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probability introduced through sets 
and relative frequency

• Experiment:- a random experiment is an 
action or process that leads to one of several 
possible outcomes

Experiment Outcomes

Flip a coin Heads, Tails

Exam Marks
Numbers: 0, 1, 2, ..., 

100

Assembly Time t > 0 seconds

Course Grades F, D, C, B, A, A+



Sample Space
• List: “Called the Sample Space”
• Outcomes:  “Called the Simple Events”

This list must be exhaustive, i.e. ALL possible 
outcomes included.

• Die roll {1,2,3,4,5} Die roll {1,2,3,4,5,6}

• The list must be mutually exclusive, i.e. no 
two outcomes can occur at the same time:

• Die roll {odd number or even number}     
• Die roll{ number less than 4 or even 

number}



Sample Space
• A list of exhaustive [don’t leave anything out] and 

mutually exclusive outcomes [impossible for 2 
different events to occur in the same experiment]
is called a sample space and is denoted by S.

• The outcomes are denoted by O1, O2, …, Ok

• Using notation from set theory, we can represent 
the sample space and its outcomes as:

• S = {O1, O2, …, Ok}



• Given a sample space S = {O1, O2, …, Ok}, the 
probabilities assigned to the outcome must 
satisfy these requirements:

(1) The probability of any outcome is between 0 and 
1

• i.e. 0 ≤ P(Oi) ≤ 1 for each i, and

(2) The sum of the probabilities of all the outcomes 
equals 1

• i.e. P(O1) + P(O2) + … + P(Ok) = 1



Relative Frequency
Random experiment with sample space S. we shall assign 

non-negative number called probability to each event 
in the sample space.

Let A be a particular event in S. then “the probability of 
event A” is denoted by P(A).

Suppose that the random experiment is repeated n times, 
if the event A occurs nA times, then the probability of 
event A is defined as “Relative frequency “

• Relative Frequency Definition: The probability of an 

• event A is defined as
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Axioms of Probability
For any event A, we assign a number P(A), called 

the probability of the event A. This number  
satisfies the following three conditions that 
act the axioms of probability.
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(Note that (iii) states that if A and B are mutually 

exclusive (M.E.) events, the  probability of their union 
is the sum of their probabilities.)



Events
• The probability of an event is the sum of the 

probabilities of the simple events that 
constitute the event.

• E.g. (assuming a fair die) S = {1, 2, 3, 4, 5, 6} 
and

• P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6

• Then:

• P(EVEN) = P(2) + P(4) + P(6) = 1/6 + 1/6 + 1/6 = 
3/6 = 1/2 



Conditional Probability
• Conditional probability is used to determine how 

two events are related; that is, we can determine 
the probability of one event given the occurrence 
of another related event.

• Experiment: random select one student in class.
• P(randomly selected student is male) =
• P(randomly selected student is male/student is 

on 3rd row) =
• Conditional probabilities are written as P(A | B)

and read as “the probability of A given B” and is 
calculated as



• P( A and B) = P(A)*P(B/A) = P(B)*P(A/B) both 
are true

• Keep this in mind!



Bayes’ Law
• Bayes’ Law is named for Thomas Bayes, an 

eighteenth century mathematician.

• In its most basic form, if we know P(B | A),

• we can apply Bayes’ Law to determine P(A | B)

P(B|A) P(A|B)



• The probabilities P(A) and P(AC) are called 
prior probabilities because they are 
determined prior to the decision about taking 
the preparatory course.

• The conditional probability P(A | B) is called a 
posterior probability (or revised probability), 
because the prior probability is revised after
the decision about taking the preparatory 
course.



Total probability theorem
• Take events Ai for I = 1 to k to be:

– Mutually exclusive:                               for all i,j 

– Exhaustive: SAA
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Independence
• Do A and B depend on one another?

– Yes!  B more likely to be true if A.

– A should be more likely if B.

• If Independent 

• If Dependent
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Random variable

• Random variable 

– A numerical value to each outcome of a particular 
experiment

S

0 21 3-1-2-3
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• Example 1 : Machine Breakdowns
– Sample space : 

– Each of these failures may be associated with a 
repair cost

– State space : 

– Cost is a random variable : 50, 200, and 350

{ , , }S electrical mechanical misuse

{50,200,350}

• Probability Mass Function (p.m.f.)
– A set of probability value     assigned to each of the 

values taken by the discrete random variable

– and 

– Probability :
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Continuous and Discrete random 
variables

• Discrete random variables have a countable number 
of outcomes
– Examples: Dead/alive, treatment/placebo, dice, counts, 

etc.

• Continuous random variables have an infinite 
continuum of possible values.
– Examples: blood pressure, weight, the speed of a car, the 

real numbers from 1 to 6.  



• Distribution function: 

• If FX(x) is a continuous function of x, then X is a 
continuous random variable.

– FX(x): discrete in x   Discrete rv’s

– FX(x): piecewise continuous Mixed rv’s

– PROPERTIES:

•



Probability Density Function (pdf)

• X : continuous rv, then,

• pdf properties:
1.

2.
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Binomial

• Suppose that the probability of success is p

• What is the probability of failure?

q = 1 – p

• Examples

– Toss of a coin (S = head): p = 0.5  q = 0.5

– Roll of a die (S = 1): p = 0.1667  q = 0.8333

– Fertility of a chicken egg (S = fertile): p = 0.8  q = 0.2



• Imagine that a trial is repeated n times

• Examples

– A coin is tossed 5 times

– A die is rolled 25 times

– 50 chicken eggs are examined

• Assume p remains constant from trial to trial and that the trials are 
statistically independent of each other

• Example

– What is the probability of obtaining 2 heads from a coin that 
was tossed 5 times?

P(HHTTT) = (1/2)5 = 1/32

binomial



Poisson
• When there is a large number of trials, but a small probability 

of success, binomial calculation becomes impractical

– Example: Number of deaths from horse kicks in the Army 
in different years

• The mean number of successes from n trials is µ = np

– Example: 64 deaths in 20 years from thousands of soldiers

If we substitute µ/n for p, and let n tend to infinity, the binomial 
distribution becomes the Poisson distribution:

P(x) =
e -µµx

x!



poisson

• Poisson distribution is applied where random 
events in space or time are expected to occur

• Deviation from Poisson distribution may 
indicate some degree of non-randomness in 
the events under study

• Investigation of cause may be of interest



Exponential Distribution









Uniform
All (pseudo) random generators generate random deviates of U(0,1) 
distribution; that is, if you generate a large number of random variables 
and plot their empirical distribution function, it will approach this 
distribution in the limit.
U(a,b)  pdf constant over the (a,b) interval and CDF is the ramp 
function
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Uniform distribution

{
0  ,         x < a,

F(x)=            ,        a   < x < b  

1  ,           x > b.

ab
ax


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Gaussian (Normal) Distribution
• Bell shaped pdf – intuitively pleasing!

• Central Limit Theorem: mean of a large 
number of mutually independent rv’s (having 
arbitrary distributions) starts following Normal 
distribution as n 

• μ: mean, σ: std. deviation, σ2: variance (N(μ, 
σ2))

• μ and σ completely describe the statistics. This 
is significant in statistical estimation/signal 
processing/communication theory etc.



• N(0,1) is called normalized Guassian.

• N(0,1) is symmetric i.e.

– f(x)=f(-x)

– F(z) = 1-F(z).

• Failure rate h(t) follows IFR behavior.

– Hence, N( ) is suitable for modeling long-term wear or 
aging related failure phenomena



Exponential Distribution



Conditional Distributions

• The conditional distribution of Y given X=1 is:

• While marginal distributions are obtained 
from the bivariate by summing, conditional 
distributions are obtained by “making a cut” 
through the bivariate distribution



The Expectation of a Random 
Variable
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Expectation of a discrete random variable with p.m.f 

Expectation of a continuous random variable with p.d.f f(x)

state space
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properties of expectation:
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variance of a r.v. X
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Functions That Give Moments

Moment generating function of r.v. X
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Chernoff's inequality Ex 3.3-3:
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Transformations of a Random 
Variable
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( )Y T XAssume monotone decreasing  ( )T 
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MULTIPLE RANDOM VARIABLES and OPERATIONS:
MULTIPLE RANDOM VARIABLES : 

Vector Random Variables

A vector random variable X is a function that assigns a vector of real 
numbers to each outcome ζ in S, the sample space of the random 
experiment 

Events and Probabilities

EXAMPLE 4.4

Consider the tow-dimensional random variable X = (X, Y). Find the 
region of the plane corresponding to the events

The regions corresponding to events A and C are straightforward 
to find and are shown in Fig. 4.1.
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Independence

If the one-dimensional random variable X and Y are  “independent,” if A1

is any event that involves X only and A2 is any event that involves Y only, 
then

     ., 2121 AYPAXPAYAXP   in    in    in      in  



In the general case of n random variables, we say that the random 
variables X1, X2,…, Xn are independent if 

where the Ak is an event that involves Xk only.
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Pairs of Discrete Random Variable

Let the vector random variable X = (X,Y) assume values from some countable 
set                                                          The joint probability mass function of X
specifies the probabilities of the product-form event 
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The probability of any event A is the sum of the pmf over the outcomes 
in A

  (4.5)                                           in  
 

.),(
),(

, kj
yx Ain

YX yxpAXP
kj

 













1 1

, .1),(
j k

kjYX yxp (4.6)                                                      

 
 
    

(4.7a)                                                               

                   
anything           

,

,
)(

1

21














k
kjX,Y

jj

j

jjX

),y(xp

yYandxXyYandxXP
YxXP

xXPxp



 

(4.7b)                                                    )(           .

)(

1









j
kjX,Y

kkY

,yxp

yYPyp

The marginal probability mass functions : 



The Joint cdf of X and Y

The joint cumulative distribution function of X and Y is defined as the 
probability of the product-form event 

The joint cdf is nondecreasing in the “northeast” direction,

It is impossible for either X or Y to assume a value less than      , 
therefore 

It is certain that X and Y will assume values less than infinity, 
therefore 
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If we let one of the variables approach infinity while keeping the 
other fixed, we obtain the marginal cumulative distribution functions

and 

Recall that the cdf for a single random variable is continuous 
form the right. It can be shown that the joint cdf is continuous from 
the “north” and from the “east”

and 
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The Joint pdf of Two Jointly Continuous Random 
Variables

We say that the random variables X and Y are jointly continuous
if the probabilities of events involving (X, Y) can be expressed as an 
integral of a pdf.  There is a nonnegative function fX,Y(x,y), called the 
joint probability density function, that is defined on the real plane 
such that for every event A, a subset of the plane, 

as shown in Fig. 4.7. When a is the entire plane, the integral must 
equal one :

The joint cdf can be obtained in terms of the joint pdf of jointly 
continuous random variables by integrating over the semi-infinite
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The marginal pdf’s fX(x) and fY(y) are obtained by taking the derivative of the 
corresponding marginal cdf’s
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X and Y are independent random variables if any event A1 defined in 
terms of X is independent of any event A2 defined in terms of Y ; 

INDEPENDENCE OF TWO RANDOM 

VARIABLES

Suppose that X and Y are a pair of discrete random variables. If we let

then the independence of X and Y
implies that 



4.4 CONDITIONAL PROBABILITY AND 

CONDITIONAL EXPECTATION

Conditional Probability

In Section 2.4, we know 

If X is discrete, then Eq. (4.22) can be used to obtain the 
conditional cdf of Y given X = xk :

The conditional pdf of Y given X = xk , if the derivative exists, is given 
by 
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MULTIPLE RANDOM VARIABLES

Joint Distributions

The joint cumulative distribution function of X1, X2,…., Xn is defined as the 
probability of an n-dimensional semi-infinite rectangle associate with the 
point (x1,…, xn):
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The joint cdf is defined for discrete, continuous, and random variables of 
mixed type



FUNCTIONS OF SEVERAL RANDOM 

VARIABLES

One Function of Several Random Variables

Let the random variable Z be defined as a function of several random 
variables: 

The cdf of Z is found by first finding the equivalent event of               
that is, the set                                                                   then  
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EXAMPLE 4.31 Sum of Two Random Variables 

Let Z = X + Y. Find FZ(z) and fZ(z) in terms of the joint pdf of X
and Y. 

The cdf of Z is 

The pdf of Z is 

Thus the pdf for the sum of two random variables is given by a superposition 
integral. If X and Y are 
independent random variables, then by Eq. (4.21) the pdf is given by the 
convolution integral of the margial pdf’s of X and Y : 
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pdf of Linear Transformations

We consider first the linear transformation of two random variables 

Denote the above matrix by A. We will assume A has an inverse, so each 
point (v, w) has a unique corresponding point (x, y) obtained from 

In Fig. 4.15, the infinitesimal rectangle and the parallelogram are equivalent 
events, so their probabilities must be equal. Thus 
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where dP is the area of the parallelogram. The joint pdf of V and W is thus given 
by 

where x an y are related to (v, w) by Eq. (4.56) It can 
be shown that                                so the “stretch factor” is

where |A| is the determinant of A. 
Let the n-dimensional vector Z be 

where A is an           invertible matrix. The 
joint of Z is then 



EXPECTED VALUE OF FUNCTIONS OF RANDOM VARIABLES

The expected value of Z = g(X, Y) can be found using the following 
expressions 
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*Joint Characteristic Function

The joint characteristic function of n random variables is defined as
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The inversion formula for the Fourier transform implies that the joint pdf is 
given by

If X and Y are jointly continuous random variables, then
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JOINTLY GAUSSIAN RANDOM VARIABLES

The random variables X and Y are said to be jointly Gaussian if their 
joint pdf has the form 

The  pdf is constant for values x and y for which the argument of the 
exponent is constant 
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When ρX,Y = 0, X and Y are independent ; when ρX,Y ≠ 0, the major axis of 

the ellipse is oriented along the angle 

Note that the angle is 45º when the variance are equal.
The marginal pdf of X is found by integrating fX,Y(x, y) over all y

that is, X is a Gaussian random variable with mean m1 and variance 
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n Jointly Gaussian Random Variables

The random variables X1, X2,…, Xn are said to be jointly Gaussian if their 
joint pdf is given by 

where x and m are column vectors defined by 

and K is the covariance matrix that is defined by 
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Transformations of Random Vectors

Let X1,…, Xn be random variables associate with some experiment, and let the 
random variables Z1,…, Zn be defined by n functions of X = (X1,…, Xn) :

.)()()( 2211 X        X      X nn gZgZgZ  

The joint cdf of Z1,…, Zn at the point z = (z1,…, zn) is equal to the 
probability of the region of x where 
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pdf of Linear Transformations

We consider first the linear transformation of two random variables 

Denote the above matrix by A. We will assume A has an inverse, so 
each point (v, w) has a unique corresponding point (x, y) obtained 
from 

In Fig. 4.15, the infinitesimal rectangle and the parallelogram are 
equivalent events, so their probabilities must be equal. Thus 





Stochastic Processes
Let      denote the random outcome of an experiment. To every such 
outcome suppose a waveform

is assigned.
The collection of such 
waveforms form a 
stochastic process. The 
set of          and the time 
index t can be continuous
or discrete (countably 
infinite or finite) as well.
For fixed             (the set of 
all experimental outcomes),              is a specific time function.
For fixed t,



),( tX

}{ k

Si 
),( tX

),( 11 itXX 

t
1

t
2

t

),(
n

tX 

),(
k

tX 

),(
2

tX

),(
1

tX







Fig. 14.1
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is a random variable. The ensemble of all such realizations
over time represents the stochastic
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process X(t). (see Fig 14.1). For example
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If X(t) is a stochastic process, then for fixed t, X(t) represents
a random variable. Its distribution function is given by

Notice that              depends on t, since for a different t, we obtain
a different random variable. Further 

represents the first-order probability density function of the 
process X(t).

})({),( xtXPtxFX 

),( txFX

dx
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For t = t1 and t = t2,  X(t) represents two different random variables
X1 = X(t1) and X2 = X(t2) respectively. Their joint distribution is 
given by 

and

represents the second-order density function of the process X(t).
Similarly                                             represents the nth order density
function of the process  X(t). Complete specification of the stochastic
process  X(t) requires the knowledge of                                               
for all                                and for all n. (an almost impossible task
in reality).
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Mean of  a Stochastic Process:

represents the mean value of a process X(t). In general, the mean of 
a process can depend on the time index t.

Autocorrelation function of a process X(t) is defined as 

and it represents the interrelationship between the random variables
X1 = X(t1) and X2 = X(t2) generated from the process X(t).             

Properties:

1.

2.                                              
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3.                  represents a nonnegative definite function, i.e., for any
set of constants 

Eq. (14-8) follows by noticing that                                                   
The function

represents the autocovariance function of the process X(t).
Example 14.1
Let 
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Stationary Stochastic Processes
Stationary processes exhibit statistical properties that are 

invariant to shift in the time index. Thus, for example, second-order
stationarity implies that the statistical properties of  the pairs 
{X(t1) , X(t2) } and {X(t1+c) , X(t2+c)} are the same for any c. 
Similarly first-order stationarity implies that the statistical properties 
of X(ti) and X(ti+c) are the same for any c.

In strict terms, the statistical properties are governed by the
joint probability density function. Hence a process is nth-order
Strict-Sense Stationary (S.S.S) if

for any c, where the left side represents the joint density function of 
the random variables                                                                    and
the right side corresponds to the joint density function of the random
variables                                                                                      
A process X(t) is said to be strict-sense stationary if (14-14) is 
true for all                  
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For a first-order strict sense stationary process,
from (14-14) we have

for any c. In particular c = – t gives 

i.e., the first-order density of X(t) is independent of t. In that case

Similarly, for a second-order strict-sense stationary process
we have from (14-14)

for any c. For c = – t2 we get  
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i.e., the second order density function of a strict sense stationary         
process depends only on the difference of the time indices                   
In that case the autocorrelation function is given by

i.e., the autocorrelation function of a second order strict-sense
stationary process depends only on the difference of the time               
indices 
Notice that (14-17) and (14-19) are consequences of the stochastic 
process being first and second-order strict sense stationary. 
On the other hand, the basic conditions for the first and second order 
stationarity – Eqs. (14-16) and (14-18) – are usually difficult to verify.
In that case, we often resort to a looser definition of stationarity,
known as Wide-Sense Stationarity (W.S.S), by making use of
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(14-17) and (14-19) as the necessary conditions. Thus, a process X(t)
is said to be Wide-Sense Stationary if
(i)
and
(ii)                                                                                                        

i.e., for wide-sense stationary processes, the mean is a constant and 
the autocorrelation function depends only on the difference between 
the time indices. Notice that (14-20)-(14-21) does not say anything 
about the nature of the probability density functions, and instead deal 
with the average behavior of the process. Since (14-20)-(14-21) 
follow from (14-16) and (14-18), strict-sense stationarity always 
implies wide-sense stationarity. However, the converse is not true in 
general, the only exception being the Gaussian process.
This follows, since if  X(t) is a Gaussian process, then by definition

are jointly Gaussian random
variables for any                 whose joint characteristic function 
is given by
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where                   is as defined on (14-9). If X(t) is wide-sense 
stationary, then using (14-20)-(14-21) in (14-22) we get

and hence if the set of time indices are shifted by a constant c to 
generate a new set of jointly Gaussian random variables                

then their joint characteristic          
function is identical to (14-23). Thus the set of random variables       
and              have the same joint probability distribution for all n and 
all c, establishing the strict sense stationarity of Gaussian processes 
from its wide-sense stationarity.

To summarize if X(t) is a Gaussian process, then
wide-sense stationarity (w.s.s)            strict-sense stationarity (s.s.s).

Notice that since the joint p.d.f of Gaussian random variables depends
only on their second order statistics, which is also the basis
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Systems with Stochastic Inputs
A deterministic system1 transforms each input waveform              into
an output waveform                                   by operating only on the 
time variable t. Thus a set of realizations at the input corresponding 
to a process X(t) generates a new set of realizations                at the 
output associated with a new process Y(t).
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Our goal is to study the output process statistics in terms of the input
process statistics and the system function.

1A stochastic system on the other hand operates on both the variables t and .
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Linear Systems: represents a linear system if

Let 

represent the output of a linear system.
Time-Invariant System: represents a time-invariant system if

i.e., shift in the input results in the same shift in the output also.
If          satisfies both (14-28) and (14-30), then it corresponds to 
a linear time-invariant (LTI) system.
LTI systems can be uniquely represented in terms of their output to 
a delta function
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Eq. (14-31) follows by expressing X(t) as

and applying (14-28) and (14-30) to                            Thus)}.({)( tXLtY 







 

 
)()()(  dtXtX

(14-31)

(14-32)

(14-33).)()()()(

)}({)(

})()({

})()({)}({)(

 

 

 

 

 

 

 

 

 

 













































dtXhdthX

dtLX

dtXL

dtXLtXLtY

By Linearity

By Time-invariance

then

LTI
















 

 

 

 

)()(

)()()(





dtXh

dXthtY
arbitrary

input

t

)(tX
t

)(tY

Fig. 14.6

)(tX )(tY



Output Statistics: Using (14-33), the mean of the output process
is given by

Similarly the cross-correlation function between the input and output
processes is given by

Finally the output autocorrelation function is given by
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In particular if  X(t) is wide-sense stationary, then we have
so that from (14-34)

Also                                       so that (14-35) reduces to

Thus X(t) and Y(t) are jointly w.s.s. Further, from (14-36), the output 
autocorrelation simplifies to

From (14-37), we obtain
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From (14-38)-(14-40), the output process is also wide-sense stationary.
This gives rise to the following representation

LTI system
h(t)

Linear system

wide-sense 
stationary process

strict-sense 
stationary process

Gaussian
process (also
stationary)

wide-sense 
stationary process.

strict-sense
stationary process
(see Text for proof )

Gaussian process
(also stationary)

)(tX )(tY

LTI system
h(t)

)(tX

)(tX

)(tY

)(tY

(a)

(b)

(c)

Fig. 14.8



Discrete Time Stochastic Processes:

A discrete time stochastic process Xn = X(nT) is a sequence of 
random variables. The mean, autocorrelation and auto-covariance 
functions of a discrete-time process are gives by

and

respectively. As before strict sense stationarity and wide-sense 
stationarity definitions apply here also.
For example, X(nT) is wide sense stationary if

and
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For a deterministic signal x(t), the spectrum is well defined: If             
represents its Fourier transform, i.e., if

then                 represents its energy spectrum. This follows from 
Parseval’s theorem since the signal energy is given by

Thus                       represents the signal energy in the band                  
(see Fig 18.1).
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However for stochastic processes, a direct application of (18-1) 
generates a sequence of random variables for every      Moreover,
for a stochastic process, E{| X(t) |2} represents the ensemble average
power (instantaneous energy) at the instant t. 

To obtain the spectral distribution of power versus frequency for 
stochastic processes, it is best to avoid infinite intervals to begin with, 
and start with a finite interval (– T,  T ) in (18-1). Formally, partial 
Fourier transform of a process X(t) based on (– T,  T ) is given by

so that 

represents the power distribution associated with that realization based
on (– T,  T ). Notice that (18-4) represents a random variable for every

and its ensemble average gives, the average power distribution 
based on (– T,  T ). Thus 
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represents the power distribution of X(t) based on (– T,  T ). For wide 
sense stationary (w.s.s) processes, it is possible to further simplify 
(18-5). Thus if X(t) is assumed to be w.s.s, then                                       
and (18-5) simplifies to

Let                   and proceeding as in (14-24), we get

to be the power distribution of the w.s.s. process X(t) based on 
(– T, T ). Finally letting                 in (18-6), we obtainT 
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to be the power spectral density of the w.s.s process X(t). Notice that 

i.e., the autocorrelation function and the power spectrum of a w.s.s
Process form a Fourier transform pair, a relation known as the 
Wiener-Khinchin Theorem. From (18-8), the inverse formula gives

and in particular for            we get 

From (18-10), the area under              represents the total power of the
process X(t), and hence             truly represents the power 
spectrum. (Fig 18.2). 
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If X(t) is a real w.s.s process, then                              so that

so that the power spectrum is an even function, (in addition to being
real and nonnegative).
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