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                                     UNIT1  

 

                 TORSION OF CIRCULAR SHAFTS  

                                  SPRINGS 

 

 



 
Torsion of circular shafts 

 
• Definition of Torsion: Consider a shaft rigidly clamped at 

one end and twisted at the other end by a torque T = F.d 
applied in a plane perpendicular to the axis of the bar 
such a shaft is said to be in torsion. 
 

• Effects of Torsion: The effects of a torsional load applied 
to a bar are 
 
 
 
 
 

– To impart an angular displacement of one end cross 1 
section with respect to the other end. 

  
 



-To setup shear stresses on any cross section of the bar 
perpendicular to its axis. 

 



  

GENERATION OF SHEAR STRESSES 

  

• The physical understanding of the phenomena of 
setting up of shear stresses in a shaft subjected to 
a torsion may be understood from the figure 1-3. 

  

  

  
Fig 1: Here the cylindrical member or a shaft is in static equilibrium where T is 
the resultant external torque acting on the member. Let the member be 

imagined to be cut by some imaginary plane 1mn'. 

 



Fig 2: When the plane 1mn' cuts remove the portion on R.H.S. and we get a fig 2. 
Now since the entire member is in equilibrium, therefore, each portion must be in 
equilibrium. Thus, the member is in equilibrium under the action of resultant 
external torque T and developed resisting Torque Tr  . 



• Twisting Moment: The twisting moment for any 
section along the bar / shaft is defined to be the 
algebraic sum of the moments of the applied 
couples that lie to one side of the section under 
consideration. The choice of the side in any case 
is of course arbitrary. 

•  Shearing Strain: If a generator a 1 b is marked on 
the surface of the unloaded bar, then after the 
twisting moment 'T' has been applied this li ne 
moves to a b'. The angle 1γ' measured in radians, 
between the final and original positions of the 
generators is defined as the shearing strain at the 
surface of the bar or shaft. The same definition 
will hold at any interior point of the bar. 
 
 



  

 

 

 Modulus of Elasticity in shear: T he ratio of the 
shear stress to the shear strain is called the 
modulus of elasticity in shear OR Modulus of 
Rigidity and in represented by the symbol  

 



Angle of Twist: If a shaft of length L is subjected to 
a constant twisting moment T along its l ngth, than 
the angle θ 

through which one end of t he bar will twist relative 
to the other is known is the angle of twist. 

 
 

  

Despite the difference s in the forms of loading, we 
see that there are number of similarities between 
bending and torsion, including for example, a linear 
variation of stresses and strain with position. 

 



Not all torsion problems, involve rotating machinery, however, 
for example some types of vehicle suspension system employ 
torsion al springs. Indeed, even coil springs are really curved 
members in torsion as shown in figure. 
 
 
  
 
 
Many torque carrying engineering members are cylindrical in 
shape. Examples are drive shafts, bolts and screw drivers. 
  
Simple Torsion Theory or Development of Torsion Formula : 
Here we are basically interested to derive an equation 
between the relevant parameters 
  
 



• Relationship in Torsion:  

• 1st Term: It refers to applied loading ad a property of 
section, which in the instance is the polar second 
moment of area. 

• 2nd Term: This refers to stress, and the stress increases 
as the distance from the axis increases. 

• 3rd Term: it refers to the deformation and contains the 
terms modulus of rigidity & combined term ( θ / l) 
which is equivalent to strain for the purpose of 
designing a circular shaft to with stand a given torque 
we must develop an equation giving the relation 
between Twisting moments max m shear stain 
produced and a quantity representing the size and 
shape of the cross 1 sectional area of the shaft. 

 



Assumption:  
• The materiel is homogenous i.e of uniform elastic 

properties exists throughout the material.  
• The material is elastic, follows Hook's law, with 

shear stress proportional to shear strain.  
• The stress does not exceed the elastic limit.  
• The circular section remains circular  
• Cross section remain plane.  
• Cross section rotate as if rigid i.e. every diameter 

rotates through the same angle. 
  
  

 



Consider now the solid circular shaft of radius R 
subjected to a torque T at one end, the other end 
being fixed Under the action of this torque a radial 
line at the free end of the shaft twists through an 
angle θ , point A moves to B, and AB subtends an 
angle 1 γ ' at the fixed end. This is then the angle of 
distortion of the shaft i.e the shear strain. 

Since angle in radius = arc / Radius arc AB = Rθ  

= L γ [since L and γ also constitute the arc AB] Thus, 
γ = Rθ / L  (1) 

From the definition of Modulus of rigidity or 
Modulus of elasticity in shear 

 

 

 



Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to 
shear stress 



 
The force set up on each element 
= stress x area  
= τ' x 2π r dr (approximately) 
This force will produce a moment or torque about 
the center axis of the shaft.  
= τ' . 2 π r dr . r 
= 2 π τ' . r2 dr The total torque T on the section, will 
be the sum of all the contributions. 
Since τ' is a function of r, because it varies with 
radius so writing down_ ' in terms of r from th e 
equation (1). 
  

 



 



Where 

 T = applied external Torque, which is constant over 
Length L; 

J = Polar moment of Inertia 

[ D = Outside diameter ; d = inside diameter ]  

G = Modules of rigidity (or Modulus of elasticity in 
shear) 

 θ = It is the angle of twist in radians on a length L. 

 Tensional Stiffness: The tensional stiffness k is 
defined as the torque per radius twist i.e, k = T /_ 
_= GJ / L 

 



Power Transmitted by a shaft : If T is the applied 
Torque and ω is the angular velocity of the shaft, 
then the power transmitted by the shaft is 

 Distribution of shear stresses in circular Shafts 
subjected to torsion : 

 The simple torsion equation is writt en as 

 This states that the shearing stress varies directly 
as the distance 1r' from the axis of the sha ft and 
the following is the stress distribution in the plane 
of cross section and also the complementary 
shearing stresses in an axial plane. 

 



Hence the maximum strear stress o ccurs on the outer surface of the shaft where r = R 
The value of maximum shearing stress in the solid circular shaft can be determined as 
 
 
 

 



Power Transmitted by a shaft:  
• In practical application, the diamete r of the shaft must 

sometimes be calculated from the power which it is 
required to transmit.  

• Given the power required to be tran smitted, speed in rpm 
1N' Torque T, the formula connecting These quantities can 
be derived as follows 

• Torsional stiffness: The torsional stiffness k is defined as 
the torque per radian twist . 

 
• For a ductile material, the plastic flo w begins first in the 

outer surface. For a material which is weaker in shear 
longitudinally than transverse ly 1 for instance a wooden 
shaft, with the fibres parallel t o axis the first cracks will be 
produced by the she aring stresses acting in the axial 
section and they will uppe r on the surface of the shaft in 
the longitudin al direction. 
 
 
 



• Definition: A spring may be defined as an elastic 
member whose primary function is to deflect or 
distort under the action of applied load; it 
recovers its original shape when load is released. 

•  Important types of springs are: 
      There are various types of springs such as 
•  helical spring: They are made of wire coiled into 

a helical form, the load being applied along the 
axis of the helix. In these type of springs the 
major stresses is torsional shear stress due to 
twisting. They are both used in tension and 
compression. 

•  
 
 



(i) Spiral springs: They are made of flat strip of metal wound in the form of 

spiral and loaded in torsion. 

 In this the major stresses are tensile and compression due to bending. 



      Uses of springs : 
  
• To apply forces and to control motions as in brakes and clutches. 
 
• To measure forces as in spring balance. 
  
• To store energy as in clock springs. 
  
• To reduce the effect of shock or impact loading as in carriage 

springs. 
  
• To change the vibrating characteristics of a member as inflexible 

mounting of motors. 
  

 



• Derivation of the Formula : 

• In order to derive a necessary formula which 
governs the behaviour of springs, consider a 
closed coiled spring subjected to an axial load W. 

 



Let 
W = axial load 
D = mean coil diameter d = diameter of spring wire  n = 
number of active coils 
C = spring index = D / d For circular wires 
 l = length of spring  wire   G = modulus of rigidity  
x = deflection of spring    q = Angle of twist 
when the spring is being subjected to an axial load to the wire 
of the spring gets be twisted like a shaft. 
If q is the total angle of twist along the wire and x is the 
deflection of spring under the action of load W along the axis 
of the coil, so that  
x = D / 2 . θ  
again l = π D n [ consider ,one half turn of a close coiled helical 
spring ] 

 



                                        

                                      UNIT-2 

 

                    COLUMNS AND STRUTS   

              AND BEAMS CURVED IN PLAN 

 



 Introduction 

• Structural members which carry co mpressive 
loads may be divided into two broad 
categories depending on their relative lengths 
and cross-sectional dimensions.  

Columns: 

• Short, thick members are generally termed 
columns and these usually fail by crushing 
when the yield stress of the material in 
compression is exceeded. 

  

 



   Struts 
• Long, slender columns are generally termed as 

struts, they fail by buckling some time before 
the yield stress in compression is reached. The 
buckling occurs owing to one the following 
reasons.  

• the strut may not be perfectly straight initially. 
• the load may not be applied exactly along the 

axis of the Strut. 
• one part of the material may yield in 

compression more readily than others owing 
to some lack of uniformity in the material 
properties through out the strut. 
 



    Euler's Theory  
              The struts which fail by buckling can be 
analyzed by Euler's theory. In the following 
sections, different cases of the struts have been 
analyzed. 
   Case A 
Strut with pinned ends 
•  Consider an axially loaded strut, shown 

below, and is subjected to an axial load 1P' 
this load 1P' produces a deflection 1y' at a 
distance 1x' fr om one end. 

• Assume that the ends are either pin jointed or 
rounded so that there is no moment at either 
end. 
 



• Assumption: 

• The strut is assumed to be initially straight, 
the end load being applied axially through 
centroid. 

 



  Let us define a operator 
 D = d/dx 
(D2 +n 2 )  y =0 where n2 = P/EI 
  
This is a second order differential equation 
which has a solution of the form consisting of 
com plimentary function and particular integral 
but for the time being we are interested in the 
complementary solution only[in this P.I = 0; 
since the R.H.S of Diff. equation = 0]  
 
Thus y = A cos (nx) + B sin (nx) Where A and B 
are some constantss. 
 
  



                                    

                                       UNIT-3 

 

 

                            BEAM COLUMNS  

               DIRECT AND BENDING STRESSES 

 



Analysis of stress and strain : 

 Concept of stress : Let us introduce the concept 
of stress as we know that the main problem of 
engineering mechanics of material is the 
investigation of the internal resistance of the 
body, i.e. the nature of forces set up within a 
body to balance the effect of the externally 
applied forces.  

The externally applied forces are termed as 
loads. These externally applied forces may be 
due to any one of the reason. 

  

 



• due to service conditions  
• due to environment in which the component works 
• through contact with other mem bers 
•  due to fluid pressures 
• due to gravity or inertia forces. 
As we know that in mechanics of d eformable solids, 
externally applied forces acts on a body and body suffers a 
deformation. From equilibrium point of view, this action 
should be opposed or react d by internal forces which are 
set up within the particles of material due to cohesion. 

 



• These internal forces give rise to a concept of 
stress. Therefore, let us define a stress Therefore, 
let us define a term stress 

•   
• Stress: 

 
•  

 
•   
• Let us consider a rectangular bar of some cross 1 

sectional area and subjected to some load or 
force (in Newtons ) 
 



• Let us imagine that the same recta ngular bar 
is assumed to be cut into two halves at section 
XX. The each portion of this rectangular bar is 
in equilibrium under the action of load P and 
the internal forces acting at the section XX has 
been shown 

•  
 
 
 
 

  

• Now stress is defined as the force intensity or 
force per unit area. Here we use a symbol σ to 
represent the stress. 

  



• Where A is the area of the X 1 section 
• Here we are using an assumption that the 

total force or total load carried by the 
rectangular b ar is uniformly distributed over 
its cross 1 section. 

•  But the stress distributions may be for from 
uniform, with local regions of high stress 
known as stress concentrations. 

•  If the force carried by a component is not 
uniformly distributed over its cross 1 sectional 
area, A, we must consider a small area, 1δA' 
which c arries a small load δP, of the total 
force 1P', Then definition of stress is 
 



• TYPES OF STRESSES : 

• only two basic stresses exists : (1) normal 
stress and (2) shear shear stress. Other 
stresses either are similar to these basic 
stresses or ar e a combination of these e.g. 
bending stress is a combina tion tensile, 
compressive and shear stresses. Torsional 
stress, as encountered in twisting of a shaft is 
a shearing stress.  

• Let us define the normal stresses and shear 
stresses in the following sections. 

•   



• Normal stresses : We have defined stress as 
force per unit area. If the stresses are normal 
to the areas concerned, then these are termed 
as normal stresses. The normal stresses are 
generally de noted by a Greek letter ( σ ) 

•  
 

•   

 



• This is also known as uniaxial state of stress, 
because the stresses acts only in one direction 
however,  such a state rarely exists, therefore 
we have biaxial and triaxial state of stresses 
where either the two mutually perpendicular 
normal stresses acts or three mutually 
perpendicular normal stresses acts as shown 
in the figures below : 

•  
 

•   

 



• Tensile or compressive stresses :  

• The normal stresses can be either tensile or 
compressive whether the stresses acts out of 
the area or into the area 

 



• Cartesian - co-ordinate system  

• In the Cartesian co-ordinates system, we make 
use of the axes, X, Y and Z  

• Let us consider the small element of the material 
and show the various normal stresses acting the 
faces 
 

 

 
Thus, in the Cartesian co-ordinates system the 
normal stresses have been represented by σx, 
σyand σz. 

 



• Cylindrical - co-ordinate system  

• In the Cylindrical - co-ordinate system we make 
use of co-ordinates r, θ and Z. 

 
 

 

 

• Thus, in the Cylindrical co-ordinates system, the 
normal stresses i.e components acting over a 
element is being denoted by σr, σθand σz. 

 



• Complementary shear stresses:  

• The existence of shear stresses on any two 
sides of the element induces complementary 
shear stresses on the other two sides of the 
element to maintain equilibrium. 

 
 
  

 

• on planes AB and CD, the shear stress τ acts. 
To maintain the static equilibrium of this 
element, on planes AD and BC, τ' should act, 
we shall see that τ' 
 



• which is known as the complementary shear stress 
would come out to equal and opposite to the_ _. Let us 
prove this thing for a general case as discussed below: 

 
 
 
 
 

• The figure shows a small rectangular element 
with sides of length x, y parallel to x and y 
directions. Its thickness normal to the plane of 
paper is z in z 1 direction. All nine normal and 
shear stress components may act on the 
element, only those in x and y directions are 
shown. 

 



• Material subjected to two mutually perpendicular direct 
stresses: 

• Now consider a rectangular element of unit 
depth, subjected to a system of two direct 
stresses both tensile, σx  and σyacting right 
angles to each other. 

 
 

 



• for equilibrium of the portion ABC, resolving 
perpendicular to AC 

  σθ . AC.1 = σy sin θ . AB.1 + σx cos θ . BC.1 
  converting AB and BC in terms of A C so that AC            
cancels out from the sides 
  σθ = σy si  2   + σxcos2                n θ               θ 
  Futher, recalling that cos2  _sin θ = cos2θ or (1 
− cos2θ)/2 = sin2 q 
  Similarly (1 + cos2θ)/2 = cos2   
  Hence by these transformations the expression    
for σθ reduces to 



= 1/2σy (1 − cos2θ) + 1/2σx (1 + cos 2θ)  

On rearranging the various terms w e get 

  

Now resolving parallal to AC 

 sq.AC.1= −τxy..cosθ.AB.1+_ xy.BC.s inθ.1  

  The 1 ve sign appears because this component 
is in the same direction as that of AC. 

 Again converting the various quantities in terms 
of AC so that the AC cancels out from the two 
sides. 

 

 



• Material subjected to combined direct and shear 
stresses: 

• Now consider a complex stress system shown 
below, acting on an element of material. 

• The stresses σx and σy may be com pressive or 
tensile and may be the result of direct forces or 
as a result of bending.The shear stresses may b e 
as shown or completely reversed and occur as a 
result o f either shear force or torsion as shown in 
the figu re below: 

•  
 

 



• As per the double subscript notatio n the shear 
stress on the face BC should be notified as τyx , 
however, we have already seen that for a pair of 
shear stresses there is a set of complementary 
shear stre sses generated such that τyx = τxy 

• By looking at this state of stress, it may be 
observed that this state of stress is combination 
of two different cases:  

• Material subjected to pure stae o f stress shear. In 
this case the various formulas deserved are as 
follows 

• σθ = τyx sin2_  
• τθ = − τyx cos 2_ 

 



• Material subjected to two mutually perpendicular 
direct stresses. In this case the various formula's 
derived are as follows  

• To get the required equations for the case under 
consideration,let us add the respective equ ations 
for the above two cases such that 

• These are the equilibrium equation s for stresses 
at a point. They do not depend on material 
proportions and are equally valid for elastic and 
inelastic behaviour 

• This eqn gives two values of 2θ that differ by 
1800 .Hence the planes on which maximum and 
minimum normal stresses occurate 900 apart. 
 



 



• Hence the maximum and minimum values of normal  
stresses occur on planes of zero sheari ng stress.  The 
maximum and minimum normal str esses are called the 
principal stresses, and the planes on which they act are 
called principal plane the soluti on of equation 

•   
•   
• will yield two values of 2θ separate d by 1800 i.e. two 

values of θ separated by 900 .Thus the two principal 
stresses occur on mutually perpend icular planes 
termed principal planes. 

•  
Therefore the two 1 dimensional c omplex stress 
system can now be reduced to the equivalent system 
of principal stresses. 
 





                                           

                                    UNIT-4 

 

 

               UNSYMMETRICAL BENDING  

                      AND SHEAR CENTRE 

 



• GRAPHICAL SOLUTION MOHR’S STRESS CIRCLE 
  
• The transformation equations for plane stress can 

be represented in a graphical form known as 
Mohr's circle. This grapical representation is very 
useful in depending the relationships between 
nor mal and shear stresses acting on any inclined 
plan e at a point in a stresses  body.  

• To draw a Mohr's stress circle consider a complex 
stress system as shown in the figure  

• The above system represents a co mplete stress 
system for any condition of applied load in t wo 
dimensions 
 



The above system represents a co mplete stress system for any 

condition of applied load in t wo dimensions 

 
The Mohr's stress circle is used to find out 
graphically the direct stress σ and sheer stress_ 
on any plane inclined at θ to the plane on which 
σxacts.The direction of θ here is taken in 
anticlockwise dire ction from the BC. 
  

 



•   
• STEPS: 
•   
• In order to do achieve the desired o bjective we proceed in the following manner 
•   
• Label the BlockABCD. 
•   
• Set up axes for the direct stress (as abscissa) and shear stress (asordinate) 
•   
• Plot the stresses on two adjace nt faces e.g. AB and BC, using thefollowing sign convention. 
•   
• Direct stresses_tensile positive; compressive, negative Shear stresses 1 tending to turn block 

clockwise, positive 1 tending to turn block counter clockwise, negative 
• [ i.e shearing stresses are +ve when its movement about the centre of the element is clockwise ] 
•   
• This gives two points on the graph which may than be labeled as respectively to denote stresses on 

theseplanes. 
•   
•   
• The point P where this line cuts the s axis is than the centre of Mohr's stress circle and the line 

joining isdiameter. Therefore the circle can now bedrawn. 
 



Now every point on the circle then r epresents a state of stress on 

some plane through C. 

 

 

 



• Proof: 
•  

 
•   

 
 

• Consider any point Q on the circum ference of the circle, such that 
PQ makes an angle 2 _with BC, and drop a perpendicular from Q to 
meet the s axis at N.Then OQ represents the resultant stress on the 
plane an angle θ to BC. Here we have assu med that σx >σy 

•   
• Now let us find out the coordinates of point Q. These are ON and 

QN. From the figure drawn earlier 
• ON = OP + PN OP = OK + KP 
• OP = σy + 1/2 ( σx− σy) 
•   



= σy / 2 + σy / 2 + σx / 2 + σy / 2 
  
= ( σx+ σy ) / 2 
  
PN = Rcos( 2θ − β ) hence ON = OP + PN 
= ( σx+ σy ) / 2 + Rcos( 2θ − _) 
  
= (_x + σy ) / 2 + Rcos2θ cosβ + Rsin2θsinβ now make 

the substitutions for Rcosβ and Rsinβ. 
 

 



If we examine the equation (1) and (2), we see that this is 
the same equation which we have already derived 
analytically 

  
Thus the co-ordinates of Q are the normal and shear 

stresses on the plane inclined at θ to B C in the original 
stress system. 

  
N.B:Since anglePQis2θon 

Mohr'scircleandnotθitbecomesobviousthatanglesaredo
ubledon Mohr's circle. This is the only differ ence, 
however, as They are measured in the same directi on 
andfrom 

the same plane in both figures.  



Further points to be noted are : 

The direct stress is maximum when Q is at M and at this point obviously the 
sheer stress is zero, hence by definition OM is the length representing the 
maximum principal stresses σ1 and 2θ1 gives the angle of the plane θ1  
fromBC. Similar OL is the other principal stress and is represented byσ2 

 The maximum shear stress is given by the highest point on the circle and is 
represented y the radius of thecircle. 

 This follows that since shear stresses and complimentary sheer stresses have 
the same value; therefore the centre of the circle will always lie o n the s 
axis midway between σx and σy .[ since +τxy &−τxy are shear stress & 
complimentary shear stress so they are same in magnitude but different in 
sign. ] 

 From the above point the maxim um sheer stress i.e. the Radius of the 
Mohr's stress circle wouldbe 

  

 While the direct stress on the plane of maximum shear must be mid 1 may 
between σx  andσ y i.e 

  

 





 
•   
• As already defined the principal planes are the planes on which the 

shear components  are zero. Therefore are conclude that on 
principal plane the sheer stress iszero. 

• Sincetheresultantoftwostressat900canbefoundfromtheparallogram
ofvectorsasshownin 

• the diagram.Thus, the resultant stress on the plane at q to BC is 
given by OQ on Mohr's Circle. 

•  
 

•   
• The graphical method of solution for a complex stress problems 

using Mohr's circle is a very powerful technique, since all the 
information relating to any plane within the stressed element is 
contained in the single construction. It thus, provides a convenient 
and rapid means of solution. Which is less prone to arithmetical 
errors and is highlyrecommended. 
 



                                

                                     UNIT-5 

 

 

       THIN CYLINDERS AND THICK CYLINDERS 



   Stresses in thin cylinders 
  
• If the wall thickness is less than about 7% of the 

inner diameter then the cylinder may be treated 
as a thin one. Thin walled cylinders are used as 
boiler shells, pressure tanks, pipes and in other 
low pressure processing equipments. In general 
three types of stresses are developed in pressure 
cylinders viz. circumferential or hoop stress, 
longitudinal stress in closed end cylinders and 
radial stresses. These stresses are demonstrated 
in figure 





Circumferential stress (b) Longitudinal stress and (c) Radial 
stress developed in thincylinders. 

  
In a thin walled cylinder the circumferential stresses may be assumed to 

be constant over the wall thickness and stress in the radial direction 
may be neglected for the analysis. Considering  the  equilibrium  of  a  
cut  out  section  the  circumferential  stress  σθ     and 

longitudinal stress σz can be found. Consider a section of thin cylinder of 
radius r, wall thickness t and length L and subjected to an internal 
pressure p as shown in figure- 9.1.1.2(a). Consider now an element of 
included angle dθ at an angle of θ from   vertical. 

For equilibrium we may write 
   
2∫2prdθLcosθ=2σθtL 
0 
                           pr 
This gives σθ  =t 

 



• Considering a section along the longitudinal axis 
as shown in figure-9.1.1.2 (b) we   may 

• 2 2 
• write pπr2 = σz π (ro  -ri  ) 
• where ri and ro are internal and external radii of 

the vessel and since ri≈ ro = r (say)and ro – ri = t 
we have σz=    
 
 



–Circumferential stress in a thin cylinder (b) 
Longitudinalstress in a thincylinder 

•  
Thin walled spheres are also sometimes used. 
Consider a sphere of internal radius r subjected 
to an internal pressure p as shown in figure-
9.1.1.3. The circumferential and longitudinal 
stresses developed on an element of the surface 
of the sphere are equal in magnitude and in the 
absence of any shear stress due to symmetry 
both the stresses are principal stresses. From the 
equilibrium condition in a cut section we have 

• σ1 = σ2=  

 



 F- Stresses in a sphericalshell 



• DesignPrinciples 
•   

• Pressure vessels are generally manufactured from curved sheets joined by 
welding. Mostly V– butt welded joints are used. The riveted joints may also 
be used but since the plates are weakened at the joint due to the rivet holes 
the plate thickness should be enhanced by taking into account the joint 
efficiency. It is probably more instructive to follow the design procedure of a 
pressure vessel. We consider a mild steel vessel of 1m diameter comprising a 
2.5 m long cylindrical section with hemispherical ends to sustain an internal 
pressure of ( say) 2MPa. 

•  
The plate thickness is given by 

• t ≥ pr where σyt is the tensile yield stress. The    
•        σ  
• minimum plate thickness should conform to the “Boiler code” . 
•   
•   
•   

 



• Riveted Joint 
•   
• The joints may also be riveted in some situations but the 

design must be checked for safety. The required plate 
thickness must take account the joint efficiency η. 

 
• This gives tc =  pr/ ησ Substituting  
• p = 2MPa, r = 0.5 m, η = 70 % and σty          = (385/5) 
  
• MPa we have tc= 18.5 mm. Let us use mild steel plate of 20 

mm thickness for the cylinder body and 10mm thick plate 
for the hemispherical end cover. The cover plate thickness 
may be taken as 0.625tc i.e. 12.5 mm. The hoop stress is 

• now given byσθ= pr = 50MPa and therefore the rivets 
must withstand σθtc i.e. 1 tc 
 



• MN per meter. 

• We may begin with 20mm diameter rivets with the allowable shear and 
bearing stresses  of 100 MPa and 300 MPa respectively. This gives bearing 
load ona 

•   

• single rivet Fb = 300x106x0.02x0.02 = 120 kN. Assuming double shear 

• the  shearing load on a single rivet FS = 100x106x2x  π/4(0.02) 2= 62.8kN. 

  

• The rivet pitch based on bearing load is therefore (120 kN/ 1MN per 
meter) i.e. 

• 0.12m and based on shearing load is (62.8 kN/ 1MN per meter) i.e. 
0.063m. We may therefore consider a minimum allowable pitch of 60mm. 
This gives approximately 17 rivets of 20 mm diameter per meter. If two 
rows are used the pitch is doubled to 120mm. For the hemispherical 
shaped end cover the bearing load is 60 kN and therefore the rivet pitch is 
again approximately 60 mm. 

 



• The   maximum   tensile   stress   developed   in   
the   plate   section   is   σt   = 1x106/[(1- 

• 17x0.02)x0.02] = 75.76 MPa which is a safe value 
considering the allowable tensile  stress of 385 
MPa with a factor of safety of 5. A longitudinal 
riveted joint with cover plates is shown in figure–
and the whole riveting arrangement is shown in 
figure-  

20 mm thick plate 

12.5 mm thick plates 
20 mm diameter rivets at 120 mm pitch 
9.1.2.3F- A longitudinal joint with two cover plates 

 
h 



  
Thin Cylinders Subjected to Inter nal Pressure: 
  
When a thin 1 walled cylinder is subjected to internal pressure, three mutually perpendicular principal 

stresses will be set up in the cylind er materials, namely 
  
Circumferential or hoopstress  
The radialstress  
Longitudinalstress 
  
now let us define these stresses and determine the expressions for them 
  
Hoop or circumferential stress: 
  
This is the stress which is set up in resisting the bursting effect of the applied pressure and c an be most 

conveniently treated by considering the equilibrium of the cylinder. 
 

 
  
 
 
In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal pressure  

p. 
  
 



 
•        Longitudinal Stress: 
•  

Consider now again the same figure and the 
vessel could be considered to have closed ends 
and contains a fluid under a gage pressure p.Then 
the walls of the cylinder will have a longitudinal 
stress as well as a ciccumferential stress. 

•  
 

•   
• Total force on the end of the cylind er owing to 

internal pressure 
 
 
 


