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 To introduce students to concepts of stresses and strain, 

shearing force and bending diagrams  as well as  deflection of 

different structural elements like beams. 

 

 To develop theoretical and analytical skills relevant to the 

areas mentioned in above. 

 



UNIT TITLE CONTENTS 

I Simple stresses-

strains  

 and  

strain energy 

Elasticity and plasticity – Types of stresses and 

strains – Hooke’s law – stress – strain diagram for 

mild steel – Working stress – Factor of safety – 

Lateral strain, Poisson’s ratio and volumetric strain 

– Elastic modulii  and the relationship between 

them – Bars of varying section – composite bars – 

Temperature stresses. Elastic constants.  

 

Gradual, sudden, impact and shock loadings – 

simple applications 

 

II Shear force and 

bending moment 

Definition of beam – Types of beams – Concept of 

shear force and bending moment – S.F and B.M 

diagrams for cantilever, simply supported and 

overhanging beams subjected to point loads, 

uniformly distributed load, uniformly varying 

loads and combination of these loads – Point of 

contraflexure – Relation between S.F., B.M and 

rate of loading at a section of a beam. 



UNIT TITLE CONTENTS 

III Flexural stresses 

and 

Shear stresses 

Theory of simple bending – Assumptions – Derivation of 

bending equation: M/I = f/y = E/R - Neutral axis – 

Determination of bending stresses – Section modulus of 

rectangular and circular sections (Solid and Hollow), I,T, 

Angle and Channel sections – Design of simple beam 

sections. 

 

Derivation of formula – Shear stress distribution across 

various beam sections like rectangular, circular, triangular, 

I, T angle sections. 

IV Principal stresses and 

strains 

and 

Theories of failure 

Introduction – Stresses on an inclined section of a bar 

under axial loading – compound stresses – Normal and 

tangential stresses on an inclined plane for biaxial stresses 

– Two perpendicular normal stresses accompanied by a 

state of simple shear – Mohr’s circle of stresses – Principal 

stresses and strains – Analytical and graphical solutions. 

 

Introduction – Various theories of failure - Maximum 

Principal Stress Theory, Maximum Principal Strain 

Theory, Strain Energy and Shear Strain Energy Theory 

(Von Mises Theory). 



UNIT TITLE CONTENTS 

V Deflection of 

beams 

and 

Conjugate beam 

method  

Bending into a circular arc – slope, deflection and 
radius of curvature – Differential equation for the 
elastic line of a beam – Double integration and 
Macaulay’s methods – Determination of slope and 
deflection for cantilever and simply supported 
beams subjected to point loads, U.D.L, Uniformly 
varying load-Mohr’s theorems – Moment area 
method – application to simple cases including 
overhanging beams. 
 
Introduction – Concept of conjugate beam method, 
Difference between a real beam and a conjugate 
beam, Deflections of determinate beams with 
constant and different moments of inertia. 

TEXT BOOKS 

• Strength of materials by R. K. Bansal, Laxmi Publications (P) ltd., New Delhi, India. 

• Strength of Materials by R. S. Khurmi, S. Chand publication New Delhi, India  

• Strength of materials by Dr. Sadhu Singh, Khanna Publications Ltd  



   Upon successful completion of this course, students should 
be able to: 

 

 To impart adequate knowledge to find stresses and strain 
in various structural parts used in buildings beams, bridges 
etc.  

 
 Understand the difference between statically determinate 

and indeterminate problems. 
 
 Analyze stresses in two dimensions and understand the 

concepts of principal stresses and the use of Mohr circles 
to solve two-dimensional stress problems. 
 

 



 

 Draw shear force and bending moment diagrams of simple 

beams and understand the relationships between loading 

intensity, shearing force and bending moment. 

 Compute the bending stresses in beams with one or two 

materials. 

 Calculate the deflection of beams using the direct 

integration and moment-area method. 

 

 



 

 To understand the theory of failure phenomenon 

and to learn how to prevent the failure.  

 

 To impart adequate knowledge to continue the 

design and research activity in structural analysis. 

 

 To apply this knowledge in practical application. 

 



 The course will be taught via Lectures.  Lectures will also 

involve the solution of tutorial questions. Tutorial 

questions are designed to complement and enhance both 

the lectures and the students appreciation of the subject.  

 

  Course work assignments will be reviewed with the 

students.   

 

 Daily assessment through questioning and class notes. 



UNITS: 





 SIMPLE STRESSES AND STRAINS : Elasticity and 

plasticity – Types of stresses and strains – Hooke’s law 

– stress – strain diagram for mild steel – Working stress 

– Factor of safety – Lateral strain, Poisson’s ratio and 

volumetric strain – Elastic modulii  and the relationship 

between them – Bars of varying section – composite 

bars – Temperature stresses. Elastic constants. 

 STRAIN ENERGY: Resilience – Gradual, sudden, 

impact and shock loadings – simple applications. 

 



 Strength of Material is its ability to withstand and 

applied load without failure. 

 Elasticity: Property of material by which it return to its 

original shape and size after removing the applied load 

, is called elasticity. And material itself is said to 

elastic. 

 Plasticity: Characteristics of material by which it 

undergoes inelastic strains (Permanent Deformation) 

beyond the elastic limit, known as plasticity. This 

property is useful for pressing and forging. 

 



 When a force is transmitted through a body, the body 
tends to change its shape or deform.  The body is said to 
be strained. 

 

 Direct Stress =      Applied Force (F)      

                             Cross Sectional Area (A) 

 

 Units:  Usually N/m2 (Pa), N/mm2,  MN/m2,  GN/m2  or  
N/cm2 

 Note:  1 N/mm2 =  1 MN/m2  = 1 MPa 

 



 Direct stress may be tensile or compressive and result 

from forces acting perpendicular to the plane of the 

cross-section 

 

Tension 

Compression 



 When loads are applied to a body, some deformation will occur resulting to 

a change in dimension.   

 Consider a bar, subjected to axial tensile loading force, F.  If the bar 

extension is dl and its original length (before loading) is l, then tensile 

strain is:   

dl 

F F 

l 





Direct Strain (     )   = Change in Length 

                                     Original Length 

i.e.        = dl/l 



 As strain is a ratio of lengths, it is dimensionless. 

   

 Similarly, for compression by amount, dl:  Compressive 

strain = - dl/L 

 

 Note:  Strain is positive for an increase in dimension and 

negative for a reduction in dimension. 

 



 Shear stresses are produced by equal and opposite parallel forces not 

in line. 

 The forces tend to make one part of the material slide over the other 

part.   

 Shear stress is tangential to the area over which it acts. 

 



• Strain 

•It is defined as deformation per unit length 

 

• it is the ratio of change in length to original length 

•Tensile strain     = increase in length  =       

(+ Ve) ()             Original length                  L 

 

Compressive strain = decrease in length =     
  

(- Ve) ()                    Original length      L 

 

 

P 
 

L 



The strength of a material is a measure of the stress that it 

can take when in use. The ultimate strength is the measured 

stress at failure but this is not normally used for design 

because safety factors are required. The normal way to define 

a safety factor is :  

 

stressePermissibl

stressUltimate

loadedwhen stress

failureat stress
 = factorsafety 



We must also define strain. In engineering this is not a measure of 
force but is a measure of the deformation produced by the influence 
of stress. For tensile and compressive loads: 

 

Strain is dimensionless, i.e. it is not measured in metres, kilograms 
etc. 

 

  

 

For shear loads the strain is defined as the angle  This is measured 
in radians 

strain     =  
increase in length  x

original length  L


shear strain        
shear displacement  x

width  L
 



Shear force 

Shear Force 

Area resisting 

shear 
Shear displacement (x) 

Shear strain is angle  L 



P Q 

S R 

F 

D D’ 

A B 

C C’ 

L 

x 



Shear strain is the distortion produced by shear stress on an element or 

rectangular block as above.  The shear strain,             (gamma) is given as: 

          =  x/L =  tan  

 
 





 For small       ,   

 

  Shear strain then becomes the change in the right 

angle.   

 It is dimensionless and is measured in radians.  

  



Stress 

Strain 

Stress 

Strain 

Permanent 

Deformation 

Elastic deformation Plastic deformation 



If the strain is "elastic" Hooke's law may be used to 
define 

 

 

 

Young's modulus is also called the modulus of 
elasticity or stiffness and is a measure of how much 
strain occurs due to a given stress. Because strain is 
dimensionless Young's modulus has the units of 
stress or pressure 

A

L
  

x

W
  =  

Strain

Stress
 = E    ModulusYoungs 



Yield 

0.2% proof 
stress 

Stress 

Strain 0.2% 

Plastic 

Failure s 

0.002      s/E 

If a sample is loaded up to the 0.2% proof stress and then unloaded to a stress s  

the strain x = 0.2% + s/E   where E is the Young’s modulus  

 



 Hydrostatic stress refers to tensile or compressive 
stress in all dimensions within or external to a 
body.   

 Hydrostatic stress results in change in volume of 
the material.   

 Consider a cube with sides x, y, z.  Let dx, dy, and 
dz represent increase in length in all directions. 

 i.e. new volume = (x + dx) (y + dy) (z + dz) 

 



 Neglecting products of small quantities: 

 New volume = x y z + z y dx + x z dy + x y dz 

  Original volume = x y z 

      = z y dx + x z dy + x y dz 

 Volumetric strain,     = z y dx + x z dy + x y dz   

                                              x y z 

            = dx/x + dy/y + dz/z 

  

V
 v

 v

   v x y z  



 All solid materials deform when they are stressed, and 

as stress is increased, deformation also increases.   

 If a material returns to its original size and shape on 

removal of load causing deformation, it is said to be 

elastic.  

  If the stress is steadily increased, a point is reached 

when, after the removal of load, not all the induced 

strain is removed.   

 This is called the elastic limit.  



 States that providing the limit of proportionality of a 
material is not exceeded, the stress is directly 
proportional to the strain produced.   

 If a graph of stress and strain is plotted as load is 
gradually applied, the first portion of the graph will 
be a straight line.  

  The slope of this line is the constant of 
proportionality called modulus of Elasticity, E or 
Young’s  Modulus.   

 It is a measure of the stiffness of a material.  

 



Modulus of Elasticity, E = 
Direct stress

Direct strain




 

 

Also:  For Shear stress: Modulus of rigidity or shear modulus, G =  
Shear stress

Shear strain




 

Also:  Volumetric strain ,          is proportional to hydrostatic stress,            

within the elastic range i.e. : 

                                                                   

 

                                                                     called bulk modulus. 
 / v K





From the above equations:  

 

E
F A

dl L

F L

A dl

dl
F L

A E

  







/

/
 

This equation for extension is 

very important 



 

For a bar of varying cross section: 

 

P  

                      A1                               A2                           A3                                     P 

  

           L1                                  L2                           L3 

         

 

                      dl
F

E

L

A

L

A

L

A
  
L
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O
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 The load which any member of a machine carries is 

called working load, and stress produced by this load 

is the working stress. 

   Obviously, the working stress must be less than the 

yield stress, tensile strength or the ultimate stress.   

 This working stress is also called the permissible 

stress or the allowable stress or the design stress.   



 Some reasons for factor of safety include the inexactness 

or inaccuracies in the estimation of stresses and the non-

uniformity of some materials. 

 

Factor of safety =   
Ultimate or yield stress

Design or working stress
 

Note:   Ultimate stress is used for materials e.g. concrete 

which do not have a well-defined yield point, or brittle 

materials which behave in a linear manner up to failure.  

Yield stress is used for other materials e.g. steel with well 

defined yield stress. 

 



(a) Modulus of Elasticity,       E
Stress up to it of proportionality

Strain


lim
 

(b) Yield Stress or Proof Stress  (See below) 

(c) Percentage elongation  =    
Increase in gauge length

Original gauge length
x 100  

(d) Percentage reduction in area  =  
Original area area at fracture

Original area
x


100  

(e) Tensile Strength  =  
Maximum load

Original cross tional areasec
 

The percentage of elongation and percentage reduction in area give an indication of the 

ductility of the material  i.e. its ability to withstand strain without fracture occurring. 



 High carbon steels, cast iron and most of the non-

ferrous alloys do not exhibit a well defined yield as is 

the case with mild steel. 

  For these materials, a limiting stress called proof 

stress is specified, corresponding to a non-

proportional extension.   

 The non-proportional extension is a specified 

percentage of the original length e.g. 0.05, 0.10, 0.20 

or 0.50%. 

 



P Proof Stress 

Stress 

The proof stress is obtained by drawing  AP parallel to the initial slope of the 

stress/strain graph, the distance, OA being the strain corresponding to the 

required non-proportional extension e.g. for 0.05% proof stress, the strain is 

0.0005. 

 

A 
Strain 



Most structural materials expand when heated,  

in accordance to the law:      T    

where    is linear strain and  

  is the coefficient of linear expansion;  

T is the rise in temperature.   

That is for a rod of Length, L;  

if its temperature increased by t,  the extension,  

  dl =   L T. 



As in the case of lateral strains, thermal strains  

do not induce stresses unless they are constrained. 

The total strain in a body experiencing thermal stress  

may be divided into two components:   

Strain due to stress,   and  

That due to temperature,  T .   

 Thus:        =      +    T  

   =    



E

T  



 It states that the effects of several actions taking place 
simultaneously can be reproduced exactly by adding 
the effect of each action separately.  

 The principle is general and has wide applications 
and holds true if: 

 (i)  The structure is elastic   

 (ii)  The stress-strain relationship is linear   

 (iii) The deformations are small. 

 





It has been shown that :     v x y z    
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   
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For hydrostatic stress

i e
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E

Volumetric strain

E

E

Bulk Modulus K
Volumetric or hydrostatic stress

Volumetric strain
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E
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P P 

X 

L 

d1 d2 dx 

x 

Extension of Bar of Tapering cross Section 

from diameter d1 to d2:- 

Bar of Tapering Section: 

dx = d1 + [(d2 - d1) / L] * X 

 = Px / E[ /4{d1 + [(d2 - d1) / L] * X}2] 



 =  4 P dx /[E {d1+kx}2 ] 

= - [4P/  E] x   1/k  [ {1 /(d1+kx)}]  dx 

=- [4PL/  E(d2-d1)] {1/(d1+d2 -d1) - 1/d1} 

 = 4PL/( E d1 d2) 

Check :-  

When d = d1=d2 

 =PL/ [( /4)* d2E ] = PL /AE  (refer -24) 

 
L 

0 L 

0 



`` P P 

X 

L 

d1 d2 dx 

x 

Q. Find extension of tapering circular bar under axial pull for the 

following data: d1 = 20mm, d2 = 40mm, L = 600mm, E = 200GPa. P 

= 40kN 

L = 4PL/( E d1 d2) 

      = 4*40,000*600/(π* 200,000*20*40) 

      = 0.38mm.            Ans. 



P P 

X 

L 

b2 b1 bx 

x 

Bar of Tapering Section: 

bx = b1 + [(b2 - b1) / L] * X = b1 + k*x,  

 = Px / [Et(b1 + k*X)],   k = (b2 - b1) / L 

Extension of Tapering bar of uniform thickness t,  

width varies from b1 to b2:- 

P/Et ∫ x / [ (b1 + k*X)], 



L =   L =    Px / [Et(b1 - k*X)],  
L 

0 
 
L 

0 

      = P/Et ∫ x / [ (b1 - k*X)], 

       = - P/Etk * loge  [ (b1 - k*X)]
0

L

, 

       = PLloge(b1/b2) / [Et(b1 – b2)]  

 
L 

0 



A compound bar is one comprising two or more parallel elements, of different materials, 

which are fixed together at their end.  The compound bar may be loaded in tension or 

compression.               

                                                            1             2 

 

            F                                          F 

 

 2 

 

Section through a typical compound bar consisting of a circular bar (1) surrounded by a 

tube (2) 



 

                              1                                  1  

 2                2  

                                      L 

 (a) L 1 T 

            1 

                      L 2 T 

 2 {b} 
FL

A E1 1

 

 F 1                                                      F 

 

 F 2 F 

 (c)                                          
FL

A E2 2

 

  

 



Free expansions in bars (1) and (2) are L T and L T 1 2   respectively.   

Due to end fixing force, F:  the decrease in length of bar (1) is  

FL

A E1 1

  and the increase in length of (2) is  
FL

A E2 2

 .     

 At Equilibrium: 

 

L T
FL

A E
L T

FL

A E

i e F
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Note:  As a result of Force, F, bar (1) will be in compression while (2) will be in tension. 

 

 

                              1                                  1  

 2                2  

                                      L 

 (a) L 1 T 

            1 

                      L 2 T 

 2 {b} 
FL

A E1 1

 

 F 1                                                      F 

 

 F 2 F 

 (c)                                          
FL

A E2 2

 

  

 



 A steel tube having an external diameter of 36 mm and an 
internal diameter of 30 mm has a brass rod of 20 mm diameter 
inside it, the two materials being joined rigidly at their ends 
when the ambient temperature is 18 0C.  Determine the 
stresses in the two materials:  (a)  when the temperature is 
raised to 68 0C  (b)  when a compressive load of 20 kN is 
applied at the increased temperature. 

For brass: Modulus of elasticity = 80 GN/m2; Coefficient of 

expansion = 17 x 10 -6 /0C 

For steel:  Modulus of elasticity = 210 GN/m2; Coefficient of 

expansion = 11 x 10 -6 /0C 

 



   

    

         
         30               Brass  rod                      20       36 

 

 

 

       

             Steel  tube 

 

Area of brass rod (Ab) =    
 x

mm
20

4
31416

2
2 .  

Area of steel tube (As) =    
 x

mm
( )

.
36 30

4
31102

2 2
2

  

A E x m x x N m x Ns s  311 02 10 210 10 0 653142 106 2 9 2 8. / .

 

1
153106 10 8

A E
x

s s

 .  



A E x m x x N m x Nb b  314 16 10 80 10 0 251327 106 2 9 2 8. / .  

1
39788736 10 8

A E
x

b b

 .  

T x xb s( ) ( )     50 17 11 10 3 106 4

 

With increase in temperature, brass will be in compression while  

steel will be in tension.  This is because expands more than steel. 

i e F
A E A E

T
s s b b

b s. . [ ] ( )
1 1

   
 

i.e.  F[1.53106 + 3.9788736] x 10  -8 =  3 x 10 -4 

F  =  5444.71 N 



Stress in steel tube =      
5444 71

31102
17 51 17 51

2

2 2.

.
. / . / ( )

N

mm
N mm MN m Tension   

Stress in brass rod  =      
5444 71

31416
17 33 17 33

2

2 2.

.
. / . / ( )

N

mm
N mm MN m Compression   

(b)  Stresses due to compression force, F’ of 20 kN 

 s
s

s s b b

F E

E A E A

x N x x N m

x
MN m Compression







' /

. .
. / ( )

20 10 210 10

0 653142 0 251327 10
46 44

3 9 2

8

2

 

 b
b

s s b b

F E

E A E A

x N x x N m

x
MN m Compression







' /

. .
. / ( )

20 10 80 10

0 653142 0 251327 10
17 69

3 9 2

8

2

 

Resultant stress in steel tube = - 46.44 + 17.51 = 28.93 MN/m2  (Compression) 

Resultant stress in brass rod  = -17.69 - 17.33 = 35.02 MN/m2 (Compression) 

 



 A composite bar, 0.6 m long comprises a steel bar 0.2 m 
long and 40 mm diameter which is fixed at one end to a 
copper bar having a length of 0.4 m.   

 Determine the necessary diameter of the copper bar in 
order that the extension of each material shall be the same 
when the composite bar is subjected to an axial load. 

   What will be the stresses in the steel and copper when the 
bar is subjected to an axial tensile loading of 30 kN? (For 
steel, E = 210 GN/m2; for copper, E = 110 GN/m2) 



              0.2 mm 

  0.4 mm 

         F             40 mm dia                   d                                                F 

                        

 Let the diameter of the copper bar be d mm 

Specified condition:  Extensions in the two bars are equal 

 

dl dl

dl L
E

L
FL

AE

c s

  
  

Thus:   
F L

A E

F L

A E

c c

c c

s s

s s


 



Also:  Total force, F is transmitted by both copper and steel  

       i.e.  Fc = Fs = F 

   i e
L

A E

L

A E

c

c c

s

s s

. .   

Substitute values given in problem: 

0 4

4 110 10

0 2

4 0 040 210 102 2 9 2 2 9 2

.

/ /

.

/ . /

m

d m x N m

m

x x x N m 
  

d
x x

m d m mm2
2

22 210 0 040

110
0 07816 7816  

.
; . . .  

Thus for a loading of 30 kN 

Stress in steel,   



s

x N

x x
MN m 



30 10

4 0 040 10
2387

3

2 6

2

/ .
. /

 

Stress in copper, 



c

x N

x x
MN m 



30 10

4 0 07816 10
9

3

2 6

2

/ .
/

 

 



 If a material is strained by a gradually applied load, 

then work is done on the material by the applied load.   

 The work is stored in the material in the form of 

strain energy.  

  If the strain is within the elastic range of the 

material, this energy is not retained by the material 

upon the removal of load. 

 



Figure below shows the load-extension graph of a uniform bar.   

The extension dl is associated with a gradually applied load, P  

which is within the elastic range.  The shaded area represents  

the work done in increasing the load from zero to its value 

 Load 

             P 

 

 

                                                                       Extension 

    dl 

Work done = strain energy of bar = shaded area 



W = U = 1/2 P dl          (1) 

 Stress,    = P/A  i.e  P =   A 

 Strain  =  Stress/E 

 i.e dl/L  =   /E ,    dl =   ( L)/E             L=   original length 

Substituting for P and dl in Eqn (1) gives: 

 W = U = 1/2   A . (  L)/E  =   2/2E x A L 

A L   is the volume of the bar. 

 

 i.e             U =  2/2E x Volume 

 

 The units of strain energy are same as those of work i.e. Joules.  Strain energy 

per unit volume,  2/2E is known as resilience.  The greatest amount of energy that can 

stored in a material without permanent set occurring will be when   is equal to the 

elastic limit stress. 



Shear Force and Bending Moment 

Diagram 



 SHEAR FORCE AND BENDING MOMENT: 

Definition of beam – Types of beams – Concept of 

shear force and bending moment – S.F and B.M 

diagrams for cantilever, simply supported and 

overhanging beams subjected to point loads, uniformly 

distributed load, uniformly varying loads and 

combination of these loads – Point of contraflexure – 

Relation between S.F., B.M and rate of loading at a 

section of a beam. 



Cantilever Beam 











BENDING MOMENT 





Basic Relationship Between The Rate of Loading, 

Shear Force and Bending Moment:   
The construction of the shear force diagram and bending moment diagrams is greatly 

simplified if the relationship among load, shear force and bending moment is established. 

Let us consider a simply supported beam AB carrying a uniformly distributed load w/length. 

Let us imagine to cut a short slice of length dx cut out from this loaded beam at distance ‘x' 

from the origin ‘0'.  



The forces acting on the free body diagram of the detached portion of this loaded beam  

are the following   

•  The shearing force F and F+ dF at the section x and x + dx respectively.  

•The bending moment at the sections x and x + dx be M and M + dM respectively.   

•  Force due to external loading, if ‘w' is the mean rate of loading per unit length then the  

total loading on this slice of length dx is w. dx, which is approximately acting through the  

centre ‘c'. If the loading is assumed to be uniformly distributed then it would pass exactly  

through the centre ‘c'.   

This small element must be in equilibrium under the action of these forces and couples.   

Now let us take the moments at the point ‘c'. Such that  



A cantilever of length carries a concentrated load ‘W' at its free 

end.   

Draw shear force and bending moment.   

Solution:   

At a section a distance x from free end consider the forces to the left, then F = -W (for all values of x) -

ve sign means the shear force to the left of the x-section are in downward direction and therefore 

negative. Taking moments about the section gives (obviously to the left of the section) M = -Wx (-ve 

sign means that the moment on the left hand side of the portion is in the anticlockwise direction and is 

therefore taken as –ve according to the sign convention)  so that the maximum bending moment occurs 

at the fixed end i.e. M = -W l From equilibrium consideration, the fixing moment applied at the fixed 

end is Wl and the reaction is W. the shear force and bending moment are shown as,  



Simply supported beam subjected to a central load (i.e. load acting at the mid-

way)  



.For B.M diagram:   

If we just take the moments to the left of the cross-

section,  



A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.  

Here the cantilever beam is subjected to a uniformly distributed load whose 

intensity is given w / length.  

Consider any cross-section XX which is at a distance of x from the free end. If we 

just take the resultant of all the forces on the left of the X-section, then  





 Simply supported beam subjected to a uniformly distributed load U.D.L 





An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20  

mm is used as simply supported beam for a span of 7 m. The girder carries a 

distributed  

load of 5 KN /m and a concentrated load of 20 KN at mid-span.   

Determine the   

 (i). The second moment of area of the cross-section of the girder   

(ii). The maximum stress set up.  
Solution:   

The second moment of area of the cross-section can be determined as follows :  

For sections with symmetry about the neutral axis, use can be made of standard I value for 

a rectangle about an axis through centroid i.e. (b.d3 )/12. The section can thus be divided 

into convenient rectangles for each of which the neutral axis passes through the centroid. 

Example in the case enclosing the girder by a rectangle 





Flexural and shear stresses 



 FLEXURAL STRESSES: Theory of simple bending – 

Assumptions – Derivation of bending equation: M/I = 

f/y = E/R - Neutral axis – Determination of bending 

stresses – Section modulus of rectangular and circular 

sections (Solid and Hollow), I,T, Angle and Channel 

sections – Design of simple beam sections. 

 SHEAR STRESSES: Derivation of formula – Shear 

stress distribution across various beam sections like 

rectangular, circular, triangular, I, T angle sections. 

 



 Members Subjected to Flexural Loads 

 Introduction: 

 In many engineering structures members are required to resist forces that are 

applied laterally or transversely to their axes. These type of members are termed as 

beam. 

 There are various ways to define the beams such as 

 Definition I: A beam is a laterally loaded member, whose cross-sectional 

dimensions are small as compared to its length. 

 Definition II: A beam is nothing simply a bar which is subjected to forces or 

couples that lie in a plane containing the longitudinal axis of the bar. The forces are 

understood to act perpendicular to the longitudinal axis of the bar. 

 Definition III: A bar working under bending is generally termed as a beam. 

 Materials for Beam: 

 The beams may be made from several usable engineering materials such commonly 

among them are as follows: 

 Metal 

 Wood 

 Concrete 

 Plastic 



 Geometric forms of Beams: 

 The Area of X-section of the beam may take several forms some of them 

have been shown below: 



 Loading restrictions: 

 Concept of pure bending: 

 As we are aware of the fact internal reactions developed on any cross-

section of a beam may consists of a resultant normal force, a resultant shear 

force and a resultant couple. In order to ensure that the bending effects 

alone are investigated, we shall put a constraint on the loading such that the 

resultant normal and the resultant shear forces are zero on any cross-section 

perpendicular to the longitudinal axis of the member, 

 That means F = 0 

 since   or M = constant. 

 Thus, the zero shear force means that the bending moment is constant or 

the bending is same at every cross-section of the beam. Such a situation 

may be visualized or envisaged when the beam or some portion of the 

beam, as been loaded only by pure couples at its ends. It must be recalled 

that the couples are assumed to be loaded in the plane of symmetry. 





 Bending Stresses in Beams or Derivation of Elastic Flexural formula : 

 In order to compute the value of bending stresses developed in a loaded beam, let us 
consider the two cross-sections of a beam HE and GF , originally parallel as shown in 
fig 1(a).when the beam is to bend it is assumed that these sections remain parallel 
i.e. H'E' and G'F' , the final position of the sections, are still straight lines, they then 
subtend some angle  

 Consider now fibre AB in the material, at a distance y from the N.A, when the beam 
bends this will stretch to A'B' 

 

 

 

 

 

 

 

 

 Consider now fibre AB in the material, at a distance y from the N.A, when the beam 
bends this will stretch to A'B' 

 Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral 
axis zero. Therefore, there won't be any strain on the neutral axis 





 Now the term is the property of the material and is called as a 

second moment of area of the cross-section and is denoted by 

a symbol I. 

 Therefore 

 

 

 

 

 This equation is known as the Bending Theory Equation. 

The above proof has involved the assumption of pure bending 

without any shear force being present. Therefore this termed 

as the pure bending equation. This equation gives distribution 

of stresses which are normal to cross-section i.e. in x-

direction. 

 











 





 PRINCIPAL STRESSES AND STRAINS: Introduction – 

Stresses on an inclined section of a bar under axial loading 

– compound stresses – Normal and tangential stresses on an 

inclined plane for biaxial stresses – Two perpendicular 

normal stresses accompanied by a state of simple shear – 

Mohr’s circle of stresses – Principal stresses and strains – 

Analytical and graphical solutions. 

 THEORIES OF FAILURE: Introduction – Various 

theories of failure - Maximum Principal Stress Theory, 

Maximum Principal Strain Theory, Strain Energy and Shear 

Strain Energy Theory (Von Mises Theory). 

 







Resolving perpendicular to EC: 

 

   x 1 x EC  =   x  x  BC  x  1  x  cos    

                             +    y  x  EB  x  1  x  sin    

                             +  


xy  x  1  x  EB  x  cos


   

                             +     


xy  x  1  x  BC  x  sin


   

Note that EB  =  EC sin 


  and         BC   =  EC cos


 

    x  EC  =  



x  x  EC  cos
2
 


   +   



y  x  EC   sin 
2


   

                      +  



xy  x  EC  x   sin 


 cos 


                                            

                       +    



xy  x  EC  sin  



 cos



    



      =   x  cos
2    +    y  sin 

2    +   2   xy  sin  cos   

Recall that :   cos
2
     =  (1 + cos 2 )/2,    sin 

2    =  (1 – cos 2 )/2  and  

                    sin 2  = 2 sin   cos   

      =  


x/2 (1 +  cos 2


)   +   


y/2  (1 -   cos 2


)   +     xy  sin 2


  

       
   

   






x y x y

xy
2 2

2 2cos sin       …………………  (4.1) 

Resolving parallel to EC: 

  x 1 x EC  =  



x  x  BC  x  1  x  sin 



   +   



y  x  EB  x  1  x  cos 



   

                             +   xy  x  1  x  EB  x  sin 



  +     xy  x  1  x  BC  x  cos 



   



   x  EC  =   x  x  EC  sin  cos    -   y  x  EC   sin   cos    +   

 xy  x  EC  x   sin
2
      -     xy  x  EC   cos

2
      

   =  


x   sin   cos    -  


y   sin   cos    +   xy   sin
2
    -   xy   cos

2
      

Recall that sin 2


  =  2 sin 


 cos


 and   cos 2


  =  cos
2
 


  -  sin
2
 


 

                     
 

   



x y

xy
2

2 2sin cos  ………………….  (4.2) 



The general case of plane stress reduces to simpler states of 
stress under special conditions: 
 
4.1.1 Uniaxial Stress:  This is the situation where all the stresses acting on the xy 

element are zero except for the normal stress 


x, then the element is in uniaxial 

stress.  The corresponding transformation equations, obtained by setting 


y and 


xy  equal to zero in the Equations 4.1 and 4.2 above: 

                                          


 


   x x

2
1 2

2
2( cos ), sin  













The solution of equation 4.4 yields two values of 2  separated by 180o, i.e. two values 

of   separated by 90o.  Thus the two principal stresses occur on mutually perpendicular 

planes termed principal planes, 

       Substituting in equation 4.1: 


   

 



x y x y

2 2

( )

( )

 

  

x y

x y xy



 2 24

  +  
 xy   

2

42 2



  

xy

x y xy( ) 

 

                       


 

 



x y

2

( )

( )

 

  

x y

x y xy



 

2

2 22 4
  +     

2

4

2

2 2



  

xy

x y xy( ) 

 

 
 


 

 



x y

2

1

2

4

4

2 2

2 2

( )

( )

  

  

x y xy

x y xy

 

 
    



 1   or   2   =  
 

  
x y

x y xy


  

2

1

2
42 2)                         …….. (4.5) 

 

 These are termed the principal stresses of the system.   By substitution for   

from equation 4.4 , into the shear stress expression (equation 4.2): 

 


 

   



x y

xy
2

2 2sin cos  ………………….  (4.2) 


 

 
x y

2

2

42 2



  

xy

x y xy( ) 
    -     xy   

( )

( )

 

  

x y

x y xy



 2 24
   

 

  
  

  

xy x y

x y xy

( )

( )



 2 24
    -      

  

  

xy x y

x y xy

( )

( )



 2 24
    =   0 



Thus at principal planes,      =  0.   Shear stresses do not occur at the principal planes.  

The complex stress system of Figure 4.1 can now be reduced to the equivalent system 

of principal stresses shown in Figure 4.2 below. 

 
 

 
 
 Figure 4.3:  Principal planes and stresses 
 



From equation 4.3, the maximum shear stress present in the system is given by: 
 

   max ( ) 
1

2
x y   =

1

2
42 2  x y xy )  

and this occurs on planes at 45o to the principal planes. 
 
Note:  This result could have been obtained using a similar procedure to that used for 

determining the principal stresses,  i.e.  by differentiating expression 4.2, equating to 

zero and substituting the resulting expression for    


 



It has been stated in the previous section that expression (4.4), namely  

                      tan
( )

2
2




 




xy

x y

 

 yields two values of 


, i.e. the inclination of the two principal planes on which the 

principal stresses 


1  or 


2.    It  is uncertain, however, which stress acts on which 

plane unless eqn. (4.1 ) is used, substituting one value of  


 obtained from eqn. (4.4) 

and observing which one of the two principal stresses is obtained. The following 

alternative solution is therefore to be preferred. 



 Consider once again the equilibrium of a triangular block 

of material of unit depth (Fig. 4.3); this time EC is a 

principal plane on which a principal stress     acts, and the 

shear stress is zero (from the property of principal 

planes). 

 



 

Resolving forces horizontally,   

( ,  x  x    BC  x  1)  +   (    xy     x    EB  x 1)  =  (     p   x  EC x  l)  cos     

  

   x   EC   cos    +      xy     x    EC sin     =        p   x    EC  cos     

  

   x    +        xy     tan     =    p   

  

tan  
  

 
 

 
p x 

xy 

                  …  (4.7)   

E 



  Thus we have an equation for the inclination of the 
principal planes in terms of the principal stress. If, 
therefore, the principal stresses are determined and 
substituted in the above equation, each will give the 
corresponding angle of the plane on which it acts and 
there can then be no confusion. 

 



 The above formula has been derived with two tensile 

direct stresses and a shear stress system, as shown in the 

figure; should any of these be reversed in action, then the 

appropriate minus sign must be inserted in the equation. 



4.5. GRAPHICAL SOLUTION-MOHR'S STRESS CIRCLE 

Consider the complex stress system of Figure below. As stated 
previously this represents a complete stress system for any 
condition of applied load in two dimensions.  In order to find 
graphically the direct stress   p and shear stress   

   on any 
plane inclined at     to the plane on which  x  acts, proceed as 
follows: 

(1) Label the block ABCD. 

(2) Set up axes for direct stress (as abscissa) and shear stress (as ordinate)  

(3) Plot the stresses acting on two adjacent faces, e.g. AB and BC, using the following 

sign conventions: 



 Direct stresses: tensile, positive; compressive, negative; 

 Shear stresses: tending to turn block clockwise, 

positive; tending to turn block 

    counterclockwise, negative. 

 This gives two points on the graph which may then be 

labeled AB and BC respectively to denote stresses on 

these planes  



 

                                                         

                                                         Fig. 4.5   Mohr's stress circle. 

 

(4) Join AB and BC. 

(5) The point P where this line cuts the a axis is then the centre of Mohr's circle, and 

the 

line is the diameter; therefore the circle can now be drawn. Every point on the 

circumference of the circle then represents a state of stress on some plane 

through C. 

 

 y

 xy

 xy

 x

A B 

C D 




  
                                                         

                                                          



Consider any point Q on the circumference of the circle, such that PQ makes an angle 

2  with BC, and drop a perpendicular from Q to meet the a axis at N. 

 
Coordinates of Q: 

ON OP PN Rx y     
1

2
2( ) cos ( )     

         
1

2
2 2( ) cos cos sin sin     x y R R    

            R and Rx y xycos ( ) sin      
1

2  

           
ON x y x y xy    

1

2

1

2
2 2( ) ( ) cos sin      

 



On inspection this is seen to be eqn. (4.1) for the direct stress    on the plane inclined 

at    to BC in the figure for the two-dimensional complex system. 

Similarly, 

 

QN    sin ( 2


 -  ) 

       = R sin 2 


 cos      -   R cos 2 


 sin   

            
1

2
2 2( ) sin cos    x y xy  

Again, on inspection this is seen to be eqn. (4.2) for the shear stress     on the plane 

inclined at    


  to BC. 



Thus the coordinates of Q are the normal and shear stresses on a plane 

inclined at     to BC in the original stress system. 

 

N.B. - Single angle BCPQ is 2   on Mohr's circle and not   , it is evident that angles 

are doubled on Mohr's circle. This is the only difference, however, as they are 

measured in the same direction and from the same plane in both figures (in this case 

counterclockwise from 

~BC). 



Further points to note are: 

(1) The direct stress is a maximum when Q is at M, i.e. OM is the length representing 

the maximum principal stress   1  and 2 1  gives the angle of the plane  1  from 

BC. Similarly,  OL is the other principal stress. 

(2) The maximum shear stress is given by the highest point on the circle and is 

represented by the radius of the circle. This follows since shear stresses and 

complementary shear stresses have the same value; therefore the centre of the 

circle will always lie on the  1  axis midway between  x yand . 

(3) From the above point the direct stress on the plane of maximum shear must be 

midway between  x yand . 



(4) The shear stress on the principal planes is zero. 

(5) Since the resultant of two stresses at 90° can be found from the parallelogram of 

vectors as the diagonal, as shown in Figure below, the resultant stress on the 

plane at    to BC is given by OQ on Mohr's circle. 

 

                                   

 

                            Resultant stress  r  on any plane. 

 



 The graphical method of solution of complex stress 
problems using Mohr's circle is a very powerful 
technique since all the information relating to any plane 
within the stressed element is contained in the single 
construction.  

 It thus provides a convenient and rapid means of 
solution which is less prone to arithmetical errors and is 
highly recommended. 

 





Deflection of Beams  
 

The deformation of a beam is usually expressed in terms of its 

deflection from its original unloaded position. The deflection is 

measured from the original neutral surface of the beam to the neutral 

surface of the deformed beam. The configuration assumed by the 

deformed neutral surface is known as the elastic curve of the beam.  



 Double integration method 

 Moment area method 

 Conjugate method 

 Macaulay's method 





Example - Simply supported beam  

Consider a simply supported uniform section beam with a single load F at the 

centre.    The beam will be deflect symmetrically about the centre line with 0 

slope (dy/dx) at the centre line. It is convenient to select the origin at the centre 

line.  



Moment Area Method   

This is a method of determining the change in slope or the deflection 

between two points on a beam.  It is expressed as two theorems...  

  

Theorem 1  

If A and B are two points on a beam the change in angle (radians) 

between the tangent at A and the tangent at B is equal to the area of 

the bending moment diagram between the points divided by the 

relevant value of EI (the flexural rigidity constant).   

  

Theorem 2  

If A and B are two points on a beam the displacement of B relative to 

the tangent of the beam at A is equal to the moment of the area of the 

bending moment diagram between A and B about the ordinate 

through B divided by the relevant value of EI (the flexural rigidity 

constant).  



Examples .Two simple examples are provide below to illustrate these theorems  

Example 1) Determine the deflection and slope of a cantilever as shown.. 





Moment Area Method  
  This method is based on two theorems which are stated through an  example. Consider a 

beam AB subjected to some arbitrary load as shown in Figure 1.  

  

  Let the flexural rigidity of the beam be EI.  Due to the load, there would be bending 

moment and BMD would be as shown in Figure 2.  The deflected shape of the beam which  

is the elastic curve is shown in Figure 3.  Let C and D be two points arbitrarily chosen on 

the beam. On the elastic curve, tangents are drawn at deflected positions of C and D.  The 

angles made by these tangents with respect to the horizontal are marked as   and  .  These 

angles are nothing but slopes.  The change is the angle between these two tangents is 

demoted as . This change in the angel is equal to the area of the   diagram between the two 

points C and D.  This is the area of the shaded portion in figure 2.  

































Problem 1 : For the Cantilever beam shown in figure, compute deflection and rotation at  

(i) the free end  

(ii) under the load 























Macaulay's Methods   
             If the loading conditions change along the span of beam, there is 

corresponding change in moment equation. This requires that a separate moment 

equation be written between each change of load point and that two integration 

be made for each such moment equation. Evaluation of the constants introduced 

by each integration can become very involved. Fortunately, these complications 

can be avoided by writing single moment equation in such a way that it becomes 

continuous for entire length of the beam in spite of the discontinuity of loading.  

Note : In Macaulay's method some author's take the help of unit function approximation 

(i.e. Laplace transform) in order to illustrate this method, however both are essentially the 

same.  



Procedure to solve the problems   
(i). After writing down the moment equation which is valid for all values of ‘x' i.e.  

containing pointed brackets, integrate the moment equation like an ordinary 

equation.   

(ii). While applying the B.C's keep in mind the necessary changes to be made 

regarding the pointed brackets.  

illustrative Examples :   

1. A concentrated load of 300 N is applied to the simply supported beam as shown in 

Fig. Determine the equations of the elastic curve between each change of load point 

and the maximum deflection in the beam.  



 To evaluate the two constants of integration. Let us apply the following  

boundary conditions:   

              1. At point A where x = 0, the value of deflection y = 0. Substituting these values 

in Eq. (3) we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values.   

             2. At the other support where x  = 3m, the value of deflection y is also zero.  

substituting these values in the deflection Eq. (3), we obtain  



Continuing the solution, we assume that the maximum deflection will occur in the segment AB. Its 

location may be found by differentiating Eq. (5) with respect to x and setting the derivative to be equal 

to zero, or, what amounts to the same thing, setting the slope equation (4) equal to zero and solving for 

the point of zero slope.  

50 x2– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does not yield a 

value < 2 m then we have to try the other equations which are valid for segment BC)  

Since this value of x is valid for segment AB, our assumption that the maximum deflection occurs in 

this region is correct. Hence, to determine the maximum deflection, we substitute x = 1.63 m in Eq (5), 

which yields  



The negative value obtained indicates that the deflection y is downward from the 

x axis. quite usually only the magnitude of the deflection, without regard to sign, 

is desired; this is denoted by d, the use of y may be reserved to indicate a directed 

value of deflection.  


