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Course Goal

» To iIntroduce students to concepts of stresses and strain,
shearing force and bending diagrams as well as deflection of
different structural elements like beams.

» To develop theoretical and analytical skills relevant to the
areas mentioned in above.




COURSE OUTLINE

UNIT TITLE CONTENTS

I Simple stresses-  Elasticity and plasticity — Types of stresses and
strains strains — Hooke’s law — stress — strain diagram for
and mild steel — Working stress — Factor of safety —
strain energy Lateral strain, Poisson’s ratio and volumetric strain
— Elastic modulii and the relationship between
them — Bars of varying section — composite bars —
Temperature stresses. Elastic constants.

Gradual, sudden, impact and shock loadings —
simple applications

I Shear force and  Definition of beam — Types of beams — Concept of
bending moment shear force and bending moment — S.F and B.M
diagrams for cantilever, simply supported and
overhanging beams subjected to point loads,
uniformly distributed load, uniformly varying
loads and combination of these loads — Point of
contraflexure — Relation between S.F., B.M and
rate of loading at a section of a beam.

I ——




UNIT TITLE CONTENTS

Il Flexural stresses Theory of simple bending — Assumptions — Derivation of
and bending equation: M/l = fly = E/R - Neutral axis —
Shear stresses Determination of bending stresses — Section modulus of
rectangular and circular sections (Solid and Hollow), I,T,
Angle and Channel sections — Design of simple beam
sections.

Derivation of formula — Shear stress distribution across
various beam sections like rectangular, circular, triangular,
I, T angle sections.

v Principal stresses and Introduction — Stresses on an inclined section of a bar
strains under axial loading — compound stresses — Normal and

and tangential stresses on an inclined plane for biaxial stresses

Theories of failure  — Two perpendicular normal stresses accompanied by a

state of simple shear — Mohr’s circle of stresses — Principal
stresses and strains — Analytical and graphical solutions.

Introduction — Various theories of failure - Maximum
Principal Stress Theory, Maximum Principal Strain
Theory, Strain Energy and Shear Strain Energy Theory
(Von Mises Theory).




CONTENTS

TEXT BOOKS

Deflection of
beams
and
Conjugate beam
method

Bending into a circular arc — slope, deflection and
radius of curvature — Differential equation for the
elastic line of a beam — Double integration and
Macaulay’s methods — Determination of slope and
deflection for cantilever and simply supported
beams subjected to point loads, U.D.L, Uniformly
varying load-Mohr’s theorems — Moment area
method — application to simple cases including
overhanging beams.

Introduction — Concept of conjugate beam method,
Difference between a real beam and a conjugate
beam, Deflections of determinate beams with
constant and different moments of inertia.

« Strength of materials by R. K. Bansal, Laxmi Publications (P) Itd., New Delhi, India.
« Strength of Materials by R. S. Khurmi, S. Chand publication New Delhi, India
« Strength of materials by Dr. Sadhu Singh, Khanna Publications Ltd




Course Objectives

Upon successful completion of this course, students should
be able to:

» To impart adequate knowledge to find stresses and strain
In various structural parts used in buildings beams, bridges
etc.

» Understand the difference between statically determinate
and indeterminate problems.

» Analyze stresses In two dimensions and understand the
concepts of principal stresses and the use of Mohr circles
to solve two-dimensional stress problems.




Course objectives contd.

» Draw shear force and bending moment diagrams of simple
beams and understand the relationships between loading

Intensity, shearing force and bending moment.

» Compute the bending stresses in beams with one or two

materials.

» Calculate the deflection of beams using the direct
Integration and moment-area method.




Course objectives

» To understand the theory of failure phenomenon
and to learn how to prevent the failure.

» To Impart adequate knowledge to continue the
design and research activity in structural analysis.

» To apply this knowledge in practical application.




Teaching Strategies

» The course will be taught via Lectures. Lectures will also
Involve the solution of tutorial questions. Tutorial
questions are designed to complement and enhance both
the lectures and the students appreciation of the subject.

» Course work assignments will be reviewed with the
students.

» Daily assessment through guestioning and class notes.




UNITS:

British Metric S.1.
1. Force Ib, kip, Ton g, kg, N, kN
1 Kip= 1000 Ib 1 kg=1000g¢g 1 KN =1000 N
| ton=2240 1b Ton = 1000 kg l kg= 10N
2. Long n, ft m, CIm, mm m, CIm, mm
1 =12 in l m= 100 c¢cm Il m=100cm
|l em=10 mm |l em= 10 mm
| m=1000 mm | m=1000 mm
lin=2.54cm lin=2.54cm
3. Stress psi, ksi Pa ( N; ), MPa, GPa
i
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UNIT -1

Simple stress and strain



Syllabus

» SIMPLE STRESSES AND STRAINS : Elasticity and
plasticity — Types of stresses and strains — Hooke’s law
— stress — strain diagram for mild steel — Working stress
— Factor of safety — Lateral strain, Poisson’s ratio and
volumetric strain — Elastic modulii and the relationship
between them — Bars of varying section — composite
bars — Temperature stresses. Elastic constants.

» STRAIN ENERGY: Resilience — Gradual, sudden,
Impact and shock loadings — simple applications.




Concept of elasticity and plasticity

» Strength of Material is its ability to withstand and
applied load without failure.

» Elasticity: Property of material by which it return to its
original shape and size after removing the applied load
, Is called elasticity. And material itself is said to
elastic.

» Plasticity: Characteristics of material by which it
undergoes inelastic strains (Permanent Deformation)
beyond the elastic limit, known as plasticity. This
property is useful for pressing and forging.




Direct or Normal Stress

- When a force Is transmitted through a body, the body

tends to change its shape or deform. The body Is said to
be strained.

» Direct Stress=  Applied Force (F)
Cross Sectional Area (A)

« Units: Usually N/m? (Pa), N/mm?, MN/m?, GN/m? or
N/cm?

« Note: 1 N/mm2= 1 MN/m? =1 MPa




Direct Stress Contd.

» Direct stress may be tensile or compressive and result
from forces acting perpendicular to the plane of the
Cross-section

> Tension

Compression

[ <
> <



Direct or Normal Strain

» When loads are applied to a body, some deformation will occur resulting to
a change in dimension.

» Consider a bar, subjected to axial tensile loading force, F. If the bar

extension is dl and its original length (before loading) is I, then tensile
strain is:

| | di

Direct Strain (£ ) = Change in Length
Original Length

lLe. & =dl/l



Direct or Normal Strain Contd.

» As strain Is a ratio of lengths, it is dimensionless.

» Similarly, for compression by amount, dl: Compressive
strain = - dl/L

» Note: Strain is positive for an increase in dimension and
negative for a reduction in dimension.




Shear Stress and Shear Strain

» Shear stresses are produced by equal and opposite parallel forces not
In line.

» The forces tend to make one part of the material slide over the other
part.

» Shear stress is tangential to the area over which it acts.

Forces acting parallel
to the area concerned

—

——

(




e Strain

It is defined as deformation per unit length

* It IS the ratio of change in length to original length
*Tensile strain = Increase in length = 9§

(+ Ve) (¢) Original length

Compressive strain = decrease in length = o

(- Ve) (g) Original length L




Ultimate Strength

The strength of a material is a measure of the stress that it
can take when in use. The ultimate strength is the measured
stress at failure but this is not normally used for design
because safety factors are required. The normal way to define
a safety factor is :

stress at failure Ultimate stress
safety factor = = —
stress when loaded Permissible stress




Strain

We must also define strain. In engineering this is not a measure of
force but is a measure of the deformation produced by the influence
of stress. For tensile and compressive loads:

Strain is dimensionless, 1.e. it is not measured in metres, kilograms
etc.

: Increase In length X
strain ¢ =

original length L

For shear loads the strain is defined as the angle y This is measured
In radians _
shear displacement x

width L

shear strain  y =




Shear stress and strain

Area resisting

shear \ |' ,| Shear displacement (X)

Shear Force

L | ¢ Shear strain is angle y

Shear force




Shear Stres

¢
A

Shear strain is the distortion produced by t or
rectangular block as above. The shear strain, : given as:

= x/L = tan

A



Shear Stress and Shear Strain
Concluded

» Forsmall | & Y = ¢
» Shear strain then becomes the change in the right
angle.

» 1t 1S dimensionless and 1s measured In radians.




Elastic and Plastic deformation

Strain > Strain

Permanent
Deformation

Plastic deformation

Elastic deformation




Modulus of Elasticity

If the strain Is "elastic" Hooke's law may be used to
define

Stress W L
_ . =

Youngs Modulus E= :
Strain X A

Young's modulus Is also called the modulus of
elasticity or stiffness and Is a measure of how much
strain occurs due to a given stress. Because strain Is
dimensionless Young's modulus has the units of
stress or pressure




How to calculate deflection if the proof stress is applied and then
partially removed.

If a sample is loaded up to the 0.2% proof stress and then unloaded to a stress s
the strain x = 0.2% + s/E  where E 1s the Young’s modulus

Yield .
Plastic
0.2% proc”© \ /
stress S 7 TN Failure
Stress

—p = ]
0.2% Strain
s/E




Volumetric Strain

» Hydrostatic stress refers to tensile or compressive
stress in all dimensions within or external to a
body.

» Hydrostatic stress results in change in volume of
the material.

» Consider a cube with sides x, y, z. Let dx, dy, and
dz represent increase in length in all directions.

» 1.e. new volume = (X + dx) (y + dy) (z + dz)




Volumetric Strain Contd.

» Neglecting products of small gquantities:
» Newvolume =xyz+zydx+xzdy+Xxydz
»  Original volume =xy z

> —zydx+xzdy+xydz
» Volumetric straim\)y =zydx+xzdy + Xy dz
&€ XYz

> &, =dx/x +dyly +dz/z

g, = &.+&,+ &,



Elasticity and Hooke’s Law

» All solid materials deform when they are stressed, and
as stress Is increased, deformation also increases.

» If @ material returns to its original size and shape on
removal of load causing deformation, it is said to be
elastic.

» If the stress Is steadily increased, a point is reached
when, after the removal of load, not all the induced
strain IS removed.

» This i1s called the elastic limit.




Hooke’s Law

» States that providing the limit of proportionality of a
material Is not exceeded, the stress Is directly
proportional to the strain produced.

» If a graph of stress and strain is plotted as load is
gradually applied, the first portion of the graph will
be a straight line.

» The slope of this line Is the constant of
proportionality called modulus of Elasticity, E or
Young’s Modulus.

» It Is a measure of the stiffness of a material.




Hooke’s Law

. Direct stress
Modulus of Elasticity, E = _g

Direct strain ¢

. Shear stress ¢
Also: For Shear stress: Modulus of rigidity or shear modulus, G = —=—
Shear strain  y

Also: \olumetric strain | IS proportional to hydrostatic stress,
within the elastic range i.e. :

called bulk modulus.




Stress-Strain Relat
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Fig: Behaviour of mild-steel rod under tension.



Equation For Extension

From the above equations:

p_O _Fi4_FL
e dl/L  Adl

dl =|——
ALK

This equation for extension Is
very important




Extension For Bar of Varying Cross
Section

For a bar of varying cross section:

P

«—

d|:E[£+i+5}
ELA A A




Factor of Safety

» The load which any member of a machine carries Is
called working load, and stress produced by this load
IS the working stress.

» Obviously, the working stress must be less than the
yield stress, tensile strength or the ultimate stress.

» This working stress Is also called the permissible
stress or the allowable stress or the design stress.




Factor of Safety Contd.

» Some reasons for factor of safety include the inexactness
or inaccuracies in the estimation of stresses and the non-

uniformity of some materials.

Ultimate or yield stress
Design or working stress

Factor of safety =

Note: Ultimate stress iIs used for materials e.g. concrete
which do not have a well-defined yield point, or brittle
materials which behave in a linear manner up to failure.
Yield stress Is used for other materials e.g. steel with well
defined yield stress.




Results From a Tensile Test

_ Stress up to limit of proportionality
Strain

(a) Modulus of Elasticity, E

(b) Yield Stress or Proof Stress (See below)

Increase in gauge length
(c) Percentage elongation = — N gauge °n9 x 100
Original gauge length

Original area —area at fracture
Original area

x 100

(d) Percentage reduction in area =

Maximum load
Original cross sectional area

(e) Tensile Strength =

The percentage of elongation and percentage reduction in area give an indication of the

ductility of the material i.e. its ability to withstand strain without fracture occurring.




Proof Stress

» High carbon steels, cast iron and most of the non-
ferrous alloys do not exhibit a well defined yield as is
the case with mild steel.

» For these materials, a limiting stress called proof
stress Is specified, corresponding to a non-
proportional extension.

» The non-proportional extension 1s a specified
percentage of the original length e.g. 0.05, 0.10, 0.20
or 0.50%.




BISIgaiaEEIon of Proof Stress

Stress

Proof Stress

The proof stress is obtained by drawing AP pare ope of the

stress/strain graph, the distance, OA being the strain corresponding to the
required non-proportional extension e.g. for 0.05% proof stress, the strain is




Thermal Strain

Most structural materials expand when heated,
in accordance to thelaw: e=a T

where ¢ is linear strain and

« is the coefficient of linear expansion;

T Is the rise in temperature.

That is for a rod of Length, L;

If its temperature increased by t, the extension,
d=«a LT.




Thermal Strain Contd.

As in the case of lateral strains, thermal strains

do not induce stresses unless they are constrained.
The total strain in a body experiencing thermal stress
may be divided into two components:

Strain due to stress, &, and

That due to temperature, é&; .

Thus: &= ¢ + &

o

e= ZigT
E




Principle of Superposition

» It states that the effects of several actions taking place
simultaneously can be reproduced exactly by adding
the effect of each action separately.

» The principle i1s general and has wide applications
and holds true if:

» (1) The structure Is elastic
» (1) The stress-strain relationship is linear
» (111) The deformations are small.




General Stress—Strain
Relationships




Relationship between Elastic Modulus (E) and Bulk Modulus,
K

It has been shown that: ¢, =¢, + ¢, + ¢,

1

g, :E Gx—u(0y+0'2)

For hydrostatic stress, o,=0,=0,=0

ie s-to 200="120
E E

X

Similarly, ¢, and ¢, are each % 1-2v

g, =¢&.+¢&,+¢&, =Volumetric strain

gVZS_a 1-2v
E

-394 5,
&

Bulk Modulus, K = Volumetric or hydrostatic stress _o

Volumetric strain £
E

31-2v

Vv

v _,

3K 1-2v and K=



Extension of Bar of Tapering cross Section
from diameter d1 to d2:-

Bar of Tapering Section:
dx=dl+[(d2-dl)/L]*X
OA = Pox [ E[r /4{d1 + [(d2 - d1) / L] * X}?]




L
A= 4P fix /[E n{d1+kx}?]
0
=-[4P/ R E]x 1/k [{L /(d1+kx)}]de
0

=- [4PL/ & E(d2-d1)] {1/(d1+d2 -d1) - 1/d1}

A = 4PL/(r E d1 d2)

Check :-

When d = d1=d2
A =PL/ [(w /4)* d°E ] = PL /AE (refer -24)




Q. Find extension of tapering circular bar under axial pull for the
following data: d1 = 20mm, d2 = 40mm, L = 600mm, E = 200GPa. P
= 40kN

AL = 4PL/(r E d1 d2)

= 4*40,000*600/(z* 200,000*20*40)
= 0.38mm. ANS.




Extension of Tapering bar of uniform thickness t,
width varies from bl to b2:-

/
S

PIEt | 8x /[ (b1 + k*X)],
Bar of Tapering Section:

bx = b1 + [(02 - b1) / L] * X = b1 + k*x,
SA = Pox / [Et(bl + k*X)], k=(b2-bl)/L




ALE (AL =] Px / [Et(bl - k*X)],

=P/Et | 6x /[ (bl - k*X)],

L
= - P/Etk * log, [ (b1-k*X)] .

= PLlog,(b1/b2) / [Et(b1 — b2)]




Compound Bars

A compound bar is one comprising two or more parallel elements, of different materials,

which are fixed together at their end. The compound bar may be loaded in tension or

_ /1 /Q _
L

compression.

Section through a typical compound bar consisting of a circular bar (1) surrounded by a

tube (2)




Temperature stresses in compound bars

1 o
2 o,
L
< >
(a) « Lo, T g
I e
4_Lg2T
— FL
: A E
: A-/ 11
F— 1 : |——F
F<—] 2 : 1> F
FL
- ;AzEz




Temperature Stresses Contd.

Free expansions in bars (1) and (2) are L, T and Lea,T respectively.

Due to end fixing force, F: the decrease in length of bar (1) is

and the increase in length of (2) is

1

z [

1 :| a,
At Equilibrium: E 5 2,
AE, AE, (a) La, T
e. F[ + 1=T(a,—,)
AE, AE, LT
.e. oA AE, TAE | T (o, —ay) 2 b ;
E.E,AA, X
F— 1 i fe—F
_T(al_az)AZElEZ :
1= :
AE + AR, F 4 2 1 F
© Pl
_T(a,—a,)AEE, E‘KAzEz
* AE+AF,




Example

» A steel tube having an external diameter of 36 mm and an
Internal diameter of 30 mm has a brass rod of 20 mm diameter
Inside It, the two materials being joined rigidly at their ends
when the ambient temperature is 18 °C. Determine the
stresses in the two materials: (a) when the temperature is
raised to 68 °C (b) when a compressive load of 20 kN is
applied at the increased temperature.

For brass: Modulus of elasticity = 80 GN/m?; Coefficient of
expansion =17 x 10 -6 /°C

For steel: Modulus of elasticity = 210 GN/m?; Coefficient of
expansion =11 x 10 -6 /°C




Solution

30 Brass rod 20

Steel tube

2
TX20° _ 31416 mm?

Area of brass rod (Ap) =

2 an2
Area of steel tube (As) = 7 X (36" -30) =311.02 mm?

AE, =31102 x10°m* x 210 x 10°N /m? = 0.653142 x 10° N

53106 x 10°




Solution Contd.

AE, =31416 x10°m* x 80 x 10° N /m? = 0.251327 x 10° N
1

= 39788736 x10°°

b

T(at, — ) =50(17-11) x10° =3 x 10

With increase in temperature, brass will be in compression while

steel will be in tension. This is because expands more than steel.

l.e. F[ L + L 1=T(e, — @)

AE, AE,
i.e. F[1.53106 + 3.9788736]x10°= 3x10 ™
F = 5444.71 N




Solution Concluded

5444 71N

Stress in steel tube = ~=1751IN /mm? =1751MN / m? (Tension)
31102 mm

5444, 71N

Stress in brass rod = ~=17.33N /mm?* = 17.33MN / m*(Compression)
31416 mm

(b) Stresses due to compression force, F’ of 20 kN

1 3 9 2
o, = FE, _20x10°N x210x10°N /T = 46.44 MN / m? (Compression)
E.A +E,A  0653142+0.251327 x 10

1 3 9 2
o, = FE, _20x10°N x80x10°N /”:3 =17.69 MN / m?(Compression)
E.A +E,A  0653142+0251327 x 10

Resultant stress in steel tube = - 46.44 + 17.51 = 28.93 MN/m? (Compression)
Resultant stress in brass rod = -17.69 - 17.33 = 35.02 MN/m? (Compression)




Example

» A composite bar, 0.6 m long comprises a steel bar 0.2 m
long and 40 mm diameter which is fixed at one end to a
copper bar having a length of 0.4 m.

» Determine the necessary diameter of the copper bar in
order that the extension of each material shall be the same
when the composite bar is subjected to an axial load.

»  What will be the stresses in the steel and copper when the
bar Is subjected to an axial tensile loading of 30 kN? (For
steel, E = 210 GN/m?; for copper, E = 110 GN/m?)




Solution

0.2 mm

0.4 mm

F— T 40 mmdia a

Let the diameter of the copper bar be d mm

Specified condition: Extensions in the two bars are equal

dl, = dI,
dleeL=2 =Tt

E  AE
FL FL




Solution Concluded

Also: Total force, F is transmitted by both copper and steel
.e. Fe=Fs=F
e = = =
ACEC ASES
Substitute values given in problem:
04 m 0.2m

702 /4m2 110 X10°N/m®  7/4 x 0.040 x 210 x 10° N /m?

2
_2x 212 1"00'040 m?: d = 007816 m= 7816 mm.

Thus for a loading of 30 kN
~ 30x10°N
Stressinsteel, s~ 74 x 0.040% x 10-°

d2

=2387 MN /m®

30 x 10°N

o, = —— =9 MN /m?
714 x0.07816° x 10

Stress in copper,




Elastic Strain Energy

» If a material Is strained by a gradually applied load,
then work is done on the material by the applied load.

» The work Is stored In the material in the form of
strain energy.

» If the strain Is within the elastic range of the
material, this energy Is not retained by the material
upon the removal of load.




Elastic Strain Energy Contd.

Figure below shows the load-extension graph of a uniform bar.

The extension dl is associated with a gradually applied load, P

which is within the elastic range. The shaded area represents
the work done in increasing the load from zero to its value

Load}

P

» EXxtension

dl

Work done = strain energy of bar = shaded area




Elastic Strain Energy Concluded

W=U=1/2Pdl (1)

Stress, c =P/Aie P=0c A

Strain = Stress/E

edl/L = o/E, dl= (olL)E L= original length
Substituting for P and dl in Eqgn (1) gives:

W=U=1/2 c A.(o L)E = c?2ExXAL

A L is the volume of the bar.

i.e U = o %2E x Volume

The units of strain energy are same as those of work i.e. Joules. Strain energy

ner unit volume, o %/2E is known as resilience. The greatest amount of energy that can

agual without permanent set occurring will be when o is equal to the



UNIT 2

Shear Force and Bending Moment
Diagram




Syllabus

» SHEAR FORCE AND BENDING MOMENT:
Definition of beam — Types of beams — Concept of
shear force and bending moment — S.F and B.M
diagrams for cantilever, simply supported and
overhanging beams subjected to point loads, uniformly
distributed load, uniformly varying loads and
combination of these loads — Point of contraflexure —
Relation between S.F., B.M and rate of loading at a
section of a beam.




4-Classification of Beams:

1) Simple Beam

11’ 2 k/ft
e

' a b
—
Cantilever Beam

~r
.

RGN
=
)
h
b
Y

L2 L2

[‘ g o - - »-

Cantilever

T —




3) Simple Beam with Overhanging OR "Overhanging Beam"

p1 1b/in.
/ o B R 1
|, L J L 3a A_La,

Overhanging beam

.



Concept of Shear Force and Bending moment in beams:
When the beam 1s loaded in some arbitrarily manner, the internal forces and moments are

developed and the terms shear force and bending moments come into pictures which are
helpful to analyze the beams further. Let us define these terms

[

s %.i—"' A77
A A
=] (a} [ F
P F P2 -Iﬁ- ]
i
A |
i |
ey rr : : TR
A : A
i
Ri : R
bl A




Now let us consider the beam as shown in fig 1{a) which is supporting the loads P, Pz, P3
and 1s simply supported at two points creating the reactions R, and R respectively. Now
let us assume that the beam is to divided into or imagined to be cut into two portions at a
section AA. Now let us assume that the resultant of loads and reactions to the left of AA
is “F' vertically upwards, and since the entire beam is to remain in equilibrium, thus the
resultant of forces to the right of AA must also be F, acting downwards. This forces “F' is
as a shear force. The shearing force at any x-section of a beam represents the tendency
for the portion of the beam to one side of the section to slide or shear laterally relative to
the other portion.

Therefore, now we are in a position to define the shear force ‘F' to as follows:

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral
components of the forces acting on either side of the x-section.

Sign Convention for Shear Force:

The usual sign conventions to be followed for the shear forces have been illustrated in
figures 2 and 3.

A

|

| F

|

|

|

|

|

|

|

|

|

|

|

|

I

|

|

F |

The resultant force which is in upward : The regultant force which iz in the downward
direction and is towards the LH.S ofthe | direction and is towards the R.H.5 of the
X-seclion is +ve Shear Force I X-seclion is +ve Shear Force.

|

A

Positive Shear Force



A,
|
F |

I

I

]

|

|

I

|

L | I A

|

|

|

I

I

|

|

| F

|
The resultant force which are in the downward | The resultant force which are in upward
direction and is on the L.H.5 of the X-section I direction and is on the R.H.5 of the
iz -ve Shear Force. : ¥-section is -ve Shear Force,

A

Fig 3: Negative Shear Force




BENDING MOMENT

F1 Pz Fa
1
B 1
A ~
R (a) Rz
4 Pz A P=
1
1
M ;-," I h P
1 ! 1
1 } 1 L
" ! 4
] ", ] i_,,."f -1
- I —
A— 1 h
I
R : Rz
(b} A

Let us again consider the beam which is simply supported at the two prints, carryving
loads Py, P; and P: and having the reactions R, and E; at the supports Fig 4. Now, let us
imagine that the beam is cut into two potions at the x-section AA. In a similar manner, as
done for the case of shear force, if we say that the resultant moment about the section AA
of all the loads and reactions to the left of the x-section at AA is M in C.W direction, then
moment of forces to the right of x-section AA must be *M' in C.C.W. Then *M' 15 called
as the Bending moment and is abbreviated as B.M. Now one can define the bending
moment to be simply as the algebraic sum of the moments about an x-section of all the
forces acting on either side of the section
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Resultant moment on the L H.S of
the X-section is C.W, then itis a
positive B.M

Resultant moment on the R.H.S postion
of the X-section is C.C. W, then it may be
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Fig 5: Positive Bending Moment
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Basic Relationship Between The Rate of Loading,
Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly
simplified if the relationship among load, shear force and bending moment is established.
Let us consider a simply supported beam AB carrying a uniformly distributed load w/length.
Let us imagine to cut a short slice of length dx cut out from this loaded beam at distance ‘x'

from the origin 0.

0
RN

i
_—

e Considened bo
be detached

Let us detach this portion of the beam and draw its free body diagram.

wjln'rlengl:h
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The forces acting on the free body diagram of the detached portion of this loaded beam
are the following
* The shearing force F and F+ dF at the section x and x + dx respectively.

*The bending moment at the sections x and x + dx be M and M + dM respectively.

» Force due to external loading, if ‘w' is the mean rate of loading per unit length then the
total loading on this slice of length dx is w. dx, which is approximately acting through the
centre ‘c'. If the loading is assumed to be uniformly distributed then it would pass exactly
through the centre ‘c'.

This small element must be in equilibrium under the action of these forces and couples.
Now let us take the moments at the point ‘c'. Such that

M+F_5§ +(F +5Fj.%= Bl + S

— F.2* +(F + 5F). 2% = am
2 2

=% F_E'z—}{ +F_E'2—}{ +5F_5?}{ = &M [ Meglecting the product of

SF and &= being small guantitie s |
=+ F . &x = &M
a1 oy
=
Under the limits &x — O
ol Pt
[
Re solvingthe forcesvertically we get
we b +(F +8F )1 =F
aF
A
Under the limits Sx — 0O

= F =

F =

(1)

= Wy = —

o= dx " dx
dF of = P
= _ = _ e[ 2
e - (2)

BERERRRRRRRRRR L T~ Ty



A cantilever of length carries a concentrated load ‘W' at its free

end.

Draw shear force and bending moment.

Solution:

At a section a distance x from free end consider the forces to the left, then F = -W (for all values of x) -
ve sign means the shear force to the left of the x-section are in downward direction and therefore
negative. Taking moments about the section gives (obviously to the left of the section) M = -Wx (-ve
sign means that the moment on the left hand side of the portion is in the anticlockwise direction and is
therefore taken as —ve according to the sign convention) so that the maximum bending moment occurs
at the fixed end i.e. M = -W | From equilibrium consideration, the fixing moment applied at the fixed
end is WI and the reaction is W. the shear force and bending moment are shown as,

W x  IX

A

5. F.Dingram

Wl —=2 M. Diagram




Simply supported beam subjected to a central load (i.e. load acting at the mid-

e — — —

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any
section X-X from the left end then, the beam is under the action of following forces.

.
x

2

'

.So the shear force at any X-section would be = W/2 [Which i1s constant upto x < /2]
[f we consider another section Y-Y which is bevond 1/2 then

SR oW LW
o 2 2 for all values greater = 1/2

Hence 5.F diagram can be plotted as,

i —_



.For B.M diagram:
| | If we just take the moments to the left of the cross-

section,
EE.M}{_}[ = % xforxliesbetweenO and 112
M = g %LEEMHI: 0 i‘”
: Wl [ |
Yy FLIN LN
BMyy = gx w( ]

2 W 2 W

Wl

=y

B oy

Which when plotted will give a straight relation 1.e.

N



A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

= ""I w | length

Here the cantilever beam is subjected to a uniformly distributed load whose
intensity is given w / length.

Consider any cross-section XX which is at a distance of x from the free end. If we
just take the resultant of all the forces on the left of the X-section, then

5.Fo = -Wx for all values of *x'. —==mmeemm= (1)

SFu=10

S.Fuat =1 = -WI




So if we just plot the equation No. (1), then it will give a straight line relation. Bending
Moment at X-X 15 obtained by treating the load to the left of X-X as a concentrated load

of the same value acting through the centre of gravity.

Therefore, the bending moment at any cross-section X-X is

By = - w}{%

= - wll
= W 2
. i w | kength
The above equation 15 & quadratic i x, when BM 15 plotted against x this will produces a !
parabolic variation. :
- ' -
The extreme values of this would be atx =0 and x =1 :
wi
B.Mnlll__T & F o
W
=— =Wy
2
B.M -W"ﬁ




Simply supported beam subjected to a uniformly distributed load U.D.L

X W

| : “length
I
S.F at any X-section X-X 15
Wi,

|
|
Wl Wy
2 ¥ J "'--E 2 §

" “()

The bending moment at the section x is found by treating the distributed load as acting at
its centre of gravity, which at a distance of x/2 from the section

X

X
. /2 N




WL x :r""flangth
B.M}{_}{ 2 x W E
sothe ! i
=W.2(1-2) ....(2) Wi, Wil

2 2l l = 2
BMg = =0
B.M,,., =0
B.M m=|=_"""'_'2 W

8

Wl
- ,5 5.F.Disgram

B.M.Diagram




An | - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20
mm is used as simply supported beam for a span of 7 m. The girder carries a
distributed

load of 5 KN /m and a concentrated load of 20 KN at mid-span.
Determine the
(i). The second moment of area of the cross-section of the girder

(i1). The maximum stress set up.
Solution:

The second moment of area of the cross-section can be determined as follows :

For sections with symmetry about the neutral axis, use can be made of standard | value for
a rectangle about an axis through centroid i.e. (b.d3 )/12. The section can thus be divided
into convenient rectangles for each of which the neutral axis passes through the centroid.
Example in the case enclosing the airder by a rectanale

l l B lShE ded portion

_ |200 =300° | | iz o 5 |90 % 260° | s
12 12

= (4.5-264 )10°%

=1.86=10"% m*
The maximurm stressmay be found fram 300 mm 77

thesimple bendingthearybyequation N ://A % R

girder = rectangle




Calculations of Beam Reactions

Ex3:
Rax
—>> Fx=0 (1)
Rax=0
1.25m 1.25m 1.25m 1.25m
Q‘ Z.J'W@ﬂ= 0 -- (2) Rh}’ R_B}’

250 +80x25+80x%x3.75-Re*x5=0 1

- RBy=+135N N
Ray




UNIT -3
Flexural and shear stresses



Syllabus

» FLEXURAL STRESSES: Theory of simple bending —
Assumptions — Derivation of bending equation: M/l =
fly = E/R - Neutral axis — Determination of bending
stresses — Section modulus of rectangular and circular
sections (Solid and Hollow), I, T, Angle and Channel
sections — Design of simple beam sections.

» SHEAR STRESSES: Derivation of formula — Shear
stress distribution across various beam sections like
rectangular, circular, triangular, I, T angle sections.




»  Members Subjected to Flexural Loads
» Introduction:

» In many engineering structures members are required to resist forces that are
applied laterally or transversely to their axes. These type of members are termed as
beam.

» There are various ways to define the beams such as

» Definition I: A beam is a laterally loaded member, whose cross-sectional
dimensions are small as compared to its length.

» Definition I1: A beam is nothing simply a bar which is subjected to forces or
couples that lie in a plane containing the longitudinal axis of the bar. The forces are
understood to act perpendicular to the longitudinal axis of the bar.

» Definition I11: A bar working under bending is generally termed as a beam.

»  Materials for Beam:

» The beams may be made from several usable engineering materials such commonly
among them are as follows:

» Metal
»  Wood
» Concrete




» Geometric forms of Beams:

» The Area of X-section of the beam may take several forms some of them
have been shown below:

‘ Y 7
L/ /] V////////
7 ////Z/// Z//
‘A é ’//////////A

[ Rectangular section] [ T- section] [ | - section]

iy
Al é
Triangular section] |

[ Circulular [ Channel X - section]
X - section]
A -

NN




Loading restrictions:
Concept of pure bending:

As we are aware of the fact internal reactions developed on any cross-
section of a beam may consists of a resultant normal force, a resultant shear
force and a resultant couple. In order to ensure that the bending effects
alone are investigated, we shall put a constraint on the loading such that the
resultant normal and the resultant shear forces are zero on any cross-section
perpendicular to the longitudinal axis of the member,

Thatmeans F=0
since or M = constant.

Thus, the zero shear force means that the bending moment is constant or
the bending is same at every cross-section of the beam. Such a situation
may be visualized or envisaged when the beam or some portion of the
beam, as been loaded only by pure couples at its ends. It must be recalled
that the couples are assumed to be loaded in the plane of symmetry.




Beam

Plane of Symmetry

Fig (1)

Fig (2)




»  Bending Stresses in Beams or Derivation of Elastic Flexural formula :

» In order to compute the value of bending stresses developed in a loaded beam, let us
consider the two cross-sections of a beam HE and GF , originally parallel as shown in
fig 1(a).when the beam is to bend it is assumed that these sections remain parallel
l.e. H'E" and G'F', the final position of the sections, are still straight lines, they then
subtend some angle

» Consider now fibre AB in the material, at a distance y from the N.A, when the beam
bends this will stretch to A'B'

Therefore,
change inlength
orginallength

strain in fibre AB =

-AB - AB ButAB = COandCD =C'D°
A8
refertofiglia) andfiglib)

A - C'D

Jostrain =
D

» Consider now fibre AB in the material, at a distance y from the N.A, when the beam
bends this will stretch to A'B'

» Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral
axis zero. Therefore, there won't be any strain on the neutral axis




(R+y)B-RB _RB+yB-RB _ v
R RB R

Howey er slre s =E  whereE="Young'sModulus of elasticity

strain
Therefore equating the twostrains as

obtained fromthe tworelationsi e,

ILI-E'fnrg-E 1
- ;E .............. (1)
a=E,

=

If the shaded strip isof area'ds)’
thenthe force anthe stripis

F=o 6A=C v aa
H

FMoment about the neutral axiswould be=F.y = % v 2 EA,

The toatl moment far the whaole
cross-section 1= therefore equal to

_—E = _ E y:
M= = T — STLN
E.RF HE'_'-"




» Now the term is the property of the material and is called as a
second moment of area of the cross-section and is denoted by
a symbol I.

» Therefore
E

M=ﬁl R 2
combining equation 1 and 2 we get
ag_M_E
v | R

» This equation is known as the Bending Theory Equation.
The above proof has involved the assumption of pure bending
without any shear force being present. Therefore this termed

as the pure bending equation. This equation gives distribution

of stresses which are normal to cross-section 1.e. in X-

direction.




Consider an [ - section of the dimension shown below.

- ..‘ Flange

B
: v
| Grzpiz ko s
— g

I
O]l N d A

The shear stress distribution for any arbitrary shape is givenas £/

Let us evaluate the quantit}"ﬁ‘y . the Y quantity for this case comprise the contribution
due to flange area and web area




7777)|.

Flange area

Area of the flange =8 %]

Distance of the [:eniruiduftheﬂangefrnmtheN.A
2-d).8
2" 2 2
=_ [D+d
L
— D-d}fD-d
"&"_'I'IlFIange =B[T][T]

b

'\-l:l

Hence,

Web Area —* —

Areaoftheweh

ft )

Distance of the centroid fromMN.A

Therefore,
— . fd Y1 {d
-"'J"-'.'l"|w|b'hh§ "J"E[E"' ]
Hence,

fD-dY{D +d’ d d 1

A =B b=~ —+yl_

o =8(257) (%) (55 +)

Thus,

_ D¥-g?Y b [d?
"E"".'I"|T-:-13I:E|[ g ]+§ T‘YE

Therefore shear stress,

B(o? - ) hdz ]‘

F
T=

bl &




Tz

I




Parahobc

Tomam™

Twaa™

Taw

This distribution 1s known as the “top — hat™ distnbution. Clearly the web bears the most
of the shear stress and bending theory we can say that the flange will bear most of the
bending stress.







UNIT -4

Principal stresses — strains
and

theory of failure




Syllabus

» PRINCIPAL STRESSES AND STRAINS: Introduction —
Stresses on an inclined section of a bar under axial loading
— compound stresses — Normal and tangential stresses on an
Inclined plane for biaxial stresses — Two perpendicular
normal stresses accompanied by a state of simple shear —
Mohr’s circle of stresses — Principal stresses and strains —
Analytical and graphical solutions.

» THEORIES OF FAILURE: Introduction — Various
theories of failure - Maximum Principal Stress Theory,
Maximum Principal Strain Theory, Strain Energy and Shear
Strain Energy Theory (Mon Mises Theory).




DERIVATION OF GENERAL EQUATIONS

Consider the complex stress system in Figure 4.1 acting on an element of material. The
stresses 0, and o, may be compressive or tensile and may be the resutt of direct forces or
bending. The shear stresses may be as shown of completely reversed and occur as a resuit of
either shear forces or torsion. Since the applied and complementary shear stresses are of
equal value on the x and y planes, they are both given the symbol, T,

Tr——

Oy
[
; =~ Ty
A TY Bl)
\\
T8 \\
i \ -
c. \ 8| &
8 g
1 0 C\
Y

Rg41: Two-dimensional complex stress system.



The diagram thus represents a compiete stress system for any condition of applied load
in two dimensions. Consider the rectangular element of unit depth shown in Figure 4.1 .
subjected toa system of two direct stresses and shear stresses.

For equilibrium of the portion EBC (Figure 4.1), redrawn in Figure 4.2:

EB BC
‘d,(i )j rxy(B )

* o4 (BC);, 7X¥(EB)

Figure 4.2: Forces Acting on Element EBC



Resolving perpendicular to EC:

5465 50

o, X1XEC =0, x BC x 1 x cos?

i

+ 9, x EB x 1 x sin?

+ 'y x1xEB x cos’ ;

T .6
+ xy X 1 x BC X sin

6 6
Note that EB = EC sin and BC = EC cos

o 0 o 0
o, X EC= yxECcos" + xEC sin?
v 0 0
+ 4 X EC x sin cos
¢ 0 0

+ y X EC sin  cos

* 0,80} ry(EB)



O, = 04 C08°0 + o ysin?d + 2 T, sind cosd

Recall that: cos? ¢ = (1+cos29)/2, sin®@ = (1-cos2¢)/2 and

sin2¢ =25sin ¢ cos ?
o, = GX/2(1+ cosze) + 7 v2 (1- cosze) + Ty sin2‘9
o,to, o0,-0, )
o, = 5 + 5 cos20+ 7, SIN20 ... (4.1)
Resolving parallel to EC:
o 0 o 0
T, XI1XEC = yxBCx1xsin + yXxEBX1Xcos
0 0

+ Ty X1 XEB xsin + 7, x1x BC x cos

kG,;(EB)_; T4({BC)
! B

L )
-

> 0, (BC); TXY(EB)

Ty




Derivation of General Equation Concluded

7, X EC = o x X EC sinfcosé -o y X EC sin@ cos@ +

Tw X EC x sin®f - r,, x EC cos*?
7, = %« sin? cos? -9, sin? cos? + 7, sin?? - 7, cos??
Recall that sin 2 = 25sin ¢ cos? and cos2? = cos?? - sin??

— O
T, = X2 ~sin260 — 7,,€08260 ...................... (4.2)




SPECIAL CASES OF PLANE STRESS

The general case of plane stress reduces to simpler states of
stress under special conditions:

4.1.1 Uniaxial Stress: This is the situation where all the stresses acting on the xy
element are zero except for the normal stress’ ,, then the element is in uniaxial
stress. The corresponding transformation equations, obtained by settinéj y and

p
x equal to zero in the Equations 4.1 and 4.2 above:

0, = %(1+ cos26), t,= %sinze




Special Cases of Plane Stress Contd.

o .
>
o,
e o 03 ~ Tay 1 o l x
-—
Tyx
' Elememt in uniaxial stress El in

422 Pure Shear: The transformation equations are obtained by substituting o, =0 and oy
= 0 into Equations 4.1 and 4.

Og = Ty, $in20 Tg = T,, 0820

4.2.3 Biaxial Stress: The xy element is subjected to normal stresses in both x and y
directions but without any shear stresses. T is merely dropped from the general

equations to obtain:
c,+o0, O©,—-O ) o,—0o, .
Op=—"7 2+ 2 Y cos28 r,=—-§——ism28

The maximum direct stress will equal o x Of oy, Whichever :sthegreatar when 6 =0 or90°.
‘\\\ T ( —- - - R T T T L N




Maximum Shear Stress

The maximum shear stress in the plane of the applied stresses occurs when § = 45°, ie.

1 | | y
1. = — ,.__-.-a,,) s annnes (43)

e
A i

Oy

 Element in biaxial stress




Example

Example: An element in plane stress is subjected to stresses o, = 16,000 Nmm?, &, =6000
Nfmm?, and 7, = 4000 N/mm?. Determine the stresses acting on an element
inclined at an angle of 8 = 45°. |

- T T———— .

} : . ,_______'&___‘\
’ " ;
= 6,000 psi

i
rr?' ' \ a,, = 15,000
T

="
Tyy = 4,000 psi Oy, = 7.“!]1)31\‘/
b I G, I "r*l‘*fmpu




Solution

Solution: To obtain the stresses on an inclined element, use equations (4.1) and (4.2)

0,+0, 0,-0,
0, = ——L p el cos29+ Ty sm29
o 2

16,000+6,000 : 16,000~ - 6000
2 2

0= cos90’ +4000 sin 90=15000N e

0.-0, =
ty=—=nlf - 1, o020 = 160002 S0 290+ 4000 cos90" = S000N




Principal Stresses and Maximum Shear
Stresses

4.3 PRINCIPAL STRESSES AND MAXIMUM SHEAR STRESSES

The maximum and minimum stresses which occur on any plane in the material can now be
determined as follows:

B - Y- & o, —C
O, = "2_ 2 —= = cos20+ T, s5in20 - - - @‘!)

For o, to be a maximum or minimum, do,/d@ = O

d. .

—‘—ia—.i=-(a,—o',) sin268 + 27, cos28=0 = Cox 26

-4
2
tan 26 = ot U UUUORNY (. %C- ) |

(ax —Uy )

From Figure bealow:

27

sin28 = 2 >t
2 2 : g =
J [(cr, —o, ) +4rt ,w] \c.“’\ 2.,
28
cos260 = (o. —=,) (-

J [(a‘_, -o, )? +4rz,,.]

."\\\" ] \ o




Principal Stresses and Maximum Shear
Stresses Contd.

The solution of equation 4.4 yields two values of 26 separated by 180°, i.e. two values
of € separated by 90°. Thus the two principal stresses occur on mutually perpendicular
planes termed principal planes,

Substituting in equation 4.1

ngo-x+ay+0x_o-y (0. ~9,) + Ty 2%y
2 2 \/ (o, —0, ) +47°, \/ (0, —0, ) +47°,
2
o, +o, (0, —0,) 270,

+ +
2 2\/ (o, -0, ) +47° \/ (0, —0, Y +4r%,

(o, —O'y)2+ 47,

1
2 \/ (o, -0, Y +47°,




Shear Stresses at Principal Planes are
Z.ero

(o} +O'y

2

X

o, Or o, =

1
+ E\/ GX—O'y)2+4T2xy ........ (45)

These are termed the principal stresses of the system. By substitution for ¢

from equation 4.4 , into the shear stress expression (equation 4.2):

oy~ 0O,

sin260 — 7,,€0820 ...................... 4.2)

o,—0, 27, (o

2 \/ (o, -0, Y +417,




Principal Planes and Stresses Contd.

Thus at principal planes,z, = 0. Shear stresses do not occur at the principal planes.

The complex stress system of Figure 4.1 can now be reduced to the equivalent system

of principal stresses shown in Figure 4.2 below.

% Principal planes

[+
1

|
o, = 81

Figure 4.3: Principal planes and stresses



Equation For Maximum Shear Stress

From equation 4.3, the maximum shear stress present in the system is given by:

—_ 1 _ 1 2 2
T = E(ax—ay) = E\/ 0,-0,) +4 17y

and this occurs on planes at 45° to the principal planes.

Note: This result could have been obtained using a similar procedure to that used for
determining the principal stresses, i.e. by differentiating expression 4.2, equating to

zero and substituting the resulting expression for




PRINCIPAL PLANE INCLINATION IN TERMS OF
THE ASSOCIATED PRINCIPAL STRESS

It has been stated in the previous section that expression (4.4), namely

27,,
tan 260 =
(Gx — 0y )
yields two values of 9, l.e. the inclination of the two principal planes on which the
(o) (o2

principal stresses ; or ,. It is uncertain, however, which stress acts on which
0
plane unless eqn. (4.1) is used, substituting one value of obtained from eqn. (4.4)

and observing which one of the two principal stresses is obtained. The following

alternative solution is therefore to be preferred.



PRINCIPAL PLANE INCLINATION
CONTD.

» Consider once again the equilibrium of a triangular block
of material of unit depth (Fig. 4.3); this time EC Is a
principal plane on which a principal stress acts, and the
shear stress Is zero (from the property of principal
planes).




PRINCIPAL PLANE INCLINATION CONTD.

Resolving forces horizontally,
((Oxx BCx1) + ( 74w X EBx1)=( o,XxECx]I) cos ¢

O.EC cos @ + 17, x ECsin 8= o,x ECcos 0 5

O x+ Ty tan b = o,

tan 0 = —"—— ... (4.7)




PRINCIPAL PLANE INCLINATION CONTD.

» Thus we have an equation for the inclination of the
principal planes in terms of the principal stress. If,
therefore, the principal stresses are determined and
substituted Iin the above equation, each will give the
corresponding angle of the plane on which It acts and
there can then be no confusion.




PRINCIPAL PLANE INCLINATION CONTD.

» The above formula has been derived with two tensile
direct stresses and a shear stress system, as shown in the
figure; should any of these be reversed in action, then the
appropriate minus sign must be inserted in the equation.




Graphical Solution Using the Mohr’s
Stress Circle

4.5. GRAPHICAL SOLUTION-MOHR'S STRESS CIRCLE

Consider the complex stress system of Figure below. As stated
previously this represents a complete stress system for any
condition of applied load in two dimensions. In order to find
graphically the direct stress o, and shear stres§ r on any

plane inclined at? to the plane on which o acts, proceed as
follows:

(1) Label the block ABCD.

(2) Set up axes for direct stress (as abscissa) and shear stress (as ordinate)

(3) Plot the stresses acting on two adjacent faces, e.g. AB and BC, using the following

sign conventions:




Mohr’s Circle Contd.

» Direct stresses: tensile, positive; compressive negative;

» Shear stresses: tending to turn block clockwise,
positive; tending to turn block

counterclockwise, negative.

» This gives two points on the graph which may then be
labeled AB and BC respectively to denote stresses on
these planes




Mohr’s Circle Contd.

Fig. 4.5 Mohr's stress circle.

A

(4) Join AB and BC.
(5) The point P where this line cuts the a axis is then the centre of Mohr's circle, and
the
line is the diameter; therefore the circle can now be drawn. Every point on the

circumference of the circle then represents a state of stress on some plane
through C.



Mohr's stress circle.
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Proof

Consider any point Q on the circumference of the circle, such that PQ makes an angle
26 with BC, and drop a perpendicular from Q to meet the a axis at N.

Coordinates of Q:

ON = OP+PN = %(Gx +0,)+Rcos(20- p)

% (o, +0,)+Rcos26cosf+Rsin20sin

Rcos,B:%(aX -o,) and Rsinf=r,,

ON = % (O-x + O-y) + % (Gx - O-y) C0S 20 + Txy sin26 \‘_\_.I_Fh//»/" -




On inspection this is seen to be eqn. (4.1) for the direct stress o, on the plane inclined

at @ to BC in the figure for the two-dimensional complex system.
Similarly,

ON sin(2Y - p)

:Rsinzgcos p - Rcosze sin [

— % (o,—o,)sin20— 7, cos20

Again, on inspection this is seen to be eqgn. (4.2) for the
0

inclined at to BC.




Note

Thus the coordinates of Q are the normal and shear stresses on a plane

inclined at ¢ to BC in the original stress system.

N.B. - Single angle BCPQ is 2 on Mohr's circle and not ? , It Is evident that angles
are doubled on Mohr's circle. This is the only difference, however, as they are

measured in the same direction and from the same plane in both figures (in this case

counterclockwise from
~BC).




Further Notes on Mohr’s Circle

Further points to note are:

(1) The direct stress is a maximum when Q is at M, i.e. OM is the length representing
the maximum principal stress o, and 20 | gives the angle of the plane 0 | from
BC. Similarly, OL is the other principal stress.

(2) The maximum shear stress is given by the highest point on the circle and is

represented by the radius of the circle. This follows since shear stresses and

complementary shear stresses have the same value; therefore the centre of the

circle will always lie on the o, axis midway betweeno, and o,

(3) From the above point the direct stress on the plane of maximum shear must be

midway between o, and o, .




Further Notes on Mohr Circle Contd.

(4) The shear stress on the principal planes is zero.
(5) Since the resultant of two stresses at 90° can be found from the parallelogram of

vectors as the diagonal, as shown in Figure below, the resultant stress on the

plane at ¢ toBCis given by OQ on Mohr's circle.

Resultant stress o, on any plane.




Preference of Mohr Circle

» The graphical method of solution of complex stress
problems using Mohr's circle Is a very powerful
technique since all the information relating to any plane
within the stressed element Is contained in the single
construction.

» It thus provides a convenient and rapid means of
solution which is less prone to arithmetical errors and iIs
highly recommended.




UNIT -5
Deftlection of Beams and
Conjugate Beam Method



Deflection of Beams

The deformation of a beam is usually expressed in terms of its
deflection from its original unloaded position. The deflection is
measured from the original neutral surface of the beam to the neutral
surface of the deformed beam. The configuration assumed by the
deformed neutral surface is known as the elastic curve of the beam.

r
Elastic Curve

" (Deformed shape)

Figure: Elastic curve



METHODS OF DETERMINING
DEFLECTION OF BEAMS

» Double integration method
« Moment area method

« Conjugate method

- Macaulay's method




Example - Cantilever beam

Consider a cantilever beam (uniform section) with a single concentrated load
at the end. Atthe fixedendx=0,dy=0, dyidx =0

) /nial R
//I/% T‘E::::'ﬁ

From the equilibrium balance .. At the support there is a resisting moment -

FL and a vertical upward force F.
At any point x along the beam there is a moment F(x - L) = M, = El d “y /dx

2
El :—EE = -F (L-x) Integrating

2
El%'i— =-F (Lx -32 ) + C_l ..... {[:1=ﬂ- because dyfds =0 atx =0 )
Integrating again

2 3
EIy=—Ft%x—’EL] +ﬂ2 ..... (C=0becausey=0atx=0)




Example - Simply supported beam
Consider a simply supported uniform section beam with a single load F at the
centre. The beam will be deflect symmetrically about the centre line with 0

slope (dy/dx) at the centre line. It Is convenient to select the origin at the centre
li

Fox o
’ ° i 8
L2 | Li2
|
Fi2 Fi2

d¥ _ATFL -
o EI 2( +x) - Fx ] 563 x) Integrating

dy _F_ Lﬁ_lz) = = =

de “OE (2 " +G1,.. I:E:1 0 because dy/dx = 0 at x = 0)
P u - F sz 3

Integrating again y =5g( il % ) +C,

3 3
= 0 when x = L/2 therefore ;£ (L. L -
y = 0 when x erenreEEl(H 12)1-.; 0

3
and thus c,= -‘%
2
2 3 3 3
Atend B (“—'-"’— (l--f)= FL o and y= £ (_L-_L ) FL o
b 2ei\s 8% 16EI B 2EIN8 12 48EI
At centre C V= - F_la { slnpe%n‘"‘% =0 by symmetry)

<=0 48E]




Moment Area Method
This is a method of determining the change in slope or the deflection
between two points on a beam. It Is expressed as two theorems...

Theorem 1

If A and B are two points on a beam the change in angle (radians)
between the tangent at A and the tangent at B is equal to the area of
the bending moment diagram between the points divided by the
relevant value of El (the flexural rigidity constant).

Theorem 2

If A and B are two points on a beam the displacement of B relative to
the tangent of the beam at A is equal to the moment of the area of the
bending moment diagram between A and B about the ordinate
through B divided by the relevant value of El (the flexural rigidity
pgnstant).




Examples . Two simple examples are provide below to illustrate these theorems
Example 1) Determine the deflection and slope of a cantilever as shown..

%:1\

1
o

The bending moment at A =M, =FL

The area of the bending moment diagram Ay =F.L* /2

The distance to the centroid of the BM diagram from B=x.=2L/3
The deflectionof B=y,=A yx . /EI=F.L * J3E]

The slope at B relative to the tan at A=0, =Ay /El= FL” 2EI




Example 2) Determine the central deflection and end slopes of the simply
supported beam as shown..

E=210GPa ...... I=834 cm?
10kN 10kN

8¢
Bﬂf___ AJT:TFE“---“:r:::":::::4":'“—_——]::"_::& :a—ﬁﬁ;—_l’l Ye
A B
:.,,-1,2m / / 2rr|

Bending Moment Diagram

Ar=10.1,8.1,82=16,2kNm

A= 10.1,8.2 =36kNm

A= 10.1,8.2 = 36kNm
Ar=10.1,8.1,82=16,2kNm

x; =Centroid of A, = (2/3).1,8=1,2
% =Centroid of A; =18+ 1=2,8
x3 =Centroid of Az=18+1=2,8
¥ =Centroid of Ay, =(2/3).1,8=1,2




The slope at A is given by the area of the moment diagram between A and C
divided by EI.

Ba=(A, + A3) /El = (16,2+36).10° /(1,7514. 10 %)
= 0,029rads = 1,7 degrees

The deflection at the centre (C) is equal to the deviation of the point A above

a line that is tangent to C.
Moments must therefore be taken about the deviation line at A.

Be = (An.xn) /EI = (A, x; +A2x2) /EI = 120,24.10 %/ (1,7514. 10 %)
= 0,0686m = 68,6mm

Moment Area Method
This method is based on two theorems which are stated through an example. Consider a
beam AB subjected to some arbitrary load as shown in Figure 1.

Let the flexural rigidity of the beam be El. Due to the load, there would be bending
moment and BMD would be as shown in Figure 2. The deflected shape of the beam which
Is the elastic curve is shown in Figure 3. Let C and D be two points arbitrarily chosen on
the beam. On the elastic curve, tangents are drawn at deflected positions of C and D. The
angles made by these tangents with respect to the horizontal are marked as and . These
angles are nothing but slopes. The change is the angle between these two tangents is
demoted as . This change in the angel is equal to the area of the diagram between the two
noints C and D. This is the area of the shaded portion in figure 2.




Hence 6., =0, ~ 0, = Area of % diagram between C and D
B.p = Area BM —»1 (a)
El

It is also expressed in the integration mode as

M
Bep = Im—deI — %  1(b)

Equation 1 is the first moment area theorem which is stated as follows:
Statement of theorem I:
The change in slope between any two points on the elastic curve for a member

subjected to bending is equal to the area of % diggram between those two points.




e = e
4 -

Fig. 2

Elaste 44

Fig. 3

Fig. 4




Problem 1 : Compute deflections and slopes at C,D and E. Also compute slopes at A
and B.

Elastic cuvve




To Compute Reactions:
—+

Sfx=0=H, =0
ATy =0= Vit V, W -W=0

V, +V, =2W

i
2D TM, =0=LV, - W —(EBLL 0
7 T
Ly o WL WL
3
Va=W Ve =W

Section (3) = (3) RHP (0 to %)
G+ Moo=Wx
Atx=0;BM @B =0
WL
Atx=5%,BM @D = ES

Bending Moment Calculations:
Section (1) — (1) (LHP, 0 to L/3)
+ M= Wx

Atx=0:BMat A=10
x=L:;BM@C= "y

Section (2) = (2) (LHP, ¥ to2%)
1D M= Wx = Wix - 1)
Atx=%,BM@C=W¥%— W%+ Wy

= Wy
Atx= 25 BM@D = W[E—L)— W{E—L —Ej
3 3 3 3
_ [ZWL _2WL . WL)
3 3 3
WL
3

This beam 1s symmetrical. Hence the BMD & elastic curve is also symmetrical.
In such a case, maximum deflection occurs at mid span, marked as g Thus, the tangent

drawn at E will be parallel to the beam line and B¢ is zero.

.'"!'L]S-U', E!c = E!ID, B,\: BE and Bc= BD




To compute b

From first theorem,
Bce= Area of BMD between E&
El
E'cﬂ. BE= _W %(%)
El
B WL?
18El
B being zero, Bc= WL (&)
|8EI

To compute 6,

From First theorem,

B = Area of BMD between A&E

EIl
[L)WL WL[L)
g M R
8., = 3) 3 3.6
El
WL WL*
_|_
18 18
El
WL
Bk bei ero, By =
e being zero, 8, SFI (:)}
WL
Bg= (C:}

9El



To compute dg

From 2™ thearem

B [Area of BM E]Eﬁ
- El

|

{lkﬁ){gk} N (ﬁk}[k L
23 3 33 3 6,03 12
Kea=

El

SWL
-+
216
El

wL'
- _8I1

1 [8WL'+15WL
El 643

_23 WL
648El

From figure, Kg. 15 equal to 8e.

23WL
V)

Therefore 6 =

648EIl

To compute B¢

From 2™ thearem

(Area of BMD E)(.E

EC ™

EI
_ (W)
El
- W)
EI | 216
WL
216El
B = 0k - Kec
L5 _23WL WL
©© G48El  216El
_ 23WL -3wWL
648El
20WL
648El
SWL'
= )
162El




Problem 2. For the cantilever beam shows in figure, compute deflection and slope at

the free end.
Jo kn/m
Beam
8 A -_
¥ il v
3 | ; Sco-le
Yy L‘ %h ==
2
BMD

80 knm

Elashc cuvve




Consider a section x-x at a distance x from the free end. The FBD of EHP 1s taken into
account.

(RHP G +) BM @ X-X = My.x =-10 (x) (x/2) = -5x°
At x =0 BM@B=0
Atx=4m; BM @ A=-5(16)=-80 kNm

The BMD is sketched as shown in figure. Note that it is Hogging Bending
Moment. The elastic curve is sketched as shown in figure.

1o compute By To compute ég
From II theorem
For the cantilever beam, at the fixed support, there will be no rotation and hence

in this case 8, = 0. This implies that the tangent drawn to the elastic curve at A will be K o ;M:{dx
the same as the beam line. A .
From [ theorem, 1 4
~ * Mdx =T (=57 udx
B.-’LEI - BA"" BEI =
B = '5 255
L | : B
=ﬁ;[[_5x-_}jx _ -32[]
El
-5r,
= E[xs/]‘.
5 10 From the elastic curve,
- o020
3EI 3EI - 320
B4 being zero, Kag=08s= _[JL }
320

fn= ——
3K @




Problem 3: Find deflection and slope at the free end for the beam shown in figure by
using moment area theorems. Take EI = 40000 KNm™

6 kn/m
. M@ Bearn

c A E—

BMD

2 s
144 knm M= -3z

= = 24X+ 48

Blastic cuyve




Calculations of Bending Moment:
Region AC: Taking RHPG +
Moment at section = -6x"/2

-~ 2

Atx=0,BM @ A=0
x =4m; BM @ C =-3(16) = - 48kNm

Region CB: (x=4tox=18§)
Taking RHP G+, moment @ section = -24 (x-2)
= -24x+48;
Atx=4m: BM @ C=-24(4)+ 48 = 48kNm:
x=8m BM@B=-144 kNm:

To compute By:

To compute dg

Maxdx
K,.=|——
AB E]

14 . 14
= — [=3x xdx +—[(=24x + 48
E];[ * E];“ X+ 48 Judx

-3, 1 YA YA
=E[/§]‘|+H[—24(/§}4+48(/§}4]

-3 1 [=-24
= E[zsﬁ]Jrﬁ[T[s]z-m}Jr 24(54-15}}

=ﬂ+i[-3584+1152]
El

El

— 2'?24 =—0.0656m= 0.0656m

First moment area theorem is used. For the elastic curve shown in figure. We

know that 8, =10.
Mdx
Bap=Ba~Bg= | ——

El

1 7 . ] ¢
= — | =3x"dx + — |- 24x + 48
i X +E[£[ X + 48 )dx

: 1 ; ,
4] +E[_ 2454 + 48x |,

0, = _3
El

64 |
= 2 [-12(64-16)+48(8 - 4
54 L 12(64-16)+ 48(5-4]
=-0.0112 Radians

=0.0112 Radians (7))




Problem 4: For the cantilever shown in figure, compute deflection and at the points

where they are loaded.

lokn I5 kN
a% £ i"‘
- 15 len lo kN
2:'6m Ir&m

¥ A ¥ #




To compute O :
1
Bs=Bp~0,= E[_ %(2.5)(37.5) = 4(1.5)(15)]

58,125
El

(D)

B

oc = é[— %(1.5)(37.5+15) = £(1.5)15)]

50.625
T

- ,»;[2.5}(3115155](2.5}_ ﬁ (21.5145(1)
100.625

. H
100.625

_tonzs

B = %jy;(] S)37.5+15)0.857 + K(1.5)45)1)

. 44.99
T TE )

—




CONJUGATE BEAM METHOD

This is another elegant method for computing deflections and slopes in beams.
The principle of the method lies in calculating BM and SF in an imaginary beam called as
Conjugate Beam which 1s loaded with M/El diagram obtained for real beam. Conjugate
Beam 18 nothing but an mmaginary beam which 18 of the same span as the real beam
carrying M/El diagram of real beam as the load. The SF and BM at any section in the
conjugate beam will represent the rotation and deflection at that section in the real beam.
Following are the concepts to be used while preparing the Conjugate beam.

e [tis of the same span as the real beam.
® The support conditions of Conjugate beam are decided as follows:
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Problem 1 : For the Cantilever beam shown in figure, compute deflection and rotation at
(i) the free end

M o kKN
(if) under the load i
4
ae e A Beam
= - e
B am
f I t l 4 Scole
B - 2 1 R T
5 - e
BAMD
el
BElastc
LAY VE
conjugate

Beam




Conjugate Beam:

By taking a section (@ C" and considering FBD of LHP,

SF Zf _ -150 EK/_,) =225

El

150 45U
BM@C'= ——=()(%)2)=
Similarly by taklng a section at .i‘t’ and considering FBD of LHP:

225

SE@ A = ——

@ El
225 =900
BM @& i‘t’-—Z 2 —_—
@ = (2+2)= o

SF (@ a section in Conjugate Beam gives rotation at the same section in Real Beam

BM (@ a section in Conjugate Beam gives deflection at the same section in Real Beam

e

25
ol (2

Therefore, Rotation @ C =

Deflection @ C= %U{)

Rotation @ .

Dﬂﬂmn@h=%?u)

N



Problem 2: For the beam shown in figure, compute deflections under the loaded
points. Also compute the maximum deflection. Compute, also the slopes at supports.

3olku 20KkN
. ¢ & @ T,

am 4m
é
%1
- ¢+) Conjugate
¢ e
[ Bearn

Sechon




For the conjugate beam:

V, =V, = %[Total load on Conjugate Beam | _ {130 120j| 150

| El El El
- B[204)059% X3)+4 (%)

To compute ¢ :
A section at C” is placed on conjugate beam. Then considering FBD of LHP:

¢ wvac- 2046 0

El
L450_90_360
El  EI El
. 360
=g Vs

To compute dg:

A section (@ E’ 15 placed on conjugate beam. Then considering FBD of
LHP:

150 60

00)-406[ 3 J)- 3200

+) BM@E'= o

o 750 270 60 420
o5y =130 _270_60_420()
El El I:l El




Problem 3: Compute deflection and slope at the loaded point for the beam shown in
figure. Given E =210 Gpa and I = 120 x 10°mm". Also calculate slopes at A and B.

goKN




To Compute reactions in Conjugate Beam:

+DBM@C = Eb)—l[@Jﬁ)ﬂ)
Tiy=0=V, +V, -[ L[ L3)-L(12%3)- o 2E
YEEE TN T ') T e )T _360 90 _270
V +V _9__Q=|j- T El El EI
AU =) S = B
Given E =210 x 10° N/nv’
v oLy 220 =210x 10° WN/m?
SR [ = 120x 10° mm®

: 1y 60 1120 ‘

=04 VvV (6)=| =] —134)-=] — [[3)2

¥ m,=042 V,(6)- (4 | £ k- 5[ 122 o
6V;=360+36[J=?2D
El El El
v 20 150
El - El

-

SF and BM at C” is obtained by placing a section at C° in the conjugate beam.

120 160
SF@Cl'= ———|—
@ El 2[]:])(3}

_30
El

120 x 10° (107 m)?*
120 x 10° (107%)
120 x 10° m*;

EI =210x 10° (120 x 10®)= 25200 kNm™
30

25200

Rotation @ C = =1.19 x 10? Radians (D)

. 270
Deflection (@ C = ——— =0.0107 m
25200

=10.71 mm (+ )
Aa=4.76 X 10° Radians

B = 5.95 X 107 Radians:



Problem 4: C m;lpute slopes at supports and deflections under loaded points for the
beam shown in figure.

BOKN |00 KN

'

Y

0-1-




To compute reactions and BM in real beam:

T D fy=0=V, +V, =150
+D 2 M, =0 9V, -50(6)-100(3)=0

600

V., =66.67kN v, =8333kN

BM at (1) = (1) = 66.67 x
Atx=0;BMat A=0,

BMat (2) —=(2)=66.67 x =50 (x-3)= 1667 x+ 150
At x=3m; BM at C =200 kNm,

BM at (3) —(3) is computed by taking FBD of RHP. Then

BM at (3)-(3)=83.33 x (x 18 measured from B)
Atx=0,BMatB=10,

To compute reactions in conjugate beam:

T Y fy=0=V, +V, =12(3)[%)+ 3[

+ %(3)[%) + %{3{%)

7625

El

100
El

Atx=3m, BM at C =200 kNm

)

+2) ZMQ:H

S (- (-

At x=06m, BM at D= 250 kNm

Atx=3m BMatD =250 kNm

‘;‘V; _ 33_5[)
El
V= 42?.??
El
V; _ 334_-.?3
El
334.73
B'&' =42??? (D} BB :T
El

To Compute d¢ :
A Section at C is chosen in the conjugate beam:

o553

427.77

+2 BMatC =




To compute dp:

Section at D is chosen and FBD of RHP is considered.

334.73 1 83.33
BMat D = 3)-=(3) —— |l
C-mupr- 2B 232
 879.19
El
5 =3?9.]9(¢)

? El




Problem 5: Compute to the slope and deflection at the free end for the beam shown in

figure.

10 KNy v
2‘*""’“‘5::’”“‘ Beam
8 A —

ra 4m ¥
F 1 le
Yy % ===

—2
8MD

B0 knm

Elastec cuvve




The Bending moment for the real beam is as shown in the figure. The conjugate beam

also 1s as shown.

Section at A’ in the conjugate beam gives

SF@ A’ = i_ _xz

dx




Macaulay's Methods

If the loading conditions change along the span of beam, there is
corresponding change in moment equation. This requires that a separate moment
equation be written between each change of load point and that two integration
be made for each such moment equation. Evaluation of the constants introduced
by each integration can become very involved. Fortunately, these complications
can be avoided by writing single moment equation in such a way that it becomes
continuous for entire length of the beam in spite of the discontinuity of loading.

Note : In Macaulay's method some author's take the help of unit function approximation
(i.e. Laplace transform) in order to illustrate this method, however both are essentially the
same.




Procedure to solve the problems

(i). After writing down the moment equation which is valid for all values of ‘x' i.e.
containing pointed brackets, integrate the moment equation like an ordinary
equation.

(i1). While applying the B.C's keep in mind the necessary changes to be made
regarding the pointed brackets.

illustrative Examples :

1. A concentrated load of 300 N is applied to the simply supported beam as shown in
Fig. Determine the equations of the elastic curve between each change of load point
and the maximum deflection in the beam.

¥

Ri=100N R:=200N




Solution : writing the general moment equation for the last portion BC of the loaded

beam,
15y - (100x - 300{x - 2}}Nm )
d?
Integrating twice the above equation to obtain slope and the deflection
EI? =[50 -180{-2f +C,JNm? ... 2)
50 3
Ely -[ : -80{x-2} +Cx+C ]N )

To evaluate the two constants of integration. Let us apply the following
boundary conditions:
1. At point A where x = 0, the value of deflection y = 0. Substituting these values
in Eq. (3) we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values.
2. At the other support where x = 3m, the value of deflection y is also zero.
substituting these values in the deflection Eq. (3), we obtain

[ —3 -50(3 ]-3C,]urt1=-133N.m2




Having determined the constants of integration, let us make use of Egs. (2) and
(3) to rewrite the slope and deflection equations in the conventional form for the two

portions.

segment AB (0 £ x < 2mj)

dy _ 2 7
Elﬁ -(Eux -133)Mm N

Ely :[?KE -133:]Mm3 _______ (5
segment BC (2m < x €3m)
Elg—i - (505 150 (x - 2)% - 133x)Nm? ()

Ely = [?:ﬁ —5[![:—2]3 —133}{]N.m3 U

Continuing the solution, we assume that the maximum deflection will occur in the segment AB. Its
location may be found by differentiating Eq. (5) with respect to x and setting the derivative to be equal
to zero, or, what amounts to the same thing, setting the slope equation (4) equal to zero and solving for
the point of zero slope.
50 x2— 133 =0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does not yield a
value < 2 m then we have to try the other equations which are valid for segment BC)

Since this value of x is valid for segment AB, our assumption that the maximum deflection occurs in
this region is correct. Hence, to determine the maximum deflection, we substitute x = 1.63 m in Eq (5),
which yields

Ely| gm= -145Nm"  _...(8)




The negative value obtained indicates that the deflection y is downward from the
X axis. quite usually only the magnitude of the deflection, without regard to sign,
IS desired; this is denoted by d, the use of y may be reserved to indicate a directed

value of deflection.

ifE=30Gpaand [ =1.9x 10°mm*=1.9x 10 *m*, Eq. (h) becomes

¥ | = (30x10%) (1 81077

Then = =254mm




