP

“given”



Defining Independence
 We can redefine independence in terms of conditional 

probabilities:

Two events A and B are independent if and 
only if

P(A|B) = P(A) or P(B|A) = P(B)

Otherwise, they are dependent.

• Once you’ve decided whether or not 

two events are independent, you can 

use the following rule to calculate their 

intersection.



The Multiplicative Rule for 
Intersections

 For any two events, A and B, the probability that both A
and B occur is

P(A B) = P(A) P(B given that A 
occurred)    = P(A)P(B|A)

• If the events A and B are independent, 
then the probability that both A and B
occur is

P(A B) = P(A) P(B) 



The Law of Total Probability

P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) 

= P(S1)P(A|S1) + P(S2)P(A|S2) + … + 
P(Sk)P(A|Sk)

 Let S1 , S2 , S3 ,..., Sk be mutually exclusive and exhaustive 
events (that is, one and only one must happen).  Then 
the probability of another event A can be written as



The Law of Total Probability

A
A Sk

A  S1

S2….

S1

Sk

P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) 

= P(S1)P(A|S1) + P(S2)P(A|S2) + … + 
P(Sk)P(A|Sk)



Bayes’ Rule

Let S1 , S2 , S3 ,..., Sk be mutually exclusive and 
exhaustive events with prior probabilities 
P(S1), P(S2),…,P(Sk). If an event A occurs, the 
posterior probability of Si, given that A 
occurred is

,...k,  i 
SAPSP

SAPSP
ASP

ii

ii
i 21for  

)|()(

)|()(
)|( 






Random Variables
A quantitative variable x is a random variable 

if the value that it assumes, corresponding to 
the outcome of an experiment is a chance or 
random event.

Random variables can be discrete or 
continuous.

• Examples: 
x = SAT score for a randomly selected 

student
x = number of people in a room at a 

randomly selected time of day
x = number on the upper face of a 

randomly tossed die



Probability Distributions for Discrete 
Random Variables
 The probability distribution for a discrete random 

variable x resembles the relative frequency 
distributions we constructed in Chapter 1. It is a graph, 
table or formula that gives the possible values of x and 
the probability p(x) associated with each value.

1)( and 1)(0

havemust  We

 xpxp



Probability Distributions

 Probability distributions can be used to describe 
the population, just as we described samples in 
Chapter 1.

 Shape: Symmetric, skewed, mound-shaped…

 Outliers: unusual or unlikely measurements 

 Center and spread: mean and standard 
deviation. A population mean is called m and a 
population standard deviation is called s.



The Mean 
and Standard Deviation

 Let x be a discrete random variable with probability 
distribution p(x). Then the mean, variance and standard 
deviation of x are given as

2

22

 :deviation Standard

)()( :Variance

)( :Mean

ss

ms

m







xpx

xxp



Example
Toss a fair coin 3 times and 

record x the number of heads.

x p(x) xp(x) (x-m)2p(x)

0 1/8 0 (-1.5)2(1/8)

1 3/8 3/8 (-0.5)2(3/8)

2 3/8 6/8 (0.5)2(3/8)

3 1/8 3/8 (1.5)2(1/8)

5.1
8

12
)(  xxpm

)()( 22 xpx ms 

688.75.

75.28125.09375.09375.28125.2





s

s



Introduction
Discrete random variables take on only a 

finite or countably number of values.
Three discrete probability distributions 

serve as models for a large number of 
practical applications: 

The binomial random variable

The Poisson random variable

The hypergeometric random variable



The Binomial Random Variable
Many situations in real life resemble the 

coin toss, but the coin is not necessarily fair, 
so that P(H)  1/2.

• Example: A geneticist samples 10 

people and counts the number who 

have a gene linked to Alzheimer’s 

disease.

Person• Coin:

• Head:

• Tail:

• Number of

tosses:

• P(H):
Has gene

Doesn’t have gene

n = 10

P(has gene) = proportion 

in the population who 

have the gene.



The Binomial Experiment
1. The experiment consists of n identical 

trials.
2. Each trial results in one of two outcomes, 

success (S) or failure (F).
3. The probability of success  on a single trial is 

p and remains constant from trial to trial. 
The probability of failure is q = 1 – p. 

4. The trials are independent.
5. We are interested in x, the number of 

successes in n trials.



Binomial or Not?
Very few real life applications 

satisfy these requirements exactly.

• Select two people from the U.S. 
population, and suppose that 15% of 
the population has the Alzheimer’s 
gene.

• For the first person, p = P(gene) = .15

• For the second person, p  P(gene) = 
.15, even though one person has been 
removed from the population.



The Binomial Probability 
Distribution

For a binomial experiment with n trials and 
probability p of success on a given trial, the 
probability of k successes in n trials is

.1!01)2)...(2)(1(!
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!

.,...2,1,0
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The Mean and Standard Deviation

For a binomial experiment with n trials and 
probability p of success on a given trial, the 
measures of center and spread are:

npq

npq

np







s

s

m

 :deviation Standard

 :Variance

 :Mean

2



Cumulative Probability 
Tables

You can use the cumulative probability tables

to find probabilities for selected binomial 

distributions.

Find the table for the correct value of n.

Find the column for the correct value of p.

The row marked “k” gives the cumulative 

probability, P(x  k) = P(x = 0) +…+ P(x = k)



The Poisson Random Variable
 The Poisson random variable x is a model for data 

that represent the number of occurrences of a 
specified event in a given unit of time or space.

• Examples:

• The number of calls received by a 

switchboard during a given period of time.

• The number of machine breakdowns in a day

• The number of traffic accidents at a given 

intersection during a given time period.



The Poisson Probability 
Distribution
 x is the number of events that occur in a period 

of time or space during which an average of m
such events can be expected to occur. The 
probability of k occurrences of this event is

For values of k = 0, 1, 2, … The mean and standard 

deviation of the Poisson random variable are 

Mean: m

Standard deviation: 

!
)(

k

e
kxP

k mm 



ms 



Cumulative Probability 
Tables

You can use the cumulative probability tables

to find probabilities for selected Poisson 

distributions.

Find the column for the correct value of m.

The row marked “k” gives the cumulative 

probability, P(x  k) = P(x = 0) +…+ P(x = k)



Continuous Random Variables
 Continuous random variables can assume the infinitely 

many values corresponding to points on a line interval.

 Examples:

 Heights, weights

 length of life of a particular product

 experimental laboratory error



Continuous Random Variables
 A smooth curve describes the probability 

distribution of a continuous random variable.

•The depth or density of the probability, which 

varies with x,  may be described by a 

mathematical formula f (x ), called the 

probability distribution or probability density 

function for the random variable x.



Properties of Continuous
Probability Distributions

 The area under the curve is equal to 1.

 P(a  x  b) = area under the curve between a and b.

•There is no probability attached to any 

single value of x. That is, P(x = a) = 0.



Continuous Probability Distributions

 There are many different types of 
continuous random variables

 We try to pick a model that
 Fits the data well
 Allows us to make the best possible 

inferences using the data.
 One important continuous random 

variable is the normal random variable.



The Normal Distribution

deviation. standard andmean  population  theare  and 
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• The shape and location of the normal 

curve changes as the mean and standard 

deviation change. 

• The formula that generates the 

normal probability distribution is:



The Standard Normal Distribution

To find P(a < x < b), we need to find the area 
under the appropriate normal curve.

To simplify the tabulation of these areas, we 
standardize each value of x by expressing it 
as a z-score, the number of standard 
deviations s it lies from the mean m.

s

m


x
z



The Standard 
Normal (z) 
Distribution

 Mean = 0; Standard deviation = 1

 When x = m, z = 0

 Symmetric about z = 0

 Values of z to the left of center are negative

 Values of z to the right of center are positive

 Total area under the curve is 1.



Finding Probabilities for the General 
Normal Random Variable
To find an area for a normal random variable x

with mean mand standard deviation s, standardize 

or rescale the interval in terms of z.

Find the appropriate area using Table 3.

Example: x has a normal distribution with 

m = 5 and s = 2. Find P(x > 7). 

1587.8413.1)1(

)
2

57
()7(





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zPxP

1 z



The Normal Approximation to the 
Binomial
 We can calculate binomial probabilities using

 The binomial formula

 The cumulative binomial tables

 Java applets

 When n is large, and p is not too close to zero or one, areas 
under the normal curve with mean  np and variance npq 
can be used to approximate binomial probabilities. 



Approximating the Binomial
Make sure to include the entire rectangle 

for the values of x in the interval of interest. 

This is called the continuity correction. 

Standardize the values of x using

npq

npx
z




Make sure that np and nq are both greater 

than 5 to avoid inaccurate approximations!



Multiple Random Variables, Correlation &Regression 



Jointly Distributed Random 
Variables 
 Joint Probability Distributions

 Discrete

 Continuous

( , ) 0

satisfying 1

i j ij

ij

i j

P X x Y y p

p

   



state space
( , ) 0 satisfying ( , ) 1f x y f x y dxdx 



Jointly Distributed Random 
Variables 
 Joint Cumulative Distribution Function

 Discrete

 Continuous

( , ) ( , )i jF x y P X x Y y  

: :

( , )
i j

ij

i x x j y y

F x y p
 

  

( , ) ( , )
x y

w z
F x y f w z dzdw

 
  



Jointly Distributed Random 
Variables 
 Example 19 : Air Conditioner Maintenance

 A company that services air conditioner units in 
residences and office blocks is interested in how to 
schedule its technicians in the most efficient manner

 The random variable X, taking the values 1,2,3 and 4, is 
the service time in hours 

 The random variable Y, taking the values 1,2 and 3, is the 
number of air conditioner units



Jointly Distributed Random 
Variables 

 Joint p.m.f

 Joint cumulative 
distribution function 

Y=

number 
of units

X=service time

1 2 3 4

1 0.12 0.08 0.07 0.05

2 0.08 0.15 0.21 0.13

3 0.01 0.01 0.02 0.07

0.12 0.18

0.07 1.00

ij

i j

p  

  



11 12 21 22(2,2)

0.12 0.18 0.08 0.15

0.43

F p p p p   

   





Marginal Probability Distributions 
 Marginal probability distribution

 Obtained by summing or integrating the joint 
probability distribution over the values of the other 
random variable

 Discrete

 Continuous

( ) i ij

j

P X i p p  

( ) ( , )Xf x f x y dy



 



Marginal Probability Distributions 
 Example 19

 Marginal p.m.f of X

 Marginal p.m.f of Y

3

1

1

( 1) 0.12 0.08 0.01 0.21j

j

P X p


     

4

1

1

( 1) 0.12 0.08 0.07 0.05 0.32i

i

P Y p


      



 Example 20: (a jointly continuous case)

 Joint pdf: 

 Marginal pdf’s of X and Y:

( , )f x y

( ) ( , )

( ) ( , )

X

Y

f x f x y dy

f y f x y dx











Conditional Probability 
Distributions 
 Conditional probability distributions

 The probabilistic properties of the random variable X under 
the knowledge provided by the value of Y

 Discrete

 Continuous

 The conditional probability distribution is a probability 
distribution.

|

( , )
( | )

( )

ij

i j

j

pP X i Y j
p P X i Y j

P Y j p

 
    



|

( , )
( )

( )
X Y y

Y

f x y
f x

f y
 



Conditional Probability 
Distributions 
 Example 19

 Marginal probability distribution of Y

 Conditional distribution of X

3( 3) 0.01 0.01 0.02 0.07 0.11P Y p      

13
1| 3

3

0.01
( 1| 3) 0.091

0.11
Y

p
p P X Y

p




     



Independence and Covariance 
 Two random variables X and Y are said to be 

independent if
 Discrete

 Continuous

 How is this independency different from the 
independence among events?

for all values of and ofij i jp p p i X j Y       

( , ) ( ) ( )X Yf x y f x f y for all x and y       



Independence and Covariance 
 Covariance

 May take any positive or negative numbers.
 Independent random variables have a covariance of zero
 What if the covariance is zero?

Cov( , ) (( ( ))( ( )))

( ) ( ) ( )

X Y E X E X Y E Y

E XY E X E Y
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Independence and Covariance 
 Example 19 (Air conditioner maintenance)

( ) 2.59, ( ) 1.79E X E Y 
4 3

1 1

( )

(1 1 0.12) (1 2 0.08)

(4 3 0.07) 4.86
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i j

E XY ijp
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

     
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Independence and Covariance 
 Correlation:

 Values between -1 and 1, and independent random 
variables have a correlation of zero

Cov( , )
Corr( , )

Var( )Var( )

X Y
X Y

X Y




Independence and Covariance 
 Example 19: (Air conditioner maintenance)

Var( ) 1.162, Var( ) 0.384X Y 

Cov( , )
Corr( , )

Var( )Var( )

0.224
0.34

1.162 0.384

X Y
X Y

X Y


 




 What if random variable X and Y have linear relationship, 
that is,

where

That is, Cov(X,Y)=1  if a>0; -1  if a<0.

Y aX b  0a 

2 2

2 2

( , ) [ ] [ ] [ ]

[ ( )] [ ] [ ]

[ ] [ ] [ ] [ ]

( [ ] [ ]) ( )

Cov X Y E XY E X E Y

E X aX b E X E aX b

aE X bE X aE X bE X

a E X E X aVar X

 

   

   

  

2

( , ) ( )
( , )

( ) ( ) ( ) ( )

Cov X Y aVar X
Corr X Y

Var X Var Y Var X a Var X
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The relationship between x and y
 Correlation: is there a relationship between 2 variables?

 Regression: how well a certain independent variable 

predict dependent variable?

 CORRELATION  CAUSATION

 In order to infer causality: manipulate independent variable 

and observe effect on dependent variable



Scattergrams

Y

X

Y

X

Y

X

YY Y

Positive correlation Negative correlation No 

correlation



Variance vs Covariance
 First, a note on your sample:  

 If you’re wishing to assume that your sample is representative of 

the general population (RANDOM EFFECTS MODEL), use the 

degrees of freedom (n – 1) in your calculations of variance or 

covariance.

 But if you’re simply wanting to assess your current sample 

(FIXED EFFECTS MODEL), substitute n for the degrees of 

freedom.



Variance vs Covariance
 Do two variables change together?

1
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),cov( 1







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Covariance:

• Gives information on the degree 

to which two variables vary 

together.

• Note how similar the covariance 

is to variance: the equation simply 

multiplies x’s error scores by y’s 

error scores as opposed to 

squaring x’s error scores.
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Variance:

• Gives information on variability of a 

single variable.



Covariance

 When X   and Y   : cov (x,y) = pos.

 When X   and Y   : cov (x,y) = neg.

 When no constant relationship: cov (x,y) 

= 0
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Example Covariance

x y xxi
 yyi
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Problem with Covariance:
 The value obtained by covariance is dependent on the size of 

the data’s standard deviations: if large, the value will be greater 
than if small… even if the relationship between x and y is 
exactly the same in the large versus small standard deviation 
datasets.



Example of how covariance value relies 

on variance
High variance data Low variance data

Subject x y x error * y 

error

x y X error * y 

error

1 101 100 2500 54 53 9

2 81 80 900 53 52 4

3 61 60 100 52 51 1

4 51 50 0 51 50 0

5 41 40 100 50 49 1

6 21 20 900 49 48 4

7 1 0 2500 48 47 9

Mean 51 50 51 50

Sum of x error * y error : 7000 Sum of x error * y error : 28

Covariance: 1166.67 Covariance: 4.67



Solution: Pearson’s r
 Covariance does not really tell us anything

 Solution: standardise this measure

 Pearson’s R: standardises the covariance value.
 Divides the covariance by the multiplied standard deviations of X 

and Y: 
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Pearson’s R continued
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Limitations of r
 When r = 1 or r = -1:

 We can predict y from x with certainty

 all data points are on a straight line: y = ax + b

 r is actually 

 r = true r of whole population

 = estimate of r based on data

 r is very sensitive to extreme values:

0

1

2

3

4

5

0 1 2 3 4 5 6

r̂

r̂



Regression
 Correlation tells you if there is an association between x 

and y but it doesn’t describe the relationship or allow you 

to predict one variable from the other.

 To do this we need REGRESSION!



Best-fit Line

=  ŷ, predicted value

 Aim of linear regression is to fit a straight line, ŷ = ax + b, to data that 
gives best prediction of y for any value of x

 This will be the line that

minimises distance between

data and fitted line, i.e.

the residuals

intercept

ε

ŷ = ax + b

ε   = residual error

=  y i , true value

slope



Least Squares Regression
 To find the best line we must minimise the sum of 

the squares of the residuals (the vertical distances 

from the data points to our line)

Residual (ε) = y - ŷ

Sum of squares of residuals = Σ (y – ŷ)2

Model line: ŷ = ax + b

 we must find values of a and b that minimise 

Σ (y – ŷ)2

a = slope, b = intercept



Finding b
 First we find the value of b that gives the min sum of 

squares

ε εb
b

b

 Trying different values of b is equivalent to 

shifting the line up and down the scatter 

plot



Finding a
 Now we find the value of a that gives the min sum of 

squares

b b b

 Trying out different values of a is 

equivalent to changing the slope of the 

line, while b stays constant



Minimising sums of squares
 Need to minimise Σ(y–ŷ)2

 ŷ = ax + b

 so need to minimise:

Σ(y - ax - b)2

 If we plot the sums of squares for 
all different values of a and b we 
get a parabola, because it is a 
squared term

 So the min sum of squares is at 
the bottom of the curve, where 
the gradient is zero.

Values of a and b
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The maths bit
 The min sum of squares is at the bottom of the curve 

where the gradient = 0

 So we can find a and b that give min sum of squares 
by taking partial derivatives of Σ(y - ax - b)2 with 
respect to a and b separately

 Then we solve these for 0 to give us the values of a 
and b that give the min sum of squares



The solution
 Doing this gives the following equations for a and b:

a =
r sy

sx

r = correlation coefficient of x and y

sy = standard deviation of y

sx = standard deviation of x

 From you can see that: 

 A low correlation coefficient gives a flatter slope (small 

value of a)

 Large spread of y, i.e. high standard deviation, results in a 

steeper slope (high value of a)

 Large spread of x, i.e. high standard deviation, results in a 

flatter slope (high value of a)



The solution cont.
 Our model equation is ŷ = ax + b

 This line must pass through the mean so: 

y = ax + b b = y – ax

 We can put our equation for a into this 

giving: 

b = y – ax

b = y -
r sy

sx

r = correlation coefficient of x and y

sy = standard deviation of y

sx = standard deviation of x
x

 The smaller the correlation, the closer the 

intercept is to the mean of y



Back to the model

 If the correlation is zero, we will simply predict the mean of y for every 
value of x, and our regression line is just a flat straight line crossing the 
x-axis at y

 But this isn’t very useful.

 We can calculate the regression line for any data, but the important 
question is how well does this line fit the data, or how good is it at 
predicting y from x

ŷ = ax + b =
r sy

sx

r sy

sx

x + y - x

r sy

sx

ŷ = (x – x) + yRearranges to:

a b

a a



How good is our model?
 Total variance of y: sy

2 =
∑(y – y)2

n - 1

SSy

dfy
=

 Variance of predicted y values 

(ŷ):

 Error variance:

sŷ
2 =

∑(ŷ – y)2

n - 1

SSpred

dfŷ
=

This is the variance 

explained by our 

regression model

serror
2 =

∑(y – ŷ)2

n - 2

SSer

dfer

=

This is the variance of the error 

between our predicted y values 

and the actual y values, and 

thus is the variance in y that is 

NOT explained by the 

regression model



 Total variance = predicted variance + error variance

sy
2 = sŷ

2 + ser
2

 Conveniently, via some complicated rearranging

sŷ
2 = r2 sy

2

r2 = sŷ
2 / sy

2

 so r2 is the proportion of the variance in y that is explained by 

our regression model

How good is our model cont.



How good is our model cont.
 Insert r2 sy

2 into sy
2 = sŷ

2 + ser
2 and rearrange to get:

ser
2 = sy

2 – r2sy
2

= sy
2 (1 – r2)

 From this we can see that the greater the correlation 

the smaller the error variance, so the better our 

prediction



Is the model significant?
 i.e. do we get a significantly better prediction of y 

from our regression equation than by just predicting 
the mean?

 F-statistic:

F(dfŷ,dfer) =
sŷ

2

ser
2

=......=
r2 (n - 2)2

1 – r2

complicated

rearranging

 And it follows that:

t(n-2) =
r (n - 2)

√1 – r2
(because F = t2)

So all we need to 

know are r and n



General Linear Model
 Linear regression is actually a form of the General Linear 

Model where the parameters are a, the slope of the line, 

and b, the intercept.

y = ax + b +ε

 A General Linear Model is just any model that describes 

the data in terms of a straight line



Multiple regression
 Multiple regression is used to determine the effect of a number 

of independent variables, x1, x2, x3 etc, on a single dependent 
variable, y

 The different x variables are combined in a linear way and each 
has its own regression coefficient:

y = a1x1+ a2x2 +…..+ anxn + b + ε

 The a parameters reflect the independent contribution of each 
independent variable, x, to the value of the dependent variable, 
y.

 i.e. the amount of variance in y that is accounted for by each x 
variable after all the other x variables have been accounted for



SPM
 Linear regression is a GLM that models the effect of one 

independent variable, x, on ONE dependent variable, y 

 Multiple Regression models the effect of several independent 
variables, x1, x2 etc, on ONE dependent variable, y

 Both are types of General Linear Model

 GLM can also allow you to analyse the effects of several 
independent x variables on several dependent variables, y1, y2, 
y3 etc, in a linear combination

 This is what SPM does and all will be explained next week!



Sampling Distribution, Large Samples & Small 
Samples



Introduction
 Parameters are numerical descriptive measures for 

populations.

 For the normal distribution, the location and 
shape are described by m and s.

 For a binomial distribution consisting of n trials, 
the location and shape are determined by p. 

 Often the values of parameters that specify the 
exact form of a distribution are unknown. 

 You must rely on the sample to learn about these 
parameters.



Sampling
Examples:

 A pollster is sure that the responses to his 
“agree/disagree” question will follow a binomial 
distribution, but p, the proportion of those who 
“agree” in the population, is unknown.

 An agronomist believes that the yield per acre of a 
variety of wheat is approximately normally 
distributed, but the mean mand the standard 
deviation s of the yields are unknown.

If you want the sample to provide reliable 
information about the population, you must select 
your sample in a certain way!



Simple Random Sampling
 The sampling plan or experimental design

determines the amount of information you can 
extract, and often allows you to measure the 
reliability of your inference.

 Simple random sampling is a method of sampling 
that allows each possible sample of size n an equal 
probability of being selected.



Types of Samples
• Sampling can occur in two types of 

practical situations:

1. Observational studies: The data existed before you decided to 

study it. Watch out for

 Nonresponse: Are the responses biased because only 

opinionated people responded?

 Undercoverage: Are certain segments of the population 

systematically excluded?

 Wording bias: The question may be too complicated or 

poorly worded.



Types of Samples
• Sampling can occur in two types of 

practical situations:
2. Experimentation: The data are generated by imposing an 

experimental condition or treatment on the experimental units. 

 Hypothetical populations can make random sampling difficult 

if not impossible.

 Samples must sometimes be chosen so that the 

experimenter believes they are representative of the whole 

population. 

 Samples must behave like random samples!



Other Sampling Plans
• There are several other sampling plans 

that still involve randomization:
1. Stratified random sample: Divide the population into 

subpopulations or strata and select a simple random sample 

from each strata.

2. Cluster sample: Divide the population into subgroups called 

clusters; select a simple random sample of clusters and take a 

census of every element in the cluster.

3. 1-in-k systematic sample: Randomly select one of the first k 

elements in an ordered population, and then select every k-th 

element thereafter.



Non-Random Sampling Plans
• There are several other sampling plans 

that do not involve randomization. They 

should NOT be used for statistical 

inference!1. Convenience sample: A sample that can be taken easily without random 

selection.

• People walking by on the street

2. Judgment sample: The sampler decides who will and won’t be included in 

the sample.

3. Quota sample: The makeup of the sample must reflect the makeup of the 

population on some selected characteristic.

• Race, ethnic origin, gender, etc.



Sampling Distributions
•Numerical descriptive measures 

calculated from the sample are called 

statistics.

•Statistics vary from sample to sample and 

hence are random variables.

•The probability distributions for statistics 

are called sampling distributions.

•In repeated sampling, they tell us what 

values of the statistics can occur and how 

often each value occurs.



Possible samples

3, 5, 2

3, 5, 1

3, 2, 1

5, 2, 1

x

Sampling Distributions
Definition: The sampling distribution of a 

statistic is the probability distribution for the 

possible values of the statistic that results 

when random samples of size n are 

repeatedly drawn from the population.
Population: 3, 5, 2, 1

Draw samples of size n = 

3 without replacement

67.23/8

23/6

33/9

33.33/10









Each value of 

x-bar is 

equally 

likely, with 

probability 

1/4

x

p(x)

1/4

2                 3



Central Limit Theorem: If random samples of n observations are drawn 

from a nonnormal population with finite m and standard deviation s , then, 

when n is large, the sampling distribution of the sample mean    is 

approximately normally distributed, with mean m and standard deviation                                                                                                     

. The approximation becomes more accurate as n becomes large.x

n/s

Sampling Distributions
Sampling distributions for statistics can be 

Approximated with simulation techniques

Derived using mathematical theorems

The Central Limit Theorem is one such 

theorem.



Why is this Important?

The Central Limit Theorem also implies that the 

sum of n measurements is approximately normal 

with mean nm and  standard deviation           .

Many statistics that are used for statistical 

inference are sums or averages of sample 

measurements.

When n is large, these statistics will have 

approximately normal distributions.

This will allow us to describe their behavior and 

evaluate the reliability of our inferences.

ns



How Large is Large?
If the sample is normal, then the sampling 

distribution of     will also be normal, no matter 

what the sample size.

When the sample population is approximately 

symmetric, the distribution becomes 

approximately normal for relatively small 

values of n.

When the sample population is skewed, the 

sample size must be at least 30 before the 

sampling distribution of     becomes 

approximately normal.

x

x



n/s
x

The Sampling Distribution of the 
Sample Mean

A random sample of size n is selected from a population with mean 

m and standard deviation s.

The sampling distribution of the sample mean      will have mean m

and standard deviation               .

If the original population is normal, the sampling distribution will be 

normal for any sample size.

If the original population is nonnormal, the sampling distribution will 

be normal when n is large.

The standard deviation of x-bar is sometimes called the 

STANDARD ERROR (SE).



Finding Probabilities for 
the Sample Mean
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If the sampling distribution of       is normal or 

approximately normal, standardize or rescale the 

interval of interest in terms of

Find the appropriate area using Table 3.

x

n

x
z

/s

m


Example: A random sample 

of size n = 16 from a normal 

distribution with m = 10 and s

= 8.



The Sampling Distribution of 
the Sample Proportion
The Central Limit Theorem can be used to 

conclude that the binomial random variable x is 

approximately normal when n is large, with mean 

np and standard deviation . 

The sample proportion,              is simply a 

rescaling of the binomial random variable x, 

dividing it by n.

From the Central Limit Theorem, the sampling 

distribution of        will also be approximately 

normal, with a rescaled mean and standard 

deviation.

n

x
p ˆ

p̂



The Sampling Distribution of 
the Sample Proportion
A random sample of size n is selected from a 

binomial population with parameter p.

The sampling distribution of the sample 

proportion,        

will have mean p and standard deviation 

If n is large, and p is not too close to zero or 

one, the sampling distribution of        will be 

approximately normal.

n

x
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pq

p̂



Finding Probabilities for 
the Sample Proportion
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approximately normal, standardize or rescale the 

interval of interest in terms of

Find the appropriate area using Table 3.
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Example: A random 

sample of size n = 

100 from a binomial 

population with p = 

.4.



Types of Inference
Estimation:

Estimating or predicting the value of the 
parameter

 “What is (are) the most likely values of m
or p?”

Hypothesis Testing:

Deciding about the value of a parameter 
based on some preconceived idea.

 “Did the sample come from a population 
with m5or p = .2?”



Types of Inference
Examples:

A consumer wants to estimate the average 
price of similar homes in her city before 
putting her home on the market.
Estimation: Estimate m, the average home price.

Hypothesis test: Is the new average resistance, mN equal to the old 

average resistance, mO?

–A manufacturer wants to know if a new 

type of steel is more resistant to high 

temperatures than an old type was.



Types of Inference
 Whether you are estimating parameters or testing 

hypotheses, statistical methods are important because 
they provide:

 Methods for making the inference

 A numerical measure of the goodness or reliability 
of the inference



Definitions
 An estimator is a rule, usually a formula, that tells 

you how to calculate the estimate based on the 
sample.
 Point estimation: A single number is calculated to 

estimate the parameter.

 Interval estimation: Two numbers are calculated to 
create an interval within which the parameter is 
expected to lie.



Properties of 
Point Estimators
 Since an estimator is calculated from sample values, it 

varies from sample to sample according to its 
sampling distribution.

 An estimator is unbiased if the mean of its sampling 
distribution equals the parameter of interest.
 It does not systematically overestimate or underestimate 

the target parameter.



Properties of 
Point Estimators

 Of all the unbiased estimators, we prefer the estimator 
whose sampling distribution has the smallest spread
or variability.



Measuring the Goodness
of an Estimator

 The distance between an estimate and the true value of 
the parameter is the error of estimation.

The distance between the bullet and the 

bull’s-eye.

• In this chapter, the sample sizes are 

large, so that our unbiased estimators 

will have normal distributions. Because of the Central Limit 

Theorem.



Estimating Means 
and Proportions

•For a quantitative population, 
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Interval Estimation
• Create an interval (a, b) so that you are 

fairly sure that the parameter lies between 

these two values.

• “Fairly sure” is means “with high probability”, 

measured using the confidence coefficient, 

1a.Usually, 1-a.90,.95,.98,.99

• Suppose 1-a = .95 

and that the 

estimator has a 

normal distribution. Parameter  1.96SE



Confidence Intervals 
for Means and Proportions

•For a quantitative population, 
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•For a binomial population, 
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Estimating the Difference between 
Two Means

•Sometimes we are interested in comparing the 
means of two populations. 

•The average growth of plants fed using two 
different nutrients.

•The average scores for students taught with two 
different teaching methods.

•To make this comparison,

.  varianceand mean  with 1 population

 fromdrawn   size of sample randomA 

2

11

1

sμ

n

.  varianceand mean  with 2 population

 fromdrawn   size of sample randomA 

2

22

2

sμ

n



Estimating the Difference between 
Two Means

•We compare the two averages by making 
inferences about m1-m2, the difference in the two 
population averages. 

•If the two population averages are the same, 
then m1-m2= 0.

•The best estimate of m1-m2 is the difference 
in the two sample means, 

21 xx 
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Estimating m1-m2
•For large samples, point estimates and their 
margin of error as well as confidence intervals 
are based on the standard normal (z) 
distribution.
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Estimating the Difference between 
Two Proportions

•Sometimes we are interested in comparing the 
proportion of “successes” in two binomial 
populations. 

•The germination rates of untreated seeds and seeds 
treated with a fungicide.

•The proportion of male and female voters who 
favor a particular candidate for governor.

•To make this comparison,

.parameter  with 1 population binomial

 fromdrawn   size of sample randomA 

1

1

p

n

.parameter  with 2 population binomial

 fromdrawn   size of sample randomA 

2

2

p

n



Estimating the Difference between 
Two Means

•We compare the two proportions by making 
inferences about p1-p2, the difference in the two 
population proportions. 

•If the two population proportions are the 
same, then p1-p2= 0.

•The best estimate of p1-p2 is the difference 
in the two sample proportions, 
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The Sampling Distribution 
of 1 2
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One Sided 
Confidence Bounds

Confidence intervals are by their nature 
two-sided since they produce upper and 
lower bounds for the parameter.

One-sided bounds can be constructed 
simply by using a value of z that puts a
rather than a/2 in the tail of the z
distribution. 

Estimator) ofError  Std(Estimator :UCB

Estimator) ofError  Std(Estimator :LCB
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IV. Large-Sample Interval Estimators

To estimate one of four population parameters when the 
sample sizes are large, use the following interval 
estimators.



The Sampling Distribution
of the Sample Mean

 When we take a sample from a normal population, 
the sample mean      has a normal distribution for any 
sample size n, and

 has a standard normal distribution. 
 But if s is unknown, and we must use s to estimate it, 

the resulting statistic is not normal.
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Student’s t Distribution
 Fortunately, this statistic does have a 

sampling distribution that is well known to 
statisticians, called the Student’s t 
distribution, with n-1 degrees of freedom.

ns

x
t

/

m


•We can use this distribution to create 

estimation testing procedures for the population 

mean m.



Properties of Student’s t

 Shape depends on the sample size n or 
the degrees of freedom, n-1.

 As n increases the shapes of the t and z
distributions become almost identical.

•Mound-shaped

and symmetric 

about 0.

•More variable than 

z, with “heavier 

tails”



Small Sample Inference 
for a Population Mean m
 The basic procedures are the same as 

those used for large samples. For a test of 
hypothesis:
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 For a 100(1a)% confidence interval for the 
population mean m:
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Small Sample Inference 
for a Population Mean m



Approximating the 
p-value
 You can only approximate the p-value for the test 

using Table 4.

Since the observed value 

of t = 1.38 is smaller 

than t.10 = 1.476, 

p-value > .10.



The exact p-value
 You can get the exact p-value 
using some calculators or a computer.

One-Sample T: Times
Test of mu = 15 vs > 15

95%

Lower

Variable  N   Mean   StDev    SE Mean    Bound     T      P

Times     6  19.1667  7.3869   3.0157  13.0899  1.38  0.113

p-value = .113 which 

is greater than .10 as 

we approximated 

using Table 4.



Testing the Difference 
between Two Means

normal. bemust  spopulation  two thesmall, are sizes sample  theSince
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•To test: 

•H0: m1m2D0 versus  Ha: one of three 

where D0 is some hypothesized difference, 
usually 0.



Testing the Difference 
between Two Means

•The test statistic used in Chapter 9 

•does not have either a z or a t distribution, and 
cannot be used for small-sample inference. 

•We need to make one more assumption, that 
the population variances, although 
unknown, are equal.
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Testing the Difference 
between Two Means

•Instead of estimating each population variance 
separately, we estimate the common variance 
with                                
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t has a t distribution 

with n1+n2-2 

degrees of freedom.

•And the resulting 
test statistic, 



Estimating the Difference 
between Two Means

•You can also create a 100(1-a)% confidence 
interval for m1-m2.
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Remember the three 

assumptions:

1. Original populations 

normal

2. Samples random and 

independent

3. Equal population 

variances.



Testing the Difference 
between Two Means

•How can you tell if the equal variance 
assumption is reasonable? 

statistic. test ealternativan  use     

 ,3
smaller 

larger 
 ratio,  theIf

.reasonable is assumption  varianceequal      the

 ,3
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Testing the Difference 
between Two Means

•If the population variances cannot be assumed 
equal, the test statistic

•has an approximate t distribution with degrees 
of freedom given above. This is most easily 
done by computer.
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The Paired-Difference
Test
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Inference Concerning 
a Population Variance

•Sometimes the primary parameter of interest 
is not the population mean m but rather the 
population variance s2. We choose a random 
sample of size n from a normal distribution.

•The sample variance s2 can be used in its 
standardized form: 
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• which has a Chi-Square distribution with n - 1 
degrees of freedom.



Inference Concerning 
a Population Variance
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Inference Concerning 
Two Population Variances

•We can make inferences about the ratio of two 
population variances in the form a ratio. We 
choose two independent random samples of 
size n1 and n2 from normal distributions.

•If the two population variances are equal, the 
statistic 
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•has an F distribution with df1 = n1 - 1 and df2 = 
n2 - 1 degrees of freedom.



Inference Concerning 
Two Population Variances

•Table 6 gives only upper critical values of the 
F statistic for a given pair of df1 and df2. 

For example, the value 

of F that cuts off .05 in 

the upper tail of the 

distribution with df1 = 5 

and df2 = 8 is F =3.69.



Inference Concerning 
Two Population Variances
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Queuing Theory



CPSC 641     Winter 2011 163

Queueing Theory
Plan:

 Introduce basics of Queueing Theory

 Define notation and terminology used

 Discuss properties of queuing models

 Show examples of queueing analysis:
 M/M/1 queue

 Variations on the M/G/1 queue

 Open queueing network models

 Closed queueing network models
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Queueing Theory Basics
Queueing theory provides a very general 

framework for modeling systems in which 
customers must line up (queue) for service 
(use of resource)

 Banks (tellers)

 Restaurants (tables and seats)

 Computer systems (CPU, disk I/O)

 Networks (Web server, router, WLAN)
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Queue-based Models
Queueing model represents:

 Arrival of jobs (customers) into system

 Service time requirements of jobs

 Waiting of jobs for service

 Departures of jobs from the system

Typical diagram:

Customer

Arrivals Departures

Buffer Server
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Why Queue-based Models?
 In many cases, the use of a queuing model provides a 

quantitative way to assess system performance

 Throughput (e.g., job completions per second)

 Response time (e.g., Web page download time)

 Expected waiting time for service

 Number of buffers required to control loss

 Reveals key system insights (properties)

 Often with efficient, closed-form calculation
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Caveats and Assumptions
 In many cases, using a queuing model has the 

following implicit underlying assumptions:

 Poisson arrival process

 Exponential service time distribution

 Single server

 Infinite capacity queue

 First-Come-First-Serve (FCFS) discipline             (also 
known as FIFO: First-In-First-Out)

 Note: important role of memoryless property!
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Advanced Queueing Models
There is TONS of published work on 

variations of the basic model:

 Correlated arrival processes

 General (G) service time distributions

 Multiple servers

 Finite capacity systems

 Other scheduling disciplines (non-FIFO)

We will start with the basics!
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Queue Notation
Queues are concisely described using the 

Kendall notation, which specifies:

 Arrival process for jobs {M, D, G, …}

 Service time distribution {M, D, G, …}

 Number of servers {1, n}

 Storage capacity (buffers) {B, infinite}

 Service discipline {FIFO, PS, SRPT, …}

Examples: M/M/1, M/G/1, M/M/c/c
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The M/M/1 Queue
Assumes Poisson arrival process, 

exponential service times, single server, 
FCFS service discipline, infinite capacity 
for storage, with no loss

Notation:    M/M/1

 Markovian arrival process (Poisson)

 Markovian service times (exponential)

 Single server  (FCFS, infinite capacity)
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The M/M/1 Queue (cont’d)
 Arrival rate: λ (e.g., customers/sec)

 Inter-arrival times are exponentially distributed   (and 
independent) with mean 1 / λ

 Service rate: μ (e.g., customers/sec)

 Service times are exponentially distributed         (and 
independent) with mean 1 / μ

 System load: ρ = λ / μ
0 ≤ ρ ≤ 1    (also known as utilization factor)

 Stability criterion: ρ < 1    (single server systems)
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Queue Performance Metrics

N: Avg number of customers in system as a 
whole, including any in service

Q: Avg number of customers in the queue 
(only), excluding any in service

W: Avg waiting time in queue (only)

T: Avg time spent in system as a whole, 
including wait time plus service time

Note: Little’s Law: N = λ T
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M/M/1 Queue Results

Average number of customers in the 
system:  N =  ρ / (1 – ρ)

Variance: Var(N) = ρ / (1 - ρ)2

Waiting time: W = ρ / (μ (1 – ρ))

Time in system: T = 1 / (μ (1 – ρ))
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The M/D/1 Queue
Assumes Poisson arrival process, 

deterministic (constant) service times, 
single server, FCFS service discipline, 
infinite capacity for storage,  no loss

Notation:    M/D/1

 Markovian arrival process (Poisson)

 Deterministic service times (constant)

 Single server  (FCFS, infinite capacity)
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M/D/1 Queue Results
Average number of customers:              Q = 

ρ/(1 – ρ) – ρ2 / (2 (1 - ρ))

Waiting time: W = x ρ / (2 (1 – ρ)) where x 
is the mean service time

Note that lower variance in service time 
means less queueing occurs    



Stochastic Processes
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Indexed collection of random variables
{Xt} tT,for each t T, Xt is a random variable
T = Index Set
State Space = range (possible values) of all Xt

Stationary Process: Joint 

Distribution of the X’s dependent only on their 

relative positions. (not affected by time shift) 

(Xt1, ..., Xtn) has the same distribution as

(Xt1+h, Xt2+h..., Xtn+h)    

e.g.)  (X8, X11) has same distribution as (X20, X23)
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Markov Process: Pr of any future event 
given present does not depend on past:

t0 < t1 < ... < tn-1 < tn < t

P(a Xt b | Xtn = xtn, ........., Xt0 = xt0)

|     future     | |    present    | |          past          |

P (a Xt b | Xtn = xtn)

Another way of writing this:

P{Xt+1 = j | X0 = k0, X1 = k1,..., Xt = i} = 

P{Xt+1 = j | Xt = i} for t=0,1,..   And

every sequence i, j, k0, k1,... kt-1,
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Markov Chains:

State Space {0, 1, ...}

Discrete Time Continuous Time
{T = (0, 1, 2, ...)} {T = [0, )

 Finite number of states

 The markovian property

 Stationary transition probabilities

 A set of initial probabilities P{X0 = i} for i
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Note:

Pij = P(Xt+1 = j | Xt = i)

= P(X1 = j | X0 = i)

Only depends on going ONE step
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Stage (t) Stage (t + 1) 

State i                    State j        (with prob. Pij)
Pij

These are conditional probabilities!
Note that given Xt = i, must enter some state at 

stage t + 1
0 Pi0
1 Pi1
2 with Pi2
...... prob. .....
j Pij
...... .....
m Pim

1P
m

0j

ij 

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go to ith state

0     1     2     . . .     j     . . .     m

= 0

1

2


i


m

P00 P0j

P10 P1j

P20 P2j

Pi0 Pij

Pm0 Pmj Pmm

Rows are

given in

this stage

Rows 

sum

to 1

Convenient to give transition probabilities in 

matrix form

P = P(m+1) (m+1) = Pij
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Example:
t = day index 0, 1, 2, ...
Xt = 0 high defective rate on tth day

= 1 low defective rate on tth day
two states ===>  n = 1   (0, 1)
P00 = P(Xt+1 = 0 | Xt = 0) = 1/4    0      0
P01 = P(Xt+1 = 1 | Xt = 0) = 3/4    0      1
P10 = P(Xt+1 = 0 | Xt = 1) = 1/2    1      0
P11 = P(Xt+1 = 1 | Xt = 1) = 1/2    1      1

\ P  =










2/12/1

4/34/1
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Note:

Row sum to 1

P00 = P(X1 = 0  | X0 = 0) = 1/4

= P(X36 = 0 | X35 = 0) 

Also

= P(X2 = 0 | X1 = 0, X0 = 1) 

= P(X2 = 0 | X1 = 0) = P00

What is P(X2 = 0  | X0 = 0)

This is a two-step trans.

stage stage

0                                2

or  t                              t + 2
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0 0

0

1

P
00

P
10

P
01

P
00

Stage

(t + 0)

Stage

(t + 2)

Stage

(t + 1)

P(X
2

= 0, X
1 

= 0 | X
0

= 0) = P
00

P
00

= P
00

P
00

+ P
01

P
10

= 1/4 *1/4 + 3/4 * 1/2 = 7/16 or 0.4575

P(X
2

= 0 | X
0

= 0) = )2(

00P
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(j=0, 1, 2...)                   

Exist and are Independent of the Pj(0)’s

Homogeneous, Irreducible, Aperiodic

Limiting State Probabilities:
),k(PlimP j

k
j



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If all states of the chain are recurrent and their mean 
recurrence time is finite,

Pj’s are a stationary probability distribution and 
can be determined by solving the equations

Pj = SPi Pij, (j=0,1,2..) and SPi = 1
i i

Solution ==> Equilibrium State Probabilities 
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Note: State Classification:

STATES

Recurrent Transient

Periodic    Aperiodic  Periodic    Aperiodic

Absorbing 
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Example II
Example II:

0 0

1 0

1

 Communicating Class {0, 1}

 Aperiodic chain

 Irreducible

 Positive Recurrent











2/12/1

4/34/1
P
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Example III
Example III:

0 0

1 0 0

1 0

1

 Absorbing State {0}

 Transient State {1}

 Aperiodic chain

 Communicating Classes {0}  {1}











4/34/1

01
P



Stochastic Process 191

Exercise

Exercise: Classify States.





















08.002.0

7.003.00

075.0025.0

5.005.00

P
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Major Results
Result I: 

j is transient

P(Xn = j | X0 = i) =                 as n  

Result II:
If chain is irreducible:

as  n  

j

n

1k

)k(

ijP
n

1




0P )n(

ij 


