PPTs on
 Probability Theory and Stochastic Process B.TECH III SEM-ECE IARE-R16

By

- Mrs. G Ajitha, Assistant Professor
- Dr. M V Krishna Rao, Professor
- Mr. N Nagaraju, Assistant Professor
- Mr. G. Anil Kumar Reddy, Assistant Professor

UNIT-I
 Probability and Random Variable

Introduction to Set

- Set: A set is a well defined collection of objects. These objects are called elements or members of the set. Usually uppercase letters are used to denote sets.
- The set theory was developed by George Cantor in 1845-1918. Today, it is used in almost every branch of mathematics and serves as a fundamental part of present-day mathematics.
- In everyday life, we often talk of the collection of objects such as a bunch of keys, flock of birds, pack of cards, etc.
- In mathematics, we come across collections like natural numbers, whole numbers, prime and composite numbers.

Laws in set theory

- $A \cap B=B \cap A$ (Commutative law)
- $(A \cap B) \cap C=A \cap(B \cap C)$ (Associative law)
- $\Phi \cap A=\Phi$ (Law of Φ)
- $U \cap A=A($ Law of U)
- $A \cap A=A$ (Idempotent law)
- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)(D i s t r i b u t i v e ~ l a w)$ Here \cap distributes over U
- Also, $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (Distributive law) Here U distributes over \cap

Probability

- Experiment:

In probability theory, an experiment or trial (see below) is any procedure that can be infinitely repeated and has a well-defined set of possible outcomes, known as the sample space.

- An experiment is said to be random if it has more than one possible outcome, and deterministic if it has only one.
- A random experiment that has exactly two (mutually exclusive) possible outcomes is known as a Bernoulli trial.

Experiment

Experiment
 Outcomes

Flip a coin	Heads, Tails
Exam Marks	Numbers: $0,1,2, \ldots$, 100
Assembly Time	t >0 seconds
Course Grades	F, D, C, B, A, A+

Random Experiment

- An experiment is a random experiment if its outcome cannot be predicted precisely. One out of a number of outcomes is possible in a random experiment.
- A single performance of the random experiment is called a trial.Random experiments are often conducted repeatedly, so that the collective results may be subjected to statistical analysis.
- A fixed number of repetitions of the same experiment can be thought of as a composed experiment, in which case the individual repetitions are called trials.
- For example, if one were to toss the same coin one hundred times and record each result, each toss would be considered a trial within the experiment composed of all hundred tosses.

Relative frequency, Experiments

- Relative Frequency:

Random experiment with sample space S. we shall assign nonnegative number called probability to each event in the sample space. Let A be a particular event in S. then "the probability of event A " is denoted by P(A).

- Suppose that the random experiment is repeated n times, if the event A occurs n_{A} times, then the probability of event A is defined as "Relative frequency
- Event A is defined as

$$
P(A)=\lim _{n \rightarrow \infty} \frac{n_{A}}{n}
$$

Sample Space

- Sample Space: The sample space is the collection of all possible outcomes of a random experiment. The elements of are called sample points. A sample space may be finite, countable infinite or uncountable.
- A list of exhaustive [don't leave anything out] and mutually exclusive outcomes [impossible for 2 different events to occur in the same experiment] is called a sample space and is denoted by S.
- The outcomes are denoted by $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{k}}$
- Using notation from set theory, we can represent the sample space and its outcomes as:

$$
\mathrm{S}=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{k}}\right\}
$$

Sample Space

- Given a sample space $S=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{k}}\right\}$, the probabilities_assigned to the outcome must satisfy these requirements:
(1) The probability of any outcome is between 0 and 1 i.e. $0 \leq \mathrm{P}\left(\mathrm{O}_{\mathrm{i}}\right) \leq 1$ for each i, and
(2) The sum of the probabilities of all the outcomes equals 1 i.e. $P\left(O_{1}\right)+P\left(O_{2}\right)+\ldots+P\left(O_{k}\right)=1$

Discrete and Continuous Sample Spaces

- Probability assignment in a discrete sample space: Consider a finite sample space. Then the sigma algebra is defined by the power set of S. For any elementary event , we can assign a probability such that, For any event, we can define the probability

Continuous sample space

- Suppose the sample space S is continuous and uncountable. Such a sample space arises when the outcomes of an experiment are numbers. For example, such sample space occurs when the experiment consists in measuring the voltage, the current or the resistance.

Events

- The probability of an event is the sum of the probabilities of the simple events that constitute the event.
- E.g. (assuming a fair die) $S=\{1,2,3,4,5,6\}$ and $P(1)=P(2)=P(3)=$ $P(4)=P(5)=P(6)=1 / 6$
- Then: $P(E V E N)=P(2)+P(4)+P(6)=1 / 6+1 / 6+1 / 6=3 / 6=1 / 2$

Types of Events

1. Exhaustive Events:

A set of events is said to be exhaustive, if it includes all the possible events. Ex. In tossing a coin, the outcome can be either Head or Tail and there is no other possible outcome. So, the set of events $\{\mathrm{H}, \mathrm{T}\}$ is exhaustive.
2. Mutually Exclusive Events:

Two events, A and B are said to be mutually exclusive if they cannot occur together. i.e. if the occurrence of one of the events precludes the occurrence of all others, then such a set of events is said to be mutually exclusive. If two events are mutually exclusive then the probability of either occurring is

Types of Events

3. Equally Likely Events:

If one of the events cannot be expected to happen in preference to another, then such events are said to be Equally Likely Events.(Or) Each outcome of the random experiment has an equal chance of occurring.
Ex. In tossing a coin, the coming of the head or the tail is equally likely
4. Independent Events:

Two events are said to be independent, if happening or failure of one does not affect the happening or failure of the other. Otherwise, the events are said to be dependent.

Probability Definitions'and Axioms

Relative frequency Definition:
Consider that an experiment E is repeated n times, and let A and B be two events associated with E. Let n_{A} and n_{B} be the number of times that the event A and the event B occurred among the n repetitions respectively. The relative frequency of the event A in the ' n ' repetitions of E is defined as

$$
f(A)=n A / n
$$

Axioms of Probabibility

- The Relative frequency has the following properties:
- $0 \leq f(A) \leq 1$
- $f(A)=1$ if and only if A occurs every time among the n repetitions.
- If an experiment is repeated n times under similar conditions and the event A occurs in n_{A} times, then the probability of the event A is defined as

Joint probability

- Joint probability:

Joint probability is defined as the probability of both A and B taking place, and is denoted by $P(A B)$ or $P(A \cap B)$.

- probability notation: $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) * \mathrm{P}(\mathrm{B})$

Conditional Probability

- Conditional probability is used to determine how two events are related; that is, we can determine the probability of one event given the occurrence of another related event.
- Experiment: random select one student in class.
- P (randomly selected student is male)
- P (randomly selected student is male/student is on $3^{\text {rd }}$ row)
- Conditional probabilities are written as $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and read as "the probability of A given $B^{\prime \prime}$ and is calculated as

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
$$

Bayes' Theorem

- Bayes' Law is named for Thomas Bayes, an eighteenth century mathematician.
- In its most basic form, if we know $P(B \mid A)$,
- we can apply Bayes' Law to determine P(A $\mid B)$
- Bayes' theorem centers on relating different conditional probabilities. A conditional probability is an expression of how probable one event is given that some other event occurred (a fixed value).
- For a joint probability distribution over events A and B, $P\left(A^{\wedge} B\right)$, the conditional probability of given is defined as

Bayes' theorèm

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

- Note that $P\left(A^{\wedge} B\right)$ is the probability of both A and B occurring, which is the same as the probability of A occurring times the probability that B occurs given that A occurred $P(B / A) * P(A)$
- Using the same reasoning $P\left(A^{\wedge} B\right)$, is also the probability that B occurs times the probability that A occurs given that B occurs: $P(A / B) * P(B)$ The fact that these two expressions are equal leads to Bayes' Theorem. Expressed mathematically, this is:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \text { if } P(B) \neq 0, \\
& P(B \mid A)=\frac{P(B \cap A)}{P(A)}, \text { if } P(A) \neq 0, \\
& \Rightarrow P(A \cap B)=P(A \mid B) \times P(B)=P(B \mid A) \times P(A), \\
& \Rightarrow P(A \mid B)= \\
& P(B \mid A) \times P(A) \\
& P(B)
\end{aligned}, \text { if } P(B) \neq 0 . ~ \$
$$

Bayes' theorèm

- The probabilities $P(A)$ and $P\left(A^{C}\right)$ are called prior probabilities because they are determined prior to the decision about taking the preparatory course.
- The conditional probability $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is called a posterior probability (or revised probability), because the prior probability is revised after the decision about taking the preparatory course.

Random variable

- A (real-valued) random variable, often denoted by X (or some other capital letter), is a function mapping a probability space (S, P) into the real line R. This is shown in next slide.
- Associated with each point s in the domain S the function X assigns one and only one value $X(s)$ in the range R. (The set of possible values of $X(s)$ is usually a proper subset of the real line; i.e., not all real numbers need occur. If S is a finite set with m elements, then $X(s)$ can assume at most m different values as s varies in S.)

RV in graphical representation

A random variable: a function

RV in graphical representation

Random variable

- A numerical value to each outcome of a particular experiment

Discrete random variable

- A random variable is called a discrete random variable is piece-wise constant. Thus is flat except at the points of jump discontinuity. If the sample space is discrete the random variable defined on it is always discrete.

Continuous random variable

- X is called a continuous random variable if is an absolutely continuous function of x. Thus is continuous everywhere on and exists everywhere except at finite or countable infinite points.

Mixed random variable

- X is called a mixed random variable if has jump discontinuity at countable number of points and it increases continuously at least at one interval of values of x. For a such type RV X.

UNIT-II
 Distribution and Density Functions

Random Variable

Review of the concepts

1. Random Experiment
2. Random Event
3. Outcomes
4. Sample Space
5. Random Variable:

Mapping of sample space to a real line

Random Variable

Mapping of sample space to a real line

Distribution function

Probability Distribution Function

The probability $P(X \leq x)$ is the probability of the event $\{X \leq x\}$. i, e

$$
F_{x}(x)=P\{X \leq x\}, \quad-\infty \leq x \leq \infty
$$

Properties of CDF

The properties of a distribution function:

- $F_{x}(-\infty)=0$
- $F_{x}(\infty)=1$
- $0 \leq F_{x}(x) \leq 1$
- $F_{x}\left(x_{1}\right) \leq F_{x}\left(x_{2}\right)$, if $x_{1}<x_{2}$ (Non-decreasing function)
- $P\left\{x_{1}<X<x_{2}\right\}=F_{x}\left(x_{2}\right)-F_{x}\left(x_{1}\right)$
- $F_{x}\left(x^{+}\right)=F_{x}(x) \quad$ (Continuous from the right)

Properties of CDF (contd..)

Proof for $F_{x}\left(x_{2}\right)-F_{x}\left(x_{1}\right)$

- The events $\left\{X \leq x_{1}\right\}$ and $\left\{x_{1}<X<x_{2}\right\}$ are mutually exclusive, i.e. $\left\{X<x_{2}\right\}=\left\{X \leq x_{1}\right\} \cup\left\{x_{1}<X<x_{2}\right\}$
- $P\left\{X<x_{2}\right\}=P\left\{X \leq x_{1}\right\}+P\left\{x_{1}<X<x_{2}\right\}$
- $P\left\{x_{1}<X<x_{2}\right\}=P\left\{X<x_{2}\right\}-P\left\{X \leq x_{1}\right\}$

$$
=\quad F_{x}\left(x_{2}\right)-F_{x}\left(x_{1}\right)
$$

Properties of CDF (contd..)

If X is a discrete random variable taking values
$x_{i}, i=1,2, \ldots, N$, then $F_{x}(x)$ must have a staircase function given by

$$
\begin{aligned}
F_{x}(x) & =\sum_{i=1}^{N} P\left\{X=x_{i}\right\} u\left(x-x_{i}\right) \\
& =\sum_{i=1}^{N} P\left(x_{i}\right) u\left(x-x_{i}\right)
\end{aligned}
$$

where $u($.$) is the unit-step function defined by:$

$$
u(x)= \begin{cases}1, & x \geq 0 \\ 0, & x<0\end{cases}
$$

If N is infinite, then

$$
P\left(x_{i}\right)=P\left\{X=x_{i}\right\}
$$

Probability density function

Probability Density Function

The probability density function of the random variable X is defined as the derivative of the distribution function:

$$
f_{x}(x)=\frac{d F_{x}(x)}{d x}
$$

Probability density function (contd..)

1.If the derivative of $F_{x}(x)$ exists then $f_{x}(x)$ exists

2.There may be places where $\frac{d F_{x}(x)}{d x}$ is not defined at points of abrupt change, then we shall assume that the number of points where $F_{x}(x)$ is not differentiable is countable.
3. For discrete random variables having a stair step form of distribution function.

$$
f_{x}(x)=\sum_{i=1}^{N} P\left(x_{1}\right) \delta\left(x-x_{1}\right)
$$

Properties of PDF

Properties of Density Functions.

- $0 \leq f_{x}(x)$ all x
- $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- $F_{x}(x)=\int_{-\infty}^{x} f_{x}(x) d x=1$
- $P\left\{x_{1}<X<x_{2}\right\}=\int_{x_{1}}^{x_{2}} f_{x}(x) d x$

Gaussian Probability density function

Gaussian Density Function

A random variable X is called Gaussian if its density function has the form

$$
f_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} e^{-\left(x-a_{x}\right)^{2} / 2 \sigma x^{2}}
$$

Where $\sigma_{x}>0$ and $-\infty<a_{x}<\infty$ are real constants.

Gaussian Probability density function (contd..)

1. Its maximum value $\left(2 \pi \sigma_{2}^{x}\right)^{-\frac{1}{2}}$ occurs at $x=a_{x}$.
2. Its "spread" about the point $x=a_{x}$ is related to σ_{x}.
3. The function decreases to 0.607 times its maximum at

$$
x=a_{x}+\sigma_{x} \text { and } x=a_{x}-\sigma_{x}
$$

4. The Gaussian density is the most important of all densities. It enters into nearly all areas of engineering

Gaussian Probability density function (contd..)

$$
F_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} \int_{-\infty}^{x} e^{-(\xi-e x)^{2} / 2 \sigma x^{2}} d \xi
$$

Gaussian Probability density function (contd..)

- This integral has no known closed-form solution and must be evaluated by numerical methods.
- We could develop a set of tables of $F_{x}(x)$ for various x and α_{x} and σ_{x} as parameters (infinite number of tables).
- Only one table of $F_{x}(x)$ for the normalized (specific) values $\alpha_{x}=0$ and $\sigma_{x=1}$ given by

$$
F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\xi^{2} / 2} d \xi
$$

which is a function of x only \& tabulated for $x \geq 0$.

- For negative values of x we have

$$
F(-x)=1-F(x)
$$

Gaussian Probability density function (contd..)

- Making the variable change $u=\frac{\xi-a_{x}}{\sigma_{x}}$, we get

$$
F_{x}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\left(x-a_{x}\right) / \sigma_{x}} e^{-u t / 2} d u=F\left(\frac{x-a_{x}}{\sigma_{x}}\right)
$$

Binomial Probability density function

Binomial Density Function

$$
f_{x}(x)=\sum_{k=0}^{N}\left\langle\begin{array}{l}
N \\
k
\end{array}\right\rangle p^{k}(1-p)^{N-k} \delta(x-k)
$$

where $\left\langle\begin{array}{c}N \\ k\end{array}\right\rangle$ is the binomial coefficient defined as

$$
\left\langle\begin{array}{l}
N \\
k
\end{array}\right\rangle=\frac{N!}{k!(N-k)!}
$$

$$
\text { and } 0<p<1, N=1,2 \ldots \ldots \ldots .
$$

Binomial Probability density function (contd..)

1. The binomial density is applied to Bernoulli trail experiment, having only two possible outcomes on any given trial.
2. It applies to many games of chance, detection problems in radar and sonar, and many experiments

Binomial Probability density function (contd..)

By integration, the binomial distribution function is found:

$$
F_{x}(x)=\sum_{k=0}^{N}\binom{N}{k} p^{k}(1-p)^{N-k} \delta(x-k)
$$

Figure: Binomial distribution function ($\mathrm{N}=6, \mathrm{p}=0.25$)

Poisson Probability density function

Poisson Density Function

$$
\begin{aligned}
& f_{x}(x)=e^{-b} \sum_{k=0}^{\infty} \frac{b^{k}}{k!} \delta(x-k) \\
& F_{x}(x)=e^{-b} \sum_{k=0}^{\infty} \frac{b^{k}}{k!} u(x-k)
\end{aligned}
$$

where $b>0$ is a real constant.

- These functions appear quite similar to binomial
- If $N \rightarrow \infty$ and $p \rightarrow 0$ for the binomial case in such a way that $N_{p}=b$, a constant, the Poisson case results.
- The Poisson random variable applies to a wide variety of counting-type applications.

Poisson Probability density function (contd..)

- It describes
$>$ the number of defective units in a sample taken from a production line,
$>$ the number of telephone calls during a period of time,
$>$ the number of electrons emitted from a small section of a cathode in a given time interval, etc.
$>$ If the time interval of interest has duration T , and the events being counted are known to occur at an average rate λ and have a Poisson distribution, then $b=\lambda T$

Uniform Probability density function

Uniform Density Function

$$
\begin{array}{r}
f_{x}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a}, & a \leq x \leq b \\
0, & \text { elsewhere }
\end{array}\right. \\
\underbrace{\delta_{1}(x)}_{0} \underbrace{1 /(b-a)}_{b}
\end{array}
$$

for real constants $-\infty<a<\infty$ and $b>a$.

Uniform Probability density function (contd..)

Uniform Probability density function (contd..)

$>$ The error of quantization of signal samples prior to encoding in digital communication systems.
>Quantization amounts to "rounding off" the actual sample to the nearest of discrete quantum level.
$>$ The quantization error introduced in the round-off process are uniformly distributed.

Exponential Probability density function

Exponential Density Function

$$
f_{x}(x)= \begin{cases}\frac{1}{b} e^{-(x-a) / b} & x>a \\ 0, & x<a\end{cases}
$$

for real numbers $-\infty<a<\infty$ and $b>0$

Exponential Pdf (contd..)

$$
F_{x}(x)= \begin{cases}1-e^{-(x-a) / b} & x>a \\ 0, & x<a\end{cases}
$$

Exponential Pdf (contd..)

>The exponential density is useful in describing raindrop sizes when a large number of rainstorm measurements are made.
>It is also known to approximately describe the fluctuations in signal strength received by radar from certain types of aircraft.

Rayleigh Probability density function

Rayleigh Density Function

$$
f_{x}(x)= \begin{cases}\frac{2}{b}(x-a) e^{-(x-a) 2 / b}, & x \geq a \\ 0, & x<a\end{cases}
$$

for the real constants $-\infty<a<\infty$ and $b>0$

Rayleigh Probability density function (contd..)

$$
F_{x}(x)= \begin{cases}1-e^{-(x-a) 2 / b} & x \geq a \\ 0, & x<a\end{cases}
$$

Rayleigh Probability density function (contd..)

> The Rayleigh density describes the envelope of white gaussian noise when passed through a bandpass filter.
It is also is important in analysis of errors in various measurement systems.

Conditional distribution function

Conditional Distribution Function

- Let A and B be the two events $\& P(B) \neq 0$, then

$$
P(A \mid B)=\frac{P\{A \cap B\}}{P(B)}
$$

- Let A be defined as the event $\{X \leq x\}$ for the random variable X.
- The resulting probability $P\{X \leq x \mid B\}$ is defined as the conditional distribution function of X, which is denote d by

$$
F_{x}(x \mid B)=P\{X \leq x \mid B\}=\frac{P\{X \leq x \cap B\}}{P(B)}
$$

where $\{X \leq x \cap B\}$ is the joint event $\{X \leq x\} \cap B$. This joint event consists of all outcomes \boldsymbol{s} such that $X(s) \leq x$ and $\boldsymbol{s} \in B$

Properties of Conditional distribution function

Properties of Conditional Distribution Function

- $F_{x}(-\infty \mid B)=0$
- $F_{x}(\infty \mid B)=1$
- $0 \leq F_{x}(\infty \mid B) \leq 1$
- $F_{x}\left(x_{1} \mid B\right) \leq F_{x}\left(x_{2} \mid B\right)$ if $x_{1}<x_{2}$
- $P\left\{x_{1}<X \leq x_{2} \mid B\right\}=F_{x}\left(x_{2} \mid B\right)-F_{x}\left(x_{1} \mid B\right)$
- $F_{x}\left(x^{+} \mid B\right)=F_{x}(x \mid B)$

Conditional density function

Conditional Density Function

The conditional density function of the random variable X is defined as the derivative of the conditional distribution function, and is given by

$$
f_{x}(x \mid B)=\frac{d F_{x}(x \mid B)}{d x}
$$

If $F_{x}(x \mid B)$ contains step discontinuities (when X is a discrete or mixed random variable), we assume that impulse functions are present in $f_{x}(x \mid B)$ to account for the derivatives at the discontinuities.

Properties of Conditional density function

Properties of Conditional Density Function

$$
\begin{aligned}
& \text { - } f_{x}(x \mid B) \geq 0 \\
& \text { - } \int_{-\infty}^{\infty} f_{x}(x \mid B) d x=1 \\
& \text { - } F_{x}(x \mid B)=\int_{-\infty}^{x} f_{x}(\xi \mid B) d \xi \\
& \text { - } P\left\{x_{1}<X<x_{1} \mid B\right\}=\int_{x_{1}}^{x_{2}} f_{x}(x \mid B) d x
\end{aligned}
$$

Methods of conditioning event

Methods of Defining Conditioning Event

 If event B is defined in terms of the random variable X as $B=\{X \leq b\}$, where b is some real number $-\infty<b<\infty \& P\{X \leq b\} \neq 0$, then we have$$
\begin{aligned}
F_{x}(x \mid B) & =P\{X \leq x \mid B\} \\
& =P\{X \leq x \mid X \leq b\} \\
& =\frac{P\{X \leq x \cap X \leq b\}}{P\{X \leq b\}}
\end{aligned}
$$

Methods of conditioning event (contd..)

Case (i):

If $b \leq x$, then the event $\{X \leq b\}$ is an subset of the event $\{X \leq x\}$, so $\{X \leq x\} \cap\{X \leq b\}=\{X \leq b\}$. Then we have

$$
\begin{aligned}
F_{x}(x \mid X \leq b) & =\frac{P\{X \leq x \cap X \leq b\}}{P\{X \leq b\}} \\
& =\frac{P\{X \leq b\}}{P\{X \leq b\}}=1 \quad x \geq b
\end{aligned}
$$

Methods of conditioning event (contd..)

Case (ii):

$$
\begin{aligned}
F_{x}(x \mid X \leq b) & =\frac{P\{X \leq x \cap X \leq b\}}{P\{X \leq b\}} \\
& =\frac{P\{X \leq x\}}{P\{X \leq b\}}=\frac{F_{x}(x)}{F_{x}(b)} \quad x<b
\end{aligned}
$$

Methods of conditioning event (contd..)

By combining the last two expressions, we have

$$
F_{x}(x \mid X \leq b)= \begin{cases}\frac{F_{x}(x)}{F_{x}(b)} & x<b \\ 1, & x \geq b\end{cases}
$$

From our assumption that the conditioning event has nonzero probability, $0<F_{x}(b) \leq 1$, so the conditional distribution function is never smaller than the ordinary distribution function $F_{x}(x \mid X \leq b) \geq F_{x}(x)$

Methods of conditioning event (contd..)

Similarly the conditional density function is

$$
f_{x}(x \mid X \leq b)= \begin{cases}\frac{f_{x}(x)}{F_{x}(x)}=\frac{f_{x}(x)}{\int_{-\infty}^{b} f_{x}(x) d x} & x<b \\ 0, & x \geq b\end{cases}
$$

From our assumption $0<f_{x}(x) \leq 1$, so the conditional density function is never smaller than the ordinary density function

$$
f_{x}(x \mid X \leq b) \geq f_{x}(x) \quad x<b
$$

The result can be extended to more general event
$B=\{a<X \leq b\}$

Moments about origin

Moments About the Origin

The expected value of $X^{n}, n=0,1,2, \ldots \ldots \ldots$ is given by

$$
E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f_{x}(x) d x
$$

gives the moments about the origin of the random variable X. These are also called standard moments and are denoted as m_{n}

Moments about mean

Moments About the Mean

The expected value of $(X-\bar{X})^{n}, n=0,1,2, \ldots \ldots \ldots$ is given by

$$
E\left[(X-\bar{X})^{n}\right]=\int_{-\infty}^{\infty}(x-\bar{X})^{n} f_{x}(x) d x
$$

gives the moments about the mean of the random variable X. These are also called central moments and are denoted as μ_{n}

Characteristic function

Characteristic Function

The characteristic function of a random variable X is defined by

$$
\Phi_{x}(\omega)=E\left[e^{j \omega x}\right]=\int_{-\infty}^{\infty} e^{j \omega x} f_{x}(x) d x
$$

where $=\sqrt{-1}$. It is a function of the real number $-\infty<\omega<\infty$.
$\Phi_{x}(\omega)$ is seen as the Fourier transform (with the sign of ω reversed) of $f_{x}(x)$

Moment generating function

Moment Generating Function

The moment generating function of a random variable X is defined by

$$
M_{x}(v)=E\left[e^{v x}\right]=\int_{-\infty}^{\infty} f_{x}(x) e^{v x} d x
$$

Where v is a real number $-\infty<v<\infty$.

Moment generating function

- Moments are related to $M_{x}(v)$ by the expression

$$
m_{x}=\left.(-j)^{n} \frac{d^{n} \mathrm{M}_{x}(v)}{d v^{n}}\right|_{v=0}
$$

- The main disadvantage of the moment generating function is that it may not exist for all random variables.
- In fact, $M_{x}(v)$ exists only if all the moments exist

Monotonically increasing RV

Transformations of A Random Variable

- Quite often one may wish to transform one random variable X into a new random variable Y by means of a transformation

- Typically, the density function $f_{x}(x)$ or distribution function $F_{x}(x)$ of X is known, and the problem is to determine either the density function $f_{y}(y)$ or distribution function $F_{y}(y)$ of Y.
- The transformation T can be linear, nonlinear, segmented ,staircase, etc

Monotonically increasing RV (contd..)

Monotonic Transformation of a Continuous

Random variable

- A transformation T is called monotonically increasing if $T\left(x_{1}\right)<T\left(x_{2}\right)$ for any $x_{1}<x_{2}$.

Nonmonotonic Transformation of a RV

Nonmonotonic transformations of a

continuous random variable

- In this case, there may be more than one interval of values of X that correspond to the event $\left\{Y \leq y_{0}\right\}$ corresponds to the event $\left\{X \leq x_{1}\right.$ and $\left.x_{2} \leq X \leq x_{3}\right\}$

Nonmonotonic Transformation of a RV (contd..)

- Thus, the probability of the event $\left\{Y \leq y_{0}\right\}$ now equals the probability of the event $\left\{x\right.$ values yielding $\left.Y \leq y_{0}\right\}$, which we shall write as $\left\{x \mid Y \leq y_{0}\right\}$ i.e.,
$F_{y}\left(y_{0}\right)=p\left\{Y \leq y_{0}\right\}=p\left\{x \mid Y \leq y_{0}\right\}=\int_{\left\{x \mid Y \leq y_{0}\right\}} f_{x}(x) d x$
- Differentiating we get the density function of Y as

$$
f_{y}\left(y_{0}\right)=\frac{d}{d y_{0}} \int_{\left\{x \mid Y \leq y_{0}\right\}} f_{x}(x) d x
$$

Nonmonotonic Transformation of a RV (contd..)

- The density function is also given by

$$
f_{y}(y)=\sum_{n} \frac{f_{x}\left(x_{n}\right)}{\left.\left|\frac{d T(x)}{d x}\right|_{x=x_{0}} \right\rvert\,}
$$

where the sum is taken so as to include all the roots $x_{n}, n=1,2, \ldots \ldots$, which are the real solutions of the equation

$$
y=T(x)
$$

Transformation of a DiscreteRV

Transformation of a Discrete Random Variable

- If X is a discrete random variable

$$
\begin{aligned}
& f_{x}(x)=\sum_{n} p\left(x_{n}\right) \delta\left(x-x_{n}\right) \\
& F_{x}(x)=\sum_{n} p\left(x_{n}\right) u\left(x-x_{n}\right)
\end{aligned}
$$

where the sum is taken to include all the possible values $x_{n}, n=1,2, \ldots \ldots$, of X.

- If the transformation $Y=T(X)$ is continuous and monotonic, there is a one-to-one correspondence between X and Y so that a set $\left\{x_{n}\right\}$, through the equation $y_{n}=T\left\{x_{n}\right\}$ so that $P\left\{y_{n}\right\}=P\left\{x_{n}\right\}$.

Transformation of a DiscreteRV (contd..)

- If the transformation $Y=T(X)$ is continuous and monotonic, there is a one-to-one correspondence between X and Y so that a set $\left\{x_{n}\right\}$, through the equation $y_{n}=T\left\{x_{n}\right\}$ so that $P\left\{y_{n}\right\}=P\left\{x_{n}\right\}$.
- Thus, we have

$$
\begin{gathered}
f_{y}(y)=\sum_{n} p\left(y_{n}\right) \delta\left(y-y_{n}\right) \\
F_{y}(y)=\sum_{n} p\left(y_{n}\right) u\left(y-y_{n}\right) \text { where } y_{n}=T\left(x_{n}\right)
\end{gathered}
$$

- If T is not monotonic, the above procedure remains same, but $P\left(y_{n}\right)$ will equal the sum of the probabilities of the various x_{n} for which $y_{n}=T\left(x_{n}\right)$

Expected value of a RV

Expected Value of a Random variable

In general, the expected value of any random variable X is defined by

$$
E[X]=\bar{X}=\int_{-\infty}^{\infty} x f_{x}(x) d x
$$

Expected value of a RV (contd..)

If X is discrete with N possible values x_{i} having probabilities $P\left(x_{i}\right)$ of occurrence, then

$$
f_{x}(x)=\sum_{i=1}^{N} x_{i} P\left(x_{i}\right) \delta\left(x-x_{i}\right)
$$

Then we have

$$
E[x]=\sum_{i=1}^{N} x_{i} P\left(x_{i}\right)
$$

If the density is symmetrical about a line $x=a$ i.e.

$$
f_{x}(x+a)=f_{x}(-x+a)
$$

then

$$
E[x]=a
$$

Conditional Expected value of a RV

Conditional Expected Value

If $f_{x}(x \mid B)$ is the conditional density where B is any event defined on the sample space of X, then the conditional expected value of X , is given by

$$
E[X \mid B]=\int_{-\infty}^{\infty} x f_{x}(x \mid B) d x
$$

Conditional Expected value of a RV (contd..)

If the event $B=\{X \leq b\}, \infty<b<\infty$

$$
f_{x}(x \mid X \leq b)=\left\{\begin{array}{lc}
\frac{f_{x}(x)}{\int_{-\infty}^{b} f_{x}(x) d x} & x<b \\
0 & x \geq b
\end{array}\right.
$$

Then, the conditional expected value is given by

$$
E[x \mid X \leq b]=\frac{\int_{-\infty}^{b} x f_{x}(x) d x}{\int_{-\infty}^{b} f_{x}(x) d x}
$$

which is the mean value of X when X is constrained to the set $\{X \leq b\}$.

Moments about origin

Moments About the Origin

The expected value of $X^{n}, n=0,1,2, \ldots \ldots \ldots$ is given by

$$
E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f_{x}(x) d x
$$

gives the moments about the origin of the random variable X. These are also called standard moments and are denoted as m_{n}

Moments about origin (contd..)

For $n=0$,

$$
m_{0}=E\left[X^{0}\right]=\int_{-\infty}^{\infty} x^{0} f_{x}(x) d x=\int_{-\infty}^{\infty} f_{x}(x) d x
$$

is the area of under the function $f_{x}(x)$.

For $n=1$,

$$
m_{1}=E[X]=\int_{-\infty}^{\infty} x f_{x}(x) d x=\bar{X}
$$

is the expected value of X.

Moments about mean

Moments About the Mean

The expected value of $(X-\bar{X})^{n}, n=0,1,2, \ldots \ldots \ldots$ is given by

$$
E\left[(X-\bar{X})^{n}\right]=\int_{-\infty}^{\infty}(x-\bar{X})^{n} f_{x}(x) d x
$$

gives the moments about the mean of the random variable X. These are also called central moments and are denoted as μ_{n}

Moments about mean (contd..)

For $n=0$,

$$
\begin{gathered}
\mu_{n}=E\left[(X-\bar{X})^{n}\right]=\int_{-\infty}^{\infty}(x-\bar{X})^{n} f_{x}(x) d x \\
\mu_{0}=E\left[(X-\bar{X})^{0}\right]=\int_{-\infty}^{\infty} f_{x}(x) d x
\end{gathered}
$$

is the area of under the function $f_{x}(x)$.

For $n=1$,

$$
\mu_{1}=E[(X-\bar{X})]=E[X]-\bar{X}=0
$$

Variance

Variance

The second central moment μ_{2} is given by

$$
\mu_{2}=E\left[(X-\bar{X})^{2}\right]=\int_{-\infty}^{\infty}(X-\bar{X})^{2} f_{x}(x) d x
$$

1. It is popularly known as the variance σ_{x}^{2} of the random variable X.
2. The positive square root σ_{x} of variance is called the standard deviation of X.
3. It is a measure of the spread in the function $f_{x}(x)$ about the mean.

Variance (contd..)

The second central moment is given by

$$
\mu_{2}=E\left[(X-\bar{X})^{2}\right]
$$

By expanding we get

$$
\begin{aligned}
\mu_{2} & =E\left[X^{2}-2 \bar{X} X+\bar{X}^{2}\right] \\
& =E\left[X^{2}\right]-2 \bar{X} E[X]+\bar{X}^{2} \\
& =E\left[X^{2}\right]-\bar{X}^{2}=m_{2}-\mu_{1}{ }^{2}
\end{aligned}
$$

Skew

Skew

The third central moment is given by

$$
\begin{aligned}
\mu_{3} & =E\left[(X-\bar{X})^{3}\right] \\
\mu_{3} & =E\left[X^{3}-3 X^{2} \bar{X}+3 X \bar{X}^{2}-\bar{X}^{3}\right] \\
& =E\left[X^{3}\right]-3 E\left[X^{2}\right] \bar{X}+3 \bar{X}^{2} E[X]-\bar{X}^{3} \\
& =m_{3}-3 m_{2} \mu_{1}+3 \mu_{1}{ }^{3}-\mu_{1}{ }^{3} \\
& =m_{3}-3 m_{2} \mu_{1}+2 \mu_{1}{ }^{3}
\end{aligned}
$$

Skew (contd:.)

- μ_{3} is a measure of asymmetry of $f_{x}(x)$ about the mean.
- It will be called the skew of the density function.
- If a density is symmetric about $x=\bar{X}$, it has zero skew. For this case, $\mu_{n}=0$ for all odd values of n.
- The normalized third central moment $\mu_{3} / \sigma_{x}{ }^{3}$ is known as the coefficient of skewness.

UNIT-III
 Multiple Random Variables and Operations

Vector random variables

- There are many cases where the outcome is a vector of numbers. We have already seen one such experiment, in, where a dart is thrown at random on a dartboard of radius r. The outcome is a pair (X, Y) of random variables that are such that $X^{2}+Y^{2} \leq r^{2}$.
- we measure voltage and current in an electric circuit with known resistance. Owing to random fluctuations and measurement error, we can view this as an outcome (V, I) of a pair of random variables.
- Mapping the sample space to joint sample space

Comparision of sample space s with sj

Joint distribution function

- Let X and Y be random variables. The pair (X, Y) is then called a (twodimensional) random vector.
- The joint distribution function (joint cdf) of (X, Y) is defined as $\mathrm{F}(\mathrm{x}, \mathrm{y})$ $=P(X \leq x, Y \leq y)$ for $x, y \in R$.
- Assume the joint sample space S_{J} has only three possible elements $(1,1),(2,1),(3,3)$.The probabilities of the elements are to be $P(1,1)=0.2, P(2,1)=0.3, P(3,3)=0.5$.We find $F_{X, Y}(X, Y)$
- In constructing joint distribution function we observe that has no elements for $x<1, y<1$.only at the point $(1,1)$ does the function assume a step value.
- So long as $x \geq 1, y \geq 1$ this probability is maintained.For larger x and y the point $(2,1)$ produces a second stair step of 0.3 which holds the region $x \geq 2, y \geq 1$. The second step is added to the first.Finally third step of 0.5 is added to the two for $x \geq 3, y \geq 3$

Properties of Joint Distribution

- Properties:

1) $F_{X, Y}(-\infty, y)=F_{X, Y}(x,-\infty)=0$

Note that $\{X \leq-\infty, Y \leq y\} \subseteq\{X \leq-\infty\}$
2) $\quad F_{X, Y}\left(x_{1}, y_{1}\right) \leq F_{X, Y}\left(x_{2}, y_{2}\right)$ if $x_{1} \leq x_{2}$ and $\mathrm{y}_{1} \leq \mathrm{y}_{2}$

$$
\begin{aligned}
& \text { If } x_{1}<x_{2} \text { and } y_{1}<y_{2}, \\
& \left(X \leq x_{1}, Y \leq y_{1}\right\} \leq\left\{X \leq x_{2}, Y \leq y_{2}\right\} \\
& \therefore P\left(X \leq x_{1}, Y \leq y_{1}\right) \leq P\left(X \leq x_{2}, Y \leq y_{2}\right) \\
& \therefore F_{X, Y}\left(x_{1}, y_{1}\right) \leq F_{X, Y}\left(x_{2}, y_{2}\right)
\end{aligned}
$$

3) $P_{X, Y}(\infty, \infty)=1$
4) $F_{X, Y}(x, y)$ is right continuous in both the variables

$$
F_{X}(x)=F_{X I}(x,+\infty)
$$

Properties of joint distribution

5) If $x_{1}<x_{2}$ and $y_{1}<y_{2}$

$$
\begin{aligned}
& P\left(\left(x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right)\right)=F_{X, Y}\left(x_{2}, y_{2}\right)-F_{X, Y}\left(x_{1}, y_{2}\right)-F_{X, Y}\left(x_{2}, y_{1}\right)+F_{X, Y}\left(x_{1}, y_{1}\right) \\
& F_{X, Y}(x, y),-\infty<x<\infty,-\infty<y<\infty
\end{aligned}
$$

6)

$$
\begin{aligned}
& F_{X}(x)=F_{X Y}(x,+\infty) \\
& (X \leq x)=(X \leq x) \mapsto(Y \leq+\infty) \\
& \therefore F_{X}(x)=P((X \leq x))=P\left((X \leq x, Y \leq \infty)=F_{X, Y}(x,+\infty)\right. \\
& F_{Y}(y)=F_{X Y}(\infty, y) \\
& { }_{4}^{4} X, X(X, y),-\infty<x<\theta,-\infty<y<\infty
\end{aligned}
$$

$F_{X}(x)$ and $F_{Y}(y) \quad$ Called marginal cumulative distribution function

Marginal distribution functions

- The distribution of one random variable can be obtained by setting the other value to infinity in $F_{X, Y}(x, y)$. The functions obtained in this manner $F_{X}(x), F_{Y}(y)$ are called marginal distribution functions.
- Example:
$F_{X, Y}(x, y)=P(1,1) u(x-1) u(y-1)+P(2,1) u(x-2) u(y-1)+P(3,3) u(x-3) u(y-3)$
$P(1,1)=0.2, P(2,1)=0.3, P(3,3)=0.5$ if we set $y=\infty$ then
$F_{x}(x)=0.2 u(x-1)+0.3 u(x-2)+0.5 u(x-3)$
similarly

$$
\begin{aligned}
F_{Y}(y) & =0.2 u(y-1)+0.3 u(y-1)+0.5 u(y-3) \\
& =0.5 u(y-1)+0.5 u(y-3)
\end{aligned}
$$

Marginal distribution functions

- Consider two jointly distributed random variables and with the joint CDF

$$
F_{X, Y}(x, y)= \begin{cases}\left(1-e^{-2 x}\right)\left(1-e^{-y}\right) & x \geq 0, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

1) Find the marginal CDFs
2) Find the probability $\mathrm{P}(1<x \leq 2,1<y \leq 2)$

Marginal distribution functions

a) $\quad F_{X}(x)=\lim _{y \rightarrow \infty} F_{X, Y}(x, y)= \begin{cases}1-e^{-2 x} & x \geq 0 \\ 0 & \text { elsewhere }\end{cases}$

$$
\begin{aligned}
& F_{Y}(y)=\lim _{x \rightarrow \infty} F_{X, Y}(x, y)= \begin{cases}1-e^{-y} & y \geq 0 \\
0 & \text { elsewhere }\end{cases} \\
& \begin{aligned}
P\{1<X \leq 2,1<Y \leq 2\} & =F_{X, Y}(2,2)+F_{X, Y}(1,1)-F_{X, Y}(1,2)-F_{X, Y}(2,1)
\end{aligned} \\
& \\
& =\left(1-e^{-4}\right)\left(1-e^{-2}\right)+\left(1-e^{-2}\right)\left(1-e^{-1}\right)-\left(1-e^{-2}\right)\left(1-e^{-2}\right)-\left(1-e^{-4}\right)\left(1-e^{-1}\right) \\
& \\
& =0.0272
\end{aligned}
$$

Joint Probability Density Function

- If and are two continuous random variables and their joint distribution function is continuous in both and then we can define joint probability density function by

$$
f_{x, y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, y}(x, y),
$$

provided it exists.

Clearly

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d v d u
$$

Marginal density function

- The marginal CDF and pdf are same as the CDF and pdf of the concerned single random variable. The marginal term simply refers that it is derived from the corresponding joint distribution or density function of two or more jointly random variables.
- With the help of the two-dimensional Dirac Delta function, we can define the joint pdf of two discrete jointly random variables. Thus for discrete jointly random variables and

$$
f_{X, Y}(x, y)=\sum_{\left(x_{i}, y_{j}\right) \in R_{X} \times R_{Y} .} \sum p_{X, Y}(x, y) \delta\left(x-x_{i}, y-y_{j}\right)
$$

Marginal density function

- The joint density function

$$
\begin{aligned}
& F_{X, Y}(x, y)=\left\{\begin{array}{l}
\left(1-e^{-2 x}\right)\left(1-e^{-y}\right) \quad x \geq 0, y \geq 0 \\
0 \\
\quad \text { otherw ise }
\end{array}\right. \\
& f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y) \\
&=\frac{\partial^{2}}{\partial x \partial y}\left[\left(1-e^{-2 x}\right)\left(1-e^{-y}\right)\right] \quad x \geq 0, y \geq 0 \\
&=2 e^{-2 x} e^{-y} \quad x \geq 0, y \geq 0
\end{aligned}
$$

Conditional distribution

- We discussed the conditional CDF and conditional PDF of a random variable conditioned on some events defined in terms of the same random variable. We observed that

$$
\begin{aligned}
& F_{X}(x / B)=\frac{P((X \leq x\} \cap B)}{P(B)} \quad P(B) \neq 0 \\
& f_{X}(x / B)=\frac{d}{d x} F_{X}(x / B)
\end{aligned}
$$

Conditional density function

- Suppose and are two discrete jointly random variable with the joint PMF $f x y(x, y)$. The conditional PMF of y given $x=x$ is denoted by and defined as

$$
f_{y / x}(y / x)
$$

$$
\begin{aligned}
p_{Y X X}(y / x) & =P((Y=y) /(X=x) \\
& =\frac{P(X=x) \vee(Y=y))}{P(X=x)} \\
& =\frac{p_{X, Y}(x, y)}{p_{X}(x)} \quad \text { provided } \quad p_{X}(x) \neq 0
\end{aligned}
$$

Thus.

$$
p_{Y, X}(y / x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)} \quad \text { provided } p_{X}(x) \neq 0
$$

Conditional Probability Distribution Function

- Consider two continuous jointly random variables and with the joint probability distribution function We are interested to find the conditional distribution function of one of the random variables on the condition of a particular value of the other random variable.
- We cannot define the conditional distribution function of the random variable on the condition of the event by the relation

$$
\begin{aligned}
& F_{Y / X}(y / x)=P(Y \leq y / X=x) \\
& =\frac{P(Y \leq y, X=x)}{P(X=x)}
\end{aligned}
$$

Point conditioning

- First consider the case when X and Y are both discrete. Then the marginal pdf's
- $f_{Y}(y)=P(Y=y) \quad f_{x}(x)=P(X=x)$
- The joint pdf is, similarly
$f_{x, Y}(x, y)=P(X \leq x, Y \leq y)$
- Conditional density function is given by $\mathrm{f}_{\mathrm{X}}(\mathrm{x} / \mathrm{B})=\frac{d F X(x \mid B)}{d x}$

Point conditioning (contd..)

- The conditional pdf of the conditional distribution $Y \mid X$ is

$$
\begin{aligned}
F_{Y / X}(y / x) & =P(Y \leq y / X=x) \\
& =\frac{P(Y \leq y, X=x)}{P(X=x)}
\end{aligned}
$$

- Distribution function of one random variable X conditioned by that second variable Y has some specific values of y. This is called point conditioning
- $B=\{y-\Delta y<Y \leq y+\Delta y\}$

Where $\Delta \mathrm{y}$ is a small quantity that we eventually let approach 0 .

Point conditioning (contd..)

$$
\begin{aligned}
& F \mathrm{X}(\mathrm{X} / \mathrm{Y}-\Delta \mathrm{Y}<\mathrm{Y} \leq \mathrm{Y}+\Delta \mathrm{y})=\int_{y-\Delta y} \int_{-\infty}^{x+\Delta y} f_{X, Y}\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2} \\
& F_{X, Y}(x, y)=\sum_{i=1}^{N} \sum_{j=1}^{M} P\left(x_{i,} y_{j}\right) \delta\left(x-x_{i}\right) \delta\left(y-y_{j}\right)
\end{aligned}
$$

Now the specific value of y of interest is y_{k}

$$
\begin{aligned}
& \mathrm{Fx}(\mathrm{x} / \mathrm{Y}=\mathrm{yk})=\sum_{\mathrm{i}=1}^{\mathrm{N}} \frac{P\left(x_{i}, y_{k}\right)}{P\left(y_{k}\right)} u\left(x-x_{i}\right) \\
& \mathrm{fx}(\mathrm{x} / \mathrm{Y}=\mathrm{yk})=\sum_{i=1}^{N} \frac{P\left(x_{i}, y_{k}\right)}{P\left(y_{k}\right)} \delta\left(x-x_{i}\right)
\end{aligned}
$$

Interval Conditioning

- Distribution function of one random variable X conditioned by that second variable Y has some specific values of y. This is called point conditioning $B=\left\{y_{a}<Y \leq y_{b}\right\}$
- $P\left(x_{1}, y_{1}\right)=2 / 15, P\left(x_{2}, y_{1}\right)=3 / 15$.etc.since $P\left(y_{3}\right)=4 / 15+5 / 15=9 / 15$ find $\mathrm{f}_{\mathrm{x}}\left(\mathrm{x} / \mathrm{y}=\mathrm{y}_{3}\right)$

Statistical independence

- Let and be two random variables characterized by the joint distribution function

$$
F_{X, Y}(x, y)=P\{X \leq x, Y \leq y\}
$$

and the corresponding joint density function

$$
f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x_{y}} F_{X, Y}(x, y)
$$

Sum of two random variables

- We are often interested in finding out the probability density function of a function of two or more RVs
-The received signal by a communication receiver is given by

$$
Z=X+Y
$$

- where is received signal which is the superposition of the message signal and the noise.

Sum of two random variables

corresponding to each z. $\{z \leq z\}$ We can find a variable subset $D_{z}=\{(x, y) \mid g(x, y) \leq z\}$

$$
\begin{aligned}
\therefore A_{z}(z) & =P(\{\leq z\}) \\
& =P\left\{(x, y) \mid(x, y) \in D_{x}\right\} \\
& =\iint_{\left(x, D_{x}\right.} f_{x, Y}(x, y) d y d x
\end{aligned}
$$

Central Limit Theorem

- Consider n independent random variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots . . . \mathrm{xn}$, The mean and variance of each of the random variables are assumed to be known. Suppose $\mathrm{E}[\mathrm{x}]=\mu_{\mathrm{x}} \operatorname{var}(\mathrm{x})=\sigma_{\mathrm{x}}^{2}$ and. Form a random variable

$$
Y_{N}=X_{1}+X_{2}+\ldots \ldots . X_{N}
$$

The mean and variance of $Y N$ are given by

$$
\begin{aligned}
& \mathrm{E}[y \mathrm{nn}]=\mu_{\mathrm{x} 1}+\mu_{\mathrm{x} 2}+\mu_{\mathrm{x} 3} \ldots \ldots \ldots . \mu_{\mathrm{xn}} \\
& \begin{aligned}
\operatorname{var}\left(Y_{n}\right) & =\sigma_{\mathrm{Y}_{n}}^{2}=E\left(\sum_{i=1}^{n}\left(X_{\mathrm{i}}-\mu_{\mathrm{X}}\right)\right)^{2} \\
& =\sum_{i=1}^{n} E\left(X_{i}-\mu_{X_{l}}\right)^{2}+\sum_{i=1}^{n} \sum_{j=1, j i}^{n} E\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right) \\
& =\sigma_{\mathrm{X}}^{2}+\sigma_{X_{1}}^{2}+\ldots+\sigma_{X_{n}}^{2}
\end{aligned}
\end{aligned}
$$

$\because X_{i}$ and X_{j} are independent for $i \neq j$.

Central Limit Theorem (contd..)

The CLT states that under very general conditions

$$
\left\{Y_{n}=\sum_{i=1}^{n} X_{i}\right\}
$$ converges in distribution to $\gamma \sim N\left(\mu_{2}, \sigma_{z}^{2}\right)$ as

1. The random variables are independent and identically distributed.
2. The random variables are independent with same mean and variance, but not identically distributed.
3. The random variables are independent with different means and same variance and not identically distributed.
4. The random variables are independent with different means and each variance being neither too small nor too large.

Expected Values of Random Variables

- If $g(x, y)$ is a function of a continuous random variables X and Y then then the expected value of is given by

$$
\bar{g}=E[g(X, Y)]= \begin{cases}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{x, Y}(x, y) d x d y & \text { Continuous } \\ \sum_{i} \sum_{k} g\left(x_{i}, y_{k}\right) P_{x, Y}\left(x_{i}, y_{k}\right) & \text { Discrete }\end{cases}
$$

Example

- Consider the discrete random variables x and y. The joint probability mass function of the random variables are tabulated in Table. Find the joint expectation of $g(x, y)=x y$.

X	0	1	2	$p_{Y}(y)$
Y	0.25	0.1	0.15	0.5
1	0.14	0.35	0.01	0.5
$p_{X}(x)$	0.39	0.45	0.16	

$$
\begin{aligned}
& E[X Y]=\sum_{x} \sum_{y} g(x, y) p_{X Y}(x, y) \\
& =1 \times 1 \times 0.35+1 \times 2 \times 0.01 \\
& =0.37
\end{aligned}
$$

Properties

- Expectation is a linear operator. We can generally write
$E\left[a_{1} g_{1}(x, y)+a_{2} g_{2}(x, y)=a_{1} E\left(g_{1}(x, y)+a_{2} E\left(g_{2}(x, y)\right)\right.\right.$
$E\left[x y+5 \log _{e} x y\right]=E[x y]+5 E\left[\log _{e} x y\right]$
- If x and y are independent random variables and $g(x, y)=g 1(x, y) \times g 2(x, y)$ then $E[g(x, y)]=E[g 1(x, y)] \times E[g 2(x, y]$

$$
\begin{aligned}
E_{g(X, Y)} & =E_{g_{1}}(X) g_{1}(Y) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_{1}(X) g_{1}(Y) f_{X, Y}(x, y) d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_{1}(X) g_{1}(Y) f_{X}(x) f_{Y}(Y) d x d y \\
& =\int_{-\infty}^{\infty} g_{1}(X) f_{X}(x) d x \int_{-\infty}^{\infty} g_{1}(Y) f_{Y}(Y) d y \\
& =E_{g_{1}}(X) E_{g_{1}}(Y)
\end{aligned}
$$

Joint moments about the origin

For two continuous random variables X and Y, the joint moment of order $m+n$ is defined as

$$
E\left(X^{m} Y^{n}\right)=\iint_{-\infty-\infty} x^{m} y^{n} f_{X Y}(x, y) d x d y
$$

And the joint central moment of order $m+n$ is defined as

$$
\begin{aligned}
& E\left(X-\mu_{x}\right)^{m} E\left(Y-\mu_{y}\right)^{n}=\int_{-\infty-\infty}\left(x-\mu_{x}\right)^{m}\left(y-\mu_{y}\right)^{n} f_{X Y}(x, y) d x d y \\
& \mu_{x}=E[x] \\
& \mu_{y}=E[y]
\end{aligned}
$$

Covariance of two random variables

The covariance of two random variables X and Y is defined as $\operatorname{Cov}(X, Y)=E\left(X-\mu_{\mathrm{x}}\right) E\left(\mathrm{Y}-\mu_{\mathrm{y}}\right)$
$\operatorname{Cov}(X, Y)$ is also denoted as $\sigma_{X Y}$.

$$
\begin{gathered}
\operatorname{Cov}(X, Y)=E\left(X-\mu_{x}\right)^{m} E\left(Y-\mu_{y}\right)^{n} \\
=E\left(X Y-\mu_{y} X-\mu_{x} Y+\mu_{x} \mu_{y}\right) \\
=E(X Y)-\mu_{Y} E(X)-\mu_{X} E(y)+\mu_{X} \mu_{Y} \\
=E(X Y)-\mu_{x} \mu_{y}
\end{gathered}
$$

Uncorrelated random variables

Two random variables are called uncorrelated if

$$
\operatorname{Cov}(X, Y)=0
$$

Which also means $\mathrm{E}(\mathrm{XY})=\mu_{\mathrm{x}} \mu_{\mathrm{y}}$
If are independent random variables, then

$$
f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Thus two independent random variables are always uncorrelated.

joint characteristic function

The joint characteristic function of two random variables X and Y is defined by

$$
\phi_{X Y}\left(\omega_{1}, \omega_{2}\right)=E\left[e^{j \theta_{1} x+j \omega_{2} y}\right]
$$

If and are jointly continuous random variables, then

$$
\phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)=\int_{-\infty-\infty}^{\infty} \int_{X Y}^{\infty}(x, y) e^{j \omega_{1} x+j \sigma_{2} y} d x d y
$$

Joint moments about the origin

For two discrete random variables X and Y, the joint moment of order $\mathrm{m}+\mathrm{n}$ is defined as

$$
E\left(X^{m} Y^{n}\right)=\sum_{x} \sum_{y} x^{m} y^{n} f_{X Y}(x, y) d x d y
$$

And the joint central moment of order $m+n$ is defined as

$$
\begin{aligned}
& E\left(X-\mu_{x}\right)^{m} E\left(Y-\mu_{y}\right)^{n}=\sum_{x} \sum_{y}\left(x-\mu_{x}\right)^{m}\left(y-\mu_{y}\right)^{n} f_{X Y}(x, y) \\
& \mu_{x}=E[x] \\
& \mu_{y}=E[y]
\end{aligned}
$$

Covariance of two random variables

The covariance of two random variables X and Y is defined as

$$
\operatorname{Cov}(X, Y)=E\left(X-\mu_{x}\right) E\left(Y-\mu_{\mathrm{y}}\right)
$$

$\operatorname{Cov}(X, Y)$ is also denoted as $\sigma_{X Y}$.

$$
\begin{gathered}
\operatorname{Cov}(X, Y)=E\left(X-\mu_{x}\right)^{m} E\left(Y-\mu_{y}\right)^{n} \\
=E\left(X Y-\mu_{y} X-\mu_{x} Y+\mu_{x} \mu_{y}\right) \\
=E(X Y)-\mu_{Y} E(X)-\mu_{X} E(y)+\mu_{X} \mu_{Y} \\
=E(X Y)-\mu_{x} \mu_{y}
\end{gathered}
$$

Two Random variables

Two random variables X and Y are called jointly Gaussian if their joint probability density

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y}{\sqrt{1-\rho_{X Y}{ }^{2}}}^{\left.-\frac{1}{2\left(1-\rho_{X Y}{ }^{2}\right)^{2}} \frac{\left(x-\mu_{x}\right)^{2}}{\sigma_{X}{ }^{2}}-2 \rho_{X Y} \frac{\left(x-\mu_{X}\right)\left(y-\mu_{y}\right)}{\sigma_{X} \sigma_{Y}}+\frac{\left(y-\mu_{y}\right)^{2}}{\sigma_{Y}{ }^{2}}\right]}}
$$

$-\infty<\mathrm{x}<\infty,-\infty<\mathrm{y}<\infty$
means μ_{x} and μ_{y}
variances $\sigma_{x}{ }^{2} \sigma_{y}{ }^{2}$
correlation coefficient $\rho_{X Y}$
We denote the jointly Gaussian random variables and with these parameters as $(X, Y) \sim N\left(\mu_{x}, \mu_{y}, \sigma_{x}{ }^{2}, \sigma_{y}{ }^{2}, \rho_{X Y}\right)$

Transformations of multiple random variables

The joint density function of new random variable $Y_{i}=T\left(X_{1}, X_{2}, \ldots \ldots X_{N}\right)$ $\mathrm{i}=1,2,3 \ldots . . \mathrm{n}$

The random variable Xj can be obtained from inverse transformation

$$
\left.\begin{array}{r}
\mathrm{X}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j}}^{-1}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots . \mathrm{Y}_{\mathrm{N}}\right) \\
x_{1}=g_{1}^{-1}\left(y_{1}, y_{2}, \cdots, y_{k}\right) \\
x_{2}=g_{2}^{-1}\left(y_{1}, y_{2}, \cdots, y_{k}\right) \\
\vdots \\
x_{n}=g_{n}^{-1}\left(y_{1}, y_{2}, \cdots, y_{k=n}\right)
\end{array}\right\}
$$

Transformations of multiple random variables

- Assuming that the partial derivatives $\partial g_{i}^{-1} / \partial y_{i}$ exist at every point $\left(y_{1}, y_{2}, \ldots, y_{k=n}\right)$. Under these assumptions, we have the following determinant J

$$
J=\operatorname{det}\left|\begin{array}{ccc}
\frac{\partial g_{1}^{-1}}{\partial y_{1}} & \cdots & \frac{\partial g_{1}^{-1}}{\partial y_{n}} \\
\vdots & \ddots & \vdots \\
\left\lvert\, \frac{\partial g_{n}^{-1}}{\partial y_{1}}\right. & \cdots & \frac{\partial g_{n}^{-1}}{\partial y_{n}}
\end{array}\right|
$$

called as the Jacobian of the transformation specified by (${ }^{* *}$). Then, the joint pdf of $Y_{1}, Y_{2}, \ldots, Y_{k}$ can be obtained by using the change of variable technique of multiple variables.

Transformations of multiple random variables

- As a result, the new p.d.f. is defined as follows:

$$
g\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\left\{\begin{array}{l}
f_{X_{1}, \cdots, X_{n}}\left(g_{1}^{-1}, g_{2}^{-1}, \cdots, g_{n}^{-1}\right)|J|, \text { for }\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in \Psi \\
0, \text { otherwise }
\end{array}\right.
$$

Linearly transformation of Gaussian RV

- Linearly transforming set of Gaussian random variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . . \mathrm{X}_{\mathrm{N}}$ for which the joint density function exists. The new variables $Y_{1}, Y_{2}, \ldots . . Y_{N}$ are
- $Y_{1}=a_{11} X_{1}+a_{12} X_{2}+\ldots . . .+a_{1 N} X_{N}$
- $Y_{2}=a_{21} X_{1}+a_{22} X_{2}+\ldots . . .+a_{2 N} X_{N}$.
- $Y_{N}=a_{N 1} X_{1}+a_{N 2} X_{2}+\ldots \ldots+a_{N N} X_{N}$

$$
\begin{array}{lc}
\left.\lceil T]=\left\lvert\, \begin{array}{ccc}
a 11 & a 12 \ldots & a 1 N \\
a 21 & a 22 \ldots & a 2 N \\
a N 1 & a N 2 \ldots & a N N
\end{array}\right.\right] \\
{[Y\rceil=\left[\begin{array}{c}
Y 1 \\
\vdots \\
\vdots
\end{array}\right]} & \mathrm{X}_{\mathrm{i}}=\mathrm{Ti}^{-1}\left(\mathrm{Y}_{1} \ldots . . \mathrm{Y}_{N}\right)=\mathrm{a}^{\mathrm{i} 1} \mathrm{Y}_{1}+\mathrm{a}^{\mathrm{i} 2} \mathrm{y}_{2}+\ldots .+\mathrm{a}^{\mathrm{iN}} \mathrm{Y}_{N} \\
{[\mathrm{Y}]=[\mathrm{T}][\mathrm{X}]} &
\end{array}
$$

UNIT-IV

Stochastic Processes: Temporal Characteristics

Random Process

\square The concept of random variable was defined previously as mapping from the Sample Space \mathbf{S} to the real line as shown below
\square A random process is a process (i.e., variation in time or one dimensional space) whose behavior is not completely predictable and can be characterized by statistical laws.

Examples of random processes Daily stream flow Hourly rainfall of storm events Stock index

Random Process (Contd..)

\square The concept of random process can be extended to include time and the outcome will be random functions of time as shown beside $x(t, s)$
\square Where s is the outcome of an experiment

The functions

$\cdots x_{n+2}(t), x_{n+1}(t), x_{n}(t), x_{n-1}(t), \cdots$ are one realizations of many of the random process $X(t)$
\square A random process also represents a random variable when time is fixed $X\left(t_{1}\right)$ is a random variable

Classification of Random Process

\square Classification of random process
Continuous random process
\square Discrete random process
\square Continuous random sequence

Discrete random sequence
Continuous time $\mathrm{t}=>\mathrm{x}(\mathrm{t})=$ Random process Discrete time $n=>x[n]=$ Random sequence

Continuous Random Process

Continuous random process

Continuous time t
$x(t)=$ Continuous
Random process

Discrete Random Process

Discrete random process

Continuous time t
$x(\mathrm{t})=$ Discrete Random process

Continuous Random Sequence

Continuous random sequence
discrete time n
$x(n)=$ Continuous
Random sequence

:

Discrete Random Sequence

Discrete random sequence discrete time n

$x(n)=$ discrete Random sequence

Random Process Concept

\square Deterministic random process
\square Future values of any sample function can be predicted exactly from the past values

$$
X(t)=A \cos \left(\omega_{0} t+\theta\right), \quad A, \omega_{0}, \theta: \quad \text { r.v.'s }
$$

\square Non deterministic random process
\square Future values of any sample function can not be predicted exactly from the past values

What is a distribution and density?

\square A distribution characterises the probability (mass) associated with each possible outcome of a stochastic process
\square Distributions of discrete data characterised by probability mass functions

\square Distributions of continuous data are characterised by probability density functions (pdf)

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

\square For RVs that map to the integers or the real numbers, the cumulative density function (cdf) is a useful alternative representation

Stationary and Independence

\square Stationary Random Process
\square all its statistical properties do not change with time

Non Stationary Random Process
\square not stationary
One particular realization of the random process $\{X(t)\}$

Stationary and Independence (Contd..)

\square First-order densities of a random process
\square A stochastic process is defined to be completely or totally characterized if the joint densities for the random variables $X\left(t_{1}\right), X\left(t_{2}\right), \cdots X\left(t_{n}\right)$ are known for all times $t_{1}, t_{2}, \cdots, t_{n}$ and all n .
\square For a specific $\mathrm{t}, \mathrm{X}(\mathrm{t})$ is a random variable with distribution

$$
F(x, t)=p[X(t) \leq x]
$$

The function $F(x, t)$ is defined as the first-order distribution of the random variable $\mathrm{X}(\mathrm{t})$. Its derivative with respect to x

$$
f(x, t)=\frac{\partial F(x, t)}{\partial x}
$$

is the first-order density of $X(t)$.

Stationary and Independence (Contd..)

\square If the first-order densities defined for all time t, i.e. $f(x, t)$, are all the same, then $f(x, t)$ does not depend on t and we call the resulting density the first-order density of the random process $\{x(\mathrm{t})\}$; otherwise, we have a family of first-order densities.
\square The first-order densities (or distributions) are only a partial characterization of the random process as they do not contain information that specifies the joint densities of the random variables defined at two or more different times.

Stationary and Independence (Contd..)

\square For $t=t_{1}$ and $t=t_{2}, X(t)$ represents two different random variables $X_{1}=X\left(t_{1}\right)$ and $X_{2}=X\left(t_{2}\right)$ respectively. Their joint distribution is given by

$$
F_{x}\left(x_{1}, x_{2}, t_{1}, t_{2}\right)=P\left\{X\left(t_{1}\right) \leq x_{1}, X\left(t_{2}\right) \leq x_{2}\right\}
$$

and

$$
f_{x}\left(x_{1}, x_{2}, t_{1}, t_{2}\right)=\frac{\partial^{2} F_{x}\left(x_{1}, x_{2}, t_{1}, t_{2}\right)}{\partial x_{1} \partial x_{2}}
$$

represents the second-order density function of the process $X(t)$.
\square Similarly $f_{x}\left(x_{1}, x_{2}, \cdots x_{n}, t_{1}, t_{2} \cdots, t_{n}\right)$ represents the $\mathrm{n}^{\text {th }}$ order density function of the process $X(t)$.

Mean and variance of a ràndom process

\square The first-order density of a random process, $f(x, t)$, gives the probability density of the random variables $X(t)$ defined for all time t. The mean of a random process, $m_{x}(t)$, is thus a function of time specified by

$$
m_{X}(t)=E[X(t)]=E\left[X_{t}\right]=\int_{-\infty}^{+\infty} x_{t} f\left(x_{t}, t\right) d x_{t}
$$

For the case where the mean of $X(t)$ does not depend on t, we have

$$
m_{X}(t)=E[X(t)]=m_{X} \quad(\text { a constant })
$$

\square The variance of a random process, also a function of time, is defined by

$$
\sigma_{X}^{2}(t)=E\left\{\left[X(t)-m_{X}(t)\right]^{2}\right\}=E\left[X_{t}^{2}\right]-\left[m_{X}(t)\right]^{2}
$$

Stationary and Independence

The random process $\mathrm{X}(\mathrm{t})$ can be classified as follows:
\square First-order stationary
\square A random process is classified as first-order stationary if its first-order probability density function remains equal regardless of any shift in time to its time origin.
\square If we $X_{t 1}$ let represent a given value at time t1then we define a firstorder stationary as one that satisfies the following equation:

$$
\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{\mathrm{t} 1}\right)=\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{\mathrm{t} 1}+\tau\right)
$$

The physical significance of this equation is that our density function,

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{\mathrm{t} 1}\right) \quad \text { is completely independent of } \mathrm{t} 1 \\
& \text { and thus any time shift } \mathrm{t}
\end{aligned}
$$

\square For first-order stationary the mean is a constant, independent of any time shift

Stationary and Independence (Contd..)

\square Second-order stationary

\square A random process is classified as second-order stationary if its secondorder probability density function does not vary over any time shift applied to both values.
\square In other words, for values $X_{t 1}$ and $X_{t 2}$ then we will have the following be equal for an arbitrary time shift t

$$
\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{\mathrm{t} 1}, \mathrm{x}_{\mathrm{t} 2}\right)=\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{\mathrm{t} 1+\tau}, \mathrm{x}_{\mathrm{t} 2+\tau}\right)
$$

\square From this equation we see that the absolute time does not affect our functions, rather it only really depends on the time difference between the two variables.

Stationary and Independence (Contd..)

\square For a second-order stationary process, we need to look at the autocorrelation function (will be presented later) to see its most important property.
\square Since we have already stated that a second-order stationary process depends only on the time difference, then all of these types of processes have the following property:

$$
\begin{aligned}
\mathrm{R}_{\mathrm{xx}}(\mathrm{t}, \mathrm{t}+\tau) & =\mathrm{E}[\mathrm{X}(\mathrm{t}) \mathrm{X}(\mathrm{t}+\tau)] \\
& =\mathrm{R}_{\mathrm{xx}}(\tau)
\end{aligned}
$$

Wide-Sense Stationary (WSS)

\square A process that satisfies the following:
The mean is a constant and the autocorrelation function depends only on the difference between the time indices

$$
\begin{aligned}
& \mathrm{E}[\mathrm{X}(\mathrm{t})]=\overline{\mathrm{X}}=\mathrm{constant} \\
& \mathrm{E}[\mathrm{X}(\mathrm{t}) \mathrm{X}(\mathrm{t}+\tau)]=\mathrm{R}_{\mathrm{XX}}(\tau)
\end{aligned}
$$

is a Wide-Sense Stationary (WSS)

Second-order stationary

The converse is not true in general

Wide-Sense Stationary (Example)

$$
X(t)=a \cos \left(\omega_{0} t+\varphi\right), \quad \varphi \sim U(0,2 \pi)
$$

This gives

$$
\begin{aligned}
\mu_{x}(t) & =E\{X(t)\}=a E\left\{\cos \left(\omega_{0} t+\varphi\right)\right\} \\
& =a \cos \omega_{0} t E\{\cos \varphi\}-a \sin \omega_{0} t E\{\sin \varphi\}=0, \text { Constant }
\end{aligned}
$$

since $E\{\cos \varphi\}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos \varphi d \varphi=0=E\{\sin \varphi\}$.
Similarly

$$
\begin{aligned}
R_{x x}\left(t_{1}, t_{2}\right) & =a^{2} E\left\{\cos \left(\omega_{0} t_{1}+\varphi\right) \cos \left(\omega_{0} t_{2}+\varphi\right)\right\} \\
& =\frac{a^{2}}{2} E\left\{\cos \omega_{0}\left(t_{1}-t_{2}\right)+\cos \left(\omega_{0}\left(t_{1}+t_{2}\right)+2 \varphi\right)\right\} \\
& =\frac{a^{2}}{2} \cos \omega_{0}\left(t_{1}-t_{2}\right) . \quad \text { So given } \mathrm{X}(\mathrm{t}) \text { is WSS }
\end{aligned}
$$

Nth order and Strict-Sense Stationary

\square In strict terms, the statistical properties are governed by the joint probability density function. Hence a process is $\mathrm{n}^{\text {th }}$-order Strict-Sense Stationary (S.S.S) if

$$
f_{x}\left(x_{1}, x_{2}, \cdots x_{n}, t_{1}, t_{2} \cdots, t_{n}\right) \equiv f_{x}\left(x_{1}, x_{2}, \cdots x_{n}, t_{1}+c, t_{2}+c \cdots, t_{n}+c\right) \rightarrow \text { (1) }
$$

\square For any c, where the left side represents the joint density function of the random variables $X_{1}=X\left(t_{1}\right), \quad X_{2}=X\left(t_{2}\right), \cdots, X_{n}=X\left(t_{n}\right)$ and the right side corresponds to the joint density function of the random variables $X_{1}^{\prime}=X\left(t_{1}+c\right), X_{2}^{\prime}=X\left(t_{2}+c\right), \cdots, X_{n}^{\prime}=X\left(t_{n}+c\right)$.
\square A process $X(t)$ is said to be strict-sense stationary if equation (1) true for all $t_{i}, \quad i=1,2, \cdots, n, \quad n=1,2, \cdots$ and any c.

Ergodic Procéss

A stationary random process for which time averages equal ensemble averages is called an ergodic process:

$$
\begin{gathered}
\langle x[n]\rangle=m_{x} \\
\left\langle x[n+m] x[n]^{*}\right\rangle=\phi_{x x}[m]
\end{gathered}
$$

Ergodic Process (Contd..)

It is common to assume that a given sequence is a sample sequence of an ergodic random process, so that averages can be computed from a single sequence.

In practice, we cannot compute with the limits, but instead the quantities.

Similar quantities are often computed as estimates of the mean, variance, and autocorrelation.

$$
\begin{aligned}
& \hat{m}_{x}=\frac{1}{L} \sum_{n=0}^{L-1} x[n] \\
& \sigma_{x}^{2}=\frac{1}{L} \sum_{n=0}^{L-1}\left(x[n]-\hat{m}_{x}\right)^{2}
\end{aligned}
$$

$$
\left\langle x[n+m] x^{*}[n]\right\rangle_{L}=\frac{1}{L} \sum_{n=0}^{L-1} x[n+m] x^{*}[n]
$$

Time Average and Ergodicity

\square The time average of a quantity is defined as

$$
A[\bullet]=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}[\bullet] d t
$$

Here A is used to denote time average in a manner analogous to E for the statistical average.
\square The time average is taken over all time because, as applied to random processes, sample functions of processes are presumed to exist for all time.

Time Average and Ergodicity (Contd..)

\square Let $\mathrm{x}(\mathrm{t})$ be a sample of the random process $\mathrm{X}(\mathrm{t})$ were the lower case letter imply a sample function.
\square We define the mean value $\bar{x}=\mathrm{A}[\mathrm{x}(\mathrm{t})]$
(a lowercase letter is used to imply a sample function) and the time autocorrelation function $\Re_{\mathrm{Xx}}(\tau)$ as follows:

$$
\begin{gathered}
\bar{x}=\mathrm{A}[\mathrm{x}(\mathrm{t})]=\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{2 \mathrm{~T}} \int_{-\mathrm{T}}^{\mathrm{T}} \mathrm{x}(\mathrm{t}) \mathrm{dt} \\
\mathfrak{R}_{\mathrm{XX}}(\tau)=\mathrm{A}[\mathrm{x}(\mathrm{t}) \mathrm{x}(\mathrm{t}+\tau)]=\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{2 \mathrm{~T}} \int_{-\mathrm{T}}^{\mathrm{T}} \mathrm{x}(\mathrm{t}) \mathrm{x}(\mathrm{t}+\tau) \mathrm{dt}
\end{gathered}
$$

\square For any one sample function (i.e., $x(t)$) of the random process $X(t)$, the last two integrals simply produce two numbers.
\square A number for the average $\overline{\mathrm{x}}$ and a number for $\mathfrak{R}_{\mathrm{xx}}(\tau)$ for a specific value of τ

Time Average and Ergodicity (Contd..)

\square Since the sample function $x(t)$ is one out of other samples functions of the random process $X(\mathrm{t})$,
\square The average $\overline{\mathrm{x}}$ and the autocorrelation $\mathfrak{R}_{\mathrm{xx}}(\tau)$ are random variables
\square By taking the expected value for $\overline{\mathrm{x}}$ and $\mathfrak{R}_{\mathrm{xx}}(\tau)$, we obtain

$$
\begin{aligned}
& E[\bar{x}]=E[A[x(t)]]=E\left[\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) d t\right]_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} E[x(t)] d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \bar{X} d t=\lim _{T \rightarrow \infty} \bar{X}(1)=\bar{X} \\
& E\left[\Re_{x x}(\tau)\right]=E[A[x(t) x(t+\tau)]]=E\left[\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) x(t+\tau) d t\right] \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} E[x(t) x(t+\tau)] d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} R_{x x}(\tau) d t=R_{x x}(\tau)
\end{aligned}
$$

Time Average and Ergodicity (Contd..)

Time cross correlation

$$
\mathfrak{R}_{x y}(\tau)=A[x(t) y(t+\tau)]=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) y(t+\tau) d t
$$

\square Ergodic =>

$$
\begin{aligned}
& \bar{x}=\bar{X} \\
& \mathfrak{R}_{x x}(\tau)=R_{X X}(\tau)
\end{aligned}
$$

\square Jointly Ergodic => Ergodic $X(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$

$$
\mathfrak{R}_{x y}(\tau)=R_{X Y}(\tau)
$$

Introduction to Autocorrelation

\square Autocorrelation occurs in time-series studies when the errors associated with a given time period carry over into future time periods.
\square For example, if we are predicting the growth of stock dividends, an overestimate in one year is likely to lead to overestimates in succeeding years.
\square Times series data follow a natural ordering over time.
\square It is likely that such data exhibit intercorrelation, especially if the time interval between successive observations is short, such as weeks or days.

Introduction (contd..)

\square We expect stock market prices to move or move down for several days in succession.
\square We experience autocorrelation when

$$
E\left(u_{i} u_{j}\right) \neq 0
$$

\square Tintner defines autocorrelation as 'lag correlation of a given series within itself, lagged by a number of times units' whereas serial correlation is the 'lag correlation between two different series'.

Autocorrelation and its Properties

\square The autocorrelation function of a random process $X(t)$ is the correlation $\mathrm{E}\left[\mathrm{X}_{1} \mathrm{X}_{2}\right]$ of two random variables $\mathrm{X}_{1}=\mathrm{X}\left(\mathrm{t}_{1}\right)$ and $\mathrm{X}_{2}=\mathrm{X}\left(\mathrm{t}_{2}\right)$ by the process at times t1 and t2

$$
\mathrm{R}_{\mathrm{xx}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{E}\left[\mathrm{X}\left(\mathrm{t}_{1}\right) \mathrm{X}\left(\mathrm{t}_{2}\right)\right]
$$

\square Assuming a second-order stationary process

$$
\mathrm{R}_{\mathrm{xx}}(\mathrm{t}, \mathrm{t}+\tau)=\mathrm{E}[\mathrm{X}(\mathrm{t}) \mathrm{X}(\mathrm{t}+\tau)] \quad \mathrm{R}_{\mathrm{xX}}(\tau)=\mathrm{E}[\mathrm{X}(\mathrm{t}) \mathrm{X}(\mathrm{t}+\tau)]
$$

Autocorrelation and its Properties (Contd..)

\square Autocorrelation :

The autocorrelation, or auto covariance, describes the general dependency of $x(t)$ with its value at a short time later, $x(t+\tau)$

$$
\rho_{\mathrm{x}}(\tau)=\operatorname{Lim}_{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}[\mathrm{x}(\mathrm{t})-\overline{\mathrm{x}}] \cdot[\mathrm{x}(\mathrm{t}+\tau)-\overline{\mathrm{x}}] \mathrm{dt}
$$

\square The value of $\rho_{x}(\tau)$ at τ equal to 0 is the variance, σ_{x}^{2}
\square Normalized auto-correlation : $R(\tau)=\rho_{x}(\tau) / \sigma_{x}^{2} R(0)=1$

Autocorrelation and its Properties (Contd..)

\square The autocorrelation for a random process eventually decays to zero at large τ
\square The autocorrelation for a sinusoidal process (deterministic) is a cosine function which does not decay to zero

Autocorrelation and its Properties (Contd..)

\square The area under the normalized autocorrelation function for the fluctuating wind velocity measured at a point is a measure of the average time scale of the eddies being carried passed the measurement point, say T_{1}
\square If we assume that the eddies are being swept passed at the mean velocity, U.T $_{1}$ is a measure of the average length scale of the eddies. This is known as the 'integral length scale', denoted by l_{u}

Autocorrelation and its Properties (Contd..)

Properties of Autocorrelation function

$$
R_{X X}(t, t+\tau)=E[X(t) X(t+\tau)]=R_{X X}(\tau)
$$

(1) $\left|R_{X X}(\tau)\right| \leq R_{X X}(0)$
(2) $R_{X X}(-\tau)=R_{X X}(\tau)$
(3) $\quad R_{X X}(0)=E\left[X(t)^{2}\right]$
(4) stationary \& ergodic $X(t)$ with no periodic components

$$
\Rightarrow \quad \lim _{|\tau| \rightarrow \infty} R_{X X}(\tau)=\bar{X}^{2}
$$

(5) stationary $X(t)$ has a periodic component
$\Rightarrow \quad R_{X X}(\tau)$ has a periodic component with the same period.

Cross-correlation

\square Cross-correlation

\square The cross-correlation function describes the general dependency of $x(t)$ with another random process $y(t+\tau)$, delayed by a time delay, τ

$$
c_{\mathrm{xy}}(\tau)=\operatorname{Lim}_{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}[\mathrm{x}(\mathrm{t})-\overline{\mathrm{x}}] \cdot[\mathrm{y}(\mathrm{t}+\tau)-\overline{\mathrm{y}}] \mathrm{dt}
$$

Correlation coefficient

Correlation coefficient
\square The correlation coefficient, ρ, is the covariance normalized by the standard deviations of x and y

$$
\rho=\frac{x^{\prime}(\mathrm{t}) \cdot \mathrm{y}^{\prime}(\mathrm{t})}{\sigma_{\mathrm{x}} \cdot \sigma_{\mathrm{y}}}
$$

When x and y are identical to each other, the value of ρ is +1 (full correlation)

When $y(t)=-x(t)$, the value of ρ is -1
In general, $-1<\rho<+1$

Application of correlation

\square Correlation-application :

The fluctuating wind loading of a tower depends on the correlation coefficient between wind velocities and hence wind loads, at various heights

For heights, z_{1}, and z_{2}

$$
\rho\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)=\frac{\overline{\mathrm{u}^{\prime}\left(\mathrm{z}_{1}\right) \cdot \mathrm{u}^{\prime}\left(\mathrm{z}_{2}\right)}}{\sigma_{\mathrm{u}}\left(\mathrm{z}_{1}\right) \cdot \sigma_{\mathrm{u}}\left(\mathrm{z}_{2}\right)}
$$

Properties of Cross Correlation

Properties of cross-correlation function of jointly w.s.s. r.p.s:

$$
R_{X Y}(\tau)=E[X(t) Y(t+\tau)]
$$

(1) $R_{X Y}(-\tau)=R_{Y X}(\tau)$
(2) $\left|R_{X Y}(\tau)\right| \leq \sqrt{R_{X X}(0) R_{Y Y}(0)}$
(3) $\left|R_{X Y}(\tau)\right| \leq \frac{1}{2}\left[R_{X X}(0)+R_{Y Y}(0)\right]$

$$
\begin{gathered}
E\left[\{Y(t+\tau)+\alpha X(t)\}^{2}\right] \geq 0, \quad \forall \alpha \\
\sqrt{R_{X X}(0) R_{Y Y}(0)} \leq \frac{1}{2}\left[R_{X X}(0)+R_{Y Y}(0)\right]
\end{gathered}
$$

Example of Cross Correlation

$$
A, B: \text { r.v.'s } \quad \omega_{0}=\mathrm{const}
$$

$$
\begin{aligned}
& \quad E[A]=E[B]=0, \quad E[A B]=0, \quad E\left[A^{2}\right]=E\left[B^{2}\right]=\sigma^{2} \\
& X(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right), \quad Y(t)=B \cos \left(\omega_{0} t\right)-A \sin \left(\omega_{0} t\right) \\
& E[X(t)]=E\left[A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right]=E[A] \cos \left(\omega_{0} t\right)+E[B] \sin \left(\omega_{0} t\right)=0 \\
& R_{X X}(t, t+\tau)=E[X(t) X(t+\tau)] \\
& \quad=E\left[A^{2} \cos \left(\omega_{0} t\right) \cos \left(\omega_{0} t+\omega_{0} \tau\right)+A B \cos \left(\omega_{0} t\right) \sin \left(\omega_{0} t+\omega_{0} \tau\right)\right. \\
& \left.\quad+A B \sin \left(\omega_{0} t\right) \cos \left(\omega_{0} t+\omega_{0} \tau\right)+B^{2} \sin \left(\omega_{0} t\right) \sin \left(\omega_{0} t+\omega_{0} \tau\right)\right] \\
& \quad=\sigma^{2}\left\{\cos \left(\omega_{0} t\right) \cos \left(\omega_{0} t+\omega_{0} \tau\right)+\sin \left(\omega_{0} t\right) \sin \left(\omega_{0} t+\omega_{0} \tau\right)\right\}=\sigma^{2} \cos \left(\omega_{0} \tau\right) \\
& \Rightarrow \quad X(t): \text { w.s.s. }
\end{aligned}
$$

Example of Cross Correlation

$$
\begin{aligned}
& \quad Y(t): \text { w.s.s. } \\
& R_{X Y}(\tau)=E[X(t) Y(t+\tau)] \\
& = \\
& =E\left\{\left[A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right]\left[B \cos \left(\omega_{0}(t+\tau)\right)-A \sin \left(\omega_{0}(t+\tau)\right)\right]\right\} \\
& = \\
& =\sigma^{2}\left[\sin \left(\omega_{0} t\right) \cos \left(\omega_{0} t\right) \cos \left(\omega_{0} t+\omega_{0} \tau\right)+B^{2} \sin \left(\omega_{0} t\right) \cos \left(\omega_{0} t+\omega_{0} \tau\right)-\cos \left(\omega_{0} t\right) \sin \left(\omega_{0} t+\omega_{0} \tau\right)\right] \\
& =-\sigma^{2} \sin \left(\omega_{0} \tau\right) \\
& \Rightarrow \quad X(t) \& Y(t): \text { jointly w.s.s. }
\end{aligned}
$$

Covariance

\square Covariance
\square The covariance is the cross correlation function with the time delay, τ, set to zero

$$
\mathrm{c}_{\mathrm{xy}}(0)=\overline{\mathrm{x}^{\prime}(\mathrm{t}) \cdot \mathrm{y}^{\prime}(\mathrm{t})}=\operatorname{Lim}_{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}[\mathrm{x}(\mathrm{t})-\overline{\mathrm{x}}] \cdot[\mathrm{y}(\mathrm{t})-\overline{\mathrm{y}}] \mathrm{dt}
$$

Note that here $x^{\prime}(t)$ and $y^{\prime}(t)$ are used to denote the fluctuating parts of $x(t)$ and $y(t)$ (mean parts subtracted)

Auto Covariance

\square The auto covariance $C x(t 1, t 2)$ of a random process $X(t)$ is defined as the covariance of $X(\mathrm{t} 1)$ and $X(\mathrm{t} 2)$

$$
\begin{aligned}
& \mathrm{Cx}(\mathrm{t} 1, \mathrm{t} 2)=\mathrm{E}[\{\mathrm{X}(\mathrm{t} 1)-\mathrm{mx}(\mathrm{t} 1)\}\{\mathrm{X}(\mathrm{t} 2)-\mathrm{mx}(\mathrm{t} 2)\}] \\
& \mathrm{Cx}(\mathrm{t} 1, \mathrm{t} 2)=\mathrm{Rx}(\mathrm{t} 1, \mathrm{t} 2)-\mathrm{mx}(\mathrm{t} 1) \mathrm{mx}(\mathrm{t} 2)
\end{aligned}
$$

\square The variance of $X(t)$ can be obtained from $C x(t 1, t 2)$

$$
\operatorname{VAR}[X(t)]=E[(X(t)-m x(t)) 2]=C x(t, t)
$$

\square The correlation coefficient of $X(t)$ is given by

$$
\begin{aligned}
& \rho_{\mathrm{x}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\frac{C_{X}\left(t_{1}, t_{2}\right)}{\sqrt{C_{X}\left(t_{1}, t_{1}\right)} \sqrt{C_{X}\left(t_{2}, t_{2}\right)}} \\
& \left|\rho_{\mathrm{x}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)\right| \leq 1
\end{aligned}
$$

Auto Covariance Example\#1

Example:

Let $X(t)=A \cos 2 \pi t$, where A is some random variable The mean of $X(t)$ is given by

$$
m_{x}(t)=E[A \cos 2 \pi t]=E[A] \cos 2 \pi t
$$

The autocorrelation is

$$
\begin{aligned}
& R_{X}\left(t_{1}, t_{2}\right)=E\left[A \cos \left(2 \pi t_{1}\right) A \cos \left(2 \pi t_{2}\right)\right] \\
& R_{X}\left(t_{1}, t_{2}\right)=E\left[A^{2}\right] \cos \left(2 \pi t_{1}\right) \cos \left(2 \pi t_{2}\right)
\end{aligned}
$$

And the autocovariance

$$
\begin{aligned}
& C_{X}\left(t_{1}, t_{2}\right)=R_{X}\left(t_{1}, t_{2}\right)-m_{X}\left(t_{1}\right) m_{X}\left(t_{2}\right) \\
& C_{X}\left(t_{1}, t_{2}\right)=\left\{E\left[A^{2}\right]-E[A]^{2}\right\} \cos \left(2 \pi t_{1}\right) \cos \left(2 \pi t_{2}\right) \\
& C_{X}\left(t_{1}, t_{2}\right)=\operatorname{VAR}[A] \cos \left(2 \pi t_{1}\right) \cos \left(2 \pi t_{2}\right)
\end{aligned}
$$

Auto Covariance Example\#2

Example:

Let $X(t)=\cos (\omega t+\theta)$, where θ is uniformly distributed in the interval $(-\pi, \pi)$. The mean of $X(t)$ is given by

$$
m_{X}(t)=E[\cos (\omega t+\theta)]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (\omega t+\theta)=0
$$

The autocorrelation and autocovariance are then

$$
\begin{aligned}
& C_{X}\left(t_{1}, t_{2}\right)=R_{X}\left(t_{1}, t_{2}\right)=E\left[\cos \left(\omega t_{1}+\theta\right) \cos \left(\omega t_{2}+\theta\right)\right] \\
& C_{X}\left(t_{1}, t_{2}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{2}\left\{\cos \left(\omega\left(t_{1}-t_{2}\right)\right)+\cos \left(\omega\left(t_{1}+t_{2}\right)+2 \theta\right)\right\} d \theta \\
& C_{X}\left(t_{1}, t_{2}\right)=\frac{1}{2} \cos \left(\omega\left(t_{1}-t_{2}\right)\right)
\end{aligned}
$$

Cross Covariance

The cross covariance $C x, y(t 1, t 2)$ of a random process $X(t)$ and $Y(t)$ is defined as

$$
\begin{aligned}
& C x, y(\mathrm{t} 1, \mathrm{t} 2)=\mathrm{E}[\{\mathrm{X}(\mathrm{t} 1)-\mathrm{mx}(\mathrm{t} 1)\}\{\mathrm{Y}(\mathrm{t} 2)-\mathrm{my}(\mathrm{t} 2)\}] \\
& \mathrm{Cx}(\mathrm{t} 1, \mathrm{t} 2)=\mathrm{Rx}, \mathrm{y}(\mathrm{t} 1, \mathrm{t} 2)-\mathrm{mx}(\mathrm{t} 1) \mathrm{my}(\mathrm{t} 2)
\end{aligned}
$$

\square The process $X(t)$ and $Y(t)$ are said to be uncorrelated if

$$
C x, y(t 1, t 2)=0 \text { for all t1, t2 }
$$

Random sequénce

Random Sequence (=Discrete-time R.P)

$$
X\left(n T_{s}\right)=X[n]
$$

$$
\begin{aligned}
& \text { Mean }=E(X[n]) \\
& \begin{aligned}
R_{X X}(n, n+k) & =E(X[n] X[n+k]) \\
C_{X X}(n, n+k) & =E\{(X[n]-\bar{X}[n])(X[n+k]-\bar{X}[n+k])\} \\
& =R_{X X}(n, n+k)-\bar{X}[n] \bar{X}[n+k] \\
R_{X Y}(n, n+k) & =E(X[n] Y[n+k]) \\
C_{X Y}(n, n+k) & =E\{(X[n]-\bar{X}[n])(Y[n+k]-\bar{Y}[n+k])\} \\
& =R_{X Y}(n, n+k)-\bar{X}[n] \bar{Y}[n+k]
\end{aligned}
\end{aligned}
$$

Gaussian Random Process

\square Let $\mathrm{X}(\mathrm{t})$ be a random process and let $\mathrm{X}(\mathrm{t} 1), \mathrm{X}(\mathrm{t} 2), \ldots . \mathrm{X}(\mathrm{tn})$ be the random variables obtained from $X(t)$ at $t=t 1, \mathrm{t} 2 \mathrm{tn} \mathrm{sec}$ respectively
\square Let all these random variables be expressed in the form of a matrix

$$
\left.X=\left\lvert\, \begin{array}{c}
X\left(t_{1}\right) \\
X\left(t_{2}\right) \\
\vdots \\
X\left(t_{n}\right)
\end{array}\right.\right]
$$

Then, $\mathrm{X}(\mathrm{t})$ is referred to as normal or Gaussian process if all the elements of X are jointly Gaussian

Gaussian Random Process

- continuous r.p. $\quad X(t), \quad-\infty<t<\infty$

$$
\begin{aligned}
& f_{X}\left(x_{1}, \cdots, x_{N} ; t_{1}, \cdots, t_{N}\right)=\frac{1}{\sqrt{(2 \pi)^{N}\left|C_{X}\right|}} \exp \left\{-\frac{1}{2}[x-\bar{X}]^{t} C_{X}^{-1}[x-\bar{X}]\right\} \\
& \bar{X}_{i}=E\left[X\left(t_{i}\right)\right] \quad C_{i k}=C_{X X}\left(t_{i}, t_{k}\right) \\
& \text { stationary } \Rightarrow E[X(t)]=\bar{X}(\text { const }) \& R_{X X}\left(t_{i}, t_{k}\right)=R_{X X}\left(t_{k}-t_{i}\right) \\
& \qquad C_{X X}\left(t_{i}, t_{k}\right)=C_{X X}\left(t_{k}-t_{i}\right) \\
& \text { w.s.s. Gaussian } \Rightarrow \text { strictly stationary }
\end{aligned}
$$

Gaussian Random Process

$$
\left.\begin{array}{c}
\text { w.s.s.gaussian r.p. } X(t) \\
\bar{X}=4 \\
R_{X X}(\tau)=25 e^{-3|\tau|} \quad t_{i}=t_{0}+\frac{i-1}{2}, \quad i=1,2,3 . \\
C_{i k}=C_{X X}\left(t_{i}, t_{k}\right)=R_{X X}\left(t_{i}, t_{k}\right)-\bar{X}^{2}=25 e^{-3 \frac{|k-i|}{2}}-16
\end{array}\right] \begin{array}{lll}
C_{11} & C_{12} & C_{13}
\end{array}\left|\begin{array}{lll}
25-16 & 25 e^{-\frac{3}{2}}-16 & 25 e^{-3}-16
\end{array}\right|
$$

Properties of Gaussiàn Process

\square If a gaussian process $X(t)$ is applied to a stable linear filter, then the random process $\mathrm{Y}(\mathrm{t})$ developed at the output of the filter is also gaussian.
\square Considering the set of random variables or samples $X(t 1)$, $X(\mathrm{t} 2), \ldots . . \mathrm{X}(\mathrm{tn})$ obtained by observation of a random process $\mathrm{X}(\mathrm{t})$ at instants $\mathrm{t} 1, \mathrm{t} 2, \ldots \mathrm{tn}$, if the process $\mathrm{X}(\mathrm{t})$ is gaussian, then this set of random variables are jointly gaussian for any n, with their n-fold joint p.d.f. being completely determined by the set of means.

$$
m x(t i)=E[X(t i)] \text { for } i=1,2, \ldots . n
$$

and the set of auto covariance function

$$
\mathrm{Cxx}(\mathrm{t} 1, \mathrm{t} 2)=\mathrm{E}[\{\mathrm{X}(\mathrm{t} 1)-\mathrm{E}[\mathrm{X}(\mathrm{t} 1)]\}\{\mathrm{X}(\mathrm{t} 2)-\mathrm{E}[\mathrm{X}(\mathrm{t} 2)]\}]
$$

\square If a gaussian process is wide sense stationary, then the process is also stationary in the strict sense
\square If the set of random variables $\mathrm{X}(\mathrm{t} 1), \mathrm{X}(\mathrm{t} 2) \ldots \mathrm{X}(\mathrm{tn})$ are uncorrelated then they are statistically independent

Poisson Random Process

\square we introduced Poisson arrivals as the limiting behavior of Binomial random variables
where

$$
P\left\{\begin{array}{l}
" k \text { arrivals occur in an } \\
\text { interval of duration } \Delta "
\end{array}\right\}=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots
$$

$$
\lambda=n p=\mu T \cdot \frac{\Delta}{T}=\mu \Delta
$$

Poisson Random Process (contd..)

\square It follows that
$P\left\{\begin{array}{l}" k \text { arrivals occur in an } \\ \text { interval of duration } 2 \Delta^{\prime \prime}\end{array}\right\}=e^{-2 \lambda} \frac{(2 \lambda)^{k}}{k!}, \quad k=0,1,2, \cdots$,
since in that case

$$
n p_{1}=\mu T \cdot \frac{2 \Delta}{T}=2 \mu \Delta=2 \lambda
$$

\square From the above equations, Poisson arrivals over an interval form a Poisson random variable whose parameter depends on the duration of that interval.
\square The Bernoulli nature of the underlying basic random arrivals, events over non overlapping intervals are independent. We shall use these two key observations to define a Poisson process formally.

Poisson Random Process (contd..)

\square Definition: $X(t)=n(0, t)$ represents a Poisson process if
(i) the number of arrivals $n\left(t_{1}, t_{2}\right)$ in an interval $\left(t_{1}, t_{2}\right)$ of length $t=t_{2}-t_{1}$ is a Poisson random variable with parameter λt.
Thus

$$
\begin{aligned}
& P\left\{n\left(t_{1}, t_{2}\right)=k\right\}=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}, \quad k=0,1,2, \cdots, \quad t=t_{2}-t_{1} \\
& \text { and }
\end{aligned}
$$

(ii) If the intervals $\left(t_{1}, t_{2}\right)$ and (t_{3}, t_{4}) are non overlapping, then the random variables $n\left(t_{1}, t_{2}\right)$ and $n\left(t_{3}, t_{4}\right)$ are independent.
Since $n(0, t) \sim P(\lambda t)$, we have

$$
E[X(t)]=E[n(0, t)]=\lambda t
$$

and

$$
E\left[X^{2}(t)\right]=E\left[n^{2}(0, t)\right]=\lambda t+\lambda^{2} t^{2}
$$

Poisson Random Process (contd..)

\square To determine the autocorrelation function $R_{x x}\left(t_{1}, t_{2}\right)$, let $t_{2}>t_{1}$, then from (ii) above $n\left(0, t_{1}\right)$ and $n\left(t_{1}, t_{2}\right)$ are independent Poisson random variables with parameters λt_{1} and $\lambda\left(t_{2}-t_{1}\right)$ respectively. Thus

$$
E\left[n\left(0, t_{1}\right) n\left(t_{1}, t_{2}\right)\right]=E\left[n\left(0, t_{1}\right)\right] E\left[n\left(t_{1}, t_{2}\right)\right]=\lambda^{2} t_{1}\left(t_{2}-t_{1}\right) .
$$

But

$$
n\left(t_{1}, t_{2}\right)=n\left(0, t_{2}\right)-n\left(0, t_{1}\right)=X\left(t_{2}\right)-X\left(t_{1}\right)
$$

and hence the left side of above equation can be rewritten as

$$
\begin{gathered}
E\left[X\left(t_{1}\right)\left\{X\left(t_{2}\right)-X\left(t_{1}\right)\right\}\right]=R_{x x}\left(t_{1}, t_{2}\right)-E\left[X^{2}\left(t_{1}\right)\right] . \\
R_{x x}\left(t_{1}, t_{2}\right)=\lambda^{2} t_{1}\left(t_{2}-t_{1}\right)+E\left[X^{2}\left(t_{1}\right)\right] \\
\\
=\lambda t_{1}+\lambda^{2} t_{1} t_{2}, \quad t_{2} \geq t_{1} .
\end{gathered}
$$

Similarly

$$
R_{x x}\left(t_{1}, t_{2}\right)=\lambda t_{2}+\lambda^{2} t_{1} t_{2}, \quad t_{2}<t_{1}
$$

Thus

$$
R_{x x}\left(t_{1}, t_{2}\right)=\lambda^{2} t_{1} t_{2}+\lambda \min \left(t_{1}, t_{2}\right)
$$

Poisson Random Process (contd..)

Notice that the Poisson process $\mathrm{X}(\mathrm{t})$ does not represent a wide sense stationary process.

\square Define a binary level process

$$
Y(t)=(-1)^{X(t)}
$$

that represents a telegraph signal Notice that the transition instants $\left\{t_{i}\right\}$ are random Although $X(t)$ does not represent a wide sense stationary process,

Poisson Random Process (contd..)

its derivative $X^{\prime}(t)$ does represent a wide sense stationary process.

(Derivative as a LTI system)
From there
and

$$
\mu_{x}(t)=\frac{d \mu_{x}(t)}{d t}=\frac{d \lambda t}{d t}=\lambda, \quad a \text { constant }
$$

$$
\begin{aligned}
R_{x x}\left(t_{1}, t_{2}\right) & =\frac{\partial R_{x x}\left(t_{1}, t_{2}\right)}{\partial t_{2}}= \begin{cases}\lambda^{2} t_{1} & t_{1} \leq t_{2} \\
\lambda^{2} t_{1}+\lambda & t_{1}>t_{2}\end{cases} \\
& =\lambda^{2} t_{1}+\lambda U\left(t_{1}-t_{2}\right)
\end{aligned}
$$

$$
R_{x x}\left(t_{1}, t_{2}\right)=\frac{\partial R_{x x}\left(t_{1}, t_{2}\right)}{\partial t_{1}}=\lambda^{2}+\lambda \delta\left(t_{1}-t_{2}\right)
$$

Poisson Random Process (contd..)

Define the processes

$$
Y(t)=\sum_{i=1}^{X(t)} N_{i} \quad ; \quad Z(t)=\sum_{i=1}^{X(t)}\left(1-N_{i}\right)=X(t)-Y(t)
$$

we claim that both $Y(t)$ and $Z(t)$ are independent Poisson processes with parameters $\lambda p t$ and $\lambda q t$ respectively.

Proof:

$$
\left.Y(t)=\sum_{n=k}^{\infty} P\{Y(t)=k \mid X(t)=n\} P\{X(t)=n)\right\} .
$$

But given $X(t)=n$, we have

$$
Y(t)=\sum_{i=1}^{n} N_{i} \sim B(n, p) \text { so that }
$$

$$
P\{Y(t)=k \mid X(t)=n\}=\binom{n}{k} p^{k} q^{n-k}, \quad 0 \leq k \leq n,
$$

and

$$
P\{X(t)=n\}=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

Poisson Random Process (contd..)

$$
\begin{aligned}
P\{Y(t)=k\} & =e^{-\lambda t} \sum_{n=k}^{\infty} \frac{n!}{(n-k)!k!} p^{k} q^{n-k} \frac{(\lambda t)^{n}}{n!}=\frac{p^{k} e^{-\lambda t}}{k!}(\lambda t)^{k} \underbrace{\sum_{n=k}^{\infty} \frac{(q \lambda t)^{n-k}}{(n-k)!}}_{e^{q \lambda t}} \\
& =(\lambda p t)^{k} \frac{e^{-(1-q) \lambda t}}{k!}=e^{-\lambda p t} \frac{(\lambda p t)^{k}}{k!}, \quad k=0,1,2, \cdots \\
& \sim P(\lambda p t)
\end{aligned}
$$

More generally,

$$
\begin{aligned}
P\{Y(t) & =k, Z(t)=m\}=P\{Y(t)=k, X(t)-Y(t)=m\} \\
& =P\{Y(t)=k, X(t)=k+m\} \\
& =P\{Y(t)=k \mid X(t)=k+m\} P\{X(t)=k+m\} \\
& =\binom{k+m}{k} p^{k} q^{m} \cdot e^{-\lambda t} \frac{(\lambda t)^{k+m}}{(k+m)!}=\underbrace{-e_{P(Y(t)=k)}^{-\lambda p t} \frac{(\lambda p t)^{n}}{k!}} \underbrace{-e_{P(Z(t)=m)}^{-\lambda q t} \frac{m q t)^{n}}{m!}}
\end{aligned}
$$

$$
=P\{Y(t)=k\} P\{Z(t)=m\}, \quad \text { which completes the proof. }
$$

Poisson Random Procèss (contd..)

-- integer-valued discrete r.p. $\quad X(t), \quad-\infty<t<\infty$

$$
X(0)=0 \quad t_{b}<t_{a} \quad \Rightarrow \quad X\left(t_{b}\right) \leq X\left(t_{a}\right)
$$

$$
P\left[X\left(t_{a}\right)-X\left(t_{b}\right)=k\right]=\frac{\left[\lambda\left(t_{a}-t_{b}\right)\right]^{k}}{k!} e^{-\lambda\left(t_{a}-t_{b}\right)}, \quad k=0,1,2, \cdots
$$

$$
t_{d}<t_{c} \leq t_{b}<t_{a} \Rightarrow X\left(t_{a}\right)-X\left(t_{b}\right) \& X\left(t_{c}\right)-X\left(t_{d}\right) \text { are indep. }
$$

$$
\bar{X}(t)=E[X(t)]=\lambda t \quad R_{X X}(t, t)=E\left[X(t)^{2}\right]=\lambda t+(\lambda t)^{2}
$$

$$
C_{X X}(t, t)=\lambda t
$$

Poisson Random Procèss (contd..)

$$
\begin{aligned}
& 0<t_{1}<t_{2} \quad \Rightarrow \\
& P\left[X\left(t_{1}\right)=k_{1}, X\left(t_{2}\right)=k_{2}\right]=P\left[X\left(t_{1}\right)=k_{1}, X\left(t_{2}\right)-X\left(t_{1}\right)=k_{2}-k_{1}\right] \\
& = \begin{cases}\frac{\left(\lambda t_{1}\right)^{k_{1}}}{k_{1}!} e^{-\lambda t_{1}} \frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{\left(k_{2}-k_{1}\right)}}{\left(k_{2}-k_{1}\right)!} e^{-\lambda\left(t_{2}-t_{1}\right)}, & k_{2} \geq k_{1} \geq 0 \\
0, & \text { otherwise }\end{cases} \\
& =\left\{\begin{array}{cc}
\frac{\left(\lambda t_{1}\right)^{k_{1}}\left[\lambda\left(t_{2}-t_{1}\right)\right]^{\left(k_{2}-k_{1}\right)}}{k_{1}!\left(k_{2}-k_{1}\right)!} e^{-\lambda t_{2}}, & k_{2} \geq k_{1} \geq 0 \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Poisson Random Procéss (contd..)

$$
0<t_{1}<t_{2} \quad \Rightarrow
$$

$$
\begin{aligned}
P & {\left[X\left(t_{2}\right)=k_{2} \mid X\left(t_{1}\right)=k_{1}\right]=P\left[X\left(t_{2}\right)-X\left(t_{1}\right)=k_{2}-k_{1} \mid X\left(t_{1}\right)=k_{1}\right] } \\
& =P\left[X\left(t_{2}\right)-X\left(t_{1}\right)=k_{2}-k_{1}\right] \\
& =\begin{array}{cl}
\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{\left(k_{2}-k_{1}\right)}}{\left(k_{2}-k_{1}\right)!} e^{-\lambda\left(t_{2}-t_{1}\right)}, & k_{2} \geq k_{1} \\
0, & \text { otherwise }
\end{array}
\end{aligned}
$$

Example

$$
\begin{gathered}
X(t)=\text { Poisson r.p. } \\
0 \leq t_{1}<t_{2}<t_{3} \\
0 \leq k_{2} \leq k_{3} \Rightarrow \\
P\left[X\left(t_{1}\right)=k_{1}, X\left(t_{2}\right)=k_{2}, X\left(t_{3}\right)=k_{3}\right] \\
=P\left[X\left(t_{1}\right)=k_{1}, X\left(t_{2}\right)-X\left(t_{1}\right)=k_{2}-k_{1}, X\left(t_{3}\right)-X\left(t_{2}\right)=k_{3}-k_{2}\right] \\
=P\left[X\left(t_{1}\right)=k_{1}\right] P\left[X\left(t_{2}\right)-X\left(t_{1}\right)=k_{2}-k_{1}\right] P\left[X\left(t_{3}\right)-X\left(t_{2}\right)=k_{3}-k_{2}\right] \\
=\frac{\left(\lambda t_{1}\right)^{k_{1}}}{k_{1}!} e^{-\lambda t_{1}} \frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{\left(k_{2}-k_{1}\right)}}{\left(k_{2}-k_{1}\right)!} e^{-\lambda\left(t_{2}-t_{1}\right)} \frac{\left[\lambda\left(t_{3}-t_{2}\right)\right]^{\left(k_{3}-k_{2}\right)}}{\left(k_{3}-k_{2}\right)!} e^{-\lambda\left(t_{3}-t_{2}\right)} \\
= \\
=\frac{\left(\lambda t_{1}\right)^{k_{1}}\left[\lambda\left(t_{2}-t_{1}\right)\right]^{\left(k_{2}-k_{1}\right)}\left[\lambda\left(t_{3}-t_{2}\right)\right]^{\left(k_{3}-k_{2}\right)}}{k_{1}!\left(k_{2}-k_{1}\right)!\left(k_{3}-k_{2}\right)!} e^{-\lambda t_{3}}
\end{gathered}
$$

UNIT-V
 Stochastic Processes: Spectral Characteristics

Introduction to Power density spectrum

\square Fourier integral

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau\right] e^{j \omega t} d \omega
$$

- Fourier transform

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

\square Inverse Fourier
transform

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
$$

Introduction (Contd..)

$$
x_{T}(t)= \begin{cases}x(t), & -T<t<T \\ 0, & o / w\end{cases}
$$

Assume $\quad \int_{-T}^{T}\left|x_{T}(t)\right| d t<\infty$, for all finite T.

$$
X_{T}(\omega)=\int_{-\infty}^{\infty} x_{T}(t) e^{-j \omega t} d t=\int_{-T}^{T} x(t) e^{-j \omega t} d t
$$

\square Energy contained in $\mathrm{x}(\mathrm{t})$ in the interval (- $\mathrm{T}, \mathrm{T})$

$$
E(T)=\int_{-\infty}^{\infty} x_{T}(t)^{2} d t=\int_{-T}^{T} x(t)^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|X_{T}(\omega)\right|^{2} d \omega
$$

Introduction (Cointd..)

\square Average power in $x(t)$ in the interval $(-T, T)$

$$
P(T)=\frac{1}{2 T} \int_{-T}^{T} x(t)^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\left|X_{T}(\omega)\right|^{2}}{2 T} d \omega
$$

$$
x(t) \rightarrow X(t), \text { take expectation, let } T \rightarrow \infty .
$$

\square Average power in random process $x(t)$

$$
\begin{gathered}
P_{X X}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} E\left[X(t)^{2}\right] d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \lim _{T \rightarrow \infty} \frac{E\left[\left|X_{T}(\omega)\right|^{2}\right]}{2 T} d \omega \\
P_{X X}=A\left\{E\left[X(t)^{2}\right]\right\} \quad P_{X X}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) d \omega \\
S_{X X}=\lim _{T \rightarrow \infty} \frac{E\left[\left|X_{T}(\omega)\right|^{2}\right]}{2 T} \\
\text { power density spectrum }
\end{gathered}
$$

Example-1

$$
\begin{aligned}
& P_{X X}=A\left\{E\left[X(t)^{2}\right]\right\} \\
& \text { w.s.s. } \Rightarrow \quad P_{X X}=R_{X X}(0)
\end{aligned}
$$

\square Example- $X(t)=A_{0} \cos \left(\omega_{0} t+\Theta\right)$ Θ-- uniformly distributed on $\left(0, \frac{\pi}{2}\right)$

$$
\begin{aligned}
& 1 \\
& E\left[X(t)^{2}\right]=E\left[A_{0}^{2} \cos ^{2}\left(\omega_{0} t+\Theta\right)\right]=E\left[\frac{A_{0}^{2}}{2}+\frac{A_{0}^{2}}{2} \cos \left(2 \omega_{0} t+2 \Theta\right)\right] \\
& \quad=\frac{A_{0}^{2}}{2}+\frac{A_{0}^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{2}{\pi} \cos \left(2 \omega_{0} t+2 \theta\right) d \theta=\frac{A_{0}^{2}}{2}+\left.\frac{A_{0}^{2}}{2 \pi} \sin \left(2 \omega_{0} t+2 \theta\right)\right|_{\theta=0} ^{\frac{\pi}{2}} \\
& \quad=\frac{A_{0}^{2}}{2}-\frac{A_{0}^{2}}{\pi} \sin \left(2 \omega_{0} t\right) \\
& P_{X X}=A\left\{E\left[X(t)^{2}\right]\right\}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left[\frac{A_{0}^{2}}{2}-\frac{A_{0}^{2}}{\pi} \sin \left(2 \omega_{0} t\right)\right] d t=\frac{A_{0}^{2}}{2}
\end{aligned}
$$

Example-2

\square Example-

$$
X(t)=A_{0} \cos \left(\omega_{0} t+\Theta\right)
$$ $X_{T}(\omega)=\int_{-T}^{T} A_{0} \cos \left(\omega_{0} t+\Theta\right) e^{-j \omega t} d t=\int_{-T}^{T} A_{0} \frac{1}{2}\left[e^{j \Theta} e^{j \omega_{0} t}+e^{-j \Theta} e^{-j \omega_{0} t}\right] e^{-j \omega t} d t$

$=\frac{A_{0}}{2} e^{j \Theta} \int_{-T}^{T} e^{j\left(\omega_{0}-\omega\right) t} d t+\frac{A_{0}}{2} e^{-j \Theta} \int_{-T}^{T} e^{-j\left(\omega_{0}+\omega\right) t} d t$
$=A_{0} T e^{j \Theta} \frac{\sin \left[\left(\omega-\omega_{0}\right) T\right]}{\left(\omega-\omega_{0}\right) T}+A_{0} T e^{-j \Theta} \frac{\sin \left[\left(\omega+\omega_{0}\right) T\right]}{\left(\omega+\omega_{0}\right) T}$
$\int_{-T}^{T} e^{j \beta t} d t=\left.\frac{1}{j \beta} e^{j \beta t}\right|_{t=-T} ^{T}=\frac{e^{j \beta T}-e^{-j \beta T}}{j \beta}=2 T \frac{\sin (\beta T)}{\beta T}$

$$
S_{X X}=\lim _{T \rightarrow \infty} \frac{E\left[\left|X_{T}(\omega)\right|^{2}\right]}{2 T} \quad \text { powerdensity spectrum }
$$

Example-2 (Contd..)

$$
\begin{aligned}
& X_{T}(\omega)=A_{0} T e^{j \Theta} \frac{\sin \left[\left(\omega-\omega_{0}\right) T\right]}{\left(\omega-\omega_{0}\right) T}+A_{0} T e^{-j \Theta} \frac{\sin \left[\left(\omega+\omega_{0}\right) T\right]}{\left(\omega+\omega_{0}\right) T} \\
& X_{T}(\omega)^{*}=A_{0} T e^{-j \Theta} \frac{\sin \left[\left(\omega-\omega_{0}\right) T\right]}{\left(\omega-\omega_{0}\right) T}+A_{0} T e^{j \Theta} \frac{\sin \left[\left(\omega+\omega_{0}\right) T\right]}{\left(\omega+\omega_{0}\right) T} \\
& \left|X_{T}(\omega)\right|^{2}=X_{T}(\omega) X_{T}(\omega)^{*}=A_{0}^{2}\left[T^{2} \frac{\sin ^{2}\left[\left(\omega-\omega_{0}\right) T\right]}{\left(\omega-\omega_{0}\right)^{2} T^{2}}+T^{2} \frac{\sin ^{2}\left[\left(\omega+\omega_{0}\right) T\right]}{\left(\omega+\omega_{0}\right)^{2} T^{2}}\right] \\
& \\
& +A_{0}^{2} T^{2}\left(e^{j 2 \Theta}+e^{-j 2 \Theta}\right) \frac{\sin \left[\left(\omega-\omega_{0}\right) T\right]}{\left(\omega-\omega_{0}\right) T} \frac{\sin \left[\left(\omega+\omega_{0}\right) T\right]}{\left(\omega+\omega_{0}\right) T} \\
& E\left[e^{j 2 \Theta}+e^{-j 2 \Theta}\right]=E[2 \cos 2 \Theta]=\int_{0}^{\frac{\pi}{2}} \frac{2}{\pi} 2 \cos 2 \theta d \theta=\left.\frac{2}{\pi} \sin 2 \theta\right|_{0} ^{\pi / 2}=0 \\
& E\left[\left|X_{T}(\omega)\right|^{2}\right] \\
& 2 T
\end{aligned} \frac{A_{0}^{2} \pi}{2}\left[\frac{T}{\pi} \frac{\sin ^{2}\left[\left(\omega-\omega_{0}\right) T\right]}{\left(\omega-\omega_{0}\right)^{2} T^{2}}+\frac{T}{\pi} \frac{\sin ^{2}\left[\left(\omega+\omega_{0}\right) T\right]}{\left(\omega+\omega_{0}\right)^{2} T^{2}}\right] \quad, ~ l
$$

Example-2 (Contd..)

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\pi \\
& \int_{-\infty}^{\infty} \frac{T}{\pi} \frac{\sin ^{2}(\alpha T)}{(\alpha T)^{2}} d \alpha=\int_{-\infty}^{\infty} \frac{T}{\pi} \frac{\sin ^{2} x}{x^{2}} \frac{1}{T} d x=1 \quad \text { (a) } \\
& \lim _{T \rightarrow \infty} \frac{T}{\pi} \frac{\sin ^{2}(\alpha T)}{(\alpha T)^{2}}=\left\{\begin{array}{l}
\infty, \quad \text { if } \alpha=0 \\
0, \quad \text { if } \alpha \neq 0
\end{array}\right. \\
& \begin{array}{l}
\text { (a) } \&(\mathrm{~b}) \Rightarrow \quad \lim _{T \rightarrow \infty} \frac{T}{\pi} \frac{\sin ^{2}(\alpha T)}{(\alpha T)^{2}}=\delta(\alpha) \\
S_{X X}(\omega)=\lim _{T \rightarrow \infty} \frac{E\left[\left|X_{T}(\omega)\right|^{2}\right]}{2 T}=\frac{A_{0}^{2} \pi}{2}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right] \\
P_{X X}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{A_{0}^{2} \pi}{2}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right] d \omega=\frac{A_{0}^{2}}{2}
\end{array}
\end{aligned}
$$

Properties Power density spectrum

Properties of the power density spectrum:
(1) $S_{X X}(\omega) \geq 0$
(2) $X(t)$ real $\Rightarrow S_{X X}(-\omega)=S_{X X}(\omega)$
(3) $S_{X X}(\omega)$ is real
(4) $\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) d \omega=A\left\{E\left[X(t)^{2}\right]\right\}$

$$
S_{X X}(\omega)=\lim _{T \rightarrow \infty} \frac{E\left[\left|X_{T}(\omega)\right|^{2}\right]}{2 T}
$$

$$
\text { PF of (2): } \quad X_{T}(\omega)=\int_{-T}^{T} X(t) e^{-j \omega t} d t
$$

$$
X_{T}(\omega)^{*}=\int_{-T}^{T} X(t)^{*} e^{j \omega t} d t=\int_{-T}^{T} X(t) e^{j \omega t} d t=X_{T}(-\omega)
$$

$$
S_{X X}(-\omega)=\lim _{T \rightarrow \infty} \frac{E\left[X_{T}(-\omega) X_{T}(-\omega)^{*}\right]}{2 T}=\lim _{T \rightarrow \infty} \frac{E\left[X_{T}(\omega)^{*} X_{T}(\omega)\right]}{2 T}=S_{X X}(\omega)
$$

Properties Power density spectrum

Properties of the power density spectrum

$$
\text { (5) } S_{\dot{X} \dot{X}}(\omega)=\omega^{2} S_{X X}(\omega) \quad \frac{d}{d t} X(t)=\lim _{\varepsilon \rightarrow 0} \frac{X(t+\varepsilon)-X(t)}{\varepsilon}
$$

PF of (5):

$$
\dot{X}_{T}(t)=\left\{\begin{array}{cl}
\lim _{\varepsilon \rightarrow 0} \frac{X(t+\varepsilon)-X(t)}{\varepsilon}, & -T<t<T \\
0, & \text { o/w }
\end{array}\right.
$$

$$
f(t-a) \quad \leftarrow \stackrel{F T}{\longrightarrow} \quad F(\omega) e^{-j \omega a}
$$

$\dot{X}_{T}(t) \stackrel{\mathrm{FT}}{\longrightarrow} \lim _{\varepsilon \rightarrow 0} \frac{X_{T}(\omega) e^{j \omega \varepsilon}-X_{T}(\omega)}{\varepsilon}=j \omega X_{T}(\omega)$

$$
S_{\dot{X} \dot{X}}(\omega)=\lim _{T \rightarrow \infty} \frac{E\left[\left|\dot{X}_{T}(\omega)\right|^{2}\right]}{2 T}=\lim _{T \rightarrow \infty} \frac{E\left[\left|j \omega X_{T}(\omega)\right|^{2}\right]}{2 T}=\omega^{2} \lim _{T \rightarrow \infty} \frac{E\left[\left|X_{T}(\omega)\right|^{2}\right]}{2 T}=\omega^{2} S_{X X}(\omega)
$$

Properties Power density spectrum

Bandwidth of the power density spectrum

$$
X(t) \text { real } \Rightarrow S_{X X}(\omega) \text { even }
$$

$$
\begin{aligned}
S_{X X}(\omega) \text { lowpass form } \Rightarrow
\end{aligned} \Rightarrow W_{\mathrm{rms}}^{2}=\frac{\int_{-\infty}^{\infty} \omega^{2} S_{X X}(\omega) d \omega}{\int_{-\infty}^{\infty} S_{X X}(\omega) d \omega}
$$

$$
\begin{aligned}
& S_{X X}(\omega) \text { bandpass form } \Rightarrow \bar{\omega}_{0}=\frac{\int_{0}^{\infty} \omega S_{X X}(\omega) d \omega}{\int_{0}^{\infty} S_{X X}(\omega) d \omega} \quad \text { mean frequency } \\
& W_{\mathrm{rms}}^{2}=\frac{4 \int_{0}^{\infty}\left(\omega-\bar{\omega}_{0}\right)^{2} S_{X X}(\omega) d \omega}{\int_{0}^{\infty} S_{X X}(\omega) d \omega} \quad \text { rms B W }
\end{aligned}
$$

Example

$$
\begin{aligned}
& S_{X X}(\omega)=\frac{10}{\left[1+(\omega / 10)^{2}\right]^{2}} \quad S_{X X}(\omega) \text { low pass form } \\
& \int_{-\infty}^{\infty} S_{X X}(\omega) d \omega=\int_{-\infty}^{\infty} \frac{10}{\left[1+(\omega / 10)^{2}\right]^{2}} d \omega=\int_{-\pi / 2}^{\pi / 2} \frac{10}{\left[1+\tan ^{2} \theta\right]^{2}} 10 \sec ^{2} \theta d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \frac{100}{\sec ^{2} \theta} d \theta=\int_{-\pi / 2}^{\pi / 2} 100 \cos ^{2} \theta d \theta=\int_{-\pi / 2}^{\pi / 2} 100 \frac{1+\cos 2 \theta}{2} d \theta=50 \pi \\
& \omega=10 \tan \theta \Rightarrow d \omega=10 \sec ^{2} \theta d \theta \\
& \int_{-\infty}^{\infty} \omega^{2} S_{X X}(\omega) d \omega=\int_{-\infty}^{\infty} \frac{10 \omega^{2}}{\left[1+(\omega / 10)^{2}\right]^{2}} d \omega=\int_{-\pi / 2}^{\pi / 2} \frac{10^{3} \tan ^{2} \theta}{\left[1+\tan ^{2} \theta\right]^{2}} 10 \sec ^{2} \theta d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \frac{10^{4} \tan ^{2} \theta}{\sec ^{2} \theta} d \theta=\int_{-\pi / 2}^{\pi / 2} 10^{4} \sin ^{2} \theta d \theta=\int_{-\pi / 2}^{\pi / 2} 10^{4} \frac{1-\cos 2 \theta}{2} d \theta=5000 \pi
\end{aligned}
$$

Example

$$
W_{\mathrm{rms}}^{2}=\frac{\int_{-\infty}^{\infty} \omega^{2} S_{X X}(\omega) d \omega}{\int_{-\infty}^{\infty} S_{X X}(\omega) d \omega}=100
$$

rm s B W

$$
S_{X X}(\omega)=\frac{10}{\left[1+(\omega / 10)^{2}\right]^{2}}
$$

Relationship between PSD and autocorrelation

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) e^{j \omega \tau} d \omega=A\left[R_{X X}(t, t+\tau)\right] \\
& S_{X X}(\omega)=\int_{-\infty}^{\infty} A\left[R_{X X}(t, t+\tau)\right] e^{-j \omega \tau} d \tau \\
& S_{X X}(\omega)=\lim _{T \rightarrow \infty} \frac{E\left[X_{T}(\omega)^{*} X_{T}(\omega)\right]}{2 T}=\lim _{T \rightarrow \infty} \frac{1}{2 T} E\left[\int_{-T}^{T} X\left(t_{1}\right) e^{j \omega t_{1}} d t_{1} \int_{-T}^{T} X\left(t_{2}\right) e^{-j \omega t_{2}} d t_{2}\right] \\
& \quad=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] e^{j \omega\left(t_{1}-t_{2}\right)} d t_{2} d t_{1} \\
& \quad=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} R_{X X}\left(t_{1}, t_{2}\right) e^{j \omega\left(t_{1}-t_{2}\right)} d t_{2} d t_{1} \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) e^{j \omega \tau} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} R_{X X}\left(t_{1}, t_{2}\right) e^{j \omega\left(t_{1}-t_{2}\right)} d t_{2} d t_{1} e^{j \omega \tau} d \omega \\
& \quad=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} R_{X X}\left(t_{1}, t_{2}\right) \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega\left(\tau+t_{1}-t_{2}\right)} d \omega d t_{2} d t_{1}
\end{aligned}
$$

Relationship between PSD and autocorrelation

$$
\begin{gathered}
\delta(t) \stackrel{\int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t=1}{\leftarrow} 1 \quad \delta(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega t} d \omega \\
\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) e^{j \omega \tau} d \omega=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} R_{X X}\left(t_{1}, t_{2}\right) \delta\left(\tau+t_{1}-t_{2}\right) d t_{2} d t_{1} \\
=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} R_{X X}\left(t_{1}, t_{1}+\tau\right) d t_{1}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} R_{X X}(t, t+\tau) d t \\
=A\left[R_{X X}(t, t+\tau)\right] \\
A\left[R_{X X}(t, t+\tau)\right] \stackrel{F T}{\longrightarrow} S_{X X}(\omega) \\
S_{X X}(\omega)=\int_{-\infty}^{\infty} A\left[R_{X X}(t, t+\tau)\right] e^{-j \omega \tau} d \tau
\end{gathered}
$$

Relationship between PSD and autocorrelation

$$
\square X(t) \text { w.s.s. } \Rightarrow A\left[R_{X X}(t, t+\tau)\right]=R_{X X}(\tau)
$$

$$
\begin{gathered}
R_{X X}(\tau) \quad \stackrel{F T}{\longrightarrow} S_{X X}(\omega) \\
S_{X X}(\omega)=\int_{-\infty}^{\infty} R_{X X}(\tau) e^{-j \omega \tau} d \tau \\
R_{X X}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) e^{j \omega \tau} d \omega
\end{gathered}
$$

Cross-power density spectrum

$W(t)=X(t)+Y(t)$

$$
\begin{aligned}
& R_{W W}(t, t+\tau)=E[W(t) W(t+\tau)]=E\{[X(t)+Y(t)][X(t+\tau)+Y(t+\tau)]\} \\
& \quad=R_{X X}(t, t+\tau)+R_{Y Y}(t, t+\tau)+R_{X Y}(t, t+\tau)+R_{Y X}(t, t+\tau) \\
& S_{W W}(\omega)=S_{X X}(\omega)+S_{Y Y}(\omega)+F\left\{A\left[R_{X Y}(t, t+\tau)\right]\right\}+F\left\{A\left[R_{Y X}(t, t+\tau)\right]\right\}
\end{aligned}
$$

Cross-power density spectrum

$$
x_{T}(t)=\left\{\begin{array}{ll}
x(t), & -T<t<T \\
0, & o / w
\end{array} \quad y_{T}(t)= \begin{cases}y(t), & -T<t<T \\
0, & o / w\end{cases}\right.
$$

Assume $\quad \int_{-T}^{T}\left|x_{T}(t)\right| d t<\infty \& \int_{-T}^{T}\left|y_{T}(t)\right| d t<\infty$, for all finite T.

$$
x_{T}(t) \stackrel{\mathrm{FT}}{\longrightarrow} X_{T}(\omega) \quad y_{T}(t) \stackrel{\mathrm{FT}}{\longrightarrow} \quad Y_{T}(\omega)
$$

Cross Power contained in $x(t), y(t)$ in the interval ($-T, T$)

$$
P_{X Y}(T)=\frac{1}{2 T} \int_{-\infty}^{\infty} x_{T}(t) y_{T}(t) d t=\frac{1}{2 T} \int_{-T}^{T} x(t) y(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{X_{T}(\omega)^{*} Y_{T}(\omega)}{2 T} d \omega
$$

Parseval's theorem

Cross-power density spectrum

average Cross Power contained in $X(t), Y(t)$ in the interval ($-T, T$)

$$
\bar{P}_{X Y}(T)=\frac{1}{2 T} \int_{-T}^{T} R_{X Y}(t, t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{E\left[X_{T}(\omega)^{*} Y_{T}(\omega)\right]}{2 T} d \omega
$$

total average Cross Power contained in $X(t), Y(t)$

$$
P_{X Y}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} R_{X Y}(t, t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \lim _{T \rightarrow \infty} \frac{E\left[X_{T}(\omega)^{*} Y_{T}(\omega)\right]}{2 T} d \omega
$$

cross-power density spectrum

$$
S_{X Y}(\omega)=\lim _{T \rightarrow \infty} \frac{E\left[X_{T}(\omega)^{*} Y_{T}(\omega)\right]}{2 T}
$$

Cross-power density spectrum

$$
\begin{gathered}
P_{X Y}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X Y}(\omega) d \omega \\
S_{Y X}(\omega)=\lim _{T \rightarrow \infty} \frac{E\left[Y_{T}(\omega)^{*} X_{T}(\omega)\right]}{2 T} \\
P_{Y X}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{Y X}(\omega) d \omega=P_{X Y}^{*}
\end{gathered}
$$

Total cross power $=P_{X Y}+P_{Y X}$

$$
X(t), Y(t) \text { orthogonal } \Rightarrow P_{X Y}=P_{Y X}=0
$$

Properties of cross-power density spectrum

$$
X(t), Y(t) \text { real }
$$

Properties of the cross-power density spectrum:

$$
\text { (1) } \quad S_{X Y}(\omega)=S_{Y X}(-\omega)=S_{Y X}(\omega)^{*}
$$

$$
\text { PF of }(1): \quad X_{T}(\omega)=\int_{-T}^{T} X(t) e^{-j \omega t} d t
$$

$$
X_{T}(\omega)^{*}=\int_{-T}^{T} X(t)^{*} e^{j \omega t} d t=\int_{-T}^{T} X(t) e^{j \omega t} d t=X_{T}(-\omega)
$$

$$
S_{Y X}(-\omega)=\lim _{T \rightarrow \infty} \frac{E\left[Y_{T}(-\omega)^{*} X_{T}(-\omega)\right]}{2 T}=\lim _{T \rightarrow \infty} \frac{E\left[Y_{T}(\omega) X_{T}(\omega)^{*}\right]}{2 T}=S_{X Y}(\omega)
$$

$$
S_{Y X}(-\omega)=\lim _{T \rightarrow \infty} \frac{E\left[Y_{T}(-\omega)^{*} X_{T}(-\omega)\right]}{2 T}=\lim _{T \rightarrow \infty} \frac{E\left[Y_{T}(\omega) X_{T}(\omega)^{*}\right]}{2 T}=S_{Y X}(\omega)^{*}
$$

Properties of cross-power density spectrum

(2) $\operatorname{Re}\left[S_{X Y}(\omega)\right] \& \operatorname{Re}\left[S_{Y X}(\omega)\right]$-- even
(3) $\operatorname{Im}\left[S_{X Y}(\omega)\right] \& \operatorname{Im}\left[S_{Y X}(\omega)\right]-\operatorname{odd}$

$$
\begin{aligned}
& A\left[R_{X Y}(t, t+\tau)\right] \leftarrow \frac{F T}{} \rightarrow S_{X Y}(\omega) \\
& A\left[R_{Y X}(t, t+\tau)\right] \leftarrow \stackrel{F T}{ } \rightarrow S_{Y X}(\omega)
\end{aligned}
$$

(4) $X(t) \& Y(t)$ orthogonal $\Rightarrow S_{X Y}(\omega)=S_{Y X}(\omega)=0$

$$
X(t) \& Y(t) \text { orthogonal } \Rightarrow R_{X Y}(t, t+\tau)=0 \Rightarrow \mathrm{~A}\left[R_{X Y}(t, t+\tau)\right]=0
$$

(5) $X(t) \& Y(t)$ uncorrelated \& have constant mean \bar{X}, \bar{Y}

$$
\Rightarrow \quad S_{X Y}(\omega)=S_{Y X}(\omega)=2 \pi \bar{X} \bar{Y} \delta(\omega)
$$

Properties of cross-power density spectrum

$$
\begin{array}{r}
\text { PF of }(5): \quad R_{X Y}(t, t+\tau)=\bar{X} \bar{Y} \Rightarrow A\left[R_{X Y}(t, t+\tau)\right]=\bar{X} \bar{Y} \\
\Rightarrow \quad S_{X Y}(\omega)=2 \pi \bar{X} \bar{Y} \delta(\omega)=S_{Y X}(\omega)^{*} \\
X(t), Y(t) \text {-- jointly w.s.s. } \Rightarrow \quad R_{X Y}(\tau) \stackrel{\mathrm{FT}}{\longrightarrow} S_{X Y}(\omega) \\
R_{Y X}(\tau) \stackrel{\text { FT }}{\longrightarrow} S_{Y X}(\omega)
\end{array}
$$

Relationship between C-PSD and cross-

cerrelation

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X Y}(\omega) e^{j \omega \tau} d \omega=A\left[R_{X Y}(t, t+\tau)\right] \\
S_{X Y}(\omega)=\lim _{T \rightarrow \infty} \frac{E\left[X_{T}(\omega)^{*} Y_{T}(\omega)\right]}{2 T}=\lim _{T \rightarrow \infty} \frac{1}{2 T} E\left[\int_{-T}^{T} X\left(t_{1}\right) e^{j \omega t_{1}} d t_{1} \int_{-T}^{T} Y\left(t_{2}\right) e^{-j \omega t_{2}} d t_{2}\right] \\
=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} E\left[X\left(t_{1}\right) Y\left(t_{2}\right)\right] e^{j \omega\left(t_{1}-t_{2}\right)} d t_{2} d t_{1} \\
=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} R_{X Y}\left(t_{1}, t_{2}\right) e^{j \omega\left(t_{1}-t_{2}\right)} d t_{2} d t_{1} \\
\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X Y}(\omega) e^{j \omega \tau} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} R_{X Y}\left(t_{1}, t_{2}\right) e^{j \omega\left(t_{1}-t_{2}\right)} d t_{2} d t_{1} e^{j \omega \tau} d \omega \\
=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} R_{X Y}\left(t_{1}, t_{2}\right) \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega\left(\tau+t_{1}-t_{2}\right)} d \omega d t_{2} d t_{1}
\end{gathered}
$$

$$
\begin{aligned}
& \delta(t) \stackrel{F T}{\leftarrow} 1 \quad \int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t=1 \\
& \delta(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega t} d \omega \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X Y}(\omega) e^{j \omega \tau} d \omega=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \int_{-T}^{T} R_{X Y}\left(t_{1}, t_{2}\right) \delta\left(\tau+t_{1}-t_{2}\right) d t_{2} d t_{1} \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} R_{X Y}\left(t_{1}, t_{1}+\tau\right) d t_{1}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} R_{X Y}(t, t+\tau) d t \\
& =A\left[R_{X Y}(t, t+\tau)\right] \\
& A\left[R_{X Y}(t, t+\tau)\right] \stackrel{F T}{\longrightarrow} S_{X Y}(\omega) \\
& S_{X Y}(\omega)=\int_{-\infty}^{\infty} A\left[R_{X Y}(t, t+\tau)\right] e^{-j \omega \tau} d \tau
\end{aligned}
$$

Example

Example:

$$
\begin{gathered}
R_{X Y}(t, t+\tau)=\frac{A B}{2}\left\{\sin \left(\omega_{0} \tau\right)+\cos \left[\omega_{0}(2 t+\tau)\right]\right\} \\
A\left[R_{X Y}(t, t+\tau)\right]=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} R_{X Y}(t, t+\tau) d t \\
=\frac{A B}{2} \sin \left(\omega_{0} \tau\right)+\frac{A B}{2} \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \cos \left[\omega_{0}(2 t+\tau)\right] d t \\
=\frac{A B}{2} \sin \left(\omega_{0} \tau\right)=\frac{A B}{4 j}\left[e^{j \omega_{0} \tau}-e^{-j \omega_{0} \tau}\right] \\
S_{X Y}(\omega)=\frac{A B}{4 j}\left[2 \pi \delta\left(\omega-\omega_{0}\right)-2 \pi \delta\left(\omega+\omega_{0}\right)\right]=\frac{-j \pi A B}{2}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]
\end{gathered}
$$

Linear system fundàmentals

Linear System

$$
y(t)=\int_{-\infty}^{\infty} x(\xi) h(t, \xi) d \xi \quad \text { Input } x(t) \longrightarrow \underbrace{\begin{array}{l}
\text { Linear } \\
\text { system }
\end{array}}_{h(t, \tau)} \rightarrow \text { Output } y(t)
$$

$$
\delta(t-\xi) \quad \rightarrow \quad h(t, \xi) \quad \text { impulse response }
$$

(a)

Linear Time-Invariant System (LTI system)

$$
y(t)=\int_{-\infty}^{\infty} x(\xi) h(t-\xi) d \xi=\int_{-\infty}^{\infty} h(\xi) x(t-\xi) d \xi
$$

(b)

$$
y(t)=x(t) * h(t)=h(t) * x(t) \quad \text { convolution integral }
$$

$$
Y(\omega)=X(\omega) H(\omega)
$$

$$
x(t)=e^{j \omega t} \Rightarrow \frac{y(t)}{x(t)}=\frac{\int_{-\infty}^{\infty} h(\xi) e^{j \omega(t-\xi)} d \xi}{e^{j \omega t}}=\int_{-\infty}^{\infty} h(\xi) e^{-j \omega \xi} d \xi=H(\omega)
$$

Linear system fundàmentals

Example-1:

$$
\begin{aligned}
& H(s)=\frac{R}{s L+R} \\
& H(\omega)=\frac{R}{j \omega L+R}
\end{aligned}
$$

LTI causal $\Leftrightarrow \quad h(t)=0 \quad$ for $t<0$

LTI \quad stable $\Leftrightarrow \int_{-\infty}^{\infty}|h(t)| d t<\infty$

Linear system fundàmentals

Ideal low pass filter

$$
H(\omega)=\left\{\begin{array}{lc}
e^{-j t_{0} \omega}, & |\omega|<W \\
0, & 0 / \mathrm{w}
\end{array}\right.
$$

$$
h(t)=\frac{1}{2 \pi} \int_{-W}^{W} e^{-j t_{0} \omega} e^{j t \omega} d \omega=\frac{1}{2 \pi} \int_{-W}^{W} e^{j\left(t-t_{0}\right) \omega} d \omega
$$

$$
=\left.\frac{1}{2 \pi} \frac{1}{j\left(t-t_{0}\right)} e^{j\left(t-t_{0}\right) \omega}\right|_{-W} ^{W}
$$

$$
=\frac{1}{2 \pi} \frac{e^{j\left(t-t_{0}\right) W}-e^{-j\left(t-t_{0}\right) W}}{j\left(t-t_{0}\right)}
$$

$$
=\frac{W}{\pi} \frac{\sin \left[\left(t-t_{0}\right) W\right]}{\left(t-t_{0}\right) W}
$$

Not causal \Rightarrow Not physically realizable

Random signal response of linear systems

$$
\begin{aligned}
& X(t) \quad-- \text { w.s.s.randominput } Y(t)=\int_{-\infty}^{\infty} h(\xi) X(t-\xi) d \xi \\
& E[Y(t)]=E\left[\int_{-\infty}^{\infty} h(\xi) X(t-\xi) d \xi\right]=\int_{-\infty}^{\infty} h(\xi) E[X(t-\xi)] d \xi \\
& \quad=\bar{X} \int_{-\infty}^{\infty} h(\xi) d \xi=\bar{Y} \\
& R_{Y Y}(t, t+\tau)=E[Y(t) Y(t+\tau)] \\
& \quad=E\left[\int_{-\infty}^{\infty} h\left(\xi_{1}\right) X\left(t-\xi_{1}\right) d \xi_{1} \int_{-\infty}^{\infty} h\left(\xi_{2}\right) X\left(t+\tau-\xi_{2}\right) d \xi_{2}\right] \\
& \quad=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E\left[X\left(t-\xi_{1}\right) X\left(t+\tau-\xi_{2}\right)\right] h\left(\xi_{1}\right) h\left(\xi_{2}\right) d \xi_{1} d \xi_{2} \\
& \quad=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{X X}\left(\tau+\xi_{1}-\xi_{2}\right) h\left(\xi_{1}\right) h\left(\xi_{2}\right) d \xi_{1} d \xi_{2} \\
& X(t) \text { w.s.s. } \Rightarrow Y(t) \text { w.s.s. }
\end{aligned}
$$

Random signal response of linear systems

$$
\begin{aligned}
R_{Y Y}(\tau) & =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} R_{X X}\left(\tau+\xi_{1}-\xi_{2}\right) h\left(\xi_{1}\right) d \xi_{1}\right] h\left(\xi_{2}\right) d \xi_{2} \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} R_{X X}\left(\tau-\xi_{2}-\xi_{1}\right) h\left(-\xi_{1}\right) d \xi_{1}\right] h\left(\xi_{2}\right) d \xi_{2} \\
& =\left.\int_{-\infty}^{\infty} R_{X X}\left(\xi_{1}\right) * h\left(-\xi_{1}\right)\right|_{\xi_{1}=\tau-\xi_{2}} h\left(\xi_{2}\right) d \xi_{2} \\
& =R_{X X}(\tau) * h(-\tau) * h(\tau)
\end{aligned}
$$

$$
E\left[Y(t)^{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{X X}\left(\xi_{1}-\xi_{2}\right) h\left(\xi_{1}\right) h\left(\xi_{2}\right) d \xi_{1} d \xi_{2}
$$

Example-1: white noise $X(t)$

$$
R_{X X}(\tau)=\left(N_{0} / 2\right) \delta(\tau)
$$

$$
\begin{gathered}
E\left[Y(t)^{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(N_{0} / 2\right) \delta\left(\xi_{1}-\xi_{2}\right) h\left(\xi_{1}\right) h\left(\xi_{2}\right) d \xi_{1} d \xi_{2} \\
=\left(N_{0} / 2\right) \int_{-\infty}^{\infty} h\left(\xi_{2}\right)^{2} d \xi_{2}
\end{gathered}
$$

Random signal response of linear systems

$$
\begin{aligned}
R_{X Y} & (t, t+\tau)=E[X(t) Y(t+\tau)]=E\left[X(t) \int_{-\infty}^{\infty} h(\xi) X(t+\tau-\xi) d \xi\right] \\
& =\int_{-\infty}^{\infty} E[X(t) X(t+\tau-\xi)] h(\xi) d \xi \\
& =\int_{-\infty}^{\infty} R_{X X}(\tau-\xi) h(\xi) d \xi \\
& =R_{X X}(\tau) * h(\tau)=R_{X Y}(\tau)
\end{aligned}
$$

$$
\begin{aligned}
R_{Y X}(\tau) & =R_{X Y}(-\tau)=R_{X X}(-\tau) * h(-\tau)=R_{X X}(\tau) * h(-\tau) \\
& =\int_{-\infty}^{\infty} R_{X X}(\tau-\xi) h(-\xi) d \xi
\end{aligned}
$$

$$
X(t) \text { w.s.s. } \Rightarrow \quad X(t) \& Y(t) \text { jointly w.s.s. }
$$

$$
R_{Y Y}(\tau)=R_{X Y}(\tau) * h(-\tau)=R_{Y X}(\tau) * h(\tau)
$$

Random signal response of linear systems

Example-2: white noise $X(t) \quad R_{X X}(\tau)=\left(N_{0} / 2\right) \delta(\tau)$

$$
\begin{aligned}
& R_{X Y}(\tau)=R_{X X}(\tau) * h(\tau)=\int_{-\infty}^{\infty} R_{X X}(\tau-\xi) h(\xi) d \xi \\
& \quad=\int_{-\infty}^{\infty}\left(N_{0} / 2\right) \delta(\tau-\xi) h(\xi) d \xi=\left(N_{0} / 2\right) h(\tau) \\
& R_{Y X}(\tau)=R_{X Y}(-\tau)=\left(N_{0} / 2\right) h(-\tau)
\end{aligned}
$$

Spectral characteristics of siystem response

$$
\begin{gathered}
R_{X Y}(\tau)=R_{X X}(\tau) * h(\tau) \quad S_{X Y}(\omega)=S_{X X}(\omega) H(\omega) \\
R_{Y X}(\tau)=R_{X X}(\tau) * h(-\tau) \quad S_{Y X}(\omega)=S_{X X}(\omega) H(-\omega)=S_{X X}(\omega) H(\omega)^{*} \\
R_{Y Y}(\tau)=R_{X Y}(\tau) * h(-\tau)=R_{X X}(\tau) * h(\tau) * h(-\tau) \\
S_{Y Y}(\omega)=S_{X Y}(\omega) H(\omega)^{*}=S_{X X}(\omega) H(\omega) H(\omega)^{*}=S_{X X}(\omega)|H(\omega)|^{2} \\
h(\tau) \leftarrow \frac{F T}{\rightarrow} H(\omega) \\
h(\tau) \text { real } \Rightarrow \quad h(-\tau) \leftarrow \stackrel{F T}{\rightarrow} H(-\omega)=H(\omega)^{*}
\end{gathered}
$$

Spectral characteristics of siystem response

average power

$$
P_{Y Y}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{Y Y}(\omega) d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega)|H(\omega)|^{2} d \omega
$$

Example-1:

$$
S_{x X}(\omega)=\frac{N_{0}}{2} \quad H(\omega)=\frac{1}{1+(j \omega L / R)}
$$

$$
S_{Y Y}(\omega)=S_{X X}(\omega)|H(\omega)|^{2}=\frac{N_{0} / 2}{1+(\omega L / R)^{2}}
$$

$$
P_{Y Y}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{Y Y}(\omega) d \omega=\frac{N_{0}}{4 \pi} \int_{-\infty}^{\infty} \frac{1}{1+(\omega L / R)^{2}} d \omega
$$

$$
=\frac{N_{0}}{4 \pi} \int_{-\pi / 2}^{\pi / 2} \frac{1}{1+\tan ^{2} \theta} \frac{R}{L} \sec ^{2} \theta d \theta=\frac{N_{0} R}{4 \pi L} \int_{-\pi / 2}^{\pi / 2} d \theta=\frac{N_{0} R}{4 L}
$$

Spectral characteristics of siystem response

$$
h(t)=(R / L) u(t) e^{-R t / L} \quad \leftarrow \stackrel{F T}{\rightarrow} \quad H(\omega)=\frac{1}{1+(j \omega L / R)}
$$

By Example-1,

$$
P_{Y Y}=\frac{N_{0}}{2} \int_{-\infty}^{\infty} h(t)^{2} d t=\frac{N_{0}}{2} \int_{0}^{\infty}(R / L)^{2} e^{-2 R t / L} d t=\left.\frac{N_{0} R}{4 L} e^{-2 R t / L}\right|_{0} ^{\infty}=\frac{N_{0} R}{4 L}
$$

Random process through a LTI System

where $h(t)$ is the impulse response of the system

$$
\mu_{Y}(t)=E[Y(t)]
$$

If $E[X(t)]$ is finite

$$
=E\left[\int_{-\infty}^{\infty} h\left(\tau_{1}\right) X\left(t-\tau_{1}\right) d \tau_{1}\right]
$$

and system is stable

$$
=\int_{-\infty}^{\infty} h\left(\tau_{1}\right) E\left[x\left(t-\tau_{1}\right)\right] d \tau_{1}
$$

If $X(t)$ is stationary, $=\int_{-\infty}^{\infty} h\left(\tau_{1}\right) \mu_{x}\left(t-\tau_{1}\right) d \tau_{1}$
$H(0)$:System DC response.

$$
\mu_{Y}=\mu_{X} \int_{-\infty}^{\infty} h\left(\tau_{1}\right) d \tau_{1}=\mu_{x} H(0),
$$

Random process through a LTI System

Consider autocorrelation function of $Y(t)$:

$$
\begin{aligned}
& R_{Y}(t, \mu)=E[Y(t) Y(\mu)] \\
& =E\left[\int_{-\infty}^{\infty} h\left(\tau_{1}\right) X\left(t-\tau_{1}\right) d \tau_{1} \int_{-\infty}^{\infty} h\left(\tau_{2}\right) X\left(\mu-\tau_{2}\right) d \tau_{2}\right]
\end{aligned}
$$

If $\mathrm{E}\left[X^{2}(t)\right]$ is finite and the system is stable,

$$
R_{Y}(t, \mu)=\int_{-\infty}^{\infty} d \tau_{1} h\left(\tau_{1}\right) \int_{-\infty}^{\infty} d \tau_{2} h\left(\tau_{2}\right) R_{X}\left(t-\tau_{1}, \mu-\tau_{2}\right)
$$

If $R_{X}\left(t-\tau_{1}, \mu-\tau_{2}\right)=R_{X}\left(t-\mu-\tau_{1}+\tau_{2}\right)$ (stationary)

$$
R_{Y}(\tau)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(\tau_{1}\right) h\left(\tau_{2}\right) R_{X}\left(\tau-\tau_{1}+\tau_{2}\right) d \tau_{1} d \tau_{2}
$$

Stationary input, Stationary output

$$
R_{Y}(0)=E\left[Y^{2}(t)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(\tau_{1}\right) h\left(\tau_{2}\right) R_{X}\left(\tau_{2}-\tau_{1}\right) d \tau_{1} d \tau_{2}
$$

Power Spectral Density (PSD)

Consider the Fourier transform of $g(\mathrm{t})$,

$$
\begin{aligned}
& G(f)=\int_{-\infty}^{\infty} g(t) \exp (-j 2 \pi f t) d t \\
& g(t)=\int_{-\infty}^{\infty} G(f) \exp (j 2 \pi f t) d f
\end{aligned}
$$

Let $H(f)$ denote the frequency response,

$$
\tau=\tau_{2}-\tau_{1}
$$

$$
\begin{aligned}
& h\left(\tau_{1}\right)=\int_{-\infty}^{\infty} H(f) \exp \left(j 2 \pi f \tau_{1}\right) d f \\
& E\left[Y^{2}(t)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} H(f) \exp \left(j 2 \pi f \tau_{1}\right) d f\right] h\left(\tau_{2}\right) R_{X}\left(\tau_{2}-\tau_{1}\right) d \tau_{1} d \tau_{2} \\
& =\int_{-\infty}^{\infty} d f H(f) \int_{-\infty}^{\infty} d \tau_{2} h\left(\tau_{2}\right) \int_{-\infty}^{\infty} R_{X}\left(\tau_{2}-\tau_{1}\right) \exp \left(j 2 \pi f \tau_{1}\right) d \tau_{1} \\
& =\int_{-\infty}^{\infty} d f H(f) \frac{\int_{-\infty}^{\infty} d \tau_{2} h\left(\tau_{2}\right) \exp \left(j 2 \pi f \tau_{2}\right) \int_{-\infty}^{\infty} R_{X}(\tau) \exp (-j 2 \pi f \tau) d \tau}{H^{\dagger}(f)(\text { complex conjugate response of the filter) }}
\end{aligned}
$$

Power Spectral Density (PSD)

$$
E\left[Y^{2}(t)\right]=\int_{-\infty}^{\infty} d f|H(f)|^{2} \int_{-\infty}^{\infty} R_{X}(\tau) \exp (-j 2 \pi f \tau) d \tau
$$

$|H(f)|$: the magnitude response

$$
S_{X}(f)=\int_{-\infty}^{\infty} R_{X}(\tau) \exp (-2 \pi f \tau) d \tau
$$

$$
E\left[Y^{2}(t)\right]=\int_{-\infty}^{\infty}|H(f)|^{2} S_{X}(f) d f
$$

Define: Power Spectral Density (Fourier Transform of $\mathrm{R}(\tau)$)

Recall

$$
E\left[Y^{2}(t)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(\tau_{1}\right) R X\left(\tau_{2}-\tau_{1}\right) d \tau_{1} d \tau_{2}
$$

$$
|H(f)|= \begin{cases}1, & \left|f \pm f_{c}\right|<\frac{1}{2} \Delta f \\ 0, & \left|f \pm f_{c}\right|>\frac{1}{2} \Delta f\end{cases}
$$

Let $|H(f)|$ be the magnitude response of an ideal narrowband filter

D f : Filter Bandwidth

If $\Delta f \ll f_{c}$ and $S_{X}(f)$ is continuous , $E\left[Y^{2}(t)\right] \approx 2 \Delta f S_{X}\left(f_{c}\right) \quad$ in W/Hz

The PSD of the Input and Output Random Processes

$$
\begin{aligned}
& R_{Y}(\tau)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(\tau_{1}\right) h\left(\tau_{2}\right) R_{X}\left(\tau-\tau_{1}+\tau_{2}\right) d \tau_{1} d \tau_{2} \\
& S_{Y}(f)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(\tau_{1}\right) h\left(\tau_{2}\right) R_{X}\left(\tau-\tau_{1}+\tau_{2}\right) \exp (-j 2 \pi f \tau) d \tau_{1} d \tau_{2} d \tau \\
& \text { Let } \tau-\tau_{1}+\tau_{2}=\tau_{0} \quad, \text { or } \tau=\tau_{0}+\tau_{1}-\tau_{2} \\
& S_{Y}(f)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(\tau_{1}\right) h\left(\tau_{2}\right) R x\left(\tau_{1}\right) \exp \left(j 2 \pi f \tau_{0}\right) \exp \left(-j 2 \pi f \tau_{2}\right) \exp \left(-j 2 \pi f \tau_{0}\right) d \tau_{1} d \tau_{2} d \tau_{0} \\
&=S_{X}(f) H(f) H *(f) \\
&=|H(f)|^{2} S_{X}(f)
\end{aligned}
$$

Relation Among The PSD and
 The Magnitude Spectrum of a Sample Function

Let $x(t)$ be a sample function of a stationary and ergodic Process $X(t)$. In general, the condition for Fourier transformable is

$$
\int_{-\infty}^{\infty}|x(t)| d t<\infty
$$

This condition can never be satisfied by any stationary $x(t)$ with infinite duration.
We may write $\quad X(f, T)=\int_{-T}^{T} x(t) \exp (-j 2 \pi f t) d t$
Ergodic \Rightarrow Take time average

$$
R_{X}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t+\tau) x(t) d t
$$

If $x(t)$ is a power signal (finite average power)

$$
\frac{1}{2 T} \int_{-T}^{T} x(t+\tau) x(t) d t \Leftrightarrow \frac{1}{2 \mathrm{~T}}|X(f, T)|^{2}
$$

Time-averaged autocorrelation
periodogram function

Relation Among The PSD and
 The Magnitude Spectrumof a_Sample Function

Take inverse Fourier Transform
we have

$$
\frac{1}{2 \pi} \int_{-T}^{T} x(t+\tau) x(t) d t=\int_{-\infty}^{\infty} \frac{1}{2 T}|X(f, T)|^{2} \exp (j 2 \pi f T) d f
$$

$$
R_{X}(\tau)=\lim _{T \rightarrow \infty} \int_{-\infty}^{\infty} \frac{1}{2 T}|X(f, T)|^{2} \exp (j 2 \pi f \tau) d f
$$

Note that for any given $x(t)$ periodogram does not converge as $T \rightarrow \infty$ Since $x(t)$ is ergodic

$$
\begin{aligned}
& E\left[R_{X}(\tau)\right]=R_{X}(\tau)=\lim _{T \rightarrow \infty} \int_{-\infty}^{\infty} \frac{1}{2 T} E\left[|X(f-T)|^{2}\right] \exp (j 2 \pi f \tau) d f \\
& R_{X}(\tau)=\int_{-\infty}^{\infty}\left\{\lim _{T \rightarrow \infty} \frac{1}{2 T} E\left[|X(f-T)|^{2}\right]\right\} \exp (j 2 \pi f \tau) d f \\
& R_{X}(\tau)=\int_{-\infty}^{\infty} S_{X}(f) \exp (j 2 \pi f \tau) d f \\
& S_{X}(f)=\lim _{T \rightarrow \infty} \frac{1}{2 T} E\left[|X(f, T)|^{2}\right]
\end{aligned}
$$

is used to estimate the PSD $\stackrel{T \rightarrow \infty}{ }$ of $x(t)$

$$
=\lim _{T \rightarrow \infty} \frac{1}{2 T} E\left[\left|\int_{-T}^{T} x(t) \exp (-j 2 \pi f t) d t\right|^{2}\right]
$$

Cross-Spectral Densities

$$
\begin{aligned}
& S_{X Y}(f)=\int_{-\infty}^{\infty} R_{X Y}(\tau) \exp (-j 2 \pi f \tau) d \tau \\
& S_{Y X}(f)=\int_{-\infty}^{\infty} R_{Y X}(\tau) \exp (-j 2 \pi f \tau) d \tau \\
& S_{X Y}(f) \text { and } S_{Y X}(f) \text { may not be real. } \\
& R_{X Y}(\tau)=\int_{-\infty}^{\infty} S_{X Y}(f) \exp (j 2 \pi f \tau) d f \\
& R_{Y X}(\tau)=\int_{-\infty}^{\infty} S_{Y X}(f) \exp (j 2 \pi f \tau) d f \\
& \because R_{X Y}(\tau)=R_{Y X}(-\tau) \\
& S_{X Y}(f)=S_{Y X}(-f)=S_{Y X}^{*}(f)
\end{aligned}
$$

Cross-Spectral Densities Example

Example: $\mathrm{X}(t)$ and $\mathrm{Y}(t)$ are jointly stationary.

Cross-Spectral Densities

Output Statistics: the mean of the output process

is given by

$$
\begin{aligned}
\mu_{\gamma}(t) & =E\{Y(t)\}=\int_{-\infty}^{+\infty} E\{X(\tau) h(t-\tau) d \tau\} \\
& =\int_{-\infty}^{+\infty} \mu_{x}(\tau) h(t-\tau) d \tau=\mu_{x}(t) * h(t) .
\end{aligned}
$$

Similarly the cross-correlation function between the input and output processes is given by

$$
\begin{aligned}
R_{x Y}\left(t_{1}, t_{2}\right) & =E\left\{X\left(t_{1}\right) Y^{*}\left(t_{2}\right)\right\} \\
& =E\left\{X\left(t_{1}\right) \int_{-\infty}^{+\infty} X^{*}\left(t_{2}-\alpha\right) h^{*}(\alpha) d \alpha\right\} \\
& =\int_{-\infty}^{+\infty} E\left\{X\left(t_{1}\right) X^{*}\left(t_{2}-\alpha\right)\right\} h^{*}(\alpha) d \alpha \\
& =\int_{-\infty}^{+\infty} R_{x x}\left(t_{1}, t_{2}-\alpha\right) h^{*}(\alpha) d \alpha \\
& =R_{x X}\left(t_{1}, t_{2}\right) * h^{*}\left(t_{2}\right)
\end{aligned}
$$

Finally the output autocorrelation function is given by

Cross-Spectral Densities

$$
\begin{aligned}
& R_{r y}\left(t_{1}, t_{2}\right)=E\left\{Y\left(t_{1}\right) Y^{*}\left(t_{2}\right)\right\} \\
&=E\left\{\int_{-\infty}^{+\infty} X\left(t_{1}-\beta\right) h(\beta) d \beta Y^{*}\left(t_{2}\right)\right\} \\
&=\int_{-\infty}^{+\infty} E\left\{X\left(t_{1}-\beta\right) Y^{*}\left(t_{2}\right)\right\} h(\beta) d \beta \\
&=\int_{-\infty}^{+\infty} R_{x Y}\left(t_{1}-\beta, t_{2}\right) h(\beta) d \beta \\
&=R_{x Y}\left(t_{1}, t_{2}\right) * h\left(t_{1}\right), \\
& R_{r y}\left(t_{1}, t_{2}\right)=R_{x x}\left(t_{1}, t_{2}\right) * h^{*}\left(t_{2}\right) * h\left(t_{1}\right) . \\
& \mu_{x}(t) \longrightarrow \mu_{\gamma}(t) \\
& h(t)
\end{aligned}
$$

Cross-Spectral Densities

In particular if $X(t)$ is wide-sense stationary, then we have $\mu_{x}(t)=\mu_{x}$ so that $\mu_{y}(t)=\mu_{x} \int_{-\infty}^{+\infty} h(\tau) d \tau=\mu_{x} c, \quad a$ constant .

Also $R_{x x}\left(t_{1}, t_{2}\right)=R_{x x}\left(t_{1}-t_{2}\right)$ so that reduces to

$$
\begin{aligned}
R_{x y}\left(t_{1}, t_{2}\right) & =\int_{-\infty}^{+\infty} R_{x x}\left(t_{1}-t_{2}+\alpha\right) h^{*}(\alpha) d \alpha \\
& =R_{x x}(\tau) * h^{*}(-\tau) \triangleq R_{x y}(\tau), \quad \tau=t_{1}-t_{2} .
\end{aligned}
$$

Thus $X(t)$ and $Y(t)$ are jointly w.s.s. Further, the output autocorrelation simplifies to
we obtain

$$
\begin{aligned}
R_{r y}\left(t_{1}, t_{2}\right) & =\int_{-\infty}^{+\infty} R_{x Y}\left(t_{1}-\beta-t_{2}\right) h(\beta) d \beta, \quad \tau=t_{1}-t_{2} \\
& =R_{x Y}(\tau) * h(\tau)=R_{r y}(\tau) .
\end{aligned}
$$

$$
R_{r y}(\tau)=R_{x x}(\tau) * h^{*}(-\tau) * h(\tau)
$$

Cross-Spectral Densities

the output process is also wide-sense stationary. This gives rise to the following representation
$\left.\begin{array}{c}X(t) \\ \text { wide-sense } \\ \text { stationary process }\end{array} \longrightarrow \begin{array}{c}\begin{array}{c}Y(t)\end{array} \\ \begin{array}{c}\text { LTI system } \\ h(t)\end{array} \\ \text { (a) }\end{array} \longrightarrow \begin{array}{c}\text { wide-sense } \\ \text { stationary process. }\end{array}\right]$

White Noise Process

$W(t)$ is said to be a white noise process if

$$
R_{w w}\left(t_{1}, t_{2}\right)=q\left(t_{1}\right) \delta\left(t_{1}-t_{2}\right),
$$

i.e., $E\left[W\left(t_{1}\right) W^{*}\left(t_{2}\right)\right]=0$ unless $t_{1}=t_{2}$.
$W(t)$ is said to be wide-sense stationary (w.s.s) white noise if $E[W(t)]=$ constant, and

$$
R_{w w}\left(t_{1}, t_{2}\right)=q \delta\left(t_{1}-t_{2}\right)=q \delta(\tau) .
$$

If $W(t)$ is also a Gaussian process (white Gaussian process), then all of its samples are independent random variables

> White noise $$
W(t)
$$

For w.s.s. white noise input $W(t)$, we have

White Noise Process

$$
E[N(t)]=\mu_{w} \int_{-\infty}^{+\infty} h(\tau) d \tau, \quad a \operatorname{constan} t
$$

and

$$
\begin{aligned}
R_{n n}(\tau) & =q \delta(\tau) * h^{*}(-\tau) * h(\tau) \\
& =q h^{*}(-\tau) * h(\tau)=q \rho(\tau)
\end{aligned}
$$

where

Thus the output of a white noise $\quad(\tau)=h(\tau) * h^{*}(-\tau) h^{*}(\alpha+\tau) d \alpha$. . ${ }^{*+\infty} h(T)$ system represents a (colored) noise process.
Note: White noise need not be Gaussian.
"White" and "Gaussian" are two different concepts!

Noise

\square Shot noise
\square Thermal noise

$E\left[V_{T N}^{2}\right]=4 k T R \Delta f$ volts
$E\left[I_{T N}^{2}\right]=\frac{1}{R^{2}} E\left[V_{T N}^{2}\right]=4 k T \frac{1}{R} \Delta f=4 k T G \Delta f \quad$ amps
k : Boltzmann's constant $=1.38 \times 10^{-23}$ joules $/ K, T$ is the absolute temperature in degree Kelvin.

White noise

Ideal Low-Pass Filtered White Noise

(a)

$$
\begin{aligned}
S_{N}(f) & = \begin{cases}\frac{N_{0}}{2} & -B<f<B \\
0 & |f|>B\end{cases} \\
R_{N}(\tau) & =\int_{-B}^{B} \frac{N_{0}}{2} \exp (j 2 \pi f \tau) d f \\
& =N_{0} B \operatorname{sinc}(2 B \tau)
\end{aligned}
$$

Correlation of White Noise with a Sinusoidal Wave

White noise

$$
\sqrt{\frac{2}{T}} \cos \left(2 \pi f_{c} t\right) \quad, \quad f_{c}=\frac{k}{T}, k \text { is integer }
$$

$$
w^{\prime}(t)=\sqrt{\frac{2}{T}} \int_{0}^{T} w(t) \cos \left(2 \pi f_{c} t\right) d t
$$

The varance of $w^{\prime}(t)$ is

$$
\begin{aligned}
\sigma^{2} & =E\left[\frac{2}{T} \int_{0}^{T} \int_{0}^{T} w\left(t_{1}\right) \cos \left(2 \pi f_{c} t_{1}\right) w\left(t_{2}\right) \cos \left(2 \pi f_{c} t_{2}\right) d t_{1} d t_{2}\right] \\
& =\frac{2}{T} \int_{0}^{T} \int_{0}^{T} E\left[w\left(t_{1}\right) w\left(t_{2}\right)\right] \cos \left(2 \pi f_{c} t_{1}\right) \cos \left(2 \pi f_{c} t_{2}\right) d t_{1} d t_{2} \\
& =\frac{2}{T} \int_{0}^{T} \int_{0}^{T} R_{W}\left(t_{1}, t_{2}\right) \cos \left(2 \pi f_{c} t_{1}\right) \cos \left(2 \pi f_{c} t_{2}\right) d t_{1} d t_{2} \\
\sigma^{2} & =\frac{2}{T} \int_{0}^{T} \int_{0}^{T} \frac{N 0}{2} \delta\left(t_{1}-t_{2}\right) \cos \left(2 \pi f_{c} t_{1}\right) \cos \left(2 \pi f_{c} t_{2}\right) d t_{1} d t_{2} \\
& =\frac{N_{0}}{T} \int_{0}^{T} \cos ^{2}\left(2 \pi f_{c} t\right) d t=\frac{N_{0}}{2}
\end{aligned}
$$

Narrowband Noise (NBN)

Two representations

(a)

(b)
a. in-phase and quadrature components $\left(\cos \left(2 \pi f_{c} t\right), \sin \left(2 \pi f_{c} t\right)\right)$
b. envelope and phase

In-phase and quadrature representation

$$
\begin{aligned}
& n(t)=n_{I}(t) \cos \left(2 \pi f_{c} t\right)-n_{Q}(t) \sin \left(2 \pi f_{c} t\right) \\
& n_{I}(t) \text { and } n_{Q}(t) \text { are low - pass signals }
\end{aligned}
$$

(a)

(b)

Important Properties

1. $n_{l}(t)$ and $n_{Q}(t)$ have zero mean.
2.If $n(t)$ is Gaussian then $n_{l}(t)$ and $n_{Q}(t)$ are jointly Gaussian.
3.If $n(t)$ is stationary then $n_{l}(t)$ and $n_{Q}(t)$ are jointly stationary.
2. $\quad S_{N_{t}}(f)=S_{N_{\varrho}}(f)=\left\{\begin{array}{cl}S_{N}\left(f-f_{c}\right)+S_{N}\left(f+f_{c}\right), & -B \leq f \leq B \\ 0 & \text { otherwise }\end{array}\right.$
3. $n_{l}(t)$ and $n_{Q}(t)$ have the same variance $\cdot \frac{N_{0}}{2}$
6.Cross-spectral density is purely imaginary.

$$
\begin{aligned}
S_{N, N_{\ell}}(f) & =-S_{N_{Q^{N}}}(f) \\
& =\left\{\begin{array}{cc}
j\left[S_{N}\left(f+f_{c}\right)-S_{N}\left(f-f_{c}\right)\right], & -B \leq f \leq B \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

7.If $n(t)$ is Gaussian, its PSD is symmetric about f_{c}, then $n_{l}(t)$ and $n_{Q}(t)$ are statistically independent.

Ideal Band-Pass Filtered White Noise

(a)

(b)

(c)

$$
\begin{aligned}
R_{N}(\tau) & =\int_{-f_{c}-B}^{-f_{c}+B} \frac{N_{0}}{2} \exp (j 2 \pi f \tau) d f+\int_{f_{c}-B}^{f_{c}+B} \frac{N_{0}}{2} \exp (j 2 \pi f \tau) d f \\
& =N_{0} B \operatorname{sinc}(2 B \tau)\left[\exp \left(-j 2 \pi f_{c} \tau\right) \exp \left(j 2 \pi f_{c} \tau\right)\right] \\
& =2 N_{0} B \operatorname{sinc}(2 B \tau) \cos \left(2 \pi f_{c} \tau\right)
\end{aligned}
$$

Compare (a factor of τ),
$R_{N_{I}}(\tau)=R_{N_{Q}}(\tau)=2 N_{0} B \operatorname{sinc}(2 B \tau)$.

