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UNIT-I
Probability and Random Variable 
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Introduction to Set

• Set: A set is a well defined collection of objects. These objects are
called elements or members of the set. Usually uppercase letters are
used to denote sets.

• The set theory was developed by George Cantor in 1845-1918. Today,
it is used in almost every branch of mathematics and serves as a
fundamental part of present-day mathematics.

• In everyday life, we often talk of the collection of objects such as a
bunch of keys, flock of birds, pack of cards, etc.

• In mathematics, we come across collections like natural numbers,
whole numbers, prime and composite numbers.
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Laws in set theory

• A∩B = B∩A (Commutative law)

• (A∩B)∩C = A∩ (B∩C) (Associative law)

• Ф ∩ A = Ф (Law of Ф)

• U∩A = A (Law of ∪)

• A∩A = A (Idempotent law)

• A∩(B∪C) = (A∩B) ∪ (A∩C) (Distributive law) Here ∩ distributes over ∪

• Also, A∪(B∩C) = (AUB) ∩ (AUC) (Distributive law) Here ∪ distributes 
over ∩
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Probability

• Experiment:

In probability theory, an experiment or trial (see below) is any
procedure that can be infinitely repeated and has a well-defined set
of possible outcomes, known as the sample space.

• An experiment is said to be random if it has more than one possible
outcome, and deterministic if it has only one.

• A random experiment that has exactly two (mutually exclusive)
possible outcomes is known as a Bernoulli trial.
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Experiment
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Random Experiment

• An experiment is a random experiment if its outcome cannot be
predicted precisely. One out of a number of outcomes is possible in
a random experiment.

• A single performance of the random experiment is called a
trial.Random experiments are often conducted repeatedly, so that
the collective results may be subjected to statistical analysis.

• A fixed number of repetitions of the same experiment can be
thought of as a composed experiment, in which case the individual
repetitions are called trials.

• For example, if one were to toss the same coin one hundred times
and record each result, each toss would be considered a trial within
the experiment composed of all hundred tosses.
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• Relative Frequency:

Random experiment with sample space S. we shall assign non-
negative number called probability to each event in the sample space.
Let A be a particular event in S. then “the probability of event A” is
denoted by P(A).

• Suppose that the random experiment is repeated n times, if the event
A occurs nA times, then the probability of event A is defined as
“Relative frequency

• Event A is defined as

Relative frequency, Experiments 
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Sample Space

• Sample Space: The sample space is the collection of all possible
outcomes of a random experiment. The elements of are called
sample points. A sample space may be finite, countable infinite or
uncountable.

• A list of exhaustive *don’t leave anything out] and mutually
exclusive outcomes [impossible for 2 different events to occur in
the same experiment] is called a sample space and is denoted by S.

• The outcomes are denoted by O1, O2, …, Ok

• Using notation from set theory, we can represent the sample space
and its outcomes as:

S = {O1, O2, …, Ok}
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Sample Space

• Given a sample space S = {O1, O2, …, Ok}, the probabilities assigned 
to the outcome must satisfy these requirements:

(1) The probability of any outcome is between 0 and 1

i.e. 0 ≤ P(Oi) ≤ 1 for each i, and

(2) The sum of the probabilities of all the outcomes equals 1

i.e. P(O1) + P(O2) + … + P(Ok) = 1
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Discrete and Continuous Sample Spaces

• Probability assignment in a discrete sample space: Consider a finite
sample space . Then the sigma algebra is defined by the power set of
S. For any elementary event , we can assign a probability such that,
For any event , we can define the probability
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Continuous sample space

• Suppose the sample space S is continuous and uncountable. Such a
sample space arises when the outcomes of an experiment are
numbers. For example, such sample space occurs when the
experiment consists in measuring the voltage, the current or the
resistance.
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Events

• The probability of an event is the sum of the probabilities of the
simple events that constitute the event.

• E.g. (assuming a fair die) S = {1, 2, 3, 4, 5, 6} and P(1) = P(2) = P(3) =
P(4) = P(5) = P(6) = 1/6

• Then: P(EVEN) = P(2) + P(4) + P(6) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2
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Types of Events

1. Exhaustive Events:

A set of events is said to be exhaustive, if it includes all the possible
events. Ex. In tossing a coin, the outcome can be either Head or Tail
and there is no other possible outcome. So, the set of events{ H , T }
is exhaustive.

2. Mutually Exclusive Events:

Two events, A and B are said to be mutually exclusive if they cannot
occur together. i.e. if the occurrence of one of the events precludes
the occurrence of all others, then such a set of events is said to be
mutually exclusive. If two events are mutually exclusive then the
probability of either occurring is
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Types of Events

3. Equally Likely Events:

If one of the events cannot be expected to happen in preference to
another, then such events are said to be Equally Likely Events.( Or)
Each outcome of the random experiment has an equal chance of
occurring.

Ex. In tossing a coin, the coming of the head or the tail is equally
likely

4. Independent Events:

Two events are said to be independent, if happening or failure
of one does not affect the happening or failure of the other.
Otherwise, the events are said to be dependent.
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Probability Definitions and Axioms

Relative frequency Definition:

Consider that an experiment E is repeated n times, and let A and B be
two events associated with E. Let nA and nB be the number of times
that the event A and the event B occurred among the n repetitions
respectively. The relative frequency of the event A in the 'n'
repetitions of E is defined as

f( A) = nA /n
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Axioms of Probability

• The Relative frequency has the following properties:

• 0 ≤f(A) ≤ 1

• f(A) =1 if and only if A occurs every time among the n repetitions.

• If an experiment is repeated n times under similar conditions and 
the event A occurs in nAtimes, then the probability of the event A is 
defined as
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Joint probability

• Joint probability:

Joint probability is defined as the probability of both A and B taking 
place, and is denoted by P (AB) or P(A∩B) .

• probability notation: P(AB) = P(A | B) * P(B)
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Conditional Probability

• Conditional probability is used to determine how two events are
related; that is, we can determine the probability of one event given
the occurrence of another related event.

• Experiment: random select one student in class.

• P(randomly selected student is male)

• P(randomly selected student is male/student is on 3rd row)

• Conditional probabilities are written as P(A | B) and read as “the
probability of A given B” and is calculated as
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Bayes’ Theorem

• Bayes’ Law is named for Thomas Bayes, an eighteenth century
mathematician.

• In its most basic form, if we know P(B | A),

• we can apply Bayes’ Law to determine P(A | B)

• Bayes' theorem centers on relating different conditional
probabilities. A conditional probability is an expression of how
probable one event is given that some other event occurred
(a fixed value).

• For a joint probability distribution over events A and B ,
P(A^B), the conditional probability of given is defined as
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Bayes’ theorem

• Note that P(A^B) is the probability of both A and B occurring, which
is the same as the probability of A occurring times the probability
that B occurs given that A occurred P(B/A)*P(A)
• Using the same reasoning P(A^B), is also the probability that B
occurs times the probability that A occurs given that B occurs:
P(A/B)*P(B) The fact that these two expressions are equal leads to
Bayes' Theorem. Expressed mathematically, this is:
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• The probabilities P(A) and P(AC) are called prior probabilities
because they are determined prior to the decision about taking the
preparatory course.

• The conditional probability P(A | B) is called a posterior probability
(or revised probability), because the prior probability is revised
after the decision about taking the preparatory course.

Bayes’ theorem
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Random variable

• A (real-valued) random variable, often denoted by X (or some other
capital letter), is a function mapping a probability space (S, P) into
the real line R. This is shown in next slide.

• Associated with each point s in the domain S the function X assigns
one and only one value X(s) in the range R. (The set of possible
values of X(s) is usually a proper subset of the real line; i.e., not all
real numbers need occur. If S is a finite set with m elements, then
X(s) can assume at most m different values as s varies in S.)
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RV in graphical representation
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RV in graphical representation
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Discrete  random variable 

• A random variable is called a discrete random variable is piece-wise
constant. Thus is flat except at the points of jump discontinuity. If
the sample space is discrete the random variable defined on it is
always discrete.
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Continuous random variable 

• X is called a continuous random variable if is an absolutely continuous
function of x. Thus is continuous everywhere on and exists
everywhere except at finite or countable infinite points.
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Mixed random variable 

• X is called a mixed random variable if has jump discontinuity at
countable number of points and it increases continuously at least at
one interval of values of x. For a such type RV X.
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UNIT-II
Distribution and Density Functions
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Random Variable

Review of the concepts
1. Random Experiment
2. Random Event 
3. Outcomes
4. Sample Space
5. Random Variable:

Mapping of sample space to a real line
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Mapping of sample space to a real line

Random Variable

31



Distribution function
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Properties of CDF
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Properties of CDF (contd..)
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Properties of CDF (contd..)
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Probability density function
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Probability density function (contd..)
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Properties of PDF
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Gaussian Probability density function
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Gaussian Probability density function (contd..)
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Gaussian Probability density function (contd..)
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Gaussian Probability density function (contd..)
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Gaussian Probability density function (contd..)
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Binomial Probability density function
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Binomial Probability density function (contd..)
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Binomial Probability density function (contd..)

46



Poisson Probability density function
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Poisson Probability density function (contd..)
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Uniform Probability density function
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Uniform Probability density function (contd..)
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Uniform Probability density function (contd..)
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Exponential Probability density function
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Exponential Pdf (contd..)
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Exponential Pdf (contd..)
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Rayleigh Probability density function
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Rayleigh Probability density function (contd..)
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Rayleigh Probability density function (contd..)
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Conditional distribution function
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Properties of Conditional distribution function
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Conditional density function
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Properties of Conditional density function
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Methods of conditioning event
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Methods of conditioning event (contd..)
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Methods of conditioning event (contd..)
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Methods of conditioning event (contd..)
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Methods of conditioning event (contd..)
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Moments about origin
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Moments about mean
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Characteristic function
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Moment generating function
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Moment generating function
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Monotonically increasing RV
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Monotonically increasing RV (contd..)
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Nonmonotonic Transformation of a RV
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Nonmonotonic Transformation of a RV (contd..)
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Nonmonotonic Transformation of a RV (contd..)
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Transformation of a DiscreteRV
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Transformation of a DiscreteRV (contd..)
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Expected value of a RV
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Expected value of a RV (contd..)
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Conditional Expected value of a RV
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Conditional Expected value of a RV (contd..)
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Moments about origin
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Moments about origin (contd..)
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Moments about mean
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Moments about mean (contd..)
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Variance 
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Variance (contd..) 
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Skew 
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Skew (contd..)

90



UNIT-III
Multiple Random Variables and 

Operations 
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Vector random variables

• There are many cases where the outcome is a vector of numbers.
We have already seen one such experiment, in, where a dart is
thrown at random on a dartboard of radius r. The outcome is a pair
(X, Y) of random variables that are such that X2 + Y2 ≤ r2.

• we measure voltage and current in an electric circuit with known
resistance. Owing to random fluctuations and measurement error,
we can view this as an outcome (V, I)of a pair of random variables.

• Mapping the sample space to joint sample space

Comparision of sample space s with sj
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Joint distribution function

• Let X and Y be random variables. The pair (X, Y) is then called a (two-
dimensional) random vector.

• The joint distribution function (joint cdf) of (X, Y) is defined as F(x, y) 
= P(X ≤ x, Y ≤ y) for x, y ∈ R.

• Assume the joint sample space SJ has only three possible elements 
(1,1),(2,1),(3,3).The probabilities of the elements are to be 
P(1,1)=0.2,P(2,1)=0.3 ,P(3,3)=0.5.We find FX,Y(X,Y)

• In constructing joint distribution function we observe that has no
elements for x<1,y<1.only at the point (1,1)does the function assume
a step value.

• So long as x≥1,y≥1 this probability is maintained.For larger x and y
the point(2,1) produces a second stair step of 0.3 which holds the
region x≥2,y≥1.The second step is added to the first.Finally third step
of 0.5 is added to the two for x≥3,y≥3
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Properties of Joint Distribution

• Properties: 

1) 

Note that 

2)

3)

is right continuous in both the variables4)
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Properties of joint distribution

5)

6)

Called marginal cumulative distribution function
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Marginal distribution functions

• The distribution of one random variable can be obtained by setting
the other value to infinity in FX,Y(x,y). The functions obtained in this
manner FX(x),FY(y) are called marginal distribution functions.

• Example:

FX,Y(x,y)=P(1,1)u(x-1)u(y-1)+P(2,1)u(x-2)u(y-1)+ P(3,3)u(x-3)u(y-3)

P(1,1)=0.2, P(2,1)=0.3, P(3,3)=0.5 if we set y=∞ then

FX(x)= 0.2u(x-1)+0.3u(x-2)+ 0.5u(x-3)

similarly

FY(y)= 0.2u(y-1)+0.3u(y-1)+ 0.5u(y-3)

=0.5u(y-1)+0.5u(y-3)
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Marginal distribution functions

• Consider two jointly distributed random variables  and with the 
joint CDF

1) Find the marginal  CDFs

2) Find the probability  P(1<x≤2, 1<y≤2)

2
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Marginal distribution functions
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Joint Probability Density Function

• If and are two continuous random variables and their joint
distribution function is continuous in both and then we can define
joint probability density function by

provided it exists.

Clearly

2
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Marginal density function

• The marginal CDF and pdf are same as the CDF and pdf of the
concerned single random variable. The marginal term simply refers
that it is derived from the corresponding joint distribution or
density function of two or more jointly random variables.

• With the help of the two-dimensional Dirac Delta function, we can
define the joint pdf of two discrete jointly random variables. Thus
for discrete jointly random variables and

, ,
 ( , ) .

( , ) ( , ) ( ,  )

i j X Y
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x y R R

f x y p x y x x y y
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Marginal density function

• The joint density function

2

,
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Conditional distribution 

• We discussed the conditional CDF and conditional PDF of a random
variable conditioned on some events defined in terms of the same
random variable. We observed that
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Conditional density function

• Suppose and are two discrete jointly random variable with the joint 
PMF  fxy(x,y)  . The conditional PMF of y given x=x is denoted by and 
defined as 

)/(
/

xyf
xy
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Conditional Probability Distribution Function

• Consider two continuous jointly random variables and with the
joint probability distribution function We are interested to find the
conditional distribution function of one of the random variables on
the condition of a particular value of the other random variable.

• We cannot define the conditional distribution function of the
random variable on the condition of the event by the relation

)(

),(

)/()/(
/

xXP

xXyYP

xXyYPxyF
XY
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Point conditioning

• First consider the case when X and Y are both discrete. Then the 
marginal pdf's

• fY(y)=P(Y=y)         fX(x)=P(X=x)

• The joint pdf is, similarly

fX,Y(x,y)=P(X≤x,Y≤y)

• Conditional density function is given by

fX(x/B)=
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Point conditioning (contd..)

• The conditional pdf of the conditional distribution Y|X is

• Distribution function of one random variable X conditioned by that   
second variable Y has some specific values of y. This is called point 
conditioning
• B={y-Δy<Y≤y+Δy}

Where Δy is a small quantity that we eventually let approach 0.
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Point conditioning (contd..)

Fx(x/ y-Δy<Y≤y+Δy)= 
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Interval Conditioning

• Distribution function of one random variable X conditioned by that 
second variable Y has some specific values of y. This is called point 
conditioning B={ya<Y≤yb}

• P(x1,y1)=2/15,P(x2,y1)=3/15.etc.since P(y3)=4/15+5/15=9/15 find 
fx(x/y=y3)
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Statistical independence

• Let and be two random variables characterized by the joint distribution 
function

and the corresponding joint density function 
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Sum of two random variables

• We are often interested in finding out the probability density function 
of a function of two or more RVs

•The received signal by a communication receiver is given by 

• where is received signal which is the superposition of the message 
signal and the noise.
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Sum of two random variables

corresponding to each z.        We can find a variable subset  
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Central Limit Theorem 

• Consider n independent random variables x1,x2,x3……xn ,The mean 
and variance of each of the random variables are assumed to be 
known. Suppose E[x]=µx var(x)=ςx

2 and . Form a random variable

YN=X1+X2+…….XN

The mean and variance of YN are given by

E[yn]= µx 1 + µx 2 + µx 3………. + µx n
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Central Limit Theorem (contd..)

The CLT states that under very general conditions          

converges in distribution to                as 

1. The random variables are independent and identically distributed.

2.    The random variables are independent with same mean and 
variance, but not identically distributed. 

3.    The random variables are independent with different means and 
same variance and not identically distributed. 

4.    The random variables are independent with different means and 
each variance being neither too small nor too large. 

n
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Expected Values of Random Variables
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• If g(x,y) is a function of a continuous random variables X and Y then 
then the expected value of is given by 
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Example

• Consider the discrete random variables  x and y. The joint probability 
mass function of the random variables are tabulated in Table . Find the 
joint expectation of  g(x,y)=xy.

37.0

01.02135.011

),(),(][





  
x y

XY
yxpyxgXYE
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Properties

• Expectation is a linear operator. We can generally write 

E[a1g1(x,y)+a2g2(x,y)=a1E(g1(x,y)+a2E(g2(x,y))

E[xy+5logexy]=E[xy]+5E[logexy]

• If  x and y are independent random variables and 
g(x,y)=g1(x,y)×g2(x,y) then E[g(x,y)]=E[g1(x,y)]×E[g2(x,y]
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Joint moments about the origin

For two continuous random variables X and Y, the joint moment 
of order m+n is defined as 

dxdyyxfyxYXE
XY
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Covariance of two random variables 

The covariance of two random variables X and Y is defined as 

Cov(X, Y) is also denoted as  ςXY.

Cov(X,Y)=E(X-μx)E(Y- μy)
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Uncorrelated random variables 

Two random variables are called uncorrelated if

Cov(X,Y)=0

Which also means E(XY)=μxμy

If are independent random variables, then

Thus two independent random variables are always uncorrelated. 

)()(),( yfxfyxf
YXXY
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joint characteristic function

The joint characteristic function of two random variables X and Y is 
defined by 

If and are jointly continuous random variables, then
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Joint moments about the origin

For two discrete random variables X and Y, the joint moment of order 
m+n is defined as 

And the joint central moment of order  m+n is defined as
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Covariance of two random variables 

The covariance of two random variables X and Y is defined as 

Cov(X, Y) is also denoted as  ςXY.

Cov(X,Y)=E(X-μx)E(Y- μy)
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Two Random variables

Two random variables X and Y are called jointly Gaussian if their joint 
probability density 
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-∞<x<∞,-∞<y<∞

means μx and μy

variances  ςx
2 ςy

2

correlation coefficient ρXY

We denote the jointly Gaussian random variables and 
with these parameters as (X,Y)~ N(μx,μy,ςx

2,ςy
2,ρXY )
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Transformations of multiple random variables

The joint density function of new random variable  Yi=T(X1,X2,……XN) 
i=1,2,3….n

The random variable Xj can be obtained from inverse transformation
X j=Tj

-1(Y1,Y2,…..YN)
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• Assuming that the partial derivatives                  exist at every point 
(y1, y2,…,yk=n). Under these assumptions, we have the following 
determinant J 

called as the Jacobian of the transformation specified by (**). 
Then, the joint pdf of Y1, Y2,…,Yk can be obtained by using the 
change of variable technique of multiple variables.

ii y/g 
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• As a result, the new p.d.f. is defined as follows:
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Transformations of multiple random variables

126



Linearly transformation of Gaussian RV

• Linearly transforming set of Gaussian random variables X1,X2,…..XN

for which the joint density function exists. The new variables 
Y1,Y2,…..YN are

• Y1=a11X1+a12X2+……+a1NXN

• Y2=a21X1+a22X2+……+a2NXN.

• YN=aN1X1+aN2X2+……+aNNXN

=

[Y]=[T][X]   

Xi=Ti-1(Y1…..YN)=ai1Y1+ai2y2+….+aiNYN
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UNIT-IV
Stochastic Processes: Temporal 

Characteristics 
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Random Process 

 The concept of random variable was defined previously as mapping 
from the Sample Space S to the real line as shown below 

Sample Space  

S

2ns 
1ns 

ns

1ns 

1nx 

2nx 

nx

1nx 

 A random process is a process (i.e.,
variation in time or one dimensional
space) whose behavior is not
completely predictable and can be
characterized by statistical laws.

 Examples of random processes
Daily stream flow
Hourly rainfall of storm events
Stock index
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 The concept of random
process can be extended to
include time and the outcome
will be random functions of
time as shown beside
Where s is the outcome of
an experiment

 The functions

are one realizations of many of
the random process X(t)

2 1 1
( ), ( ), ( ), ( ),

n n n n
x t x t x t x t

  
 

 A random process also represents a random variable when time is fixed

1
X (t ) is a random variable 

Random Process (Contd..) 

),( stx
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Classification of Random Process

Classification of random process

Continuous random process

Discrete random process

Continuous random sequence

Discrete random sequence

Continuous time t => x(t) = Random process
Discrete time n => x[n] = Random sequence
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Continuous Random Process

 Continuous random process

Continuous time t

x(t) = Continuous 
Random process
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Discrete Random Process

 Discrete random process

Continuous time t

x(t) = Discrete Random 
process
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Continuous Random Sequence

 Continuous random sequence

discrete time n

x(n) = Continuous 
Random sequence
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Discrete Random Sequence

 Discrete random sequence

discrete time n

x(n) = discrete Random 
sequence
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Random Process Concept

0
( ) co s ( ),X t A t  

0
, , : r .v .'sA  

 Deterministic random process
Future values of any sample function can be predicted exactly from 
the past values

 Non deterministic random process
 Future values of any sample function can not be predicted exactly 
from the past values
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What is a distribution and density?

 A distribution characterises the probability (mass) associated with each 
possible outcome of a stochastic process

 Distributions of discrete data characterised by probability mass functions

 Distributions of continuous data are characterised by probability density 
functions (pdf)

 For RVs that map to the integers or the real numbers, the cumulative 
density function (cdf) is a useful alternative representation

1)( 
i

i
xXP

1)( 





dxxf

)( xXP
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x

)( xf

x

0 1 2 3
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Stationary and Independence

 Stationary Random Process
 all its statistical properties do not change with time

 Non Stationary Random Process
 not stationary
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 First-order densities of a random process

 A stochastic process is defined to be completely or totally
characterized if the joint densities for the random variables

are known for all times and all n.)(),(),(
21 n

tXtXtX  n
ttt ,,,

21


Stationary and Independence (Contd..)

 For a specific t, X(t) is a random variable with distribution 

 The function  F(x,t) is defined as the first-order distribution of the 
random variable X(t). Its derivative with respect to x

is the first-order density of X(t).

])([),( xtXptxF 

x

txF
txf






),(
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 If the first-order densities defined for all time t, i.e. f(x,t), are all the
same, then f(x,t) does not depend on t and we call the resulting
density the first-order density of the random process {x(t)} ; otherwise,
we have a family of first-order densities.

 The first-order densities (or distributions) are only a partial
characterization of the random process as they do not contain
information that specifies the joint densities of the random variables
defined at two or more different times.

Stationary and Independence (Contd..)
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 For t = t1 and t = t2, X(t) represents two different random variables
X1 = X(t1) and X2 = X(t2) respectively. Their joint distribution is given by

and

represents the second-order density function of the process X(t).

 Similarly represents the nth order density
function of the process X(t).

})(,)({),,,(
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Stationary and Independence (Contd..)
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Mean and variance of a random process 

 The first-order density of a random process, f(x,t), gives the
probability density of the random variables X(t) defined for all time t.
The mean of a random process, mX(t), is thus a function of time specified
by







ttttX

dxtxfxXEtXEtm ),(][)]([)(

 For the case where the mean of X(t) does not depend on t, we have

 The variance of a random process, also a function of time, is defined 
by

constant) (a  )]([)(
XX

mtXEtm 
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 The random process X(t) can be classified as follows:

Stationary and Independence 

 First-order stationary

 A random process is classified as first-order stationary if its first-order
probability density function remains equal regardless of any shift in time 
to its time origin.

 If we Xt1let represent a given value at time  t1then we define a first-
order stationary as one that satisfies the following equation: 

X t1 X t1
f (x ) =  f (x +  τ ) 

 The physical significance of this equation is that our density function, 

X t1
f (x ) is completely independent of  t1

and thus any time shift  t  

For first-order stationary the mean is a constant, independent of 
any time shift 
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Second-order stationary

A random process is classified as second-order stationary if its second-
order probability density function does not vary over any time shift
applied to both values.

 In other words, for values Xt1 and Xt2 then we will have the following
be equal for an arbitrary time shift t

X t1 t2 X t1 + τ t2 + τ
f (x ,x ) =  f (x ,x ) 

From this equation we see that the absolute time does not affect our
functions, rather it only really depends on the time difference between
the two variables.

Stationary and Independence (Contd..) 
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 For a second-order stationary process, we need to look at the
autocorrelation function ( will be presented later) to see its most
important property.

 Since we have already stated that a second-order stationary
process depends only on the time difference, then all of these types
of processes have the following property:

X X

X X

R (t,t+ τ )  =  E [X (t)X (t+ τ )]

                 =  R (τ )

Stationary and Independence (Contd..) 
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Wide-Sense Stationary (WSS)

 A process that satisfies the following:

 E X (t)  =  X  =  co n s tan t

  X X
E X (t)X (t +  τ )  =  R (τ )

is a Wide-Sense Stationary (WSS)

Second-order stationary Wide-Sense Stationary

The converse is not true in general

The mean is a constant and the autocorrelation function depends only 
on the difference between the time indices
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Similarly 
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Wide-Sense Stationary (Example)

So given X(t) is WSS 

Constant 
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Nth order and Strict-Sense Stationary 

 In strict terms, the statistical properties are governed by the joint
probability density function. Hence a process is nth-order Strict-Sense
Stationary (S.S.S) if

 For any c, where the left side represents the joint density function of
the random variables
and the right side corresponds to the joint density function of the random
variables

 A process X(t) is said to be strict-sense stationary if equation (1)
true for all

)1(),,  ,,,(),,  ,,,(
21212121
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A stationary random process for which time averages equal ensemble
averages is called an ergodic process:

Ergodic Process
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In practice, we cannot
compute with the limits, but
instead the quantities.

Similar quantities are often
computed as estimates of
the mean, variance, and
autocorrelation.

Ergodic Process (Contd..)

It is common to assume that a given sequence is a sample sequence of
an ergodic random process, so that averages can be computed from a
single sequence.
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Time Average and Ergodicity

 The time average of a quantity is defined as

Here A is used to denote time average in a manner analogous to E
for the statistical average.

 The time average is taken over all time because, as applied to random
processes, sample functions of processes are presumed to exist for all
time.

1
[ ] lim [ ]

2

T

TT

A d t
T  
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 Let  x(t) be a sample of the random process X(t) were the lower case 
letter imply a sample function.

We define the mean value  x  =  A x (t)

( a lowercase letter is used to imply a sample function)  
and the time autocorrelation function 

X X
(τ ) as follows:

 
T

TT   

1
x  =  A x (t)  =  lim x (t)  d t

2 T  


 X X
(τ ) =  A x (t)x (t +  τ )

T

TT   

1
= lim x (t)x (t  +  τ )  d t

2 T  


 For any one sample function  ( i.e.,  x(t) )  of the random process X(t), 
the last two integrals simply produce  two numbers. 

x A number  for the average
X X

(τ )

for a specific value of  

and a number  for

Time Average and Ergodicity (Contd..)
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 Since the sample function x(t) is one out of  other samples functions 
of the random process X(t), 

 The average x
X X

(τ )and the autocorrelation are random variables

 By taking the expected value  for x
X X

(τ )and ,we obtain
T

TT   

1
E [x ] =  E [A [x (t)]]  =  E lim x (t)  d t

2 T  

 

 
 


T

TT   

1
lim E [x (t)]  d t

2 T  

 

T

TT   

1
lim X  d t 

2 T  

  T   

=  lim  X (1 )
 

=  X

T

X X
TT   

1
E [ (τ )]  =  E  [A [x (t)x (t +  τ )]  ]   =  E lim x (t )x (t +  τ ) d t

2 T  

 


 
 



T T

X X X X
T TT   T   

1 1
=  lim E [x (t)x (t  +  τ )]  d t  =  lim R (τ )  d t  =  R (τ )

2 T 2 T    
 

Time Average and Ergodicity (Contd..)
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1
( ) [ ( ) ( ) ] lim ( ) ( )

2

T

x y
TT

A x t y t x t y t d t
T

  
 

    

( ) ( )
x x X X

x X
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Time Average and Ergodicity (Contd..)

 Time cross correlation 

 Ergodic  =>

 Jointly Ergodic  =>  Ergodic X(t) and Y(t)

)()( 
XYxy

R
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Introduction to Autocorrelation       

 Autocorrelation occurs in time-series studies when the errors
associated with a given time period carry over into future time periods.

 For example, if we are predicting the growth of stock dividends, an
overestimate in one year is likely to lead to overestimates in
succeeding years.

 Times series data follow a natural ordering over time.

 It is likely that such data exhibit intercorrelation, especially if the time
interval between successive observations is short, such as weeks or
days.
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 We expect stock market prices to move or move down for several days
in succession.

 We experience autocorrelation when

 Tintner defines autocorrelation as ‘lag correlation of a given series
within itself, lagged by a number of times units’ whereas serial
correlation is the ‘lag correlation between two different series’.

Introduction (contd..)      

0)( 
ji

uuE
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 The autocorrelation function of a random process X(t) is the correlation 

 1 2
E X X of two random variables 

1 1
X =  X (t ) 2 2

X =  X (t )and 

by the process at times  t1  and  t2 

 X X 1 2 1 2
R (t ,t )  =  E X (t )X (t )

 Assuming a  second-order stationary process

 X X
R (t, t  +  τ ) =  E X (t)X (t +  τ )  X X

R (τ ) =  E X (t)X (t +  τ )

Autocorrelation and its Properties
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 Autocorrelation : 

 The value of x() at  equal to 0 is the variance, x
2

    


T

0T
x

dt x-τ)x(t.x-x(t)
T

1
Lim)(

 The autocorrelation, or auto covariance, describes the general 
dependency of x(t) with its value at a short time later,  x(t+)

time, t

x(t)



T

 Normalized auto-correlation  : R()= R(0)= 1

Autocorrelation and its Properties (Contd..)

x()/x
2
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 The autocorrelation for a random process eventually decays to
zero at large 

R()

Time lag, 

1

0

 The autocorrelation for a sinusoidal process (deterministic) is a
cosine function which does not decay to zero

Autocorrelation and its Properties (Contd..)
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 The area under the normalized autocorrelation function for the
fluctuating wind velocity measured at a point is a measure of the
average time scale of the eddies being carried passed the
measurement point, say T1

R()

Time lag, 

1

0

 If we assume that the eddies are being swept passed at the mean
velocity,U.T1 is a measure of the average length scale of the eddies.
This is known as the ‘integral length scale’, denoted by lu





0

1
)dR(T 

Autocorrelation and its Properties (Contd..)
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(5 )  s ta t io n a ry  ( )  h a s  a  p e r io d ic  c o m p o n e n tX t

( )  h as  a  p e rio d ic  co m p o n en t w ith  th e  sam e  p e rio d .
X X

R 

Autocorrelation and its Properties (Contd..)

 Properties of Autocorrelation function

161



 Cross-correlation 

    


T

0T
xy

dt y-τ)y(t.x-x(t)
T

1
Lim)(c

 The cross-correlation function describes the general dependency 
of x(t) with another random process y(t+), delayed by a time 
delay, 

time, t

x(t)



T

time, t

y(t)

T

x

y

Cross-correlation  
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Correlation coefficient 

 The correlation coefficient, , is the covariance normalized by the 
standard deviations of x and y

When x and y are identical to each other, the value of  is +1 (full
correlation)

When y(t)=x(t), the value of  is  1

In general,  1<  < +1

yx
.σσ

(t)(t).y'x'
ρ 

 Correlation coefficient  
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 Correlation - application : 

 The fluctuating wind loading of a tower depends on the correlation 
coefficient between wind velocities and hence wind loads, at 
various heights 

For heights, z1, and z2 

: 
)(z). σ(zσ

)(z).u'(zu'
)z,ρ(z

2u1u

21

21


z1

z2

Application of correlation
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Properties of Cross Correlation

( ) [ ( ) ( )]
X Y

R E X t Y t  
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2
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1
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2
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Properties of cross-correlation function of jointly w.s.s. r.p.’s:
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Example of Cross Correlation

0
, : r .v .'s co n s tA B  

2 2 2
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0 0 0 0
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( ) : w .s .s .X t
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( ) : w .s .s .Y t
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Example of Cross Correlation
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 Covariance 

   



T

0T
xy

dt y-y(t).x-x(t)
T

1
Lim(t)y(t).x(0)c

 The covariance is the cross correlation function with the time 
delay, , set to zero

 Note that here x'(t) and y'(t) are used to denote the fluctuating 
parts of x(t) and y(t) (mean parts subtracted)

Covariance  
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Auto Covariance  

 The auto covariance Cx(t1,t2) of a random process X(t) is defined as the 
covariance of X(t1) and X(t2)

Cx(t1,t2)=E[{X(t1)-mx(t1)}{X(t2)-mx(t2)}]

Cx(t1,t2) = Rx(t1,t2)-mx(t1)mx(t2)

 The variance of X(t) can be obtained from Cx(t1,t2)

VAR[X(t)] = E[(X(t)-mx(t))2] = Cx(t,t)

 The correlation coefficient of X(t) is given by
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Auto Covariance Example#1  

Example:

Let X(t) = Acos2πt, where A is some random variable
The mean of X(t) is given by

The autocorrelation is

And the autocovariance
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Auto Covariance Example#2  

Let X(t) = cos(ωt+θ), where θ is uniformly distributed in the interval (-π, π).
The mean of X(t) is given by

The autocorrelation and autocovariance are then

0)cos(
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Example:
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Cross Covariance  

 The cross covariance Cx,y(t1,t2) of a random process X(t) and Y(t) is 
defined as

Cx,y(t1,t2)=E[{X(t1)-mx(t1)}{Y(t2)-my(t2)}]

Cx(t1,t2) = Rx,y(t1,t2)-mx(t1)my(t2)

 The process X(t) and Y(t) are said to be uncorrelated if

Cx,y(t1,t2) = 0 for all t1, t2
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Random sequence

R a n d o m  S e q u e n c e  (= D is c re te -t im e  R .P )

( ) [ ]
s

X n T X n

M e a n ( [ ] )E X n

( , ) ( [ ] [ ])
X X

R n n k E X n X n k  

( , ) { ( [ ] [ ])( [ ] [ ] )}

                    ( , ) [ ] [ ]

X X

X X

C n n k E X n X n X n k X n k

R n n k X n X n k

     

   

( , ) ( [ ] [ ])
X Y

R n n k E X n Y n k  

( , ) { ( [ ] [ ])( [ ] [ ])}

                    ( , ) [ ] [ ]

X Y

X Y

C n n k E X n X n Y n k Y n k

R n n k X n Y n k
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 Let X(t) be a random process and let X(t1), X(t2), ….X(tn) be the random
variables obtained from X(t) at t=t1,t2……..tn sec respectively

 Let all these random variables be expressed in the form of a matrix

 Then, X(t) is referred to as normal or Gaussian process if all the
elements of X are jointly Gaussian

Gaussian Random Process
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Gaussian Random Process

( ) ,X t t    - c o n t in u o u s  r .p .
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1 1
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Gaussian Random Process
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Properties of Gaussian Process

 If a gaussian process X(t) is applied to a stable linear filter, then the
random process Y(t) developed at the output of the filter is also
gaussian.

 Considering the set of random variables or samples X(t1),
X(t2),…..X(tn) obtained by observation of a random process X(t) at
instants t1,t2,…….tn, if the process X(t) is gaussian, then this set of
random variables are jointly gaussian for any n, with their n-fold joint
p.d.f. being completely determined by the set of means.

mx(ti) = E[X(ti)] for i=1,2,….n

and the set of auto covariance function

Cxx(t1,t2) = E[{X(t1)-E[X(t1)]}{X(t2)-E[X(t2)]}]

 If a gaussian process is wide sense stationary, then the process is also
stationary in the strict sense

 If the set of random variables X(t1),X(t2)…X(tn) are uncorrelated then
they are statistically independent

177



Poisson Random Process

 we introduced Poisson arrivals as the limiting behavior
of Binomial random variables

where

,2 ,1 ,0      ,
!" duration of interval 
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 It follows that

since in that case

 From the above equations, Poisson arrivals over an interval form
a Poisson random variable whose parameter depends on the duration
of that interval.

 The Bernoulli nature of the underlying basic random arrivals, events
over non overlapping intervals are independent. We shall use these two
key observations to define a Poisson process formally.
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Poisson Random Process (contd..)

179



and
(ii) If the intervals (t1, t2) and (t3, t4) are non overlapping, then the random 
variables n(t1, t2) and n(t3, t4) are independent. 
Since n(0, t) ~             we have

and
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 Definition: X(t) = n(0, t) represents a Poisson process if
(i) the number of arrivals n(t1, t2) in an interval (t1, t2) of length t = t2 – t1

is a Poisson random variable with parameter
Thus
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But

and hence the left side of above equation can be rewritten as 

Similarly 
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 To determine the autocorrelation function                     let t2 > t1 , 
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 Notice that the Poisson 
process X(t) does not 
represent a wide 
sense stationary process.

 Define a binary level process

that represents a telegraph signal Notice that the transition
instants {ti} are random Although X(t) does not represent a
wide sense stationary process,
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its derivative           does represent a wide sense stationary process.

From there

and 

and 

)( tX 

)( tX )( tX 
dt

d )( 

(Derivative as a LTI system)

2

1 1 21 2

1 2 2

2 1 1 2

2

1 1 2

           ( ,  )
( )

      

 ( )

X X

X X

t t tR t t
R t , t

t t t t

t U t  t



 

 



  
  

  

  

constant a
dt

td

dt

td
t

X

X
    ,

)(
)( 


 



).( 
 

) ,( 
)(

21

2

1

21

21
 tt

t

ttR
, ttR

XX

XX












Poisson Random Process (contd..)

183



Define the processes 

we claim that both Y(t) and Z(t) are independent Poisson processes
with parameters          and         respectively.

Proof:

But given X(t) = n, we have   so that

and
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More generally,
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Poisson Random Process (contd..)
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UNIT-V
Stochastic Processes: Spectral 

Characteristics 
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Introduction to Power density spectrum

 Fourier integral
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Properties Power density spectrum

P ro p e r t ie s  o f  th e  p o w e r  d e n s i ty  s p e c tru m :
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P ro p e r t ie s  o f  th e  p o w e r  d e n s i ty  s p e c tru m
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B a n d w id th  o f  th e  p o w e r  d e n s i ty  s p e c tru m
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Relationship between PSD and autocorrelation
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Cross-power density spectrum
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Properties of cross-power density spectrum
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Relationship between C-PSD and cross-
correlation
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Linear system fundamentals
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Random signal response of linear systems
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Spectral characteristics of system response
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where h(t) is the impulse response of the system 

If E[X(t)] is finite
and system is stable                                                                                                 

If X(t) is stationary,
H(0) :System DC response.                                                         
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Consider autocorrelation function of Y(t): 

If                   is finite and the system is stable,

If                                                                                      (stationary)

Stationary input, Stationary output
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Consider the Fourier transform of g(t),

Let H(f ) denote the frequency response, 
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: the magnitude response

Define: Power Spectral Density ( Fourier Transform of         )

Recall 

Let             be the magnitude response of an ideal narrowband filter 

D f : Filter Bandwidth
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Let x(t) be a sample function of a stationary and ergodic Process X(t).

In general, the condition for Fourier transformable is

This condition can never be satisfied by any stationary x(t) with infinite 
duration.  

We may write 

If x(t) is a power signal (finite average power)

Time-averaged autocorrelation      periodogram function
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Take inverse Fourier Transform

we have 

Note that  for any given x(t) periodogram does not converge as
Since x(t) is ergodic 

is used to estimate the PSD of x(t)
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Cross-Spectral Densities 
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Example:  X(t) and Y(t) are jointly stationary.
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Output Statistics: the mean of the output process
is given by

Similarly the cross-correlation function between the input and output
processes is given by

Finally the output autocorrelation function is given by
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In particular if  X(t) is wide-sense stationary, then we have
so that

Also                                              so that reduces to

Thus X(t) and Y(t) are jointly w.s.s. Further, the output 
autocorrelation simplifies to

we obtain
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the output process is also wide-sense stationary. This gives rise to the 
following representation

LTI system
h(t)

Linear system

wide-sense 
stationary process

strict-sense 
stationary process

Gaussian
process (also
stationary)

wide-sense 
stationary process.

strict-sense
stationary process
(see Text for proof )

Gaussian process
(also stationary)

)( tX )( tY

LTI system
h(t)

)( tX

)( tX

)( tY

)( tY

(a)

(b)

(c)

Cross-Spectral Densities

238



W(t) is said to be a white noise process if 

i.e.,  E[W(t1) W*(t2)] = 0  unless t1 = t2.
W(t) is said to be wide-sense stationary (w.s.s) white noise 
if E[W(t)] = constant, and 

If W(t) is also a Gaussian process (white Gaussian process), then all of 
its samples are independent random variables

For w.s.s. white noise input W(t), we have
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and 

where 

Thus the output of a white noise process through an LTI system 
represents a (colored) noise process.
Note: White noise need not be Gaussian.

“White” and “Gaussian” are two different concepts!
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 Shot noise

 Thermal noise

k: Boltzmann’s constant = 1.38 x 10-23 joules/K, T is the absolute 
temperature in degree Kelvin.

 

    22

2

2

22

amps      4
1

4
1

     volts                                        4

fkTGf
R

kTVE
R

IE

fkTRVE

TNTN

TN





Noise

241



·

          )(
2

)(

receiver  theof re temperatunoise equivalent:

                  
2

)(

0

                                        
0

0


N

R

T

kTN

N
fS

W

e

e

W







White noise

242



Ideal Low-Pass Filtered White Noise
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Correlation of White Noise with a Sinusoidal Wave  
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Two representations

a. in-phase and quadrature components (cos(2 fct), sin(2 fct))

b. envelope and phase 

In-phase and quadrature representation

 signals pass-low are )( and )(
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ccI
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1.nI(t) and nQ(t) have zero mean.

2.If n(t) is Gaussian then nI(t) and nQ(t) are jointly Gaussian.

3.If n(t) is stationary then nI(t) and nQ(t) are jointly stationary.

4.

5. nI(t) and nQ(t) have the same variance      .

6.Cross-spectral density  is purely imaginary.

7.If n(t) is Gaussian, its PSD is symmetric about fc, then nI(t) and nQ(t) are 
statistically independent. 
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Ideal Band-Pass Filtered White Noise
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