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UNIT-I
Probability and Random Variable
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Introduction to Set

Set: A set is a well defined collection of objects. These objects are
called elements or members of the set. Usually uppercase letters are
used to denote sets.

The set theory was developed by George Cantor in 1845-1918. Today,
it is used in almost every branch of mathematics and serves as a
fundamental part of present-day mathematics.

In everyday life, we often talk of the collection of objects such as a
bunch of keys, flock of birds, pack of cards, etc.

In mathematics, we come across collections like natural numbers,
whole numbers, prime and composite numbers.
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Laws in set theory

e ANB=BNA (Commutative law)

« (AnB)NnC=An (BNC) (Associative law)

c ®NA=0 (Law of P)

« UNA=A (Law of U)

e ANA=A (ldempotent law)

e AN(BUC)=(ANnB) U (ANC) (Distributive law) Here n distributes over U

 Also, AU(BNC) = (AUB) n (AUC) (Distributive law) Here U distributes
over N

INSTITUTE OF AERONAUTICAL ENGINEERING 4



Probability

Experiment:

In probability theory, an experiment or trial (see below) is any
procedure that can be infinitely repeated and has a well-defined set
of possible outcomes, known as the sample space.

An experiment is said to be random if it has more than one possible
outcome, and deterministic if it has only one.

A random experiment that has exactly two (mutually exclusive)
possible outcomes is known as a Bernoulli trial.
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Experiment Outcomes
Flip a coin Heads, Tails
: Numbers: 0,1, 2, ..., |
| Exam Marks 100 :
Assembly Time t> 0 seconds
Course Grades F.D,C, B A A+
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Random Experiment

An experiment is a random experiment if its outcome cannot be
predicted precisely. One out of a number of outcomes is possible in
a random experiment.

A single performance of the random experiment is called a
trial.Random experiments are often conducted repeatedly, so that
the collective results may be subjected to statistical analysis.

A fixed number of repetitions of the same experiment can be
thought of as a composed experiment, in which case the individual
repetitions are called trials.

For example, if one were to toss the same coin one hundred times
and record each result, each toss would be considered a trial within
the experiment composed of all hundred tosses.
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Relative frequency, Experiments

Relative Frequency:

Random experiment with sample space S. we shall assign non-
negative number called probability to each event in the sample space.
Let A be a particular event in S. then “the probability of event A” is
denoted by P(A).

Suppose that the random experiment is repeated n times, if the event
A occurs n, times, then the probability of event A is defined as
“Relative frequency

Event A is defined as

P(4) = lim

o p
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Sample Space

« Sample Space: The sample space is the collection of all possible
outcomes of a random experiment. The elements of are called
sample points. A sample space may be finite, countable infinite or
uncountable.

e A list of exhaustive [don’t leave anything out] and mutually
exclusive outcomes [impossible for 2 different events to occur in
the same experiment] is called a sample space and is denoted by S.

* The outcomes are denoted by O,, O,, ..., O,

* Using notation from set theory, we can represent the sample space
and its outcomes as:

S={0,, 0, ..., O}
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Sample Space

* Givenasample spaceS={0,, O,, ..., O,}, the probabilities assigned
to the outcome must satisfy these requirements:

(1) The probability of any outcome is between 0 and 1
i.,e.0<P(O,) <1 foreachi, and

(2) The sum of the probabilities of all the outcomes equals 1
i.e. P(O,) +P(O,) +...+P(O,) =1
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Discrete and Continuous Sample Spaces

* Probability assignment in a discrete sample space: Consider a finite
sample space . Then the sigma algebra is defined by the power set of
S. For any elementary event , we can assign a probability such that,
For any event , we can define the probability
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Continuous sample space

* Suppose the sample space S is continuous and uncountable. Such a
sample space arises when the outcomes of an experiment are
numbers. For example, such sample space occurs when the

experiment consists in measuring the voltage, the current or the
resistance.
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The probability of an event is the sum of the probabilities of the
simple events that constitute the event.

 E.g. (assuming a fair die) S={1, 2, 3,4, 5, 6} and P(1) = P(2) = P(3) =
P(4)=P(5)=P(6)=1/6

 Then: P(EVEN)=P(2) +P(4) + P(6)=1/6+1/6 +1/6=3/6 =1/2
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‘ Types of Events .

1. Exhaustive Events:

A set of events is said to be exhaustive, if it includes all the possible
events. Ex. In tossing a coin, the outcome can be either Head or Tail
and there is no other possible outcome. So, the set of events{ H, T }
is exhaustive.

2. Mutually Exclusive Events:

Two events, A and B are said to be mutually exclusive if they cannot
occur together. i.e. if the occurrence of one of the events precludes
the occurrence of all others, then such a set of events is said to be
mutually exclusive. If two events are mutually exclusive then the
probability of either occurring is
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‘ Types of Events .

3. Equally Likely Events:

If one of the events cannot be expected to happen in preference to
another, then such events are said to be Equally Likely Events.( Or)

Each outcome of the random experiment has an equal chance of
occurring.

Ex. In tossing a coin, the coming of the head or the tail is equally
likely

4. Independent Events:

Two events are said to be independent, if happening or failure
of one does not affect the happening or failure of the other.
Otherwise, the events are said to be dependent.
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Probability Definitions'and Axioms

Relative frequency Definition:

Consider that an experiment E is repeated n times, and let A and B be
two events associated with E. Let n, and ny; be the number of times
that the event A and the event B occurred among the n repetitions

respectively. The relative frequency of the event A in the 'n'
repetitions of E is defined as

f(A)=nA/n
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Axioms of Probability

* The Relative frequency has the following properties:
« 0<f(A)<1
* f(A)=1if and only if A occurs every time among the n repetitions.

* If an experiment is repeated n times under similar conditions and
the event A occurs in n,times, then the probability of the event A is
defined as

INSTITUTE OF AERONAUTICAL ENGINEERING 17



Joint probability .

e Joint probability:

Joint probability is defined as the probability of both A and B taking
place, and is denoted by P (AB) or P(ANB).

e probability notation: P(AB) = P(A | B) * P(B)
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Conditional Probability

 Conditional probability is used to determine how two events are
related; that is, we can determine the probability of one event given
the occurrence of another related event.

* Experiment: random select one student in class.
 P(randomly selected student is male)
e P(randomly selected student is male/student is on 3™ row)

* Conditional probabilities are written as P(A | B) and read as “the
probability of A given B” and is calculated as

P(A and B)

P(A| B)= P(B)
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Bayes’ Theorem

Bayes’ Law is named for Thomas Bayes, an eighteenth century
mathematician.

In its most basic form, if we know P(B | A),

we can apply Bayes’ Law to determine P(A | B)

Bayes' theorem centers on relating different conditional
probabilities. A conditional probability is an expression of how

probable one event is given that some other event occurred
(a fixed value).

For a joint probability distribution over events A and B,
P(A”B), the conditional probability of given is defined as
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Bayes’ theorém

P(ANB
P(A|B)=%.
* Note that P(A”B) is the probability of both A and B occurring, which
is the same as the probability of A occurring times the probability
that B occurs given that A occurred P(B/A)*P(A)
e Using the same reasoning P(A”B), is also the probability that B
occurs times the probability that A occurs given that B occurs:
P(A/B)*P(B) The fact that these two expressions are equal leads to

Bayes' Theorem. Expressed mathematically, this is:

P(A|B) = Pg‘(;)ﬂ) if P(B) £ 0,
P(BNA) |
P(B|A) = PA) if P(A) # 0,
= P(ANB)=P(A|B) x P(B) = P(B| A) x P(A),
P(B| A) x P(4
= P(A|B) = ( |P{)B) (J,ifP(B);él].
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Bayes’ theorém

 The probabilities P(A) and P(A®) are called prior probabilities

because they are determined prior to the decision about taking the
preparatory course.

 The conditional probability P(A | B) is called a posterior probability
(or revised probability), because the prior probability is revised
after the decision about taking the preparatory course.
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Random variable

* A (real-valued) random variable, often denoted by X (or some other
capital letter), is a function mapping a probability space (S, P) into
the real line R. This is shown in next slide.

e Associated with each point s in the domain S the function X assigns
one and only one value X(s) in the range R. (The set of possible
values of X(s) is usually a proper subset of the real line; i.e., not all
real numbers need occur. If S is a finite set with m elements, then
X(s) can assume at most m different values as s variesin S.)
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RV in graphical representation

A random variable: a function

X

Domain: probability space Range: real line
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RV in graphical representation

Random variable

— A numerical value to each outcome of a particular
experiment

A W\
WU Y/

-3 -2 -1 0 1 2 3
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Discrete random variable

* Arandom variable is called a discrete random variable is piece-wise
constant. Thus is flat except at the points of jump discontinuity. If

the sample space is discrete the random variable defined on it is
always discrete.

I—=
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Continuous random variable

e X is called a continuous random variable if is an absolutely continuous
function of x. Thus is continuous everywhere on and exists
everywhere except at finite or countable infinite points.

4
F(x)

d

L 4

X —

AN

X —

INSTITUTE OF AERONAUTICAL ENGINEERING



Mixed random variable

e X is called a mixed random variable if has jump discontinuity at
countable number of points and it increases continuously at least at
one interval of values of x. For a such type RV X.

I—=
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UNIT-II
Distribution and Density Functions
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Random Variable

Review of the concepts
1. Random Experiment
Random Event
Outcomes
Sample Space
Random Variable:
Mapping of sample space to a real line

L AE R
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Random Variable
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Mapping of sample space to a real line
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Distribution function

Probability Distribution Function
The pmbability P(X < x) is the probability of the event

X =xj e

Fx(x)=P{X£x}, —co < x < o0
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Properties of CDF

The properties of a distribution function:
® ,(=o0) =0
¢ F(e0) =1
e 0<F(x)<1
e F.(x1) < E.(x,),if x; < x, (Non-decreasing function)
o Plx; <X <xp} = E(xz) — F.(xq)
e F.(x™) =F,(x) (Continuous from the right)
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Properties of CDF (contd..)

Proof for F,(x,) — F,(x4)

e The events {X < x,} and {x; < X < x,} are mutually
exclusive, i.e. {X <x,} ={X < x }U{x; <X <x,}
o P{X <x,} =P{X <x}+P{x; <X <x,}
o P{x, <X <x,} =P{X <x,} —P{X <x}
= F.(x,) — E.(x;)
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Properties of CDF (contd..)

If X is a discrete random variable taking values
x;, i =1,2,....,N, then E.(x) must have a staircase
function given by

N
E.(x) = P{X = x;}ulx — x;)
i=1

where u(.) is the unit-step function defined by:
1, x =0
u(x) = {

0O, x<O0
If N is infinite, then
P(x;) = P{X = x;}
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Probability density function

Probability Density Function
The probability density function of the random variable
X is defined as the derivative of the distribution

function:
dF.(x)
dx

fr(x) =
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Probability density function (contd..)

1.If the derivative of E.(x) exists then f,.(x) exists

dFy(x) is not defined at

2.There may be places where

points of abrupt change, then we shall assume that
the number of points where E,(x) is not
differentiable is countable.

3.For discrete random variables having a stair step form

of distribution function.

N
[0 =) P()8(x — 1)
=1
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Properties of PDF

Properties of Density Functions.
e 0 < f.(x)allx

e [ fi(x)dx=1
e F.(x) = ffmﬁc(x)dx =1
e Plx; < X <x,}= J:Eﬁf(x)dx
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Gaussian Probability density function

Gaussian Density Function

A random variable X is called Gaussian if its density

function has the form

[ () = e ~(xma0)?/20
2102

Where g, > 0 and —e° < a,. < oo are real constants.
fylix)

Vel [TTTTTTT S

pd

0 dx -0y
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Gaussian Probability density function (contd..)

[y x)

Vaned [TTTTTTTCS

e

0 @y -9y

-—--l—-———th-————

e s s m ————

[=]
E

ﬂ: "'l'l; X
1
] x - —_—
1.lts maximum value (2mo5°) 2 occursatx = a, .

2.1ts “spread” about the point x = a,, is related to g,

3.The function decreases to 0.607 times its maximum at
X =a,+o0,andx = a, —0o,.

4.The Gaussian density is the most important of all

densities. It enters into nearly all areas of engineering
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»

Gaussian Probability density function (contd..)

FI(JC) — E—(%—eszfzaxzd (’c

1 f
J2mo2 -
Fyix)

1.0F

0.5|—==——=—mm

o —— . —
- e e e T e . — ———

0 dy =0y dy dy
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Gaussian Probability density function (contd..)

¢ This integral has no known closed-form solution and
must be evaluated by numerical methods.

e We could develop a set of tables of E,.(x) for various x
and «, and g, as parameters (infinite number of
tables ).

* Only one table of E,.(x) for the normalized (specific)

values a,, = 0 and o0, given by
X

1 2
F(x) =—— | e~5/2d
V2T J s ]

which is a function of x only & tabulated for x = 0.

e For negative values of x we have
F(—x) =1—-F(x)
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Gaussian Probability density function (contd..)

E—-a

¢ Making the variable change u = . = we get
(x=ay)/ox X —a
F.(x) = e Ut/2 gy = F( I)
8 'UZH — 0 G-I
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Binomial Probability density function

Binomial DenSity Function
N

N
LG =D (L )pFa -V e — k)
k=0
where (‘E) is the binomial coefficient defined as

(N) N!
kKl k'(N — k)!
and O<p<i1 N=1,2......

* felx)
0.1560
L} omes (N=6, p=0.25)
U.I?Eﬂ'l 0.1318
1 D.ﬂiﬂ-ﬂ 0.0044 0.0002
L 1
‘u i 1 3 4 s & x
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Binomial Probability density function (contd..)

1.The binomial density is applied to Bernoulli trail
experiment, having only two possible outcomes on
any given trial.

2.1t applies to many games of chance, detection
problems in radar and sonar, and many

experiments

INSTITUTE OF AERONAUTICAL ENGINEERING 45



Binomial Probability density function (contd..)

By integration, the binomial distribution function is
found:

Fe(x) = i (I:)pk(l — VS (x — k)
k=0

Fx(x)

0.9624 0.9934 0.9998 1.0000
9624 "7

1.0}

0.8306

0.5340

0.5}

 2.1780

0 | 2 3 4 5 ¢

Figure: Binomial distribution function (N =6, p = 0.25)
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Poisson Probability density function

Poisson Density Function

O

fr(x) = e™" —6(x — k)
k=0

Fo(x) =e™? —Iu(x — k)
27

where b > 0 is a real constant.

e These functions appear quite similar to binomial

e f N - ccand p — 0 for the binomial case in such a
way that N}, = b, a constant, the Poisson case results.

e The Poisson random variable applies to a wide variety

of counting-type applications.
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Poisson Probability density function (contd..)

e |t describes

» the number of defective units in a sample taken
from a production line,

» the number of telephone calls during a period of
time,

» the number of electrons emitted from a small
section of a cathode in a given time interval, etc.

» If the time interval of interest has duration T, and
the events being counted are known to occur at

an average rate X and have a Poisson
distribution, then b =X T
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Uniform Probability density function

Uniform Density Function

( 1
, a<x<»bh
fx(x) =3y b—a
\ 0, elsewhere
Silx)
(b = a)

0 a b 4

for real constants —ee < a < e and b > a.
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Uniform Probability density function (contd..)

F.(x) =«

10fr————————————————

? e e — — ———
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Uniform Probability density function (contd..)

» The error of quantization of signal samples prior to
encoding in digital communication systems.

» Quantization amounts to “rounding off” the actual
sample to the nearest of discrete quantum level.

» The quantization error introduced in the round-off

process are uniformly distributed.
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»

Exponential Probability density function

Exponential Density Function

=15 v >a
) =

0, x < a
S(x)

1/

0 d
for real numbers —co < g < eoand b > 0
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Exponential Pdf (contd..)

2 (x)_{l_e_(x_a)/b X > d
> —
0, x < a
Fx(x)
1.0 -
X
0 a

INSTITUTE OF AERONAUTICAL ENGINEERING 53



Exponential Pdf (contd..)

» The exponential density is useful in describing
raindrop sizes when a large number of rainstorm
measurements are made.

» Itis also known to approximately describe the

fluctuations in signal strength received by radar

from certain types of aircraft.
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Rayleigh Probability density function

Rayleigh Density Function

2
fobo) = & @7 x=a
- —
0, x < a
Irats
0,607 -%

N a ¢+/-§-. g

for the real constants —ecec < a < ecoand b > 0
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Rayleigh Probability density function (contd..)

1 — e~ (x—@)2/b X >a
0, x<a

Feo) = |

L L] — —
ﬂ — —— — — T — — — — — — —
I =1 —

0.5

e e e — i ——
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Rayleigh Probability density function (contd..)

» The Rayleigh density describes the envelope of
white gaussian noise when passed through a band-
pass filter.

# It is also is important in analysis of errors in various
measurement systems.
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Conditional distribution function

Conditional Distribution Function\
e Let A and B be the two events & P(B) # 0, then

P{A N B}
P(B)

e Let A be defined as the event {X < x} for the
random variable X.

e The resulting probability P{X < x|B} is defined as
the conditional distribution function of X , which is
denote d by

P(A|B) =

P{X < x N B}
F,(x|B) = P{X < x|B} = P B

where {X < x N B} is the joint event {X < x} N B. This
joint event consists of all outcomes s such that
X(s)<xandseB
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Properties of Conditional distribution function

Properties of Conditional Distribution Function
* [ (=2°|B) =0
* Fx(m‘B) =1
e 0 < F.(oB)<1
o I(x1|B) < Fe(x2|B)  if %1 <xy
o P{x; <X < x3|B} = F(x2|B) — F(x1|B)
* F.(x¥|B) = F,(x|B)
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Conditional density function

Conditional Density Function

The conditional density function of the random variable
X is defined as the derivative of the conditional
distribution function, and is given by
dF,.(x|B)
x|B) =
fe(xIB) = ——

If F,.(x|B) contains step discontinuities (when X is a
discrete or mixed random variable), we assume that
impulse functions are presentin f,.(x|B) to account for
the derivatives at the discontinuities.
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Properties of Conditional density function

Properties of Conditional Density Function
* fx(x|B) =2 0
o [T felx|B)dx =1
o E.(x|B) = [ £ (&IB) dg
* Plx; <X <xq|B} = szfx(x\B)dx
1

INSTITUTE OF AERONAUTICAL ENGINEERING 61



Methods of conditioning event

Methods of Defining Conditioning Event

If event B is defined in terms of the random variable X
as B = {X < b}, where b is some real number
—oco < h < oo & P{X < b} # 0, then we have

E.(x|B) = P{X < x|B}
— P{X < x|X < b}
PIX <xnNnX < b}
T P{X < b)
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Methods of conditioning event (contd..)

Case (i):

If b < x, then the event {X < b} is an subset of the
event {X < x},s0{X <x}nN{X < b} =1{X < b}. Then

we have
F(xIX < b) P{IX <xNnX < b}
XS b) ==
P{X < b}
= =1 xX=>b
P{X < b}
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Methods of conditioning event (contd..)

Case (ii):

P{X <xnX< b}
P{X < b}

P(X<x} F.(x)

TP(X<bl FE(b)

F.(x|X <b) =

x <b
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Methods of conditioning event (contd..)

By combining the last two expressions, we have

(F(x)
x <b

E(x|X <b) ={FE.(b)
1, x=b

From our assumption that the conditioning event has
nonzero probability, 0<E,.(b) < 1, so the conditional
distribution function is never smaller than the ordinary
distribution function F.(x|X < b) = F,.(x)
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Methods of conditioning event (contd..)

Similarly the conditional density function is
) A
fe(x|X < b) = { Fa(x) f_bmfx(x)dx
\0, x=b
From our assumption 0<f,.(x) < 1, so the conditional

density function is never smaller than the ordinary

x <b

density function

frlxlX <b) = fr(x)  x <D
The result can be extended to more general event
B= {a<X<bhb}
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Moments about origin

Moments About the Origin

The expected value of X™, n =0,1,2, ...... ... IS given

by

O

E[X"] = f ¥F () dx

—_— D

gives the moments about the origin of the random
variable X. These are also called standard moments

and are denoted as m,,
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Moments about'mean

Moments About the Mean

The expected value of (X — X)™, n=10,1,2,....... ... is
given by

E[(X - X)"] = f (x — X)f, (x)dx

gives the moments about the mean of the random

variable X. These are also called central moments and
are denoted as
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Characteristic function .

Characteristic Function

The characteristic function of a random variable Xis
defined by

00

O (w) = E[ej‘”x] = f eJOXF (x)dx

— 00

where = +v—1. It is a function of the real number
—oo I () < oo,

D, (w) is seen as the Fourier transform (with the sign
of w reversed) of f,.(x)
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Moment generating function

Moment Generating Function

The moment generating function of a random variable
Xis defined by

My(v) = E[e™] = f_mfx(ﬁ-f)emdx

Where v is a real number —eo < 1 < oo,
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" Moment generating function

e Moments are related to M,.(v) by the expression
d" M, (v)
n
dv =0
e The main disadvantage of the moment generating

function is that it may not exist for all random
variables.

e In fact, M, (v) exists only if all the moments exist

My = (_j)n

INSTITUTE OF AERONAUTICAL ENGINEERING 7



Monotonically increasing RV

Transformations of A Random Variable

e Quite often one may wish to transform one random
variable X into a new random variable Y by means
of a transformation

X Voo L

fx (x) O

e Typically, the density function f,.(x) or distribution
function F,.(x) of X is known, and the problem is
to determine either the density function f,(y) or

distribution function F,(y) of Y.

e The transformation 7 can be linear, nonlinear,
segmented ,staircase, etc
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Monotonically increasing RV (contd..f

Monotonic Transformation of a Continuous

Random variable

e Atransformation T is called monotonically

increasing if T(x4) < T(x,) for any x; < x,.
j*'TLﬂ

Ve

/
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Nonmonotonic Transformation of a RV

Nonmonotonic transformations of a
continuous random variable

vy = T(x)

¢ In this case, there may be more than one interval of
values of X that correspond to the event {Y < y,}
corresponds to the event {X < x;and x, < X < x5}
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Nonmonotonic Transformation of a RV (co.ntd..)

e Thus, the probability of the event{Y < y,} now
equals the probability of the event
{x valuesyielding Y < y,}, which we shall write as
x|Y < yotie,
F,(yo) = plY = Yo} =p{x|Y = yo} = f fr(x)dx

{x|Y=y0}
e Differentiating we get the density function of Y as

d
fy(y{)) — d_y{) {x|Y£yD}fx(x) dx
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Nonmonotonic Transformation of a RV (co.ntd..)

e The density function is also given by

£.() = z f (xn)

dT (x)
dx x=xq
where the sum is taken so as to include all the roots
x,,n=1,2,....,which are the real solutions of the
equation
y =T(x)
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Transformation of a DiscreteRV

Transformation of a Discrete Random Variable
e |f X is adiscrete random variable

fx(x) = Z p(xn)ﬁ(x - xn)
F@) = ) plrulx = x,)

where the sum s taken to include all the possible
valuesx,, , n =1, 2,

e |If the transformation Y =T(X) is continuous and
monotonic, there is a one-to-one correspondence
between X and Yso that a set {x,}, through the

equationy, = T{x,} sothat P{y,} = P{x,}.
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Transformation of a DiscreteRV (contd:.)

e |f the transformationY = T(X) is continuous and
monotonic, there is a one-to-one correspondence
between X and Y so that a set {x,,}, through the
equation y, = T{x,,} so that P{y,} = P{x,}.

e Thus,we have

fy(y) = Z p(yn)c?(y - yn)
Fyo}) = Zn po}n)ub - yn) where y,, = T(xn)

e |f T is not monotonic, the above procedure remains
same, but P(y,,) will equal the sum of the
probabilities of the various x,, for which y, = T(x,,)
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Expected value of a RV .

Expected Value of a Random variable

In general, the expected value of any random variable
X is defined by

E[X] = X = fmxfx(x)dx
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Expected value of a RV (contd..)

If X is discrete with N possible values x; having
probabilities P(x;) of occurrence, then

N
fi(x) = z xiP(x)6(x — x;)
Then we have =
N
Elx] = ) x;P(x;)
2

If the density is symmetrical aboutalinex = a i.e.

fx(x + (1) = fx(_x + (I)

then
Elx] = a
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Conditional Expected value of a RV .

Conditional Expected Value

If f,.(x|B) is the conditional density where B is any
event defined on the sample space of X, then the
conditional expected value of X, is given by

()

E[X|B] = f «f. (x|B)dx

—_— 0
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Conditional Expected value of a RV (cont.d..)

If the event B ={X < b}, co < b < oo
[ fr(x)
fr(x|X < b) =< f_bmfx(x)dx

. 0 x=b
Then, the conditional expected value is given by

f_bmxfx(x)dx
f_bmfx(x)dx

which is the mean value of X when X is constrained
to the set {X < b}.
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Moments about origin

Moments About the Origin

The expected value of X™, n =0,1,2, ...... ... IS given

by

O

E[X"] = f ¥F () dx

—_— D

gives the moments about the origin of the random
variable X. These are also called standard moments

and are denoted as m,,
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Moments about origin (contd..)

Forn = 0,

mg = E[X°] = fw x° fre(x)dx = fmfx(x)dx

is the area of under the function f,. (x).

Forn = 1,

m, = E[X] = fmxfx(x)dx = X

Is the expected value of X.
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Moments about'mean

Moments About the Mean

The expected value of (X — X)™, n=10,1,2,....... ... is
given by

E[(X - X)"] = f (x — X)f, (x)dx

gives the moments about the mean of the random

variable X. These are also called central moments and
are denoted as
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Moments about mean (contd..)

Forn = 0,

i = ELC =DM = [ (= D" feo)d
to = EIX =01 = [ fe@)da
is the area of under the function f,.(x).

Forn = 1,
u; = E[(X — X)] = E[X] — X=0
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Variance

Variance

The second central moment p, is given by

1 = E[(X — X)?] = f (X — B)2f(x)dx

1.1t is popularly known as the variance o2 of the
random variable X.

2.The positive square root g, of variance is called the
standard deviation of X.

3.1t is a measure of the spread in the function f,.(x)
about the mean.
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Variance (contd..)

The second central moment is given by
Hy = E[(X — X)?]

By expanding we get
i, = E[X?% —2XX + X?]
= E[X?] - 2XE[X]+ X*
= E[X°] - X% =mp — 11y°
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Skew

The third central moment is given by
Uz = E[(X — X)°]
i = E[X> — 3X*X +3XX% - X°]
= E[X3] = 3E[X?]X + 3X°E[X]-X?
= m3 — 3mypy +3puy° — 1y
= mgz — 3myy + 2p11°
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Skew (contd..)

* 5 is @ measure of asymmetry of f,.(x) about the
mean.

e [t will be called the skew of the density function.

e If a density is symmetric about x = X, it has zero
skew. For this case, u,, = 0 for all odd values of n.

e The normalized third central moment u3/0,> is
known as the coefficient of skewness.
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UNIT-III
Multiple Random Variables and
Operations
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Vector random variables

There are many cases where the outcome is a vector of numbers.
We have already seen one such experiment, in, where a dart is
thrown at random on a dartboard of radius r. The outcome is a pair
(X, Y) of random variables that are such that X? + Y2 < r2.

we measure voltage and current in an electric circuit with known
resistance. Owing to random fluctuations and measurement error,
we can view this as an outcome (V, I)of a pair of random variables.

Mapping the sample space to joint sample space

y

Function X

_____ -](xu.). Y(s)

]
|
I
!
f
|
|
|
|

S,

A = M <)
5,
0000000000000. \
:o,o’o‘o‘ % ANE =
ll"’~'°-
S et fo'féc!o.‘"!u e .

Comparision of sample space s with sj
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Joint distribution function

Let X and Y be random variables. The pair (X, Y) is then called a (two-
dimensional) random vector.

The joint distribution function (joint cdf) of (X, Y) is defined as F(x, y)
=P(X<x,Y<y)forx,y €R.

Assume the joint sample space S, has only three possible elements
(1,1),(2,1),(3,3).The probabilities of the elements are to be
P(1,1)=0.2,P(2,1)=0.3,P(3,3)=0.5.We find F,(X,Y)

In constructing joint distribution function we observe that has no
elements for x<1,y<1.only at the point (1,1)does the function assume
a step value.

So long as x>1,y>1 this probability is maintained.For larger x and y
the point(2,1) produces a second stair step of 0.3 which holds the
region x=2,y>1.The second step is added to the first.Finally third step
of 0.5 is added to the two for x=3,y>3
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Properties of Joint Distribution

* Properties:
1) FByyl-2,y)=Fyylx,-0) =0
Note that (¥ o iyl cl{X{-u)
2) Foylm )= (n.oynt x =x, andy, 2y,

I x < x and vy < g,
(X 2ix,FiytoiX £x,F £ 3]
CCEA Sx Y Rt R PA Sx,, Y 20

o (3.0 Sy (2L )

3) Fyple,o)=1

4) 7.,z is right continuous in both the variables
Fo(x)= Fp(x,+00)

INSTITUTE OF AERONAUTICAL ENGINEERING 94



Properties of joint distribution

5) If o, < x, and =, < 27,

Plin<dix, vl in) =Fx,y(xzdf’z:"Fx,y':xp}"z:"FX,F(I3=J’1:'+F.'::,F(I1=J’1:'
Feylzy), -oixdim-al{y{e

6)

Fy () = Fp (x,+00)

(X L xt = {X £y {F £ 4o
S EE = P{X L - P{X L ¥ L) = Fy L (x +o)

Fy () = Hn (00, ¥)

Fyylry), -odxde-niyle

7 (x) and 7 (> Called marginal cumulative distribution function
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Marginal distribution functions

The distribution of one random variable can be obtained by setting
the other value to infinity in F(x,y). The functions obtained in this

manner Fy(x),F,(y) are called marginal distribution functions.
e Example:
Fyv(x,y)=P(1,1)u(x-1)u(y-1)+P(2,1)u(x-2)u(y-1)+ P(3,3)u(x-3)u(y-3)
P(1,1)=0.2, P(2,1)=0.3, P(3,3)=0.5 if we set y=co then
Fy(x)= 0.2u(x-1)+0.3u(x-2)+ 0.5u(x-3)
similarly
F,(y)=0.2u(y-1)+0.3u(y-1)+ 0.5u(y-3)
=0.5u(y-1)+0.5u(y-3)
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Marginal distribution functions

* Consider two jointly distributed random variables and with the
joint CDF

(A-e?)Ya-e) x=0,y=>0
Foy (X0y) =4 _
|0 otherwise

1) Find the marginal CDFs
2) Find the probability P(1<x<2, 1<y<2)
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Marginal distribution functions

-2X

(1-¢ x>0
a) F, (x)=1limF, (xy)=/{
yow 10 elsewhere
_ [1-e” y=20
F, (y)=lim FX’Y(x,y) =4
X [0 elsewhere

Pl< X <2, 1<Y <2}=F, (2,2)+F, (L) -F, (1,2 -F, (21
=(l-e Yl-e )+ (l-e)l-e ) -(l-e)l-e)-(1-e)1-eT)

=0.0272

INSTITUTE OF AERONAUTICAL ENGINEERING 98



Joint Probability Density Function

* If and are two continuous random variables and their joint
distribution function is continuous in both and then we can define
joint probability density function by

fx,Y(X’y)I FX,Y(x,y),

OXoyYy

provided it exists.
Clearly

Foy (X,y) = } } fyy(u,v)dvdu

—00 —o0
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Marginal density function

The marginal CDF and pdf are same as the CDF and pdf of the
concerned single random variable. The marginal term simply refers
that it is derived from the corresponding joint distribution or
density function of two or more jointly random variables.

With the help of the two-dimensional Dirac Delta function, we can
define the joint pdf of two discrete jointly random variables. Thus
for discrete jointly random variables and

ey (Xy) = > X Py (X y)o(x—-x,y-y,)

(xi,yj)eRXxRY.
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Marginal density function

* The joint density function

(A-e?)2-eY) x=0,y=>0

Foy (Xoy) =4 _
LO otherwise

2

0
foy(Xoy) = Fo v (X,y)
X Y Xy X Y

82
_ [A-e ")@-e”)] x=0,y>0
OXoy

=2e e x>0,y>0
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Conditional distribution

e We discussed the conditional CDF and conditional PDF of a random
variable conditioned on some events defined in terms of the same
random variable. We observed that

L

P(B) %0
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Conditional density function

* Suppose and are two discrete jointly random variable with the joint
PMF fxy(x,y) . The conditional PMF of y given x=x is denoted by and
defined as

fy,x(y / X)

Byl x)= P = 7/{X = x})
_ FUE = xr o {F = 270

25 = x}
= Py L2 2) provided gL {x) =0
P;{'ix:'
Thiss,
Py lwix) = LR ASIP provided z o (x) =0
gl
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Consider two continuous jointly random variables and with the
joint probability distribution function We are interested to find the
conditional distribution function of one of the random variables on
the condition of a particular value of the other random variable.

We cannot define the conditional distribution function of the
random variable on the condition of the event by the relation

F,,,(y/x)=P(Y <y/ X =X)
P(Y <y, X = X)
P(X = Xx)
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Point conditioning

* First consider the case when X and Y are both discrete. Then the
marginal pdf's

« fyly)=P(Y=y) fy(x)=P(X=x)

 The joint pdf is, similarly
fX,Y(le)zp(XSXlYSy)

* Conditional density function is given by

fy(x/B)= “EACIE
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Point conditioning (contd..)

* The conditional pdf of the conditional distribution Y| X is

Foyin=PFeylX=x
riX

PFeyX=x
FX=x)

* Distribution function of one random variable X conditioned by that
second variable Y has some specific values of y. This is called point
conditioning
o B={y-Ay<Y<y+Ay}

Where Ay is a small quantity that we eventually let approach 0.
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Point conditioning (contd..)

Y+ Ay X

fuv(£,,6,)d8,d8,
Fx(x/ y-Ay<YSy+Ay)= yIAy {o

y+ Ay

[ Ty (&)de

y—Ay

Fo 0y =S Y P(x,y,)0(x=x)8(y-Y,)

i=1 j=1

Now the specific value of y of interest is y,

Fx(xX/Y = yk) = F)(Xi’yk)u(x— X.)
i P(y,)

fx(x/Y = yk) = P(X"yk)a(x— X .)
i=1 P(yk)
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Interval Conditioning

e Distribution function of one random variable X conditioned by that
second variable Y has some specific values of y. This is called point
conditioning B={y.<Y<y, }

* P(x4,Y1)=2/15,P(x,,y,)=3/15.etc.since P(y;)=4/15+5/15=9/15 find
f (X/y=Ys)

L rlx. 3}
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Statistical independence

* Let and be two random variables characterized by the joint distribution

function
Foylay) =PlAxl Lyl

and the corresponding joint density function

fx,y(xaf) - H%FE,}’ (%))
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Sum of two random variables

* We are often interested in finding out the probability density function
of a function of two or more RVs

*The received signal by a communication receiver is given by

L=4+F

¥

* where is received signal which is the superposition of the message
signal and the noise.
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Sum of two random variables

corresponding to each z.{z <z}We can find a variable subset o, -{(x.y) g(xy)<2)

Z

L [z =P £z}
= P{{x») | (x0) = D)
— . _j[j’[z- S (7. ) dhvdx
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Central Limit Theorem

* Consider n independent random variables x;,X,,X5......xn ,The mean
and variance of each of the random variables are assumed to be
known. Suppose E[x]=p, var(x)=0,2 and . Form a random variable

Y =X Ko+ X

The mean and variance of YN are given by

E[yn]=ux1+|"lx2+ux3 .......... +|"lxn
var ()= o =B %)Y
im]
= R ¢ DY B w) (- i)
im] =l =l i
- G+ r.

A, and }fi.areindepmdmtfuri?fj.
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Central Limit Theorem (contd..)

The CLT states that under very general conditions {}; ZX}
converges in distribution tor~m«. <) as L
1. The random variables are independent and identically distributed.

2. Therandom variables are independent with same mean and
variance, but not identically distributed.

3. Therandom variables are independent with different means and
same variance and not identically distributed.

4. The random variables are independent with different means and
each variance being neither too small nor too large.
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Expected Values of Random Variables

* If g(x,y) is a function of a continuous random variables X and Y then
then the expected value of is given by

s .

J I_w I_Oog(x,y)fx,Y (x,y)dxdy Continuous

g = E[g(X,Y)] = |
[ 33 g,V )Py (XY,) Discrete
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* Consider the discrete random variables x and y. The joint probability
mass function of the random variables are tabulated in Table . Find the

joint expectation of g(x,y)=xy.

\T\ 0 1 2 2y ()
1’4
0 0.25 0.1 0.15 0.5
| 0.14 0.35 0.01 0.5
px(x) 0.39 0.45 016

E[XY 1=3 3 g(X,¥) Py (X, ¥)

=1x1x0.35 +1x2x0.01

= 0.37
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* Expectationis a linear operator. We can generally write

E[a,g,(x,y)+a,8,(x,y)=a,E(g,(x,y)+a,E(g,(x,y))
E[xy+5log xy]=E[xy]+5E[log xy]

 If xandy are independent random variables and
8(x,y)=g1(x,y)xg2(x,y) then E[g(x,y)]=E[g1(x,y)]xE[g2(X,Y]
ol X, F)= g, (X g, (F)

= T T g (Xg, (F) Frp(x yidx

—oa —&a

= | | & (X)g, (V) Fy(x) A O)dxdy

Ll = =y = = |

= j = {I}fI[I}de Ea {ﬂﬁ’{.}?:ﬂﬁ?
= g (X1 8g,(¥)
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Joint moments about the origin

For two continuous random variables X and Y, the joint moment
of order m+n is defined as

o O

E(X"Y") = j J'xmy“ f., (X,y)dxdy

— 00— 00

And the joint central moment of order m+n is defined as

oo o0

E(X —u,)"E(Y —u )" = j I(X—#x)m(Y—ﬂy)n f (X, y)dxdy

u, = E[x]

u, = E[Yy]
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Covariance of two random variables

The covariance of two random variables X and Y is defined as
Cov(X,Y)=E(X-I)E(Y- 1)

Cov(X, Y) is also denoted as oy,.
Cov (X,Y)=E(X —u )" E(Y —u,)
= E(XY —pu X —pu Y +pu pu )

=EXY )—u , BE(X)—puEQY)+ 1, nu,
= E(XY ) —pu u,
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Uncorrelated random variables

Two random variables are called uncorrelated if
Cov(X,Y)=0

Which also means E(XY)=p,u,

If are independent random variables, then

fy (%y) = T, ()1, (y)

Thus two independent random variables are always uncorrelated.
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joint characteristic function

The joint characteristic function of two random variables X and Y is
defined by

¢XY (a)l’a)z) _ E[ela)1X+JZU2y]

If and are jointly continuous random variables, then

1 ]

¢X,Y (@ (02) - _[ fXY (X,y)e jlejwzdedy
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Joint moments about the origin

For two discrete random variables X and Y, the joint moment of order
m+n is defined as

E(X"Y ) =3 3 x"y f (x,y)dxdy

y
And the joint central moment of order m+n is defined as

E(X —u)"EQY —u )" =3 3 (x—u)"(y—u,)" T (xy)

u, = E[X]

u, = ELY]
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Covariance of two random variables

The covariance of two random variables X and Y is defined as
Cov(X,Y)=E(X-W)E(Y- )

Cov(X, Y) is also denoted as o,y
Cov (X,Y)=E(X —u )" E(Y —u,)
= E(XY —pu X —pu Y +pu pu )

=E(XY )—u , E(X)—puEQY)+ 1, nu,
= E(XY ) —pu u,
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Two Random variables

Two random variables X and Y are called jointly Gaussian if their joint
probability density

2

1 (k- (X=px Ny-u,) (y-u,)

1 B 2 ' 2 “2hxy * 2
2(1_10)(\( ) 0y OxO0y Oy

foy(Xy) = e

-09LK X< 09 -00Y <00

means W, and W,

variances o,” 0,

correlation coefficient pyy

We denote the jointly Gaussian random variables and

with these parameters as (X,Y)~ N(u,1,,0,%0,°%Pxy)
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Transformations of multiple random variables

The joint density function of new random variable Y.=T(X,,X,,......Xy)
i=1,2,3....n

The random variable Xj can be obtained from inverse transformation
X=THY LY, YY)
-1 A
xp =01 (Yo.¥2. 0 ¥g)

~1
X2 =0» (yl’yz’""yk)

}**

-1
Xn =90 (Y1.¥2. Ykon))
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Transformations of multiple random variables

* Assuming that the partial derivatives 09; ' 1 9y, exist at every point
(Y1, Yore- Yien)- Under these assumptions, we have the following
determinant J

| a
| oY1 Yn |
J =det| ]
e
oo

called as the Jacobian of the transformation specified by (**).
Then, the joint pdf of Y,, Y,,...,Y, can be obtained by using the
change of variable technique of multiple variables.
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Transformations of multiple random variables

* Asaresult, the new p.d.f. is defined as follows:

g(y / ' ) ;fxl,...,xn(gll’gzl,».. ,gn—1)|J |, for (yl,yz,... ’yn)e V7
DY, Y )=

k 0, otherwise
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Linearly transformation of Gaussian RV

* Linearly transforming set of Gaussian random variables X, X,,.....Xy
for which the joint density function exists. The new variables

Y, Y5,....Yy are
* Y =ap XiHa X+ +a Xy
* Y,=a, X +a, X+ A Xy
o Yy=ay XitaXot.. . tag Xy
all alZ2... alN

[T]=|a31 a22.. a2N
aN1 aN2.. aNN

¥i
¥l = :

} X=TiY(Y,....Yy)=aY +a%y,+...+aNY

¥N

[YI=[T][X]
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UNIT-IV
Stochastic Processes: Temporal
Characteristics
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Random Process

1 The concept of random variable was defined previously as mapping
from the Sample Space S to the real line as shown below

Sample Space

d A random process is a process (i.e., S
variation in time or one dimensional

space) whose behavior is not

completely predictable and can be

characterized by statistical laws.

J Examples of random processes
Daily stream flow x
Hourly rainfall of storm events
Stock index
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~ Random Process (Contd..) .

Sample Space

d The concept of random S
process can be extended to
include time and the outcome
will be random functions of
time as shown beside x(t, s)

1 Where s is the outcome of
an experiment

1 The functions

o Xn+2(t)’xn+1(t)’xn (t)’xn—l(t)"”
are one realizations of many of

the random process X(t)

J A random process also represents a random variable when time is fixed
X (t,) isarandom variable
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Classification of Random Process

Classification of random process
dContinuous random process
Discrete random process
dContinuous random sequence
Discrete random sequence

Continuous time t => x(t) = Random process
Discrete time n => x[n] = Random sequence
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Continuous Random Process

 Continuous random process ;-j\ :
7 0 . /\-’f‘\\/\.//\ :
Continuous time t N :

X(t) = Continuous ~_
Random process O 7 2 g—
X, () E |
7\, /‘i/\ P /\/\
A S T N A N t
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Discrete Random Process

 Discrete random process .

Continuous time t

X+ 1C0)

X(t) = Discrete Random
process —

X, (D)

xn—l(t)
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Continuous Random Sequence

 Continuous random sequence =~ .

[e) -

. . — \, 7
discrete time n Sl N ggr.r

Xp+ l(t)

x(n) = Continuous -
T e

SNa
Random sequence N ~L] .

x5, (D)

’T‘\\

-__

x5, 1)
1 A T~ o

> -
J?’IT T\\ PE 4 /TT -
P N Neo-7

/

o ﬁ"\,;g 111 ~_ 1
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Discrete Random Sequence

 Discrete random sequence o :
discrete time n 1T R T
0 1 I - t
e L—l—-l—-l L—o——o——i

x(n) = discrete Random e

sequence -1 - ]
| (0] I t
L 1l

g
|
I
! |
—— - — - —-ol — e @ =l
e
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Random Process Concept

J Deterministic random process
dFuture values of any sample function can be predicted exactly from
the past values

X (t)=Acos(o,t+0), Ao ,0: rwV.'s

O ]

1 Non deterministic random process
J Future values of any sample function can not be predicted exactly
from the past values

INSTITUTE OF AERONAUTICAL ENGINEERING 136



What is a distribution and density?

J A distribution characterises the probability (mass) associated with each
possible outcome of a stochastic process

 Distributions of discrete data characterised by probability mass functions

P(X,=Xx)
I I ZP(szi):l

X
0o 1 2 3
 Distributions of continuous data are characterised by probability density

functions (pdf)

f(x) w
I f(x)dx =1

 For RVs that map to the integérs or the real numbers, the cumulative
density function (cdf) is a useful alternative representation
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Stationary and Independence

1 Stationary Random Process
[ all its statistical properties do not change with time

1 Non Stationary Random Process
[ not stationary

One particular realization of the random process {X(#)}

A
1
\/\ I
|
£ . A _ >
u \\JW\/ time, t
A
A1)
time, t

/
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Stationary and Independence (Contd..)

 First-order densities of a random process

d A stochastic process is defined to be completely or totally
characterized if the joint densities for the random variables

X (t,), X (t,), - X (t )are known for all times t, b, t and all n.

 For a specific t, X(t) is a random variable with distribution
F(x,t) = p[X (t) < x]

[ The function F(x,t) is defined as the first-order distribution of the
random variable X(t). Its derivative with respect to x
oF (x,1t)

OX

f(x,t) =

is the first-order density of X(t).
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Stationary and Independence (Contd..)

A If the first-order densities defined for all time t, i.e. f(x,t), are all the
same, then f(x,t) does not depend on t and we call the resulting
density the first-order density of the random process {x(t)} ; otherwise,
we have a family of first-order densities.

d The first-order densities (or distributions) are only a partial
characterization of the random process as they do not contain
information that specifies the joint densities of the random variables

defined at two or more different times.
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Stationary and Independence (Contd...)

d Fort=t,and t=1t,, X(t)representstwo different random variables
X1 = X(t1) and X, = X(t;) respectively. Their joint distribution is given by

F o(x,,x,,t,,t,)=P{X (t) =< x,,X(t,)) < Xx,}
and
azFx(xl,xz,tl,tz)

OX, OX,
represents the second-order density function of the process X(t).

fo(x,,x,,t,t,)) =

Q Similarly T, (x,, %, - X, t,t, -, t ) represents the nt" order density
function of the process X(t).
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Mean and variance of a random process

d The first-order density of a random process, f(xt), gives the
probability density of the random variables X(t) defined for all time t.
The mean of a random process, m,(t), is thus a function of time specified
by

+00

m, (1) = E[X (O] = E[X 1= [ x f(x,t)dx,

— 0

 For the case where the mean of X(t) does not depend on t, we have
m, (t) = E[X(t)] = m  (a constant)
d The variance of a random process, also a function of time, is defined

by ) ) . .
cl(t)= EfIX()-m, ()] )= E[X1-[m  (1)]
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‘ Stationary and Independence

1 The random process X(t) can be classified as follows:
1 First-order stationary

1 A random process is classified as first-order stationary if its first-order
probability density function remains equal regardless of any shift in time

to its time origin.

4 If we X,,let represent a given value at time tlthen we define a first-
order stationary as one that satisfies the following equation:

fX (th) = fX (Xt1+ T)

 The physical significance of this equation is that our density function,

f.(x,) iscompletelyindependent of t1
and thus any time shift t

For first-order stationary the mean is a constant, independent of
any time shift
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Stationary and Independence (Contd...)

(JSecond-order stationary

A random process is classified as second-order stationary if its second-
order probability density function does not vary over any time shift

applied to both values.

4 In other words, for values X,; and X,, then we will have the following
be equal for an arbitrary time shift t

fX (X tl’XtZ) = fX (X tl+1t ’Xt2+1:)

dFrom this equation we see that the absolute time does not affect our
functions, rather it only really depends on the time difference between

the two variables.
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Stationary and Independence (Contd...)

1 For a second-order stationary process, we need to look at the
autocorrelation function ( will be presented later) to see its most
important property.

d Since we have already stated that a second-order stationary
process depends only on the time difference, then all of these types
of processes have the following property:

R, (t,t+1) = E[X ()X (t+1)]

= Rxx (7)

INSTITUTE OF AERONAUTICAL ENGINEERING 145



Wide-Sense Stationary (WSS)

1 A process that satisfies the following:

d The mean is a constant and the autocorrelation function depends only
on the difference between the time indices

E[X(t)] = X = constant

E[X({)X(t+1)] =R, (1)
is @ Wide-Sense Stationary (WSS)

Second-order stationary ‘ Wide-Sense Stationary

The converse is not true in general
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Wide-Sense Stationary (Example) .

X (t)=acos( o,t+ @), o ~U(0,27).

This gives

u, (1) = E{X (t)} = aE {cos( o t+ @)}

=acos o ,tE{cos o} - asin o tE{sin ¢} =0, Constant

2
since E{cos ¢} = ijo cos pdp =0=E{sin ¢}

Similarly

R (t.t)= a * E {cos( ot +p)cos( o, t, +¢)}

E{cos o, (t, -t,)+cos( @ (t, +1,)+ 2¢)}

2
a.
2
a 2
—cos @, (t, - t,). So given X(t) is WSS
2
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Nth order and Strict-Sense Stationary.

 In strict terms, the statistical properties are governed by the joint
probability density function. Hence a process is nt"-order Strict-Sense

Stationary (S.S.S) if

foOx, Xy, X, ot t )= f (X, X, x , t,+c,t,+c,t +¢)—> (1)

 For any ¢, where the left side represents the joint density function of

the random variables X, = X (), X, =X(t,), X = X (t)
and the right side corresponds to the Jomt den5|ty functlon of the random

variables X /= X (t, +c), X, =X (t,+¢c), -, X! =X(t +c)

1 A process X(t) is said to be strict-sense stationary if equation (1)
trueforall t, i=1,2,---,n, n=1,2,--- and any c.
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Ergodic Process

A stationary random process for which time averages equal ensemble
averages is called an ergodic process:

(x[n]) = m,

(xIn + mIx[n]") = ¢, [m]
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Ergodic Process (Contd..)

It is common to assume that a given sequence is a sample sequence of
an ergodic random process, so that averages can be computed from a

single sequence.

3
Il

In practice, we cannot . iLz_lx[n]
compute with the limits, but L =
n=

instead the quantities.
2

2 1 L_l z
oo = fnz_lo(x[n]— M)

Similar quantities are often

computed as estimates of -

. . 1 .
the mean, variance, and <x[n +m]x [n]> == x[n+m]x"[n]
autocorrelation. L LT,
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Time Average and Ergodicity

1 The time average of a quantity is defined as

Ale] = lim —j [e]dt
T—> o 2T
Here A is used to denote time average in a manner analogous to E
for the statistical average.

[ The time average is taken over all time because, as applied to random
processes, sample functions of processes are presumed to exist for all
time.
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Time Average and Ergodicity (Contd..f

 Let x(t) be a sample of the random process X(t) were the lower case
letter imply a sample function.

1 We define the mean value x = A[x(1)]

( a lowercase letter is used to imply a sample function)
and the time autocorrelation function ., (1) asfollows:

R (1) = A[xOx(t+ )] = lim —[ x(Ox(t+ 7) dt
T w7 4T

 For any one sample function (i.e., x(t)) of the random process X(t),
the last two integrals simply produce two numbers.

A number for the average x anda number for R (1)
for a specific value of 1
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Time Average and Ergodicity (Contd..f

M Since the sample function x(t) is one out of other samples functions
of the random process X(t),

[ The average x and the autocorrelation s «x (1) arerandom variables

O By taking the expected value for X and & ., (1) ,we obtain

_ I | 1T
E[X] = E[A[x()]] = E| lim —[ x()dt | = lim —[ E[x(1)]dt
LT—)OOZT -T J T—)ooZT -T
1 T — = —
= |lim — Xdt = Iim X(1) =X
T—>002T -T T > »

1 T
E[R, ()] =E [A[x(t)x(t+1)]] = E [Tlimw; _TX(t)X(t + 1) dt}

1 .7 (R
= lim —j E[x(t)x(t+ t)]dt= lim — [ R, (r)dt=R, (1)
T—> o 9T *-T To>w2T J-T
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Time Average and Ergodicity (Contd..)

1 Time cross correlation

R, ()= Alx(D)y(t+7)] = lim LJT X(t)y(t+7)dt
Too 2T ¢-T

d Ergodic =>

[ Jointly Ergodic => Ergodic X(t) and Y(t)

R ()= R, (7)
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Introduction to Autocorrelation

! Autocorrelation occurs in time-series studies when the errors
associated with a given time period carry over into future time periods.

! For example, if we are predicting the growth of stock dividends, an
overestimate in one year is likely to lead to overestimates in
succeeding years.

! Times series data follow a natural ordering over time.

! It is likely that such data exhibit intercorrelation, especially if the time
interval between successive observations is short, such as weeks or
days.
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Introduction (contd..

! We expect stock market prices to move or move down for several days
In succession.

! We experience autocorrelation when
E(uiuj) = 0
! Tintner defines autocorrelation as ‘lag correlation of a given series

within itself, lagged by a number of times units’ whereas serial
correlationis the ‘lag correlation between two different series’.
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Autocorrelation and its Properties

[ The autocorrelation function of a random process X(t) is the correlation
E[X,X,] oftworandomvariables x = x(t,) and X.= X(t;)

by the process at times t1 and t2

R, (t,,t,)=E [X(tl)X(tz)]
J Assuming a second-order stationary process

Ryx (L t+ 1) = E[X(OX(t+ 1] R yx (1) = E[X(OX(t+ 1)]
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Autocorrelation and its Properties (Conta..)

] Autocorrelation:

R VANV o\

T

time, t T

J The autocorrelation, or auto covariance, describes the general
dependency of x(t) with its value at a short time later, x(t+7)

p_(r) = Lim ijT X - x |[xct + v - x]dt

T>wo T 90
 The value of p,(t) at T equal to 0 is the variance, ¢,

O Normalized auto-correlation : R(t)=p«(t)/0,* R(0)=1
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Autocorrelation and its Properties (Conta..)

R(1)

0 ~_

Time lag, ©

1 The autocorrelation for a random process eventually decays to
zero at large 1

(d The autocorrelation for a sinusoidal process (deterministic) is a
cosine function which does not decay to zero
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Autocorrelation and its Properties (Cont;zl..)

% T,=[ R(c)dr
2 J

0

R(7)

0 =
Time lag, ©
d The area under the normalized autocorrelation function for the
fluctuating wind velocity measured at a point is a measure of the
average time scale of the eddies being carried passed the
measurement point, say T,
O If we assume that the eddies are being swept passed at the mean

velocity, U.Tl is @ measure of the average length scale of the eddies.
This is known as the ‘integral length scale’, denoted by |,
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Autocorrelation and its Properties (Conta..)

J Properties of Autocorrelation function
R, (tt+7)=E[X®)X (t+7)]=R (7)

1) |Rye ()| Ry (0)
(2) Ry (=7) =R, (7)
(3) Ry (0)= E[X ()]
(4) stationary & ergodic X (t) with no periodic components

= IlimR,  (r)=X

|7]—> oo

(5) stationary X (t) has a periodic component

= R,, (r) has a periodic component with the same period.
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Cross-correlation

J Cross-correlation

a4
time, t T
)
’ o TN n
N W U
y
time, t T

1 The cross-correlation function describes the general dependency
of x(t) with another random process y(t+t), delayed by a time

delay, © 1 1 _ _
C,y (7) = Lim = | x(t) - x ][yt + o) -yt

To> o T 0

INSTITUTE OF AERONAUTICAL ENGINEERING 162



Correlation coefficient

] Correlation coefficient

[ The correlation coefficient, p, is the covariance normalized by the
standard deviations of x and y

X (1).y' (t)

c_.O
X y

When x and y are identical to each other, the value of p is +1 (full
correlation)

p:

When y(t)=—x(t), the value of pis—1

In general, — 1< p <+1
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Application of correlation

 Correlation - application :

 The fluctuating wind loading of a tower depends on the correlation
coefficient between wind velocities and hence wind loads, at
various heights

7/

u(z,).u (z,)

c,(z,)o (z,)

For heights, z,, and z, p(z,.2,) =
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Properties of Cross Correlation

Properties of cross-correlation function of jointly w.s.s. r.p.s:
R, (t)=E[X ()Y (t+7)]

1) Ry, (=7) =R, (7)

(2) [Ryy (0)] < /Ry ()R, (0)

1
(3) |RXY(zﬂs-E{RXX(0)+FgY(oﬂ

E[{Y (t+7)+a X (1)}']>20, Va

JR (OR,, (0) < %[RXX (0) + Ry, (0)]
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Example of Cross Correlation

A,B:rv.'s o, =const

E[A]=E[B]=0, E[AB]=0, E[A’]=E[B’]=0"

X (t) = Acos(o,t) + Bsin(e,t), Y (t)=Bcos(a,t)- Asin(o,t)
E[X (t)] = E[Acos(o,t) + Bsin(e,t)] = E[Alcos(w t) + E[B]sin(wt) = 0
R, (t,t+7)=E[X (t)X (t+7)]

= E[A" cos(o,t)cos(a,t+ o )+ ABcos(a t)sin(o t+ o, 7)

+ ABsin(w t)cos(o,t+ o)+ B’ sin(w t)sin(ot+ o )]
= o {cos(o,t)cos(w t+w, ) +sin(o t)sin(w t+w,7)}= o cos(w,r)

= X (t):w.s.s.
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Example of Cross Correlation

Y (t):w.s.s.

R, (t)=E[X ()Y (t+7)]
= E{[Acos(wt)+ Bsin(w t)][Bcos(o, (t+7)) - Asin(o (t+7))]}
= E[ABcos(w t)cos(o t+ o )+ stin(a)ot)cos(a)ot+a)or)
- Acos(o,t)sin(w t+ o ) - ABsin(w t)sin(o t+ o,7)]
= o ‘[sin(o,t) cos(w t+ w 7) - cos(w t)sin(o t + o, 7)]

= —azsin(a)or)

= X (t)&Y(t):jointly w.s.s.
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Covariance

J Covariance

] The covariance is the cross correlation function with the time
delay, 1, set to zero

cy (0 = X' y'() = Lim % [ Ixo -x]lyo - y]o

 Note that here x'(t) and y'(t) are used to denote the fluctuating
parts of x(t) and y(t) (mean parts subtracted)
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Auto Covariance

J The auto covariance Cx(t1,t2) of a random process X(t) is defined as the
covariance of X(t1) and X(t2)

Cx(t1,t2)=E[{X(t1)-mx(t1)H{X(t2)-mx(t2)}]
Cx(t1,t2) = Rx(t1,t2)-mx(t1)mx(t2)
1 The variance of X(t) can be obtained from Cx(t1,t2)
VAR[X(t)] = E[(X(t)-mx(t))2] = Cx(t,t)
 The correlation coefficient of X(t) is given by

C.(t,t,)

X 1' "2

) S e, (L)

p.(t,. t,)]<1
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Auto Covariance Exampleil

Example:

Let X(t) = Acos2mt, where A is some random variable
The mean of X(t) is given by

m, (t) = E[Acos 2xt] = E[A]cos 2xt
The autocorrelation is
R, (t,,t))=E[Acos( 2zt )Acos(2nrt,)]
R, (t.t,))= E[Az]cos( 27t )cos( 2xt,)
And the autocovariance
C. (t,t,) =R (t,t.)-m (t)m ()

C,(t,t,)= {E[Az] — E[A]Z}cos( 2rt ) cos( 2xt,)
C, (t,,t,) =VAR [A]cos( 2zt ) cos( 2xt,)
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Auto Covariance Example#2

Example:

Let X(t) = cos(wt+06), where 0 is uniformly distributed in the interval (-i, ).
The mean of X(t) is given by

T

m, (t) = E[cos( a)t+0)]:ij'cos( wt+6)=0
27

The autocorrelation and autocovariance are then

C, (t,t,) =R (t,t,)=E[cos( wt, + 8)cos( wt, + 0)]

1 1
C,(t,t,)= —j—{cos( o(t, —t,)) +cos(w(t, +t,)+20)}d@
2 _ﬂ2

C,(t, t,)= icos( o(t, —1)))
2
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Cross Covariance

[ The cross covariance Cx,y(t1,t2) of a random process X(t) and Y(t) is
defined as

Cx,y(t1,t2)=E[{X(t1)-mx(t1)HY(t2)-my(t2)}]
Cx(t1,t2) = Rx,y(t1,t2)-mx(t1)my(t2)

1 The process X(t) and Y(t) are said to be uncorrelated if
Cx,y(t1,t2) =0 for all t1, t2
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Random sequence

Random Sequence (=Discrete-time R.P)

X(nT, )= X[n]
Mean = E(X[n])

R, (n,n+k)=E(X[n]X[n+Kk])

C, (n,n+k)=E{(X[n]- X[n])(X[n+k]- X[n+k])}

=R, (n,n+k)— X[n]X[n+k]

R, (n,n+k)=E(X[n]Y[n+Kk])

C,,(n,n+k)=E{(X[n]= X[n])(Y[n+k]-Y[n+k])}

=R, (n,n+k)- X[n]Y[n+k]
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Gaussian Random Process

d Let X(t) be a random process and let X(t1), X(t2), ....X(tn) be the random
variables obtained from X(t) at t=t1,t2........ tn sec respectively

d Let all these random variables be expressed in the form of a matrix

[ X (t,) ]
x|
X =
o
[ X (t,) ]
d Then, X(t) is referred to as normal or Gaussian process if all the
elements of X are jointly Gaussian
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Gaussian Random Process

- continuous r.p. X (t), - <t< oo

\/(27r) c, |

:E[X(t)] Cik:CXX(ti’tk)

eXIO{——[X—X] C, [x-X1}

fX (Xl’...

stationary = E[X (t)]= X (const) & R (t,t)=R_ (t —t)

Cxx (ti’tk) = C:xx (tk _ti)

w.s.s. Gaussian = strictly stationary
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Gaussian Random Process

W.S.S. gaussian r.p. X (t)

_ ok i-1
X =4 R, (r)=25e ] t=t,+—, 1=1,2,3.
2
B _3|k—i|
2
C,=C, (t,t)=R (t,t)-X"=25e 2 -16
] P ]
] ) 25-16  25e 2-16 25e  -16
C11 C12 C13 3 3
c,=,C, C, C,,=125e?-16 25-16  25e *-16
_C31 C32 C33_ _3 2
25 -16 25e *-16  25-16
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Properties of Gaussian Process

d If a gaussian process X(t) is applied to a stable linear filter, then the
random process Y(t) developed at the output of the filter is also
gaussian.

 Considering the set of random variables or samples X(t1),
X(t2),.....X(tn) obtained by observation of a random process X(t) at
instants t1,t2,.......tn, if the process X(t) is gaussian, then this set of
random variables are jointly gaussian for any n, with their n-fold joint
p.d.f. being completely determined by the set of means.

mx(ti) = E[X(ti)] for i=1,2,....n
and the set of auto covariance function
Cxx(t1,t2) = E[{X(t1)-E[X(t1)]H{X(t2)-E[X(t2)]}]

 If a gaussian process is wide sense stationary, then the process is also
stationary in the strict sense

A If the set of random variables X(t1),X(t2)...X(tn) are uncorrelated then
they are statistically independent
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Poisson Random Process

J we introduced Poisson arrivals as the limiting behavior
of Binomial random variables

where
(" Kk arrivals occur in an | i 2k
P L—e*—, k=0,1,2,-

| interval of duration A" k!

A
A=np = uT -— = uA
T
k arrivals K arriva{\v
| —A — | | k2A— |
0 T 0 T
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Poisson Random Process (contd..) .

[ It follows that

("k arrivals occur in an | » (2/1)k
P L =e , k=0,1, 2,--,
| interval of duration 2A" | k1
since in that case
2 A
nplzluT —:ZIUA = 21.
T

d From the above equations, Poisson arrivals over an interval form
a Poisson random variable whose parameter depends on the duration
of that interval.

d The Bernoulli nature of the underlying basic random arrivals, events

over non overlapping intervals are independent. We shall use these two
key observations to define a Poisson process formally.
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Poisson Random Process (contd..) .

1 Definition: X(t) = n(0, t) represents a Poisson process if
(i) the number of arrivals n(t, t;) in an interval (ty, t;) of length t = t,— t;
is a Poisson random variable with parameter ;t
Thus

(A’
Kt

P{n(t,,t,) =k} =e

and

(i) If the intervals (ty, t;) and (ts, t4) are non overlapping, then the random
variables n(ti, t;) and n(ts, t;) are independent.

Since n(0, t) ~ P (At),we have

k=0,1,2,-, t=t, -t

E[X (t)] = E[n(0,1)] = At
and

E[X*(t)] = E[n°(0,1)] = At + A°t°.
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Poisson Random Process (contd..) .

 To determine the autocorrelation functionr _(t,,t,), lett2>t1,
then from (ii) above n(0, t1) and n(t,, t;) are independent Poisson
random variables with parameters it and A (t, — t )respectively.

Thus
E[n(0,t,)n(t,,t,)] = E[N(O, t)]E[n(t,,t,)] = A"t (t, —t,).

But
n(t,,t,)=n(0,t,) —n(0,t,) = X (t,) — X (t,)

and hence the left side of above equation can be rewritten as

ELX (4, XX (t,) = X ()3 = R (t,,t,) — E[X “(1,)].

R _(t,,t,)= A"t (t, —t)+ E[X *(t,)]

XX

2
= At + At t,, t, >t .

. )
Similarly R, (t,,t,)=A4t, + A7t t,, t,<t, .

X

Thus R_(t,t,)=At t, + A min( t,,t,).

XX
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Poisson Random Process (contd..) .

\' \ ‘/\'7 Poisson

arrivals
7t

[ Notice that the Poisson A x ()
process X(t) does not
represent a wide

sense stationary process. tvo

v
-

v
-

1 Define a binary level process

X (t)

Y (1) = (1)

that represents a telegraph signal Notice that the transition
instants {t;} are random Although X(t) does not represent a
wide sense stationary process,
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Poisson Random Process (contd..) .

its derivative x '(t) does represent a wide sense stationary process.

d (.
X (t) - 0) - X (1)
dt

(Derivative as a LTI system)

From there
d t dAt
w, (1) = ﬂx(): = A, a constant
dt dt
and
2
o R_(t,t At t <t
R (t,.t,)= o 2): 21 b2
Jd 1, AL+ 4t >t
nd =2°t, + A U(t -t)
o0R _(t, t
R . (t,t,)= oty 2):22+i§(t1— t,).
ot,
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Poisson Random Process (contd..) .

Define the processes

X (1) X (t)

Y()=3N, : Z(H)=Y@-N)=X(1)-Y ()

i=1
we claim that both Y(t) and Z(t) are independent Poisson processes
with parameters Apt and Aqt respectively.

Proof: .
Y (t)=> P{Y (t) =k [X(t)=n}P{X(t) =n)}
But given X(t) = n, we have Y(t)=> N, ~ B(n,p) sothat
P{\((t):k|X(t)=n}=(;)pkq”‘k 0<k<n,
and

(A1)

n!
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Poisson Random Process (contd..) .

k - At "

= e M . n! Kk n-k " P € k (qat)" ¥
PY(t)=k}=e " Y =P ¢ TR (At Y L
n=k 1 -k o
-(1-q)At k
€ _ A pt
= (1 pt)" — g (4 p1) . k=0,1,2, -
k! k1

= P(Apt).
More generally,

P{Y (1) =k,Z(t)=m}=P{Y (t) =k, X (t) =Y (t) =m}
= P{Y (t) =k, X (t) =k + m}
=P{Y (1) =k [X () =k +m}P{X (t)=k +m}

= (k+m) pkqm .e_/lt (ﬂ’t)k-’-m — e_/lpt (/1 pt)n e—/lqt (ﬂ’qt)n
‘ (k +m)! k! m!

P(Y (t)=k) P(Z(t)=m)

- P{Y (1) = kK}P{Z (t) = m}, Which completes the proof.
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Poisson Random Process (contd..)

-- Iinteger-valued discreter.p. X (t), —wo<t< o

X (0)=0 t <t = X(t)<X(t)

[A(t, -1,)] oAt

PIX (t,) - X (t,) =k]= k=012,

t, <t <t <t = X(t)-X( )& X(t)- X(t,)areindep.

X (t) = E[X ()] = At R, (t,t) = E[X (1)*] = At+ (11)°

C,, (t,t) = At
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Poisson Random Process (contd..)

0<t1<t2 —

PIX (t) =k, X (t,)=k]=P[X(t)=k, X (t)=X(t)=k, k]

k, (ky=ky)
()" A, —t)] -t

| 3 e , k, 2k 20
= k, ! (k, = k,)!
L 0, otherwise
[(,’Ltl)kl[ﬂu(’[2 - tl)](kz_kl) o k, >k, >0
= k 1(k, —k)!
L 0, otherwise
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Poisson Random Process (contd..)

0<tl<t2 —

PIX (t,) = k, |X (t,) = k= P[X (t,) = X (t,) = k, - k,|X (t,) = k,]
= PIX ()= X (t,) =k, — k]

(ky,=k;)
([A(t, -t)] .

=L (k, - k,)!

k, >k

2 1

0, otherwise
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X (t) = Poisson r.p.

O<t1<t2<t3

PIX (t,) =k, X (t,)=k,, X (t,) = k,]
= PIX () = k., X (t,) = X (8,) = k, =k, X (t,) = X (t,) = k, = k,]
= P[X (t,) = k, JP[X (t,) - X (t) = k, -k IP[X (t,) - X (t,) = k, — k,]

k, (k,—k;) (ky—k,)
(/“1) e—/itl [/1(’[2 o '[1)] e—/l(tz—tl) [ﬂv (t3 o '[2)] e—/l(ts—tz)

k,! (k, - k,)! (k, - k,)!

1

(At) 1A, - 1" A, -1,
= e
k 1k, —k)(k, —k,)!
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UNIT-V
Stochastic Processes: Spectral
Characteristics
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Introduction to Power densit

 Fourier integral

xa):-f—jw[fnxuqej“drk““dw

2r *-

1 Fourier transform

0

X@n:ijum”“m

U Inverse Fourier
transform

spectrum
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Introduction (Contd..

[ x (1), T <t<T
Xp (1) =4
|0, o/w

]
Assume j |xT(t)|dt<oo, for all finite T.
T

o0 T

X (@)= X (t)e “'dt = | T x(t)e 'dt

 Energy contained in x(t) in the interval (-T,T)

o0

E(T) = | xT(t)zdt:jT x(t)zdtzzijw XT(a))|2da)
—o = T Y
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Introduction (Contd..

[ Average power in x(t) in the interval (-T,T)

j X, ()]
2T °°T 2 "7 2T

Xx(t) > X (t), take expectation, letT —» .

J Average power in random process x(t)

A : 1 - EIX ()]
Pxx=l|m;j_TE[X(t) ]dt=;j_w|,m d

a
T—>o T o 2T

2 1 .=

Pux = A{ELX (1) 1} P.=—1[ S, (w)do
2w "%

2

E[|X, (@) ] |

S =i power density spectrum

x = lm T
To>ow
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Example-1

Pox = ALELX (1)1}
w.ss. = P =R _(0)
T
 Example- X (t) = A cos(o t+®) © --uniformly distributed on (0, —)

1 2
2 2 2 A02 A02
E[X(t) ]=E[A,cos (o, t+0O)]=E[—+ —co0s(20,t+20)]
2 2

V4 2 2

A, AT A, A .
= —+—I —cos(20,t+26)d0 = —+ —sin(2w t+29)|

2 2 0 1 2 2z

2 2

A, A,
:———sm(Za) t)

2 T

A, A A
= ME[X (M T} =[im —j [———S|n(2co t)]dt = 70
Toow T
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L Example- X (t) = A, cos(w,t+0O)
2 T 1

T . . . . . .
XT(a))zj Aocos(a)ot+®)e_’“’tdt:j A, —[ee’ +e e e dt
-7 -7 2
A _ T T A . [T SN,
:—Oe‘@"[ e (907t 4 L ’G)J' g Moty
2 U 2 ol
~sinf[(w —w )T ~sin[(ow + ® )T
_ ATe" [( )) ]+AOTe_J@ [( )T 1
(0 - ,)T (0 + 0 )T
T 1 7 e /T g T sin( AT
J‘ ejﬂtdt _ -_ejﬂt _ - _ 2T (ﬂ )
T 1B e 1B BT
2
Elx, ()] |
Sv = lim ; power density spectrum
T—o o T
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Example-2 (Contd..)

o SIN[(@ —w )T ]
X (0)=ATe + A, Te
(a)—a)O)T (C()+0)0)T

_jo SIN[(@ + @ )T]

_jo SIN[(0 —@ )T] o SIN[(@ + @ )T ]
+ A Te

X (0) = A,Te
(0 -0 )T (0 + 0 )T

|XT(a))|2 _ XT(a))XT(a))*: Aog[_l_zsin [(w_a:o)zT]_l_Tzsin [(0)+02)0)2T]
(a)—a)o) T (a)+a)o) T

N AOZT z(ej2® N e_].2(9)Sin[(a) —a)O)T] sin[(e + a)O)T]

(0 - )T (0 +o,)T
| | =2 2
E[e'® + e *”1=E[2c0520]= IZ—ZCoszede = —sin20 7" =0
0 7z T

EOX, (@)1 Az T sin“[(@ -~ )T] T sin’[(o +o,)T]
— — + —

2T 2 7 (w-0)T 1 (0+0,)T’
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Example-2 (Contd..)

I . dx = 7
. X
Ioo T_sinz(azT)da:joo T_sin:xidxz o
<z (aT) < X T
T sin“(aT) (oo, if a=0
lim - (b)
Toe g (aT)° 10, if a =0
T S|n2(aT)
(a) & (b) = lim =5 (a)

T—)oo;z- (aT)

E[X (@)1 A
S, (@)= 1lim -
T—> 2T

T
[0(w —@,)+ 0 (0w + )]

A A
[0(w ~w,)+0(0 +w,)]do =

N [ v PN e

1 = 1 -
P, = ;j_wsxx (w)do = ;j_m
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Properties Power density spectrum

Properties of the power density spectrum:
(1) S, (w)=0

(2) X(t) real = S (-o)=S, (o)

(3) S, (@) isreal S (o) = lim E[|XT(a>ﬂ2]
1 - ) T—> o 2T

(4) —j S (@)do = A{E[X (1)"]}
2w "

PFof(2):  X_(0)-= jT X (t)e 'dt
X (o) = IT X (t) e''dt = jT X (t)e'"'dt = X (-w)

E[X (o)X (-0)]  E[X (0) X, (0)]
S,, (@) =1Ilim = lim =
T 2T T—>w 2T

Sxx (@)
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Properties Power density spectrum

Properties of the power density spectrum

() S, (@)=0’S,, () OI—X(t):lim X(tre)- X
dt e—>0 £
PF of (5):
| “mX(t+g)—X(t)’ et
XT(t):ﬁs—w c
0, o/w

f(t-a) «-1> F(w)e

X (0)e' =X (o)

X (1) «—— lim =jo X . (@)
e—>0 8
. 2 _ 2 2
CEX @] 1 Efliex,@|1 , . ElX;@|1
Siy (@) =1lim = lim =o lim =0 S, (0)
Tow 2T Tow 2T To o 2T
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Properties Power density spectrum

Bandwidth of the power density spectrum

X(t)yreal = S, , (@) even

(o]

2
S, (@) lowpass form = " j_wa) S, (0)dw

rms o

S d
root mean square Bandwidth .[_oo o (@)do

B j 0SS, (0)do
S, (o) bandpass form = w@,== mean frequency

[ Sy (@)do

4 (0-0,)"8,, (@)do w
= rms

[ Sy (@)do
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10
S..(w) = S,, (@) lowpass form

T M+ (0 110)%

0 0 10 712 10

J. Sxx(a))dw:j 22dw:_[ 2 12
- =1+ (@ 110)?] 51214 tan’ @]

10sec’ @ d6

=12 100 712 . 712 1+ cos26
d@:j 100cos edezj 100 do =50r
—zl2 -z l2 2

-]

2
-7l2g5ec” 0

w=10tand = do =10sec’ 9 do

0 . 100 ° #12 10" tan” @ )
I a)SXX(a))da)zj 22da):j —— 10sec 6 do
— = [1+ (w0 /10)°] -712[1 + tan " @]
#1210 tan” @ wl2 w12 ,1-co0s20
_ 2 d@:j 10" sin edezj 10 dg =50007
- l2 SeC H - l2 -2 2
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[o0]

I a)ZSXX (w)dw
W' = =-— =100

rms 0

j_ S, (w)dw

rms BW W =10 rad/sec

rm

10
Sy (@) = 22
[1+ (0 /10)°]
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Relationship between PSD and autocorrelation

1 :
— SXX (a))ewda) = A[RXX (t,t+7)]
2w 7%

S (o) = j A[R,, (t.t+7)]e " dr

E[X. (@) X, (@)] 1 T ot T
S @) =lim i i = lim —E X (t.)e ' *dt X (t.)e “2dt
XX( ) T > o 2T To> x 2T [J.—T (1) 1 J-—T (2) 2]
: 1 7.7 jo (t,-t,)
- lim — E[X (t,)X (t,)]e’ " dt _dt,
Too QT 9-TJ-T
1 T T .
- * * Ja)(tl_tz)
= lim — R, (t.,t)e dt,dt,

Tow 9T ¢-TJ9-T

1 . 1
— [ S, (@) do = — lim —— R (t,t)e' " dt dt e da
I_OO XX 5 J. 0T 9T I J‘ XX V172

1 =
jo (z+t-t,)
_1,?20;] J R, (t,,t,) o j_we dwdt,dt,
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Relationship between PSD and autocorrelation

[ S(t)e “dt =1

1 =
5(t)=—j e 'daw
2w T

1 ® o _ 1 T T
—stxx(a))e da):llm—J_TJ' R, (t

t)o(r+t —t )dt dt
vy Towo 27 T ol 1 2) A

1772

1 T
t+7)dt, = lim—[ R (t,t+7)dt

1711
To o 2T =T

1 T

=lim—| R, (t
Tow 2T -[—T XX(

= A[R, (t,t+7)]

A[R, (t,t+7)] «—> S (o)

S (o) = j A[R,, (t.t+7)]e " dr
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Relationship between PSD and autocorrelation

O X(t) wss. = A[R,, (t,t+7)]=R,, (7)

FT
R, () «——> S (o)

Sy (@)= [ Ry, (r)e " dr

1 ” jor
RXX(T):;J_OOSXX(w)e dow
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Cross-power density spectrum

W (t) = X (t)+Y (1)

R,y (Lt+7)=E[W (W (t+7)]=E{[X({)+Y(O)I[X(t+7)+Y (t+7)]}

=R, (tt+7)+ R (t,t+7)+R (t,t+7)+ R (t,t+7)

Sy (@)=S_ (0)+S, (0)+ F{A[R,  (t,t+7)]}+ F{A[R,, (t,t+7)]}
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Cross-power density spectrum

(x(t), ~T <t<T [y(t), ~T <t<T
X, (1) =4 y, (1) =
LO, o/w LO, o/w

T T
Assume j |xT (t)|dt<oo & j |yT (t)|dt<oo, for all finite T.
= =
X (1) <« X_ (o) y. (1) «—> Y (o)

Cross Power contained in x(t), y(t) in the interval (-T,T)

PXY(T):LIOO XT(t)yT(t)dt=ijT X(t)y (t)dt = J‘” X1 (@) Yo (@)
2T == 2T 7-1

Parseval's theorem
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Cross-power density spectrum

average Cross Power contained in X (t),Y (t) in the interval (-T,T)

(T)‘—I 2 nde L EDG@Y @
a 21 27

total average Cross Power contained in X (t),Y (t)

1 T 1 = E[X.(0) Y. (o
Po = lim —[ R, (t,t)dt = — lim ORI )]da)
Tow 27 27 YT 2T

| ~E[X (@) Y, ()]
cross-power density spectrum S,, (@) =1lim -
Tow
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Cross-power density spectrum

S (o) - tim EE(@) X (@)]
T 27

1 = .
P, = ZI_WSYX (w)do =P,

Total cross power = P, + P

X (t),Y (t) orthogonal = P, =P, =0

YX
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Properties of cross-power density spectrum

X (t),Y (t) real

Properties of the cross-power density spectrum:
(1) S,y (@)=8,(-0)=5,(0)

PF of (1): XT(w):JT X (t)e 'dt

Xﬁmf:j:XUYQMM:j:XUmet:Xﬁ—w)

ELY; (-0) X, (o)) ElY; (@)X, (@) ]

S, (o) = lim S, (o)
T—> o 2T T—> o 2T

SYX(_(O)ZIIm E[YT(_a)) XT(_a))]:“m E[YT(CO)XT(G)) ]:SYX(Q))*
T o 2T To o 2T

INSTITUTE OF AERONAUTICAL ENGINEERING



Properties of cross-power density spectrum

(2) Re[S,, (w)] & Re[S,, (w)] --even

(3) Im[S, (#)] & Im[S,, (@)] -- odd

AR, (t,t+7)]«—> S (@)

AlR,, (t,t+7)]«——> S, ()

(4) X (t) & Y (t) orthogonal = S  (w)=S,(®)=0

X(t) & Y (t) orthogonal = R, (t,t+7)=0 = A[R,  (t,t+7)]=0

(5) X (t) & Y (t) uncorrelated & have constant mean X_Y_

= S, (0)=S,(0)=27XY5(w)
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Properties of cross-power density spectrum

PFof(5): R, (t,t+r)=XY = A[R_ (t,t+7)]=XY

= S . (0)=27XYS(w)=S, (0)

X (t),Y (t) -- jointlyw.s.s. = R (7)) «—> S (o)

FT
R, () «—> SYx(a))
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Relations

1 .
—j Sy (a))ejmda) = A[ny (t,t+7)]
2w

sXY(w)::jw A[R,, (t,t+7)]e 7d

E[X. (@) Y. (0)] . 1 T ot T
Syy (@) = lim . - ! =1£1;;—E”:TX(H)e’(HljJY(g)e’ dt, ]

lim —j j ELX (t,)Y (t,)]e’ " % dt_dt,
Tow 2T

jo (t,-t,)
= TIL”!O;I j R,, (t,t,)e dt,dt,

1 - 1 |
Jort ja) (t,-t,) jor
2_ _OOSXY (a))e da) = Z—J‘ Oo-ll-”lool 2T J‘ J RXY (tl’ 2 dtZdtl e da)

_||n\——— R.(t.t)—|[ e """ “dpdt dt
T 5w 2T j J XY(l 2) j 2 1
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i 1 T T
—[ S e “"do = lim — R..(t
27 I_w XY (a)) @ Too 2T -[—T J-—T XY(

T 1 T

1
= lim—{[ R, (t,t +7)dt = lim —j_T R, (t,t+7)dt

t )6 (r+t, —t,)dt dt,

1772

1'71

Tow 2T -T T-o> o 2T
= A[R,, (t,t+17)]

A[R,, (t,t+7)] «—— S (o)

S, (0) = j A[R,, (tt+7)]e " dr
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Example:

AB
R, (t,t+7)=—{sin(ew,r)+cos[o, (2t+7)]}
2

I
AR, (t,t+7)] = T"fl; Ry (4t 7)dt

AB AB 1 7
= ——sin(o,7) + ——lim —[ cos[w (2t +7)]dt
y) 2 Tow 9T ¢-T

AB AB
= —sin(w,r) = —[e
2 4]

jo,r _ e - jo,r ]

AB 7 AB
Sy(w)=—[276(0 ~0,)-276(0 +o,))]=—[0(0 ~0,)-6(0 +v,)]
4] 2
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Linear system fundamentals

o0

— Output y(f)

—> Output y(f)

Linear System y(t) = I_ X(E)h(t,E)d & sty — SL;;ZE

h(t, )

o(t-¢) -  h(t,¢) impulse response (a)

Linear Time-Invariant System (LTI system) Input () —> Sylggm

» » hf)

y(t) = [ x(Eh(t-&)de = h(§)x(t-¢)d¢ "
y(t) = x(t) = h(t) = h(t)* x(t) convolution integral

Y(o)=X(0)H (o)

) [ e s

x(t)=e'' o - . =jwh(§)e‘j“’fd§=H(a))

X (1) e -
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Linear system fundamentals

R
Example-1: H(s) = L
sL + R o——"Tm °
Input x(1) R Outputy(f)
H (o) =
joL + R
0 0
LTI causal < h(t)=0 fort<0
LTI stable < | h(t)]dt < o
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Linear system fundamentals

Ideal lowpass filter et or 0@
1
e, Jo|<w
J P
H (C()) - { —w o\\\ni\ w
LO, O/W (a) \\\9(‘”)
= w o 1 w j(t— 2]
h(t) _ _J' Jt Jt a) — _I eJ(t to) da)
9 7 d-w | H (@) or 6 (@)
w e @) .
_ 1 1 j(t-ty) o T
- 0 ~~o w
2 j(t—t,) W R
S0 (w)
1 e jt=ty)w B e— jt=tHw @
27 jt—=t,) |H (@) or 6()
_ —w— [—w—
W sin[(t -t )W ] < !
- R S |H ()]
T (t — tO )W ,;,0 — o\\\\\\\\\ alo )
© 0w

Not causal = Notphysically realizable
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Random signal response of linear systems

X (t) --w.s.s.random input Y (1) = I_Zh(g)x (t-£&)dé

ELY (D] = E[[ (&)X (t-£)dé]= [ h(E)EX (t-£)ld

fj_ih(g)dg -y
R,, (t.t+7) = E[Y ()Y (t + 7)]

= EI[ hE)X(-&)AE [ h(E)X (t+7-¢,)d¢,]

0] 0

_ .' .'_w E[X (t-¢&)X (t+7-¢&,)]h(&,)h(&,)d & d ¢,

0] 0

_ | Ry (T +& -&)h(E)HN(E,)déde,

X(t) w.s.s. = Y (t) w.s.s.
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Random signal response of linear systems

R ()= [ [] Ry (06, £)0(E)d4,10(E,)de,

_ _':[j: R (7 = &, = EIN(=£)d & TN (E,)dE,

(o]

= | R E)*n(=8)|_, h(&)de,

= R, (r)*h(-7)*h(r)

ELY (0°1= [ ] Ry (&, - E)NEIN(E,)AEE,

Example-1: white noise X (t) R, (z)=(N_,/2)d(r)
EY (1= [ (N I2)8(4, - £,)N(EIN(E,)dE 8¢,

00

= (N, 12)] h(£,)'dg,

0
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Random signal response of linear systems

Ry (64 7) = EX (Y (t+ 7)1 = E[X ()] N(E)X (t+7-¢)d&]

_ E[X ()X (t+7-&)h(E)deE

0

LGRS LILE:

=R, (r)*h(r) =R, (7)

R, (z)=R,, (-7) =R, (-t)*h(-z) =R, (z)*h(-7)

= [ Ry (r-&h(=¢)d¢
X(t) w.ss.s. = X (t) & Y (t) jointly w.s.s.

R,(z)=R,  (z)*h(-7) =R, () *h(r)
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Random signal response of linear systems

Example-2: white noise X (t) R.,(t)=(N_,/2)o(r)

Ry (7) =R, (z)*h(r) = j: Ryx (7 =&)h(5)d¢

= [ (N, 12)8(z = £)h(£)d¢ = (N, 12)h(r)

R, (r) =R, (-7) = (N, /2)h(-7)
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Spectral characteristics of system response

R, (r) =R, (r)*h(r) Sylo)=35,(0)H (@)
R, (r) =R, (r)*h(-z) S, (@)=S, (@)H(-0) =5, (0)H (o)
R, () = Ry, (z)*h(-7) = R, (z) *h(z) *h(-7)

Sy (©) =Sy, (@)H (@) =5, (0)H (0)H (@) =S, (0)|H ()]

h(r) «——> H(a)

h(r) real = h(-7) «—— H(-o)=H(a)
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Spectral characteristics of system response

1 = 1 = 2
average power  p :—j sw(w)dw:—j S . (w)|H(w)| dw
2 7~ 2 ° 7~
Example-1: N, 1
S . (0)=—"= H(w) = _
2 1+ (joL/R)
S0 (@) = S,y (@) |H (@) = —22
W)= 0] Q) =
" o 1+ (wL/R)’
1 = N = 1
P =—/[ S,(0)do =— do
" zyzj—w " 47zJ“°°1+(a)L/R)2
N 712 1 R N R =i2 N R
:—OJ‘ - —sec’ 0dl = —° dg = —
7' 721+tan" 6 L AL d-712 4L
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Spectral characteristics of system response

-Rt/L FT 1

h(t)=(R/L)u(t)e ——> H(w)=
1+ (joL/R)

By Example-1,

N, & = N, =
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Random process through a LTI System.

Impulse o
X(1) —>~ resp(o?se —> Y1) Y (1) = J' h(z )X (t-17,)dr,
h(t "

where h(t) is the impulse response of the system

wu, () = E|Y (2)]

P 1
- E h(z,))X (¢t — 7 drt
If E[X(1)] is finite [JL X n) dn
and system is stable _ -wh(f YE [x(t — 7,)] dx
If X(t) is stationary, — [ h(e)u. (+—17.) dz

H(0) :System DC respons_e.' )

iy = #y | h(x) de =, H(0),
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Random process through a LTI System.

Consider autocorrelation function of Y(t):
R, (t,u) = E[Y (1)Y ()]

_E DZ h(z,)X (1~ 7,) dr, |

If E[ X “(1)] is finite and the system is stable,

0

h(t,)X (u—17,) dr,

.
|

R, (tu) = [ de,h(z)]  de, h(z )R, (1— 7,10 —7,)

fR (t—z,u—-17,)=R, (t—u— 1z, +,) (stationary)
R, (z) = J_w J‘_w h(z )h(t,)Rx(z -7, +7,) dr dr,
Stationary input, Stationary output

R,(0) =E [Y 2(t)] = j_:: I_:: h(z)h(z,)R, (z, —7,) dr, dr7,
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Power Spectral Density (PSD)

Consider the Fourier transform of g(t),

0

G(f)=J‘ g (t)exp( — j2xzftr) dt

— 00

9(t) = [ G(f)exp( j2mf) df

Let H(f ) denote the frequency response,
T =7T2-T1

n(z,) = [ H(f)exp(j2afr,) df

E[vio]=] | “: H (f)exp(j2r fr,) df} h(z,)R, (z, - ,) dr, dt,

o0

[t (f)J_:dtzh(Tz)j_:Rx(Tz—‘L'l)eXp(jZﬂ'f‘L'l)dTl

_ J_de H (f)j_:drzh(rz)exp(jZﬂftz)j_:Rx (r)exp(- 27z fr)dz

d

H "(f) (complex conjugate response of the filter)
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Power Spectral Density (PSD)

E[Y*(t)] = I:df [H (f)|ZI: R, (r)exp(—j2x f7)dt

H (f)| :the magnitude response .
S, (f)=] R, (r)exp(-2xfr) dr

E[Yz(t)]=I_Z|H (O s, (F) af
Define: Power Spectral Density ( Fourier Transform of R(t))

E[Yz(t)]:I_ I h(z,)Rx (7, —7,) dz, dz,
1
1, |f £ f —Af
Recall |H(f)|=J ‘ °‘<i
0, |f & f|>af
Let‘H (f )‘be the magnitude response of an ideal narrowband filter

[H(f)|
. . 1-0
Df :FilterBandwidth 1T [ "~
If Af « f and S (f)is continuous |, | |
c X ry o 7. f
ElY ()]~ 2afS, (f,) in WHz < Af N
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The PSD of the Input and Output Random Processes

X(t) Y(t)
h(t)
Sx(f) Sy (f)

A 4
v

R, (D)= [ [ R )R, (c -7, +7,) dr, do,

s, (f) = jiji J':h(rl)h(rz)Rx (r -7, +7,)exp(-j2x fr)dr, dr, dr

Let T-tr,+7,=7, ,0rt=1,+7 -7,

S, (f) = j_i j_z Iih(rl)h(rz)Rx(rl)exp(jZﬂ fr )exp(—j2z fr,)exp(-j2x fr,) dr,dr,dz,
=S, (f)H(f)H *(f)

— [H ()] sx(f)
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Relation Among The PSD and

Let x(t) be a sample function of a stationary and ergodic Process X(t).
In general, the condition for Fourier transformable is

[ [x®]dt < =
This condition can never be satisfied by any stationary x(t) with infinite
duration.
We may write x (f,7) = jT x(t)exp(— j2x ft) dt

Ergodic = Take time average

1
R.(z)=lim —j x(t+ z)x(t) dt

X

If x(t) is a power signal (finite average power)

1 7 1 2
— [ _x(t+o)x()dt < —|x (£, 1)
-1 2T

Time-averaged autocorrelation  periodogram function
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Relation Among The PSD and

Take inverse Fourier Transform

1 7 o 1 2 ]
— [ _x(t+o)x()dt = | —|x (f,T)| exp(j2z T)df
-1 = T

we have

w 1
R, (¢) = lim | —|X(f,T)|2exp(j27r fr)df
Toow d-0 9T
Note that for any given x(t) periodogram does not converge as T _ o

Since x(t) is ergodic
E[R, (r)]=R, (¢) = lim j —EUX(f —T)\ ]exp( j2xfz)df
T w 002T

. 1
R, (r) = Iw{TllTw;EUX(f - ]}exp( j2zfr)df

R, (¢) = I_w S (f)exp( j2afc)df

S, (f) = lim —EJX(f,T)H
is used to estimate the PSD of xﬂ

_lim —E [ x(t)exp( - j2zft)dt
Tow 2T {—T

2

.
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Cross-Spectral Densities

S, (f) = j: R,, (r)exp(-j2x fr)de

s, (f)= j: R, (r)exp(—j2z fr)ds

S,,(f)and S, (f) may notbe real.

o0

Ry (1) = [ S (S)exp(j2nfe)df

o0

Ryx (7) = | Sy (f)exp()2afr)df

Ry, (r)=R,, (-7)

va(f):SYx(_f):S:x(f)
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Cross-Spectral Densities Example

Example: X(t) and Y(t) are jointly stationary.

X(f) == (D) > V(1) Y(t) —={ () —=7(p)

R,, (t,u) = E[V(1)Z(u)]

_E [ 'Z h, (7,) X (t - rl)dnj_z h,(z,)Y (u—-7,)d Tz}

0

- J'_OO .'_OO h,(¢)h,(z,)R,, (t—7,,u—-7,)dr dr,

Let 1 =1¢—u

R, (z) = I_w I_w h(z)h,(z,)R ,(r -7, +7,)dr dr,

F
— S, (f)=H_(f)H,(f)Sxv(f)
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Cross-Spectral Densities

Output Statistics: the mean of the output process
is given by N

p, () =ELY (1)} =] :E{X (z)h(t—-7)dz}

_ Ij:yx(r)h(t —7)d7z = u_(t)=h(t).

Similarly the cross-correlation function between the input and output

processes is given by )
RXY (tl’tZ): E{X(tl)Y (tz)}

- E{X (tl)j_+:X "(t, - a)h (a)da}

+

[ E{X(t)X (1, - a)}h (a)da

J —

+ 00

= R_(t,t,-a)h (a)da

J —

= R _(t,,t,)*h (t,).
Finally the output autocorrelation function is given by
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Cross-Spectral Densities

RYY (tl’tZ) = E{Y (t1)Y *(tz)}

E{[ X (t, - AHN(AIAAY (1)}

+

= | E{X(t, - B)Y T (t,)kh(B)dp

+ oo

= [ R, (t,- B.t,)N(B)dp

or t T
= R (1,,t,) = h(t),
R, (t,,t,)=R_ (t,,t,)*h (t,)*h(t,).
o) — he) o, (1)
(a)
RXX (tl,tz) SN h*(tz) Ryy (t;.t5) h(tl) N RYY (tl,tz)
(b)
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Cross-Spectral Densities

In particular if X(t) is wide-sense stationary, then we have v (1) = u
so that u, (t) = ,thj+ooh(r)dr = u_C, a constant.

Also R _(t,,t,)=R_(t, —t,) sothatreducesto

+ o0

R, (t,t,)=] R (t,—t, +a)h (a)da

=R _(r)*xh (=z)2 R _(¢), =t —t,.

Thus X(t) and Y(t) are jointly w.s.s. Further, the output
autocorrelation simplifies to

+

R, (t,t,) =] R, (=B -t)h(B)df, =t -1,

0

we obtain =R, (z)xh(z) =R, (7).

R (r)=R_(z)*h (=z)=h(z).
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Cross-Spectral Densities

the output process is also wide-sense stationary. This gives rise to the
following representation

X Y (1)
Wlfie-sense LTI system wide-sense
stationary process " h(t) " stationary process.
(a)
X (1) Y (1)
strict-sense | LTlsystem . strict-sense
stationary process ] h(t) stationary process
(b) (see Text for proof )
X (t) Y (1)
Gaussian | Linear system X Gaussian process
process (also (also stationary)
stationary) (c)
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' White Noise Process .

W(t) is said to be a white noise process if
R, (t,t,)=0q(t)o(t, —t)),

i.e., E[W(t1) W(t;)] =0 unless ti = t,.
W(t) is said to be wide-sense stationary (w.s.s) white noise
if EfW(t)] = constant, and

R (t,t))=q5(t, —t,)=0q5(z).

If W(t) is also a Gaussian process (white Gaussian process), then all of
its samples are independent random variables

_ _ Colored noise
White noise LTI N

W(t) h(t) N (t) = h(t) =W (t)

For w.s.s. white noise input W(t), we have
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V White Noise Process .

E[N (1)] = ywjjwh(r)dr, a constant
and

R (£)=q8(z)*h (-z)*h(r)

=gh (-z)*h(z)=qp(r)
where

+

_h(z)*h (=z)=[ h(a)h (a+7)da.
Thus tﬁe(g)utpu’gg)f a wf(wité)noiieocpr(()oc(e?sstarourg a0r51 LTIl system

represents a (colored) noise process.
Note: White noise need not be Gaussian.
“White” and “Gaussian” are two different concepts!
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] Shot noise
J Thermal noise

; az1() 2o
fvil ()
(a)_o (b)
EV.} |= 4kTR Af volts
- V2] L AT = 4k f ?
E_ITN_:?EVTN — 4KT ;A — 4KTG A amps

k: Boltzmann’s constant = 1.38 x 1023 joules/K, T is the absolute
temperature in degree Kelvin.
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Sw(f) Ryp(7)
N, A No s
? 2
0 / 0 !
(a) (b)
N 0
S, (f)=
2
N = kT

e

T_:equivalent  noise temperatu re of the receiver
N 0
2

R, (7
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Ideal Low-Pass Filtered'White Noise .

SN (f) R N (1)

2 NyB

(a) (»)

0 -B < f < B
Sy(f)=1 2
\0 ‘f‘>B
B N
RN(T)zj ~exp( j2xfr) df
-B 2

= N Bsinc( 2B )
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Correlation of White Noise with a Sinusoidal Wave

White noise ~ W(t) [ a w(t),

/2 k
—cos( 2xfct) , fc=— , ks integer
T T

w'(t) = 1/%[; w (t) cos( 2xf _t)dt

The varance of w' (t)is

2 | | 2 J_T J_T W(tl)COS( 27Z'fct1)W(t2)COS( 27rfct2)dt1dt2
|T o Jo
2 J. J. E[w(tl)w(tz)]COS( 27Z'fct1)COS( 27Z'fc'[2)d'[1dt2
T -0 Jo

2 T T
— T—J'O J'o R, (t,,t,)cos( 2~ f_t )cos( 2~ f_t,)dt dt,

2 T T No
2
o’ = T—J'O J'O T&(tl—tz)cos( 2z f _t )cos( 2~ f _t,) dt dt,
N T N
:—OJ' cos “(2x f_t) dt = 2
T Jo 2
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Narrowband Noise (NBN)

Sy(f)

1
ﬁ:g*ﬂ

| /
I

1 0

|

1 -~

P e St

Two representations et

(a) (b)

a. in-phase and quadrature components (cos(2r f.t), sin(2r f.t))
b. envelope and phase

In-phase and quadrature representation
n(t) =n (t)cos( 2z f t)—n_(t)sin( 2z f t)

n, (t)and n_(t)are low - pass signals

? Lo;v”ftzfss — 2;(1) ny(r) ?
+
11 (1) ——oep 2 cos (2@ f.1) cos (wacr) #A n(r)
—2 sin (27f. 1) sin (2 f,. 0

(a) (b)
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' Important Properties .

1.n/(t) and ng(t) have zero mean.
2.1f n(t) is Gaussian then n/(t) and ng(t) are jointly Gaussian.
3.1f n(t) is stationary then n (t) and ng(t) are jointly stationary.

(s (f-f)+s, (f+f), -B<f<B

4. S, (f)=s, (f)=/
| © | 0 otherwise

5. n/(t) and ng(t) have the same variance Ne
2

6.Cross-spectral density is purely imaginary.
SN,NQ(f): _SNQNI(f)
[ilsy (f + )=, (f - )], B <f<B

) i 0 otherwise
7.1f n(t) is Gaussian, its PSD is symmetric about f,, then n/(t) and n,(t) are

statistically independent.
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Ideal Band-Pass Filtered White Noise

_fC+BN0 fC+BNO
R, (r):j —exp( j2x fr)df +j —exp( j2xz fr)df
-f.-B 92 f.-B 2
= N Bsinc( 2B z)[exp( — j2x f r)exp( j2zf_7)]
= 2N Bsinc( 2Br)cos( 27 f_7)
Compare (a factor of 7 ),

RN,(T) = FQNQ (r) = 2N Bsinc( 2B 7).

INSTITUTE OF AERONAUTICAL ENGINEERING 247



