
SOFT COMPUTING

By

K.Sai Saranya,Assistant Professor,Department of CSE

UNIT-1

INTRODUCTION TO

ARTIFICIAL NEURAL

NETWORKS

(ANN)

Definition, why and how are neural

networks being used in solving problems

Human biological neuron

Artificial Neuron

Comparison of ANN vs conventional AI

methods

Outline

Applications of ANN

The idea of ANNs..?

NNs learn relationship between cause and effect or

organize large volumes of data into orderly and

informative patterns.

frog

lion

bird

What is that?

It’s a frog

5

Neural networks to the rescue…

• Neural network: information processing

paradigm inspired by biological nervous

systems, such as our brain

• Structure: large number of highly interconnected

processing elements (neurons) working together

• Like people, they learn from experience (by

example)

6

Definition of ANN

“Data processing system consisting of a

large number of simple, highly

interconnected processing elements

(artificial neurons) in an architecture inspired

by the structure of the cerebral cortex of the

brain”

(Tsoukalas & Uhrig, 1997).

7

Inspiration from Neurobiology

Human Biological Neuron

Biological Neural Networks

Biological neuron

Biological Neural Networks

A biological neuron has

three types of main

components; dendrites,

soma (or cell body) and

axon.

Dendrites receives

signals from other

neurons.

The soma, sums the incoming signals. When

sufficient input is received, the cell fires; that is it

transmit a signal over its axon to other cells.

Artificial Neurons

ANN is an information processing system that has

certain performance characteristics in common

with biological nets.

Several key features of the processing elements of

ANN are suggested by the properties of biological

neurons:

1. The processing element receives many signals.

2. Signals may be modified by a weight at the receiving

synapse.

3. The processing element sums the weighted inputs.

4. Under appropriate circumstances (sufficient input), the

neuron transmits a single output.

5. The output from a particular neuron may go to many other

neurons.

11

• From experience:

examples / training

data

• Strength of connection

between the neurons

is stored as a weight-

value for the specific

connection.

• Learning the solution

to a problem =

changing the

connection weights

A physical neuron

An artificial neuron

Artificial Neurons

Artificial Neurons

ANNs have been developed as generalizations of

mathematical models of neural biology, based on

the assumptions that:

1. Information processing occurs at many simple elements

called neurons.

2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which, in

typical neural net, multiplies the signal transmitted.

4. Each neuron applies an activation function to its net input

to determine its output signal.

13

Four basic components of a human biological

neuron

The components of a basic artificial neuron

Artificial Neuron

14

Model Of A Neuron

 f()
Y

Wa

Wb

Wc

Connection
weights

Summing
function

computation

X1

X3

X2

Input units

(dendrite) (synapse) (axon)

(soma)

15

• A neural net consists of a large number of

simple processing elements called neurons,

units, cells or nodes.

• Each neuron is connected to other neurons by

means of directed communication links, each

with associated weight.

• The weight represent information being used by

the net to solve a problem.

16

• Each neuron has an internal state, called
its activation or activity level, which is a
function of the inputs it has received.
Typically, a neuron sends its activation as
a signal to several other neurons.

• It is important to note that a neuron can
send only one signal at a time, although
that signal is broadcast to several other
neurons.

17

• Neural networks are configured for a specific

application, such as pattern recognition or

data classification, through a learning

process

• In a biological system, learning involves

adjustments to the synaptic connections

between neurons

 same for artificial neural networks (ANNs)

18

x2

w1

w2

x1

Dendrite

Axon

yin = x1w1 + x2w2

Nukleus

 

Activation Function:

(y-in) = 1 if y-in >= 

and (y-in) = 0

y

-A neuron receives input, determines the strength or the weight of the input, calculates the total

weighted input, and compares the total weighted with a value (threshold)

-The value is in the range of 0 and 1

- If the total weighted input greater than or equal the threshold value, the neuron will produce the

output, and if the total weighted input less than the threshold value, no output will be produced

Synapse

Artificial Neural Network

19

History

• 1943 McCulloch-Pitts neurons

• 1949 Hebb‟s law

• 1958 Perceptron (Rosenblatt)

• 1960 Adaline, better learning rule (Widrow,

Huff)

• 1969 Limitations (Minsky, Papert)

• 1972 Kohonen nets, associative memory

20

• 1977 Brain State in a Box (Anderson)

• 1982 Hopfield net, constraint satisfaction

• 1985 ART (Carpenter, Grossfield)

• 1986 Backpropagation (Rumelhart, Hinton,

McClelland)

• 1988 Neocognitron, character recognition

(Fukushima)

21

Characterization
• Architecture

– a pattern of connections between neurons

• Single Layer Feedforward

• Multilayer Feedforward

• Recurrent

• Strategy / Learning Algorithm
– a method of determining the connection weights

• Supervised

• Unsupervised

• Reinforcement

• Activation Function
– Function to compute output signal from input signal

22

Single Layer Feedforward NN

x2

w11

w12

x1

w21

w22

ym

yn

Input layer
output layer

Contoh: ADALINE, AM, Hopfield, LVQ, Perceptron, SOFM

23

Multilayer Neural Network

x2

V11

w12

x1  

xm

 

 









z1

V1n

zn

z2

Vmn

Input layer
Hidden layer

Output layer

y1

y2

Contoh: CCN, GRNN, MADALINE, MLFF with BP, Neocognitron, RBF, RCE

w11

w12

24

Recurrent NN

Input

Contoh: ART, BAM, BSB, Boltzman Machine, Cauchy Machine,

Hopfield, RNN

Hidden nodes

Outputs

25

Strategy / Learning Algorithm

• Learning is performed by presenting pattern with target

• During learning, produced output is compared with the desired output

– The difference between both output is used to modify learning

weights according to the learning algorithm

• Recognizing hand-written digits, pattern recognition and etc.

• Neural Network models: perceptron, feed-forward, radial basis function,

support vector machine.

Supervised Learning

26

• Targets are not provided

• Appropriate for clustering task

– Find similar groups of documents in the web, content

addressable memory, clustering.

• Neural Network models: Kohonen, self organizing maps,

Hopfield networks.

Unsupervised Learning

27

• Target is provided, but the desired output is absent.

• The net is only provided with guidance to determine the

produced output is correct or vise versa.

• Weights are modified in the units that have errors

Reinforcement Learning

28

Activation Functions

• Identity
f(x) = x

• Binary step
f(x) = 1 if x >= 
f(x) = 0 otherwise

• Binary sigmoid
f(x) = 1 / (1 + e-sx)

• Bipolar sigmoid
f(x) = -1 + 2 / (1 + e-sx)

• Hyperbolic tangent
f(x) = (ex – e-x) / (ex + e-x)

29

Exercise

• 2 input AND

1 1 1

1 0 0

0 1 0

0 0 0

1 1 1

1 0 1

0 1 1

0 0 0

• 2 input OR

30

x2

w1= 0.5

w2 = 0.3

x1

yin = x1w1 + x2w2

  y

Activation Function:

Binary Step Function

 = 0.5,

(y-in) = 1 if y-in >= 

dan (y-in) = 0

31

Where can neural network systems help…

• when we can't formulate an algorithmic

solution.

• when we can get lots of examples of the

behavior we require.

„learning from experience‟

• when we need to pick out the structure

from existing data.

32

Who is interested?...

• Electrical Engineers – signal processing,

control theory

• Computer Engineers – robotics

• Computer Scientists – artificial

intelligence, pattern recognition

• Mathematicians – modelling tool when

explicit relationships are unknown

33

Problem Domains

• Storing and recalling patterns

• Classifying patterns

• Mapping inputs onto outputs

• Grouping similar patterns

• Finding solutions to constrained

optimization problems

34

.

Input layer

Output layer

Input patterns0000
11

11

01

11
0010

01 11

11

11

Sorted
patterns

00

00

00 10

10

10
STOP

Coronary
Disease

Neural
Net

Classification

35

01

1100

1011

1100

00

10

Clustering

Medical Applications

Information

Searching & retrieval

Business & Management
Education

Chemistry

ANN Applications

37

• Signal processing

• Pattern recognition, e.g. handwritten

characters or face identification.

• Diagnosis or mapping symptoms to a

medical case.

• Speech recognition

• Human Emotion Detection

• Educational Loan Forecasting

Applications of ANNs

38

Male Age Temp WBC Pain
Intensity

Pain
Duration

37 10 11 20 1
adjustable

weights

0

1

0 0000

AppendicitisDiverticulitis

Perforated
Non-specific

Cholecystitis

Small Bowel

PancreatitisObstructionPain
Duodenal
Ulcer

37 10 11 20 1

Abdominal Pain Prediction

39

Voice Recognition

40

Educational Loan Forecasting System

41

NON-LINEARITY
It can model non-linear systems

INPUT-OUTPUT MAPPING
It can derive a relationship between a set of input & output
responses

ADAPTIVITY
The ability to learn allows the network to adapt to changes in
the surrounding environment

EVIDENTIAL RESPONSE
It can provide a confidence level to a given solution

Advantages Of NN

42

CONTEXTUAL INFORMATION
Knowledge is presented by the structure of the network.
Every neuron in the network is potentially affected by the
global activity of all other neurons in the network.
Consequently, contextual information is dealt with naturally in
the network.

FAULT TOLERANCE
Distributed nature of the NN gives it fault tolerant capabilities

NEUROBIOLOGY ANALOGY
Models the architecture of the brain

Advantages Of NN

43

Comparison of ANN with conventional AI methods

UNIT-2

ASSCIATIVE MEMORY AND

UNSUPERVISED LEARNING

NETWORKS

Weight Vectors in Clustering Networks

• Node k represents a particular class of input vectors, and the

weights into k encode a prototype/centroid of that class.

• So if prototype(class(k)) = [ik1, ik2, ik3, ik4], then:

wkm = fe(ikm) for m = 1..4, where fe is the encoding function.

• In some cases, the encoding function involves normalization.

Hence wkm = fe(ik1…ik4).

• The weight vectors are learned during the unsupervised training

phase.

1

2

3

4

k

wk1

wk4

wk3

wk2

Unsupervised Learning with Artificial

Neural Networks

• The ANN is given a set of patterns, P, from space, S,

but little/no information about their classification,

evaluation, interesting features, etc. It must learn these

by itself!

• Tasks

– Clustering - Group patterns based on similarity (Focus of this

lecture)

– Vector Quantization - Fully divide up S into a small set of

regions (defined by codebook vectors) that also helps cluster

P.

– Probability Density Approximation - Find small set of points

whose distribution matches that of P.

– Feature Extraction - Reduce dimensionality of S by removing

Network Types for Clustering

• Winner-Take-All Networks

– Hamming Networks

– Maxnet

– Simple Competitive Learning Networks

• Topologically Organized Networks

– Winner & its neighbors “take some”

Hamming Networks

Given: a set of patterns m patterns, P, from an n-dim input space,

S.

Create: a network with n input nodes and m simple linear output

nodes (one per pattern), where the incoming weights to the

output node for pattern p is based on the n features of p.

ipj = jth input bit of the pth pattern. ipj = 1 or -1

Set wpj = ipj/2.

Also include a threshold input of -n/2 at each output node.

Testing: enter an input pattern, I, and use the network to determine

which member of P that is closest to I. Closeness is based on

the Hamming distance (# non-matching bits in the two patterns).

Given input I, the output value of the output node for

pattern p =

= the negative of the Hamming distance between I and p

w I
n i

I
n

i I npk k
k

n
pk

k
k

n

pk k
k

n

  

  -  -  -










1 1 12 2 2

1

2

Hamming Networks (2)

Proof: (that output of output node p is the negative of the Hamming

distance between p and input vector I).

Assume: k bits match.

Then: n - k bits do not match, and n-k is the Hamming distance.

And: the output value of p‟s output node is:

 
1

2

1

21

i I n k n k n k n n kpk k
k

n



 -








  - - -  -  - -() ()

k matches, where each match gives (1)(1) or (-1)(-1) = 1

n-k mismatches, where each gives (-1)(1) or (1)(-1) = -1

Neg. Hamming distance

The pattern p* with the largest negative Hamming distance to I is thus the

pattern with the smallest Hamming distance to I (i.e. the nearest to I).

Hence,

the output node that represents p* will have the highest output value of all

output

Hamming Network Example

P = {(1 1 1), (-1 -1 -1), (1 -1 1)} = 3 patterns of length 3

i1

i2

i3

p1

p3

p2

wgt = 1/2

wgt = -1/2

Inputs Outputs

Given: input pattern I = (-1 1 1)

Output (p1) = -1/2 + 1/2 + 1/2 - 3/2 = -1 (Winner)

Output (p2) = 1/2 - 1/2 - 1/2 - 3/2 = -2

Output (p3) = -1/2 - 1/2 + 1/2 - 3/2 = -2

wgt = -n/2 = -3/2

1

Simple Competitive Learning

• Combination Hamming-like Net + Maxnet with learning of the

input-to-output weights.

– Inputs can be real valued, not just 1, -1.

• So distance metric is actually Euclidean or Manhattan, not

Hamming.

• Each output node represents a centroid for input patterns it wins

on.

• Learning: winner node‟s incoming weights are updated to move

closer to the input vector.
Euclidean

Maxnet

Winning & Learning

``Winning isn’t everything…it’s the ONLY thing” - Vince Lombardi

• Only the incoming weights of the winner node are modified.

• Winner = output node whose incoming weights are the shortest

Euclidean distance from the input vector.

• Update formula: If j is the winning output node:

))(()()(: oldwIoldwnewwi jiijiji - 

 


-
n

i

kii wI
1

2 = Euclidean distance from input vector I to the

vector represented by output node k‟s incoming weights

1

2

3

4

k

wk1

wk4

wk3

wk2

Note: The use of real-valued

inputs & Euclidean distance

means that the simple product

of weights and inputs does not

correlate with ”closeness” as

in binary networks using

Hamming distance.

SCL Examples (1)
6 Cases:

(0 1 1) (1 1 0.5)

(0.2 0.2 0.2) (0.5 0.5 0.5)

(0.4 0.6 0.5) (0 0 0)

Learning Rate: 0.5

Initial Randomly-Generated Weight Vectors:

[0.14 0.75 0.71]

[0.99 0.51 0.37] Hence, there are 3 classes to be learned

[0.73 0.81 0.87]

Training on Input Vectors

Input vector # 1: [0.00 1.00 1.00]

Winning weight vector # 1: [0.14 0.75 0.71] Distance: 0.41

Updated weight vector: [0.07 0.87 0.85]

Input vector # 2: [1.00 1.00 0.50]

Winning weight vector # 3: [0.73 0.81 0.87] Distance: 0.50

Updated weight vector: [0.87 0.90 0.69]

SCL Examples (2)

Input vector # 3: [0.20 0.20 0.20]

Winning weight vector # 2: [0.99 0.51 0.37] Distance: 0.86

Updated weight vector: [0.59 0.36 0.29]

Input vector # 4: [0.50 0.50 0.50]

Winning weight vector # 2: [0.59 0.36 0.29] Distance: 0.27

Updated weight vector: [0.55 0.43 0.39]

Input vector # 5: [0.40 0.60 0.50]

Winning weight vector # 2: [0.55 0.43 0.39] Distance: 0.25

Updated weight vector: [0.47 0.51 0.45]

Input vector # 6: [0.00 0.00 0.00]

Winning weight vector # 2: [0.47 0.51 0.45] Distance: 0.83

Updated weight vector: [0.24 0.26 0.22]

Weight Vectors after epoch 1:

[0.07 0.87 0.85]

[0.24 0.26 0.22]

[0.87 0.90 0.69]

SCL Examples (3)

Clusters after epoch 1:

Weight vector # 1: [0.07 0.87 0.85]

Input vector # 1: [0.00 1.00 1.00]

Weight vector # 2: [0.24 0.26 0.22]

Input vector # 3: [0.20 0.20 0.20]

Input vector # 4: [0.50 0.50 0.50]

Input vector # 5: [0.40 0.60 0.50]

Input vector # 6: [0.00 0.00 0.00]

Weight vector # 3: [0.87 0.90 0.69]

Input vector # 2: [1.00 1.00 0.50]

Weight Vectors after epoch 2:

[0.03 0.94 0.93]

[0.19 0.24 0.21]

[0.93 0.95 0.59]

Clusters after epoch 2:

unchanged.

Maxnet

Simple network to find node with largest initial input value.

Topology: clique with self-arcs, where all self-arcs have a small positive

(excitatory) weight, and all other arcs have a small negative (inhibitory)

weight.

Nodes: have transfer function fT = max(sum, 0)

Algorithm:

Load initial values into the clique

Repeat:

Synchronously update all node values via fT

Until: all but one node has a value of 0

Winner = the non-zero node

wgt  -

wgt  

   1
1

n
e.g.

Maxnet Examples

• Input values: (1, 2, 5, 4, 3) with epsilon = 1/5 and theta = 1

0.000 0.000 3.000 1.800 0.600

0.000 0.000 2.520 1.080 0.000

0.000 0.000 2.304 0.576 0.000

0.000 0.000 2.189 0.115 0.000

0.000 0.000 2.166 0.000 0.000

0.000 0.000 2.166 0.000 0.000

• Input values: (1, 2, 5, 4.5, 4.7) with epsilon = 1/5 and theta = 1

0.000 0.000 2.560 1.960 2.200

0.000 0.000 1.728 1.008 1.296

0.000 0.000 1.267 0.403 0.749

0.000 0.000 1.037 0.000 0.415

0.000 0.000 0.954 0.000 0.207

0.000 0.000 0.912 0.000 0.017

0.000 0.000 0.909 0.000 0.000

0.000 0.000 0.909 0.000 0.000

Stable attractor

Stable attractor

= (1)5 - (0.2)(1+2+4+3)

Associative-Memory Networks

Input: Pattern (often noisy/corrupted)

Output: Corresponding pattern (complete / relatively noise-free)

Process

1. Load input pattern onto core group of highly-
interconnected neurons.

2. Run core neurons until they reach a steady state.

3. Read output off of the states of the core neurons.

Inputs Outputs

Input: (1 0 1 -1 -1) Output: (1 -1 1 -1 -1)

Associative Network Types

1. Auto-associative: X = Y

2. Hetero-associative Bidirectional: X <> Y

*Recognize noisy versions of a pattern

*Iterative correction of input and output

BAM = Bidirectional Associative Memory

Hebb‟s Rule

Connection Weights ~ Correlations

``When one cell repeatedly assists in firing another, the axon of the first cell

develops synaptic knobs (or enlarges them if they already exist) in contact

with the soma of the second cell.” (Hebb, 1949)

In an associative neural net, if we compare two pattern components (e.g. pixels)

within many patterns and find that they are frequently in:

a) the same state, then the arc weight between their NN nodes should be positive

b) different states, then ” ” ” ” negative

Matrix Memory:

The weights must store the average correlations between all pattern components

across all patterns. A net presented with a partial pattern can then use the correlations

to recreate the entire pattern.

Quantifying Hebb‟s Rule

Compare two nodes to calc a weight change that reflects the state

correlation:





P

p

pjpkjk iiw
1

pjpkjk iiw 

Hebbian Principle: If all the input patterns are known prior to retrieval time,

then init weights as:

* When the two components are the same

(different),

increase (decrease) the weight

Ideally, the weights will record the average correlations across all patterns:





P

p

pjpkjk ii
P

w
1

1

Weights = Average Correlations

pjpkjk oiw 

Auto-Association:

Hetero-Association:





P

p

pjpkjk oiw
1

Auto: Hetero:

Auto: 



P

p

pjpkjk oi
P

w
1

1
Hetero:

i = input component

o = output component

Auto-Associative Memory

• 1 node per pattern unit

• Fully connected: clique

• Weights = avg correlations across

all patterns of the corresponding units

1

3 4

2

1. Auto-Associative Patterns to Remember

2. Distributed Storage of All Patterns: 1

3 4

2

1

3 4

2

1

3 4

2

1

3 4

2

3. Retrieval

-1

1

1

3 4

21

3 4

2
Comp/Node value legend:

dark (blue) with x => +1

dark (red) w/o x => -1

light (green) => 0

Hetero-Associative Memory

1

3

2
b

a

• 1 node per pattern unit for X & Y

• Full inter-layer connection

• Weights = avg correlations across

all patterns of the corresponding units

1

3
b

2

1. Hetero-Associative Patterns (Pairs) to Remember

2. Distributed Storage of All Patterns:

3. Retrieval

1

3

2

b

a

a
-1

1

Hopfield Networks

• Auto-Association Network

• Fully-connected (clique) with symmetric weights

• State of node = f(inputs)

• Weight values based on Hebbian principle

• Performance: Must iterate a bit to converge on a pattern, but

generally

much less computation than in back-propagation networks.
Input Output (after many iterations)

))(sgn()1(
1

pk

n

j

pjkjpk Itxwtx  


Discrete node update rule:

Input value

Hopfield Network Example

1

3 4

2 1

3 4

2

1. Patterns to Remember

p1 p2 p3

2. Hebbian Weight Init:
Avg Correlations across 3 patterns

W12 1 1 -1 1/3

p1 p2 p3
Avg

W13 1 -1 -1 -1/3

W14 -1 1 1 1/3

W23 1 -1 1 1/3

W24 -1 1 -1 -1/3

W34 -1 -1 -1 -1

1

3 4

2
[-]

[+]

-1

-1/3-1/3

1/3

1/3

1/3

3. Build Network

4. Enter Test Pattern

1

3 4

2

-1

-1/3
1/3

1/3

-1/3

1/3

1

3 4

2

+1 0 -1

Storage Capacity of Hopfield

Networks
Capacity = Relationship between # patterns that can be stored &

retrieved

without error to the size of the network.

Capacity = # patterns / # nodes or # patterns / # weights

• If we use the following definition of 100% correct retrieval:

When any of the stored patterns is entered completely (no noise), then
that same pattern is returned by the network; i.e. The pattern is a stable
attractor.

• A detailed proof shows that a Hopfield network of N nodes can
achieve 100% correct retrieval on P patterns if: P < N/(4*ln(N))

N Max P

10 1

100 5

1000 36

10000 271

1011 109

In general, as more patterns are added to a network,

the avg correlations will be less likely to match the

correlations in any particular pattern. Hence, the

likelihood of retrieval error will increase.

=> The key to perfect recall is selective ignorance!!

Stochastic Hopfield Networks

Node state is stochastically determined by sum of inputs:

Node fires with probability:

For these networks, effective retrieval is obtained when P <

0.138N, which is an improvement over standard Hopfield nets.

Boltzmann Machines:

Similar to Hopfield nets but with hidden layers.

State changes occur either:

a. Deterministically when

b. Stochastically with probability =

Where t is a decreasing temperature variable and

is the expected change in energy if the change is made.

The non-determinism allows the system to ”jiggle” out of local

minima.

ksum
e

p
2

1

1
-




0E

/1

1
Ee -

E

Unit -3

Fuzzy logic

68

Overview

69

What is Fuzzy Logic?

 Where did it begin?

 Fuzzy Logic vs. Neural Networks

 Fuzzy Logic in Control Systems

 Fuzzy Logic in Other Fields

 Future

WHAT IS FUZZY LOGIC?

 Definition of fuzzy

 Fuzzy – “not clear, distinct, or precise; blurred”

 Definition of fuzzy logic

 A form of knowledge representation suitable for

notions that cannot be defined precisely, but which

depend upon their contexts.

TRADITIONAL REPRESENTATION

OF LOGIC

Slow Fast

Speed = 0 Speed = 1

bool speed;

get the speed

if (speed == 0) {

// speed is slow

}

else {

// speed is fast

}

FUZZY LOGIC REPRESENTATION

 For every problem

must represent in

terms of fuzzy sets.

 What are fuzzy

sets?

Slowest

Fastest

Slow

Fast

[0.0 – 0.25]

[0.25 – 0.50]

[0.50 – 0.75]

[0.75 – 1.00]

FUZZY LOGIC REPRESENTATION

CONT.

Slowest Fastest
float speed;

get the speed

if ((speed >= 0.0)&&(speed < 0.25)) {

// speed is slowest

}

else if ((speed >= 0.25)&&(speed < 0.5))

{

// speed is slow

}

else if ((speed >= 0.5)&&(speed < 0.75))

{

// speed is fast

}

else // speed >= 0.75 && speed < 1.0

{

// speed is fastest

}

Slow Fast

ORIGINS OF FUZZY LOGIC

 Traces back to Ancient Greece

 Lotfi Asker Zadeh (1965)

 First to publish ideas of fuzzy logic.

 Professor Toshire Terano (1972)

 Organized the world's first working group on fuzzy

systems.

 F.L. Smidth & Co. (1980)

 First to market fuzzy expert systems.

FUZZY LOGIC VS. NEURAL

NETWORKS

 How does a Neural Network work?

 Both model the human brain.

 Fuzzy Logic

 Neural Networks

 Both used to create behavioral

systems.

FUZZY LOGIC IN CONTROL

SYSTEMS

 Fuzzy Logic provides a more efficient and

resourceful way to solve Control Systems.

 Some Examples

 Temperature Controller

 Anti – Lock Break System (ABS)

TEMPERATURE CONTROLLER

 The problem

 Change the speed of a heater fan, based off the room

temperature and humidity.

 A temperature control system has four settings

 Cold, Cool, Warm, and Hot

 Humidity can be defined by:

 Low, Medium, and High

 Using this we can define

the fuzzy set.

BENEFITS OF USING FUZZY LOGIC

FUZZY LOGIC IN OTHER FIELDS

 Business

 Hybrid Modeling

 Expert Systems

Fuzzy Logic Example

Automotive Speed Controller

3 inputs:

speed (5 levels)

acceleration (3 levels)

distance to destination (3 levels)

1 output:

power (fuel flow to engine)

Set of rules to determine output based on input

values

Fuzzy Logic Example

1.0

1.0

1.0

Too

Slow
Slow Optimum

Too

Fast
 Fast

Speed

Acceleration

Distance

Decelerating Constant Accelerating

Very

Close
Close Distant

Fuzzy Logic Example

Example Rules

IF speed is TOO SLOW and acceleration is DECELERATING,

THEN INCREASE POWER GREATLY

IF speed is SLOW and acceleration is DECREASING,

THEN INCREASE POWER SLIGHTLY

IF distance is CLOSE,

THEN DECREASE POWER SLIGHTLY

. . .

Fuzzy Logic Example

Note there would be a total of 95 different rules for

all combinations of inputs of 1, 2, or 3 at a time.

(5x3x3 + 5x3 + 5x3 + 3x3 + 5 + 3 + 3)

In practice, a system won't require all the rules.

System tweaked by adding or changing rules and by

adjusting set boundaries.

System performance can be very good but not

usually optimized by traditional metrics (minimize

RMS error).

84

Fuzzy Logic Summary

Doesn't require an understanding of process but any

knowledge will help formulate rules.

Complicated systems may require several iterations

to find a set of rules resulting in a stable system.

Combining Neural Networks with fuzzy logic reduces

time to establish rules by analyzing clusters of data.

Possible applications: Master Production Schedule,

Material Requirements Planning, Inventory Capacity

Planning

CONCLUSION

 Fuzzy logic provides an alternative way to

represent linguistic and subjective attributes of

the real world in computing.

 It is able to be applied to control systems and

other applications in order to improve the

efficiency and simplicity of the design process.

UNIT-4

FUZZY AIRTHEMATIC

Definition

• Fuzzy Number

– Convex and normal fuzzy set defined on R

– Equivalently it satisfies

• Normal fuzzy set on R

• Every alpha-cut must be a closed interval

• Support must be bounded

• Applications of fuzzy number

– Fuzzy Control, Decision Making,

Optimizations

Arithmetic Operations

• Interval Operations A = [a1 , a3] , B = [b1 , b3]

0execpt

]////

 ,////[],](/)[,[

Division

]

 ,[],)[](,[

tionMultiplica

],[],)[](,[

nSubtractio

],[],)[](,[

Addition

31

33133111

331331113131

33133111

331331113131

13313131

33113131











---



bb

babababa

bababababbaa

babababa

bababababbaa

bababbaa

bababbaa

Examples

• Addition

[2,5]+[1,3]=[3,8] [0,1]+[-6,5]=[-6,6]

• Subtraction
[2,5]-[1,3]=[-1,4] [0,1]-[-6,5]=[-5,7]

• Multiplication
[-1,1]*[-2,-0.5]=[-2,2] [3,4]*[2,2]=[6,8]

• Division
[-1,1]/[-2,-0.5]=[-2,2] [4,10]*[1,2]=[2,10]

Properties of Interval Operations

 E*FA*B FB EA

A/AA-A

CABAC) (BA

AAAAA A

CBACBACBACBA

ABBAABBA















 then and If

* operationsany for ty Monotonici

10

Inverse

utiveSubdistrib

11 00

[1,1]1 [0,0]0 Identity

)()()()(

eAssocoativ

eCommutativ

Arithmetic Operation on Fuzzy

Numbers

• Interval operations of alpha-level sets

• Note: The Result is a fuzzy number.

• Example: See Text pp. 105 and Fig. 4.5


(0,1]

)*(*

(0,1]. allfor 0 /,*When

 (0,1].any for *)*(





















BABA

B

BABA

Example

• A+B = {1/5, 0.8/6, 0.5/7 }

50805.0min)4()3(

7)

808050)6(80)4()2(

5.0)3()3(

42or 33

6)

1)3()2(

32

5)

0)(

case.such No 5)

426
336

)(

)(

.)., (

ziv

.)., .(.

y x yx

ziii

yx

zii

z

zi

BA

BABA

BA

BA

BA








































Example

• Max (A,B) = { (3 , 1) , (4 , 0.5) }

0)(

case.such No 5)

5.0)5.0,5.0()4(

5.05.05.0)4()3(5.05.01)4()2(

43or 42

4)

1)5.0,1()3(

5.015.0)3()3(111)3()2(

33or 32

3)

0)(

case.such No 2)

)(

434
424

)(

333
323

)(

)(







































z

ziv

yxyx

ziii

yxyx

zii

z

zi

BA

BA

BABA

BA

BABA

BA













Typical Fuzzy Numbers

Triangular Fuzzy Number

 Fig. 4.5

Trapezoidal Fuzzy Numbers: Fig. 4.4
Linguistic variable: ”Performance”

Linguistic values (terms):

“very small” … “very large”

Semantic Rules:

Terms maps on trapezoidal fuzzy numbers

Syntactic rules (grammar):

Rules for other terms such as “not small”

Lattice of Fuzzy Numbers

• Lattice

– Partially ordered set with ordering relation

– Meet(g.l.b) and Join(l.u.b) operations

– Example:

Real number and “less than or equal to”

• Lattice of fuzzy numbers

),()](),(min[))(,(

),()](),(min[))(,(

sup

sup

),max(

),min(

BAJOINyBxAzBAMAX

BAMEETyBxAzBAMIN

yxz

yxz









Fuzzy Equations

• Addition

– X = B-A is not a solution because A+(B-A) is

not B.

– Conditions to have a solution

– Solution

BXA 

22221111

2211

212121

 implies (ii)

(0,1]any for (i)

],[and],[],,[let (0,1],any For

abababab

abab

xxXbbBaaA













----

--




(0,1]

2211

Then (0,1].any for

ofsolution a is],[Suppose







--











XX

BXA

ababX

Fuzzy Equations

• Multiplication

– X = B/A is not a solution.

– Conditions to have a solution

– Solution

BXA 

22221111

2211

212121

//// implies (ii)

(0,1]any for //(i)

],[and],[],,[let (0,1],any For

abababab

abab

xxXbbBaaA




















(0,1]

2211

Then (0,1].any for

ofsolution a is]/,/[Suppose



















XX

BXA

ababX

Fuzzification

Fuzzification is the process of changing a real scalar value into a fuzzy

value.

This is achieved with the different types of fuzzifiers (membership
functions).

Fuzzification

Temp: {Freezing, Cool, Warm, Hot}

Degree of Truth or "Membership"

50 70 90 1103010

Temp. (F°)

Freezing Cool Warm Hot

0

1

Membership Functions

Fuzzification

How cool is 36 F° ?

It is 30% Cool and 70% Freezing

50 70 90 1103010

Temp. (F°)

Freezing Cool Warm Hot

0

1

0.7

0.3

Fuzzification

The MATLAB toolbox includes 11 built-in membership function

types. These 11 functions are, in turn, built from several basic

functions:

• piecewise linear functions

• the Gaussian distribution function

• the sigmoid curve

• quadratic and cubic polynomial curves

Membership Functions

Fuzzification

Two membership functions are built on the Gaussian distribution
curve: a simple Gaussian curve and a two-sided composite of two
different Gaussian curves. The two functions are gaussmf and
gauss2mf. The generalized bell membership has the function name
gbellmf.

Because of their smoothness and concise notation, Gaussian and bell
membership functions are popular methods for specifying fuzzy sets.
Both of these curves have the advantage of being smooth and nonzero
at all points.

Membership Functions

Fuzzification

Although the Gaussian membership functions and bell membership
functions achieve smoothness, they are unable to specify asymmetric
membership functions, which are important in certain applications.

the sigmoidal membership function is defined, which is either open
left or right. Asymmetric and closed (i.e. not open to the left or right)
membership functions can be synthesized using two sigmoidal
functions, so in addition to the basic sigmf, you also have the
difference between two sigmoidal functions, dsigmf, and the product
of two sigmoidal functions psigmf.

Membership Functions

Fuzzification

Polynomial based curves account for several of the membership
functions in the toolbox.
Three related membership functions are the Z, S, and Pi curves, all
named because of their shape. The function zmf is the asymmetrical
polynomial curve open to the left, smf is the mirror-image function
that opens to the right, and pimf is zero on both extremes with a rise
in the middle.

Membership Functions

Unit -5

GENETIC ALGORITHRMS

Introduction

• After scientists became disillusioned with
classical and neo-classical attempts at
modeling intelligence, they looked in other
directions.

• Two prominent fields arose, connectionism
(neural networking, parallel processing)
and evolutionary computing.

• It is the latter that this essay deals with -
genetic algorithms and genetic
programming.

What is GA

• A genetic algorithm (or GA) is a search

technique used in computing to find true or

approximate solutions to optimization and

search problems.

• Genetic algorithms are categorized as global

search heuristics.

• Genetic algorithms are a particular class of

evolutionary algorithms that use techniques

inspired by evolutionary biology such as

inheritance, mutation, selection, and crossover

(also called recombination).

What is GA

• Genetic algorithms are implemented as a
computer simulation in which a population of
abstract representations (called chromosomes
or the genotype or the genome) of candidate
solutions (called individuals, creatures, or
phenotypes) to an optimization problem evolves
toward better solutions.

• Traditionally, solutions are represented in binary
as strings of 0s and 1s, but other encodings are
also possible.

What is GA

• The new population is then used in the
next iteration of the algorithm.

• Commonly, the algorithm terminates when
either a maximum number of generations
has been produced, or a satisfactory
fitness level has been reached for the
population.

• If the algorithm has terminated due to a
maximum number of generations, a
satisfactory solution may or may not have
been reached.

Key terms

• Individual - Any possible solution

• Population - Group of all individuals

• Search Space - All possible solutions to the
problem

• Chromosome - Blueprint for an individual

• Trait - Possible aspect (features) of an individual

• Allele - Possible settings of trait (black, blond,
etc.)

• Locus - The position of a gene on the
chromosome

• Genome - Collection of all chromosomes for an
individual

Chromosome, Genes and

Genomes

Genotype and Phenotype

• Genotype:

– Particular set of genes in a genome

• Phenotype:

– Physical characteristic of the genotype

(smart, beautiful, healthy, etc.)

Genotype and Phenotype

GA Requirements

• A typical genetic algorithm requires two things to be
defined:

• a genetic representation of the solution domain, and

• a fitness function to evaluate the solution domain.

• A standard representation of the solution is as an array
of bits. Arrays of other types and structures can be used
in essentially the same way.

• The main property that makes these genetic
representations convenient is that their parts are easily
aligned due to their fixed size, that facilitates simple
crossover operation.

• Variable length representations may also be used, but
crossover implementation is more complex in this case.

• Tree-like representations are explored in Genetic
programming.

Representation

Chromosomes could be:

– Bit strings (0101 ...

1100)

– Real numbers (43.2 -33.1 ... 0.0

89.2)

– Permutations of element (E11 E3 E7 ... E1

E15)

– Lists of rules (R1 R2 R3 ... R22

R23)

– Program elements (genetic

programming)

– ... any data structure ...

GA Requirements

• The fitness function is defined over the genetic
representation and measures the quality of the
represented solution.

• The fitness function is always problem dependent.

• For instance, in the knapsack problem we want to
maximize the total value of objects that we can put in a
knapsack of some fixed capacity.

• A representation of a solution might be an array of bits,
where each bit represents a different object, and the
value of the bit (0 or 1) represents whether or not the
object is in the knapsack.

• Not every such representation is valid, as the size of
objects may exceed the capacity of the knapsack.

• The fitness of the solution is the sum of values of all
objects in the knapsack if the representation is valid, or 0
otherwise. In some problems, it is hard or even
impossible to define the fitness expression; in these
cases, interactive genetic algorithms are used.

http://en.wikipedia.org/wiki/Knapsack_problem

A fitness function

General Algorithm for GA

• Initialization

• Initially many individual solutions are randomly
generated to form an initial population. The
population size depends on the nature of the
problem, but typically contains several hundreds
or thousands of possible solutions.

• Traditionally, the population is generated
randomly, covering the entire range of possible
solutions (the search space).

• Occasionally, the solutions may be "seeded" in
areas where optimal solutions are likely to be
found.

General Algorithm for GA

• Selection
• During each successive generation, a proportion of the

existing population is selected to breed a new
generation.

• Individual solutions are selected through a fitness-based
process, where fitter solutions (as measured by a fitness
function) are typically more likely to be selected.

• Certain selection methods rate the fitness of each
solution and preferentially select the best solutions.
Other methods rate only a random sample of the
population, as this process may be very time-consuming.

• Most functions are stochastic and designed so that a
small proportion of less fit solutions are selected. This
helps keep the diversity of the population large,
preventing premature convergence on poor solutions.
Popular and well-studied selection methods include
roulette wheel selection and tournament selection.

General Algorithm for GA

• In roulette wheel selection, individuals are

given a probability of being selected that is

directly proportionate to their fitness.

• Two individuals are then chosen randomly

based on these probabilities and produce

offspring.

General Algorithm for GA

• These processes ultimately result in the
next generation population of
chromosomes that is different from the
initial generation.

• Generally the average fitness will have
increased by this procedure for the
population, since only the best organisms
from the first generation are selected for
breeding, along with a small proportion of
less fit solutions, for reasons already
mentioned above.

Evolving Neural Networks

• Evolving the architecture of neural network

is slightly more complicated, and there

have been several ways of doing it. For

small nets, a simple matrix represents

which neuron connects which, and then

this matrix is, in turn, converted into the

necessary 'genes', and various

combinations of these are evolved.

Evolving Neural Networks

• Many would think that a learning function could
be evolved via genetic programming.
Unfortunately, genetic programming combined
with neural networks could be incredibly slow,
thus impractical.

• As with many problems, you have to constrain
what you are attempting to create.

• For example, in 1990, David Chalmers
attempted to evolve a function as good as the
delta rule.

• He did this by creating a general equation based
upon the delta rule with 8 unknowns, which the
genetic algorithm then evolved.

Example

• f(x) = {MAX(x2): 0 <= x <= 32 }

• Encode Solution: Just use 5 bits (1 or 0).

• Generate initial population.

• Evaluate each solution against objective.

Sol. String Fitness % of Total

A 01101 169 14.4

B 11000 576 49.2

C 01000 64 5.5

D 10011 361 30.9

A 0 1 1 0 1

B 1 1 0 0 0

C 0 1 0 0 0

D 1 0 0 1 1

Example Cont‟d

• Create next generation of solutions

– Probability of “being a parent” depends on the fitness.

• Ways for parents to create next generation

– Reproduction

• Use a string again unmodified.

– Crossover

• Cut and paste portions of one string to another.

– Mutation

• Randomly flip a bit.

– COMBINATION of all of the above.

THANKYOU

127

