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probability introduced through sets

and relative frequency

* Experiment:- a random experiment is an
action or process that leads to one of several
possible outcomes

Experiment Outcomes

Flip a coin Heads, Tails
Numbers: 0, 1, 2, ...,

Exam Marks 100

Assembly Time t > 0 seconds

Course Grades F, D, C, B, A, A+




Sample Space

e List: “Called the Sample Space”
e Qutcomes: “Called the Simple Events”

This list must be exhaustive, i.e. ALL possible
outcomes included.

« Dieroll {1,2,3,4,5} Die roll {1,2,3,4,5,6}
. The list must be mutually exclusive, i.e. no
two outcomes can occur at the same time:

. Die roll {odd number or even number}
. Die roll{ number less than 4 or even

number}



Sample Space
* A list of exhaustive [don’t leave anything out] and
mutually exclusive outcomes [impossible for 2
different events to occur in the same experiment]
is called a sample space and is denoted by S.

* The outcomes are denoted by O,, O,, ..., O,

* Using notation from set theory, we can represent
the sample space and its outcomes as:

+ S={0,,0,, .., O}



* Given asample space S ={0,, 0,, .., 0}, the
probabilities assigned to the outcome must
satisfy these requirements:

(1) The probability of any outcome is between 0 and
1

. i.e. 0 < P(O) < 1foreachi, and

(2) The sum of the probabilities of all the outcomes
equals 1

. i.e. P(O,) +P(O,) +...+P(O,) =1

EP(OE) =1




Relative Frequency

Random experiment with sample space S. we shall assign
non-negative number called probability to each event
in the sample space.

Let A be a particular event in S. then “the probability of
event A” is denoted by P(A).

Suppose that the random experiment is repeated n times,
if the event A occurs n, times, then the probability of
event A is defined as “Relative frequency “

* Relative Frequency Definition: The probability of an
 event Ais defined as

P(A) = lim 24

n— © n



Axioms of Probability

For any event A, we assign a number P(A), called
the probability of the event A. This number
satisfies the following three conditions that

act the axioms of probability.
(1 P(A)=0 (Probabih ty 1s a nonnegativ € number)

(m) P(QQ)=1 (Probabih ty of the whole set is unity)
(i) If AnNB=¢, then P(AvU B)=P(A)+ P(B).

(Note that (iii) states that if A and B are mutually
exclusive (M.E.) events, the probability of their union
is the sum of their probabilities.)



Events
The probability of an event is the sum of the
probabilities of the simple events that
constitute the event.

E.g. (assuming a fair die) S={1, 2, 3, 4, 5, 6}
and

P(1) = P(2) = P(3) = P(4) = P(5) =P(6) =1/6
Then:

P(EVEN) = P(2) + P(4) + P(6) =1/6 + 1/6 + 1/6 =
3/6=1/2



Conditional Probability

Conditional probability is used to determine how
two events are related; that is, we can determine
the probability of one event given the occurrence
of another related event.

Experiment: random select one student in class.
P(randomly selected student is male) =

P(randomly selected student is male/student is
on 3™ row) =

Conditional probabilities are written as P(A | B)
and read as “the probability of A given B” and is
calculated as

P(A and B)

P(A| B) = B




* P(Aand B)=P(A)*P(B/A) = P(B)*P(A/B) both
are true
e Keep this in mind!

P(A| B) = P(A and B)

P(B)

P(A and B)

P(BlA)= -




Bayes’ Law

* Bayes’ Law is named for Thomas Bayes, an
eighteenth century mathematician.

* |n its most basic form, if we know P(B | A),

* we can apply Bayes’ Law to determine P(A | B)

L0
P(B|A)e=) P(A | B)

\V 4




* The probabilities P(A) and P(A®) are called
prior probabilities because they are
determined prior to the decision about taking
the preparatory course.

* The conditional probability P(A | B) is called a
posterior probability (or revised probability),
because the prior probability is revised after
the decision about taking the preparatory
course.



Total probability theorem

* Take events A for 1 =1 to k to be:
— Mutually exclusive: Al, mAj —(0 foralli,j

— Exhaustive: Au-ud =8

For any event Bon S

p(B)=p(B|4)p(4)+--+ p(B|4,)p(4,)

p(B) = ZP(B A)p(4,)

Bayes theorem follows
p(4,~B)  p(B|4;)- p(4)

p(Aj‘B) - k
PB) S B4 p(4)




Independence
* Do A and B depend on one another?

— Yes! B more likely to be true if A.
— A should be more likely if B.

* If Independent
p(AnB)=p(A4)- p(B)
p4|B)= p(4) p(B|4)=p(B)
* |f Dependent
p(AnB)= p(A)- p(B)
p(4 U B)= p(4)+ p(B)- p(4n B) |
p(4nB)=p(B4) p(4) T

P{A and B)

F(A) P(B)



Random variable

e Random variable

— A numerical value to each outcome of a particular
experiment

Z W\
NS




 Example 1 : Machine Breakdowns

— Sample space : s = {electrical ,mechanical, misuse}

— Each of these failures may be associated with a
repair cost

— State space : 50,200,350}

— Cost is a random variable : 50, 200, and 350
* Probability Mass Function (p.m.f.)

— A set of probability value assigned to each of the
values taken by the discrete random variable x,

— 0<p,<tand ¥ ,
— Probability: p(x =x)=p,



Continuous and Discrete random
variables

 Discrete random variables have a countable number
of outcomes

— Examples: Dead/alive, treatment/placebo, dice, counts,
etc.

e Continuous random variables have an infinite
continuum of possible values.

— Examples: blood pressure, weight, the speed of a car, the
real numbers from 1 to 6.




e Distribution function:
Fy(z) =P(X <z), —co<z<0

* If F,(x)is a continuous function of x, then X'is a
continuous random variable.

— F,(x): discrete in x —> Discrete rv’s

— F,(x): piecewise continuous > Mixed rv’s

— PROPERTIES:
O0< Fx(z) <1, —oo<z <0

Fx(x): monotonically increasing func. of x
° lim lam

xr— —00 Fxy(z) =0and z = o0 Fyx(z) =1



Probability Density Function (pdf)

X : continuous rv, then, f(z) = %gf) IS the pdf of X.

CDF < — pdf N
PiX<g) = Mo = /ﬁf('u,)dfu,, —00 <z < 00

P(X € (a,b]) = Pla< X <b)= /abe(u)du.

pdf properties:
1. f(x) > 0 for all x.

2 [ S@E=1 p o[ s

= [ feoyax



Binomial

* Suppose that the probability of success is p

 What is the probability of failure?
g=1-p

 Examples
— Toss of a coin (S=head): p=0.5=9g=0.5
— Rollof adie (S=1): p=0.1667 = g = 0.8333
— Fertility of a chicken egg (S = fertile): p=0.8 =g =0.2



binomial

Imagine that a trial is repeated n times

Examples

— A coinis tossed 5 times

— Adieis rolled 25 times

— 50 chicken eggs are examined

Assume p remains constant from trial to trial and that the trials are
statistically independent of each other

Example

— What is the probability of obtaining 2 heads from a coin that
was tossed 5 times?

P(HHTTT) = (1/2)° =1/32



Poisson

* When there is a large number of trials, but a small probability
of success, binomial calculation becomes impractical

— Example: Number of deaths from horse kicks in the Army
in different years

* The mean number of successes from n trials is u=np
— Example: 64 deaths in 20 years from thousands of soldiers
If we substitute u/n for p, and let n tend to infinity, the binomial
distribution becomes the Poisson distribution:

e Hux
Plx)= ——~

X!



pPOoISsoN

* Poisson distribution is applied where random
events in space or time are expected to occur

* Deviation from Poisson distribution may
indicate some degree of non-randomness in
the events under study

* |nvestigation of cause may be of interest



Exponential Distribution

The random variable X that equals the distance between successive counts of a
Poisson process with mean A > 0 is an exponential random variable with parame-
ter A. The probability density function of X is

flx) =Ae™ for 0=x<= (4-14)

[t the random variable X has an exponential distribution with parameter A,

L
AE




In a large corporate computer network, user log-ons to the system can be modeled as a Pois-
son process with a mean of 25 log-ons per hour. What is the probability that there are no log-
ons in an interval of 6 minutes?

Let X denote the time in hours from the start of the interval until the first log-on. Then, X
has an exponential distribution with A = 25 log-ons per hour. We are interested in the proba-
bility that X exceeds 6 minutes. Because A is given in log-ons per hour, we express all time
units in hours. That is, 6 minutes = 0.1 hour. The probability requested is shown as the shaded
area under the probability density function in Fig. 4-23. Therefore,

= o)

P(X > 0.1) = J 25¢7 2 gy = 720D = 0,082
0.1

filx)

Bl X



Also, the cumulative distribution function can be used to obtain the same result as follows:
P(X>0.1)=1- F0.1) = o= 25(0.1)

An 1dentical answer is obtained by expressing the mean number of log-ons as 0.417 log-
ons per minute and computing the probability that the time until the next log-on exceeds 6
minutes. Trv it.
What is the probability that the time until the next log-on is between 2 and 3 minutes?
Upon converting all units to hours,
0,05 )
B 0.05
P(0.033 < X < 0.05) = | 25¢ ¥ dx = —¢ 2™ = 0.152
0.033

H,ivh_l_:
An alternative solution is

P(0.033 < X < 0.05) = F(0.05) — F(0.033) = 0.152

Determine the interval of time such that the probability that no log-on occurs in the 1
val is 0.90. The question asks for the length of time x such that P(X = x) = 0.90. Now,

P(X > x) = ¢ " = 0.90
Take the (natural) log of both sides to obtain —25x = In(0.90) = —0.1054. Therefore,

x = 0.00421 hour = 0.25 minute



Furthermore, the mean time until the next log-on is
i = 1/25 = 0.04 hour = 2.4 minutes
The standard deviation of the time until the next log-on is

o = 1/25 hours = 2.4 minutes



Uniform

All (pseudo) random generators generate random deviates of U(0,1)

distribution; that is, if you generate a large number of random variables

and plot their empirical distribution function, it will approach this
distribution in the limit.

U(a,b) - pdf constant over the (a,b) interval and CDF is the ramp
function 1

f(x):{m, a<z<b

0, otherwise



cdf

0 01 02 03 06 07 08 09

1

U(0,1) pdf

11 12 13 14 15 16 17 18 19 2 21 22

time

— 17
— 18
—19




Uniform distribution



Gaussian (Normal) Distribution
Bell shaped pdf — intuitively pleasing!
Central Limit Theorem: mean of a large
number of mutually independent rv’s (having
arbitrary distributions) starts following Normal
distribution as n 91

f(z) =
1L: mean, o: std. deviation, o2: variance (N(L,
0?))
1L and o completely describe the statistics. This

is significant in statistical estimation/signal
processing/communication theory etc.

T—f

2
1 e_j("),—oo<a:<oo
oV 2T




 N(0,1)is called normalized Guassian.
 N(0,1)is symmetrici.e.

— f(x)=f(-x)

— F(z) = 1-F(z).
* Failure rate h(t) follows IFR behavior.

— Hence, N( ) is suitable for modeling long-term wear or
aging related failure phenomena



Exponential Distribution

k k
FA) = ane ™ >0, \; >0, a; >0, Y a
=1 1—=1
Fit)=Y a;(1—e™), t>0

D i O >0

h(t) = |
") > aae= At T




Conditional Distributions

* The conditional distribution of Y given X=1 is:

* While marginal distributions are obtained
from the bivariate by summing, conditional
distributions are obtained by “making a cut”
through the bivariate distribution



The Expectation of a Random
Variable

Expectation of a discrete random variable with p.m.f
P(X =x)=p

E(X) =2 px

Expectation of a continuous random variable with p.d.f f(x)

E(X) = j xf (x)dx

State space

expectation of X = mean of X = average of X

ElX]= X = j xf  (x)dx continuous r.v.

N
E[X]=X=)

i i discrete r.v.



fo(x+a)=f,(~x+a),Vx = E[X]=a

Py=0)=L PIr=n-2

P(X:O):P(Xz—l)zP(X:I):% .

Expectation

expectation of a function ofar.v. X

E[g(X)]= & (x) fy (x)dx continuous r.v.

N
E[g(X)]=D_ g(x,)P(x,) discrete r.v.
conditional expel(;ation ofarv. X
El X ‘B = J-_oo Xf o (x ‘B )dx continuous r.v.
N

E[X|B]=) x,P(x,|B) discrete r.v.
i=1




Ex: B={X<bh}
( fX(x) x<b

felelx <by =4[ fo e E[X|X <b]= IZ" T

0, x> b |” Sy

\

Moments
n-th moment of ar.v. X

m, =E[X"]= Lox Jx (x)dx continuous r.v.

N
m =FE[X"]= Zx;” P(x,) discrete r.v.
i=l1

m, =1 m =X



properties of expectation:

(1) E[c]=c c -- constant

(2) Elag(X)+bh(X)]=aL[g(X)]+bE[h(X)]
PF: Elc]= J._icfX(x)dx = cJ-_ZfX(x)dx =c

Elag(X)+bh(X)]= [ {ag(x)+bh(x)} f, (x)dx

=af  g()f ()dx-+b[ h(x) [, (x)dv=aE[g(X)]+bE[A(X)]



varitance ofar.v. X
or =4, =E[(X-X)]=E[X*-2XX +X?]
= E[ X’ -2XE[X]|+ X’ =m, —m]

standard deviation ofar.v. X =0, (=0)

skewness of ar.v. X = L;
GX

fy(x) symmetricaboutx=X = 4, =0

1 ¢
, —e ., x>a
exponential r.v. Sx(X)=1b

0, Xx<da

Ex 3.2-1 & Ex3.2-2:




| =~

m, = E[X]= _[x e "dx=a+b
m, =E[X*]= j x” le_Ta’x (a+b) +b’

I Y
Oy = fy =my—ny =b

m3=E[X3:—j X le_Ta’x a’ +3a’b+6ab” +6b

=E[(X -X)]=E[X’ —3X2)_(+3X)_(2 - X =m, -3mm, +3m’'m, —m’
=a’+3a’b+6ab” +6b> —3(a+b){(a+b)’ +b°}+2(a+b)’ =2b’

2 3
skewness of ar.v. X = ,ug, — b3 =2
o, b




2
Chebychev's inequality ‘X X ‘ > ¢g]< g—X
or = =X S ez [ (0= X S ()
> g j‘ g S () = & P[|X - X2 €]

Markov's inequality PIX <0]=0 = P[X>a]< E[X]
) > a] <

_ 1 d
Ex 3.2-3: P[|X - X|>30

965 9




Characteristic function of r.v. X
D, ()= E[e""] = j°° £ (X)e™ ™ dx

1 e iox Fourier transform
fi@)=—[ @ (@)e " do

O (@)|< [ |f @™ [dx <] fi()dv=1=D(0)

d CDX;SCO) = on S (x)jnxneijdx|m=0 = ]nro S (x)x"dx = j E[X"]
dw e 7 h
L d"D (o
m, =(—)) d;,f )

=0



Functions That Give Moments

Moment generating function of r.v. X

M, ()=E[e"]= | fi(x)e"dx

d"M (v .
2 =Lnewcead = o
Ex 3.3-1 & Ex 3.3-2: e
—e b, x>a
fX(x)zib

0, Xx<a



1
o)
9o (A jo)x 1 b

@X(w):E[ewah%eij ¢ = Lo
1 _(Z_ja))
~(—j)a . x=a
] “¢ b o
= —eb 1 = -
b (~ o) IO 4@, (@) _ jae™ (1= job)+e™ jb
va do (1- jowb)’
_ vX 1 _ €
My (v)=Ele™ = 1—vb dM (v) _ae"(1-vb)+e"b
dv (1-vb)
~dO (o
m = () anf ) —a+b mlszX(v) "

=0 dV v=0



Chernoff's inequality Ex 3.3-3:

v>0

P[X >a]= jj £ (x)dx = j“; £ (u(x — a)dx

< ji fo () dx =e M ,(v)

Transformations of a Random
Variable



Y =T(X) I (

monotone increasing <

T'(x,)<T(x,) forany x, <x,

monotone decreasing <

T(x,)>T(x,) forany x, <x, N



Assume monotone increasing 7'(e) Y=T(X)

F,(y,)=PlY <y, ]=PlX <x,]=F,(x))

_I(J’O

(" fodv=[ " f(o)dx

00

dT ™ (,)
dyo

fY(yO) — fX[T_l(yo)]

dT'(y)

fy(y):fX[T_l(y)] y
%

o
= fx(X) 0



Assume monotone decreasing 7(e) Y =T(X)
F,(y)=PY<y =Pl X zx,]=1-F,(x,)

£.0) =1, (x)?
%

:fX(x)d_ly

dx

monotone 7(e) — fr(¥) = (%)

dx
dy




nonmonotone 7(e)

Y =T(X)

Jx(x,)

()= ; IT(x)

dx




Ex 3.4-2:

Y=T(X)=cX’ nonNmMonNotong

dyylc
y

d

£, =fe(yie)

+ fX (_M)

—-d.y/c
dy

LW

2\/cy




MULTIPLE RANDOM VARIABLES and OPERATIONS:
MULTIPLE RANDOM VARIABLES :

Vector Random Variables

A vector random variable X is a function that assigns a vector of real
numbers to each outcome ( in S, the sample space of the random
experiment

Events and Probabilities

EXAMPLE 4.4

Consider the tow-dimensional random variable X = (X, Y). Find the
region of the plane corresponding to the events

A={X+Y <10},
B = {min( X,Y) <5},and
C ={X?+¥* <100},

The regions corresponding to events 4 and C are straightforward
to find and are shown in Fig. 4.1.



FIGURE 4.1
Examples of two-dimensional
events.

Independence

If the one-dimensional random variable X and Y are “independent,” if 4,
is any event that involves X only and 4, is any event that involves Y only,

then PlX in 4, Y in 4|=PX in 4]P[Y in 4,].



In the general case of n random variables, we say that the random
variables X, X;,..., X, are independent if

PlX, in 4,...,X, in A]=PlX, in 4]--PlX, in 4], (4.3)

where the 4, is an event that involves X, only.

FIGURE 4.3 . " V
Some two-dimensional non- '—‘-5 - ) L
i et
product-form evenis 5{;35 _,_f I
' ™,
5'.‘: .
| | | "
| k{ %




Pairs of Discrete Random Variable

Let the vector random variable X = (X,Y) assume values from some countable
ed = {(‘xjﬂyk ) J=12,.. k= 1,2,...}-The joint probability mass function of X
specifies the probabilities of the product-form event

{X:xj}m{Y:yk}3

pX,Y(xj,yk):P[{X:xj}m{Y:yk}J
EP[X:xj,Y:yk] j=12,... k=12,... (44)

The probability of any event 4 is the sum of the pmf over the outcomes
in A

X in A Z pry(x]ayk (4.9)

(x Vi) in A



iipX,Y(xjﬂyk)zl' (4.6)

j=1 k=1
The marginal probability mass functions :
px(x))=P|X =x,]
=P X =x,,Y= anythlng]
= _{X—xj and Y—yl} {szj and Yzyz}u-o-]

8

= ZpX,Y(xj’yk) ) (4.7a)
k=1

py(v)=PlY=y,]

i (x.0:). (4.7Db)

j=l1



The Jointcdf of Xand Y

The joint cumulative distribution function of X and Y is defined as the
probability of the product-form event {X < x, }~{y <y, }":

FX,Y(xlbyl):P[Xg'xlﬂygyl]' (4.8)
The joint cdf is nondecreasing in the “northeast” direction,
() F)(,Y(xp)ﬁ) < F)(,Y(xz))b) if X, S X, and V=V,

It is impossible for either X or Y to assume a value less than —o
therefore

(i) FX,Y(_OO’yl):FX,Y(xz’_OO):O

It is certain that X and Y will assume values less than infinity,
therefore

(i) Fy (00)=1.



If we let one of the variables approach infinity while keeping the
other fixed, we obtain the marginal cumulative distribution functions

(iv)  Fy(x)=F,,(x,0)=P[X <x,Y <o]=P[X <x]

and
FY(y):FX,Y(Oan):P[YSy}

Recall that the cdf for a single random variable is continuous

form the right. It can be shown that the joint cdf is continuous from
the “north” and from the “east”

(v) lim+ FX,Y(an)zFX,Y(aay)

xX—>a

and

yliil} FX,Y(xa y) = FX,Y(xab)



FIGURE 4.4

The joint cumulative distribution
function is defined as the
probability of the semi-infinie
rectangle defined by the point
1)

FIGURE 4.5

The marginal cdf's are the
probiabilities of these half-
planes.

Fyfr)) = PIX € x,,¥ < ]

Fx.r{xl}'i] =PX<x,Y<y]

(xy,1)

Fyly) = PIX<=,F < y]



The Joint pdf of Two Jointly Continuous Random
Variables

We say that the random variables X and Y are jointly continuous
if the probabilities of events involving (X, Y) can be expressed as an
integral of a pdf. There is a nonnegative function f, ,(x,y), called the
joint probability density function, that is defined on the real plane
such that for every event 4, a subset of the plane,

P[X in 4]= L j froy (X', 0)dx dy (4.9)
as shown in Fig. 4.7. When a is the entire plane, the integral must
equal one :

= [ Sy y)x'dy". (4.10)
The joint cdf can be obtained in terms of the joint pdf of jointly
continuous random variables by integrating over the semi-infinite



FIGURE 4.7

The probability of Ais the feylxy) &
integral of £ X y)over the
region defined by A




The marginal pdf's fy(x) and f\(y) are obtained by taking the derivative of the
corresponding marginal cdf’s

Fy(x)= FX,Y(xaoo)
F,(y)= FX,Y(Ooay)'

Feo== 0 it e

:IjofX,Y(xay')dy" (4.15a)

F0) =] froy (', p)ax. (4.15b)



INDEPENDENCE OF TWO RANDOM
VARIABLES

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Xand Y are independent random variables if any event 4, defined in
terms of X is independent of any event 4, defined in terms of Y

PlX in 4,Y in 4,]=PlX in 4]P]Y in 4,]. (4,17)

1Y%
~—

Suppose that X and Y are a pair of discrete random variables. If we ¢

A= {X = ‘xj} and 4, = {Y =) }then the independence of Xand Y
implies that

pX,Y(xjayk):Pl_X:ijYZykJ
:P[X:xj]P[YZyk]
=py(x))py(y,) for al x, and y,. (4.18)




4.4 CONDITIONAL PROBABILITY AND
CONDITIONAL EXPECTATION

Conditional Probability

In Section 2.4, we know
PlY in 4,X =x]

PlY in 4| X =x]= Plx =]

(4.22)

If X'is discrete, then Eq. (4.22) can be used to obtain the
conditional cdf of ¥ given X =x, :

Ply<y,X=x]
F, = ’ k2 for Pl X=x,|>0. 4.23
y (v 1x) P[szk] [ xk] ( )
The conditional pdf of Y given X = x, , if the derivative exists, is given
b d
g f15) =B %), (4.24)



MULTIPLE RANDOM VARIABLES

Joint Distributions

The joint cumulative distribution function of X, X,,...., X, is defined as the
probability of an n-dimensional semi-infinite rectangle associate with the
point (x4,..., x,):

Fy oy x (X:X5,...X,) =PlX,<x,X,<x,,...,X,<x | (4.38)

The joint cdf is defined for discrete, continuous, and random variables of
mixed type



FUNCTIONS OF SEVERAL RANDOM
VARIABLES

One Function of Several Random Variables

Let the random variable Z be defined as a function of several random
variables:

Z=g(X,X,,...,X). (4.51)

The cdf of Z is found by first finding the equivalent event of
that is, the set R, ={x=(x,,...,x,) such that g(x)<z},then

F,(z)=P[X in R ]
—fmeijl (o X M, (4.52)



EXAMPLE 4.31 Sum of Two Random Variables

Let Z= X+ Y. Find F,(z) and f,(z) in terms of the joint pdf of X
and Y.

The cdf of Z i§
F,(z)= _[:f: Syy (X', ¥)dy'dx'.
The pdf of Z is
1@ =S F @ = [ fry ez - (4.53)
Thus the pdf for the sum of two random variables is given by a superposition
integral. If Xand Y are

independent random variables, then by Eq. (4.21) the pdf is given by the
convolution integral of the margial pdf's of Xand Y :

@)= o) frlz =)' (4.54)



pdf of Linear Transformations

We consider first the linear transformation of two random variables

V=aX +bY {V}{a b}{X}
W=cX+eY w c elY
Denote the above matrix by 4. We will assume 4 has an inverse, so each
point (v, w) has a unique corresponding point (x, y) obtained from

)

In Fig. 4.15, the infinitesimal rectangle and the parallelogram are equivalent
events, so their probabilities must be equal. Thus

fX,Y (x,y)dxdy = fV,W (v, w)dP



FIGURE 4.15
Image of an nfintesiml
rectangle under a inear
ransformation.

W b
(v+ adx + bdy, w + cdx + edy)
(x,y + dy) (x +dr,y +dy) (v + bdy, w + edy)
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(v+ adx, w + cdr)
[‘nﬂ (x + dx.y) (1,w)
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X
U=ax + by

w=cx+ey



where dP is the area of the parallelogram. The joint pdf of J”and W is thus given
by

Sry (%))
Vv, W) = = , 4.57
Jrw (VW) P (4.57)
dxdy
where x an y are related to (v,’w) by Eq. (4.56) It can

be shown thgt — q ae — bc‘)dxdy , so the “stretch factor” is

ae—bcl(dxdy)
= ‘ (dxdy) = ‘ae—bc‘ = ‘A

where |4] is the determinant of 4.
Let the n-dimensional vector Z be

Z = AX,

dP
dxdy

b

where 4 is an uxn invertible matrix. The
joint of Z is then



EXPECTED VALUE OF FUNCTIONS OF RANDOM VARIABLES

The expected value of Z = g(X, Y) can be found using the following
expressions

j j X,V fXY(x V) X, Y jointly continuous

Zzg(xla)’n)l?xy(x,,yn) X Y discrete.

G l

E|Z]=+ (4.64)




*Joint Characteristic Function

The joint characteristic function of n random variables is defined as

(I)X1 Xy X, (Wl’ W,,.. Wn) = Elej(W1X1+W2X2+---+Wan)J. (4738)

D, ,(wm,w,)=E lej (W1X+W2Y)J. (4.73b)

If X'and Y are jointly continuous random variables, then
O, (ww) = [ | [y (r, ) dxdy. (4.73c)

The inversion formula for the Fourier transform implies that the joint pdf is
given by

1
47*

Jry(X,p)= j_i _Eo D, (W, w, )ej(W1x+W2y)dW1dW2 - (4.74)



JOINTLY GAUSSIAN RANDOM VARIABLES

The random variables X and Y are said to be jointly Gaussian if their
joint pdf has the form

fX,Y(x9 y)

2 2
-1 X—m X—m —m —m
2(1_,0)(,1/) O, O, 0, O,
2760, 1-p3s

—o<x<ow and —o< y<w

The pdfis constant for values x and y for which the argument of the
exponent is constant



2 2
(x_mlj —2pX’Y(x_mlj(y_m2]+(y_m2] = constant
O, O, O, 0,

When py =0, X and Y are independent ; when p, , # 0, the major axis of
the ellipse is oriented along the angle

2 2
O, —0,

Note that the angle is 45° when the variance are equal.
The marginal pdf of X'is found by integrating f ,(x, y) over all y

2
0 = ;arctan( PrrO % ] : (4.80)

—(x—m 2/2012
1

e
fX (X) _ \/EGI ’

that is, X'is a Gaussian random variable with mean m, and variance

(4.81)

2
O,
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n Jointly Gaussian Random Variables

The random variables X;, X,,..., X, are said to be jointly Gaussian if their

joint pdf is given by exp{—;(x _m)TK_1 (x —m)}
fx(x)Ele,Xz,...,Xn (X, %55...%,) = 21 11/2 , (4.83)
(27) k|
where x and m are column vectors defined by
_xl— _ml_ _E:Xl:_
X E|X,]
X = 2 ) m = m2 = - 2:
: : E|X, |
_xn_ _mn_ _E :X4 :_
and K is the covariance matrix that is defined by
VAR(X,) CoOv(x,,X,) --- COV(X,,X,)]
COV(X,, X VAR(X .- COV(X,, X
K: ( 2 1) ( 2) ( 2 n) (484)

COV(X,,X,) VAR(X )



Transformations of Random Vectors

Let X,,..., X, be random variables associate with some experiment, and let the
random variables Z,,..., Z, be defined by n functions of X = (X;,..., X)) :

Z,=g(X) Z,=g,(X) ... Z,=g,(X.

The joint cdf of Z,,..., Z, at the pointz = (z1,..., zn) is equal to the
probability of the region of x where

F, ;(z,...z)=Plg(X)<z,....g,(X)<z,]. (4.55a)

F, 2 (25...2,) = _[le ..... Xn(xia---:x;;)dxl'"'dx;;- (4.55b)

Xg; (X)<z



pdf of Linear Transformations

We consider first the linear transformation of two random variables

V=aX+bY {V}{a b}{X}
W=cX +eY W1l [c e]Y
Denote the above matrix by 4. We will assume 4 has an inverse, so

each point (v, w) has a unique corresponding point (x, y) obtained
from

)

In Fig. 4.15, the infinitesimal rectangle and the parallelogram are
equivalent events, so their probabilities must be equal. Thus

fX,Y (x,y)dxdy = fV,W (v, w)dP
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Stochastic Processes

Let § denote the random outcome of an experiment. To every such
outcome suppose a waveform

X(t,¢) is assigned. [ ¥
The collection of such X )/\\/'\\/\\/
waveforms form a Ny — L
stochastic process. The ' /\\/
set of and the time X(1, ) :
index zicggr}m be continuous /yf\/\/\/_<
or discrete (countably He) _ —
infinite or finite) as well. “ "2
For fixed &; € Sthe set of Fig. 14.1
all experimental outcomes), X(t,§)5 a specific time function.
For fixed t,
X, =X(1,5;)

is a random variable. The ensemble of all such realizations X(t,f)
over time represents the stochastic



process X(t). (see Fig 14.1). For example

X(t) =acos(w,t+ @),

If X(t) is a stochastic process, then for fixed t, X(t) represents
a random variable. Its distribution function is given by

F (x,t)=P{X(t) <x}

Notice thatFX (X, f)depends on t, since for a different t, we obtain
a different random variable. Further dFX (x, t)

Sty =—"

represents the first-order probability density function of the
process X().




Fort=1t, and t=1t,, X(t) represents two different random variables
X1 = X(t1) and X2 = X(t2) respectively. Their joint distribution is
given by

Fx(xlaxzatlatz) :P{X(tl) leaX(tz) sz}

and azFX(xla)Cz:tlatz)

Ox, Ox,

represents the second-order density function of the process X(t).
Similarlny (X, X5, X, bty ﬁe})resents the nth order density
function of the process X(t). Complete specification of the stochastic
process X(t) requires the knowledge of f (X, X,,"**X , ,,¢,*,L,)
for alf; , i=1,2,---, rand for all n. (an almost impossible task

in reality).

So(x,x,,8,8,) =



Mean of a Stochastic Process:

u)=E{X@®)} =] xf,(x,t)dx

represents the mean value of a process X(t). In general, the mean of
a process can depend on the time index t.

Autocorrelation function of a process X(f) is defined as

R, (1,t,)=E{X($)X (1,)} = _”xlxz Sy (X, %5, 1,1, )X, dx,
and it represents the interrelationship between the random variables
X1 = X(t1) and Xz = X(t2) generated from the process X(t).
Properties:

1. R, (t,1,) =R, (t,,1,) = [E{X(t,) X" (t,)}T
2. R_(t,1)=E{ X(®)[}>0.



presents a nonnegative definite function, i.e., for any

sef“’ﬁg &on?s?:mts n
19 }io

Eq. (14-8) follows by noticing that Z_:Za
The function =1 j=

14-8
R, (t,t,)=0. (14-8)

E{{Y|’}>0 for Y = ZaX(t).

i=1

represents the autocovariance function of the process X(t). (14-9)
Example 14. 1

Let (lat ) R (tlﬁt ) lLlX(t )/le(t )

Then

z=[" X(1d.

Ell=[] j ITE{X(fl)X*(tz)}dtldzz
j j R, (,t,)dt dt, (14-10)



Stationary Stochastic Processes

Stationary processes exhibit statistical properties that are
invariant to shift in the time index. Thus, for example, second-order
stationarity implies that the statistical properties of the pairs
{X(t1) , X(t2) } and {X(t1+c) , X(t>+c)} are the same for any c.

Similarly first-order stationarity implies that the statistical properties
of X(t)) and X(t+c) are the same for any c.

In strict terms, the statistical properties are governed by the
joint probability density function. Hence a process is nth-order
Strict-Sense Stationary (S.S.S) if

Jo(x,Xy, 0 x,, bttt )= f (Xx,%X,, X, t,+C,t, +C--,t +C)

for any c, where the left side represents the joint density function of
the random variables X, =X(t,), X, =X(¢,), -, X, =X(¢,) and
the right side corresponds to the joint density function of the random
variables X =X(t,+¢), X, =X(t, +¢), -, X =X(t +c).

A process X(t) is said to be strict-sense stationary if (14-14) is
true forall ¢,, i=1,2,---,n, n=12,--- and any c.



For a first-order strict sense stationary process,
from (14-14) we have

S ()= f.(x,t+c0) (14-15)

for any c. In particular ¢ = — t gives

fo ()= f,(x) (14-16)

i.e., the first-order density of X(t) is independent of t. In that case

Similarly, for a second-order strict-sense stationary process

we have from g'f)}%)t)] _ jj: xf(x)dx = 1, a constant. (14-17)

for any c. For ¢ = — t, we get

S (X, x,, 4,8) = [ (X, x,, t+c,t, +¢)

fx(x19x29 tlatz)EfX(xl,xz, tl_tz) (14-18)



i.e., the second order density function of a strict sense stationary
process depends only on the difference of the time indices

In that case the autocorrelation function is given by L =1, =T
R, (4,4) = EAX(4)X (4,)}
A ”xlx2 f.(x,,x,,T =t —t,)dx,dx, (14-19)

— RXX (tl - t2) — RXX (T) — RXX (_T)a
I.e., the autocorrelation function of a second order strict-sense
stationary process depends only on the difference of the time
indices 7 =1, —1,.
Notice that (14-17) and (14-19) are consequences of the stochastic
process being first and second-order strict sense stationary.
On the other hand, the basic conditions for the first and second order
stationarity — Eqgs. (14-16) and (14-18) — are usually difficult to verify.
In that case, we often resort to a looser definition of stationarity,
known as Wide-Sense Stationarity (W.S.S), by making use of



(14-17) and (14-19) as the necessary conditions. Thus, a process X({)
is said to be Wide-Sense Stationary if
(i)

and E{X (1)} = u (14-20)

i
0 E{X(tl)X*(t2)}:R)o((tl_t2)a
i.e., for wide-sense stationary processes, the mean is a constant and
the autocorrelation function depends only on the difference between
the time indices. Notice that (14-20)-(14-21) does not say anything
about the nature of the probability density functions, and instead deal
with the average behavior of the process. Since (14-20)-(14-21)
follow from (14-16) and (14-18), strict-sense stationarity always
implies wide-sense stationarity. However, the converse is not true in
general, the only exception being the Gaussian process.
This follows, since if X(t) is a Gaussian process, then by definition
X, =X(), X, =X(,), ---, X, =X(,) are jointly Gaussian random
variables for any t byt whose joint characteristic function
is given by

(14-21)



ji#(l‘k)a)k —izcﬂ (2, .4 Y0 /2
¢£(a)l,a)2,...’a)n) = e k=1 1.k (14'22)
where C_ (t,t,) is as defined on (14-9). If X(t) is wide-sense

stationary, then using (14-20)-(14-21) in (14-22) we get

jZ:Ua)k _%chﬂ(ti_tk)a)ia)k
¢X(a)19a)27”°90)n):e k=1 1=1 k=1

and hence if the set of time indices are shifted by a constant c to (14-23)

enerate a new set of jointly Gaussian random variablele' = )((t1 + C),

,=X(t, +¢), X =X(t +¢)  then their joint characteristic
function is identical to (14-23). Thus the set of random variables
and {Xi'}?zlhave the same joint probability distribution for all n and {X }’?
all ¢, establishing the strict sense stationarity of Gaussian processes o=l
from its wide-sense stationarity.

To summarize if X(t) is a Gaussian process, then
wide-sense stationarity (w.s.s) = strict-sense stationarity (s.s.s).

Notice that since the joint p.d.f of Gaussian random variables depends

only on their second order statistics, which is also the basis

PILLAI/Cha



Systems with Stochastic Inputs
A deterministic system’ transforms each input waveform X (¢,& nto
an output waveform Y (£,&,) =T[X(¢,£,)] by operating only on the
time variable t. Thus a set of realizations at the input corresponding

to a process X(f) generates a new set of realizations{Y (¢,&) }at the
output associated with a new process Y(¥).

[

X(1,)

SN

\/ Y(1,8)
/
N\

DN
VO N

Tl 2

A 4

»
>t
»

Fig. 14.3

Our goal is to study the output process statistics in terms of the input
process statistics and the system function.

A stochastic system on the other hand operates on both the variables t and &.



Linear Systems: /[ ]represents a linear system if
Lia\ X(t))+a,X(t,); = a, L{X(t)} +a,L{X(1,)5. (14-28)

Let
Y ()= L{X (1)} 1429
represent the output of a linear system.
Time-Invariant System: L[ -] represents a time-invariant system if
Y(t)=LiX ()} = LiX(t 1)} =Y (1))
i.e., shift in the input results in the same shift in the output also.
If L[] satisfies both (14-28) and (14-30), then it corresponds to (14-30)
a linear time-invariant (LTI) system.
LTI systems can be uniquely represented in terms of their output to
a delta function
4 1(0) Impulse
/ response of
5(0 , LTI , h(t) the system
T T \//\ S~
Impulse Flg 14.5 |mpu|Se

response



then Yo

m \\f/\/\

Y(¢)

Ay LT

v * +00
Y)=| h(t—-1)X(2)d
ar.b/it'rary Fig. 14.6 (7) o.—oo (t—7)X(7)d7
o =._wh(r)X (t—71)dr (14-31)

Eqg. (14-31) follows by expressing X(f) as

X(t)= [ X(2)8(t—7)dr (14-32)
and applying (14-28) and (14-30) toY (¢) = L{X (¢)}Thus

Y(t)=L{X()}=L{| X(2)6(t-1)dr)

:: L{X(T)§(I—T)df} 7 By Linearity

- .. X(T)L{é‘(t a Z')}d’[ By Time-invariance
/

= [ "X (Oh(t—1)dr = [ "h(r) X (¢ - 1)d7. (14-33)




OUtpUt Statistics: Using (14-33), the mean of the output process

IS given by

u,()=EY 0} =] E{X(0)h(t-r1)dr}

+00
=, (Oh(t—7)dr = p, (1) * h(?). (14-34)
Similarly the cross-correlation function between the input and output
processes is given by

R, (t,.t,)=E{X ()Y (1,)}
=E{X(t)| X" (t, —a)h" (@)da}
= [ TE{X ()X (t, —a)}h (@)da
=[ "R, (t,,t, —)h" (@)da (14-35)

— RXX(tIDtZ) *h*(tz)-
Finally the output autocorrelation function is given by



R, (t,,1,) = E{Y (1)Y (1,)}
=E{[X(t,- HHPYBY (1)}

=[ TE{X(t, - Y () (B
=[ "R, (t, - B.t,)h(B)dp

=R_(t,,t,)*h(t)), (14-36)
or
R, (t,,t,) =R, (1,,t,)*h (t,) * h(1,). (14-37)
H() —  nty )

R, (4,t,) — | M)

(@)

Ryy (415t5) > h(t,) —> RYY(tlat2)
(b)
Fig. 14.7




In particular if X(t) is wide-sense stationary, then we have 7 (t) = U
so that from (14-34) . .

w, ()=, _[ _:h(f)a’ T=u., aconstant. (14-38)
Also RXX(tl,zz) :RXX(t1 _12) so that (14-35) reduces to
R, (t,t,)=[ R, (t, —t, +a)h" (a)da

. (14-39)
=R, (0)*h (-1)=R,, (1), 7=t -1,
Thus X(t) and Y(f) are jointly w.s.s. Further, from (14-36), the output
autocorrelation simplifies to .
R,(t,6)2 ] R, (= B-t)h(B)dp, t=1,~1,
=R, (2)*h(r)=R, (0) (14-40)

From (14-37), we obtain

R, (1)=R, (7)*h (1) *h(7). (1441



From (14-38)-(14-40), the output process is also wide-sense stationary.
This gives rise to the following representation

X(1)
wide-sense
stationary process

X(t%se

strict-se
stationary process

Ga)(usgti%n

process (also
stationary)

A 4

LTI system
h(t)

(@)

A 4

LTI system
h(t)

v

(b)

A 4

Linear system

v

(c)
Fig. 14.8

v

Y (1)
wide-sense
stationary process.

Y (¢
strict-s(e se

stationary process
(see Text for proof)

Gaussia};gl)ocess
(also stationary)



Discrete Time Stochastic Processes:

A discrete time stochastic process X, = X(nT) is a sequence of
random variables. The mean, autocorrelation and auto-covariance
functions of a discrete-time process are gives by

M, = EX(nT);}
e R(ny,my) = E{X(n,T)X" (n,T)}
respectively. As before strict sense stationarity and wide-sense

stationarity definitions apply here also.
For example, X(nT) is wide sense stationary if

C(n,,n,)=R(n,,n,)— H, ﬂzz

and

E{X(nT)}=u, aconstant

(14-57)

(14-58)

(14-59)

(14-60)

E[X{k+n)T}X {(K)T}Y]=R(n)=r, 2r (1461



Power Spectrum

For a deterministic signal x(t), the spectrum is well defined: If X(a))
represents its Fourier transform, i.e., if

X(w)= fj: x(t)e " dt, (18-1)

then X(a)) ’represents its energy spectrum. This follows from
Parseval’s theorem since the signal energy is given by
+00 +00
[ X@di=,L [ | X(w)} dw=E. (18-2)

W, 0+ Aw
Thus ‘X a)) f Aw represents the signal energy in the band ( ’ )

(see Fig 18.1

| X (o)

A X (1) Energy in(w,0+Aw)

N

>
0 \/ o o+ Ao




However for stochastic processes, a direct application of (18-1)
generates a sequence of random variables for every . Moreover,
for a stochastic process, E{| X(t) |°} represents the ensemble average
power (instantaneous energy) at the instant t.

To obtain the spectral distribution of power versus frequency for
stochastic processes, it is best to avoid infinite intervals to begin with,
and start with a finite interval (— T, T)in (18-1). Formally, partial
Fourier transform of a process X(t) based on (— T, T)is given by

so that X, (w)= j_TT X(t)e ™ dt (18-3)

represents the power distribution associated with that realization based
on (— T, T). Notice that (18-4) represents a random variable for every

and its ensemble average gives, the average power distribution
basedon (— T, T). Thus

X, (@) _ 1
2T 2T

r — jot 2
U " Xty di| o 154y



}’T(w)zE{'Xz(;))' } j j E{X @)X (t,)}Ye /" 2dr dt,

T A .

LTJ‘T | R, (2,8,)e """ dr,dt,
(18-5)
represents the power distribution of X(t) based on (— T, T ). For wide
sense stationary (w.s.s) processes, it is possible to further simplify
(18-5). Thus if X(t) is assumed to be w.s.s, then
and (18-5) simplifies to
R, (t,t,) =R, (t, - 1,)

Let 7 =4 1 and proceeding as in (14-24), we get
—Jjo(t—t,)
P(a))_—j j LR (4 —1y)e T ddr,.

to be the power distribution of the w.s.s. process X(t) based on
(- T, T). Finally Iettlng T —> o0 in (18-6), we obtain

P(w)-— [* R, (D)™ (2T~ r )dr
(18-6)

=" R (D) (1-dr > 0



S, (@) =limP(w)=] R, (r)e " dr20 (18-7)

to be the power spectral density of the w.s.s process X(f). Notice that

R _(0) <> S _(w)>0. (18-8)
i.e., the autocorrelation function and the power spectrum of a w.s.s

Process form a Fourier transform pair, a relation known as the
Wiener-Khinchin Theorem. From (18-8), the inverse formula gives

and in particular for? = 0, we e

R_(7)= j S ()’ dw (18-9)

From (18-10), the area under.S (@) represents the total power of the
process X(f), and hence S ()truly represents the power
spectrum, (Fig 18.2).

2e | S.(@do =R, (0)=E{ X())P} =P, thetotal pgyer



If X(¢) is a real w.s.s process, then p () =R, (-7) SO that
Sou(@=[ "R, (e’ dr
— J' j: R _(7)coswrdr

= 2I:Rn(r)cosa)z'dz' =S5 . (—») =0
so that the power spectrum is an even function, (in addition to being  (18-13)
real and nonnegative).



