

 SOFTWARE ENGINEERING

Introduction to Software Engineering

 Software is

– Instructions (computer programs) that when executed provide
desired features, function, and performance

– Data structures that enable the programs to adequately
manipulate information

– Documents that describe the operation and use of the programs

– Computer programs and associated documentation such as

requirements, design models and user manuals.

2

Software Myths

 Software Myths
– Practitioner Myths

 Myth – The only deliverable work product for a

successful project is the working program

 Reality – A working program is only one part of a software

configuration that includes many elements. Documentation

provides a foundation for successful engineering and

guidance for software support

 Myth – Software engineering will make us create

voluminous and unnecessary documentation and will

invariably slow us down

 Reality – Software engineering is not about creating

documents, it si about creating quality. Better quality leads

to reduced rework. Reduced rework results in faster delivery

times

3

Software Affliction

 The word “affliction “ is defined as anything causing pain or
distress” “Chronic affliction” is “lasting a long time or recurring
often; continuing indefinitely”.

 Affliction refers to problems that are encountered in the development

of computer software. The problems are not limited to software that
“doesn’t function properly”, rather, the affliction encompasses
problems associated with how we develop software how we maintain a
growing volume of existing software and how we can expect to keep
pace with a growing demand for more software.

4

Software Affliction

 Common software problems
– Software can cost hundreds or thousands of dollars

(Rupees) per line
– Lifetime maintenance costs are high
– Software is late or fails
– Software is not performant (too slow)
– Software is incomprehensible
– Software is more trouble to use than it is worth
– Millions are spent for an incomprehensible tool that comes late just

to cause trouble and we don’t have answers

5

Software Affliction

 Past Approaches to solutions

– Use more people Create more chaos

– Create better programming languages Bad programs can be

 written in any language

– Design before writing Are you designing the

 right program

– Start by base lining requirements But they change

– Train people better To do what?

6

Software Affliction

 Famous Software Failures
– AT&T long distance Service fails for 9 hours (wrong

BREAK statement in C code – 1990)
– Mars Climate Orbitter (September 23rd 1999) , the 125 million

dollar Mars Climate Orbitter lost by officials at
NASA. The failure attributed to a failure in NASA’s system
engineering process. The process did not specify the system of
measurement to be used on the project. As a result one of the
development teams used imperial measurement while the other
used metric system of measurement. When the parameters are
passed from one module to the other during the orbit navigation,
no conversion performed resulting in the loss of the craft

7

Software Affliction

 Famous Software Failures
– E-mail buffer overflow (1998)- Several e-mail systems suffer from

“ buffer overflow error” when extremely long e-mail addresses are
received. The internal buffers receiving the addresses do not check
for length and allow the buffers to overflow causing the
applications to crash. Hostile hackers use this fault to trick the
computer into running malicious program in its place

8

Software Engineering

 The economies of ALL developed nations are dependent

on software.

 More and more systems are software controlled

 Expenditure on software represents a significant fraction

of the National Income in all developed countries.

 Software costs often dominate computer system costs.

The costs of software on a PC are often greater than the

hardware cost.

 Software costs more to maintain than it does to

develop. For systems with a long life, maintenance costs

may be several times development costs.

9

Software Engineering

 The field of software engineering was born in 1968 in

response to chronic failures of large software projects

to meet schedule and budget constraints

– Recognition of "the software crisis"

 Software Engineering term became popular after NATO

Conference in Garmisch Partenkirchen (Germany), 1968

10

Software Engineering

 Engineering

– The application of scientific and mathematical principles to practical
ends such as the design, manufacture, and operation of efficient
and economical structures, machines, processes, and systems.

– (Business / Professions) the profession of applying scientific

principles to the design, construction, and maintenance of engines,
cars, machines, etc. (mechanical engineering), buildings, bridges,
roads, etc. (civil engineering), electrical machines and
communication systems (electrical engineering), chemical plant
and machinery (chemical engineering), or aircraft (aeronautical
engineering)

11

Software Engineering

 Software Engineering

– Software Engineering is the establishment and use of

sound engineering principles in order to produce

software that is reliable and works efficiently on real

machines

– Software Engineering is the application of systematic ,

disciplined, quantifiable approach to the

development, operation, and maintenance of software

that is, the application of engineering to software

– Software engineering is an engineering discipline that is

concerned with all aspects of software production.

12

Software Engineering

 Software Engineering

– Software engineers should adopt a systematic and

organised approach to their work and use

appropriate tools and techniques depending on the

problem to be solved, the development constraints

and the resources available.

– System engineering is concerned with all aspects of

computer-based systems development including

hardware, software and process engineering.

Software engineering is part of this process concerned

with developing the software infrastructure, control,

applications and databases in the system.

13

Software Engineering – Layered

 Software Engineering

Technology

– Software Engineering is a layered technology and rests on an

organizational commitment to quality. The foundation for

software engineering is the process layer. Software Engineering

process is the glue that holds the technology layers together and

enables rational and timely development of computer software

Tools

Methods

Process

A quality Focus

– Software process forms the basis for management control of

software projects and establishes the context in which technical

methods are applied, work products (models, documents, data,

reports, forms etc) are produced, milestones are established,

quality is ensured, and change is properly managed.
14

Software Engineering –Generic View

 Engineering is the analysis, design, construction, verification,

and management of technical (or social) entities. Questions
that are to be asked and answered:

 What is the problem to be solved?
 What characteristics of the entity are used to solve the problem?
 How will the entity (and the solution) be realized?
 How will the entity be constructed?

 What approach will be used to uncover errors that were made

in the design and construction of the entity?

 How will the entity be supported over the long term, when
corrections, adaptations, and enhancements are requested
by users of the entity.

15

Software Engineering –Generic View

 The work associated with software engineering can
be categorized into three generic phases, regardless
of application area, project size, or complexity

– The definition phase focuses on what. That is, during

definition, the software engineer attempts to identify
what information is to be processed, what function and
performance are desired, what system behavior can be
expected, what interfaces are to be established, what
design constraints exist, and what validation criteria are
required to define a successful system. The key
requirements of the system and the software are
identified.

16

Software Engineering –Generic View

– The development phase focuses on how. That is, during
development a software engineer attempts to define how
data are to be structured, how function is to be
implemented within a software architecture, how
procedural details are to be implemented, how interfaces
are to be characterized, how the design will be translated
into a programming language (or nonprocedural
language), and how testing will be performed.

17

Software Engineering –Generic View

– The support phase focuses on change associated with error
correction, adaptations required as the software's
environment evolves, and changes due to enhancements
brought about by changing customer requirements.

– Four types of change are encountered during the support phase

 Correction. Even with the best quality assurance activities, it is
likely that the customer will uncover defects in the software.
Corrective maintenance changes the software to correct defects.

 Adaptation. Over time, the original environment (e.g., CPU,

operating system, business rules, external product
characteristics) for which the software was developed is likely to

change. Adaptive maintenance results in modification to the
software to accommodate changes to its external environment

18

Software Engineering –Generic View

 Enhancement. As software is used, the customer/user
will recognize additional functions that will provide
benefit. Perfective maintenance extends the software
beyond its original functional requirements.

 Prevention. Computer software deteriorates due to

change, and because of this, preventive maintenance,
makes changes to computer programs so that they
can be more easily corrected, adapted, and enhanced

19

Software Engineering –Key Challenges

 Coping with legacy systems, coping with increasing
diversity and coping with demands for delivery times.

 Legacy systems - old, valuable systems must

be maintained and updated.

 Heterogeneity - systems are distributed and includes
a mix of hardware and software

 Delivery - there is increasing pressure for

faster delivery of software.

20

Software Standards

 A software standard is a standard, protocol, or other common format of
a document, file, or data transfer accepted and used by one or more
software developers while working on one or more than one software
programs. Software standards enable interoperability between
different programs created by different developers.

 Software standards consist of certain terms, concepts, data formats,

document styles and techniques agreed upon by software creators so
that their software can understand the files and data created by a
different software program. To be considered a standard, a certain
protocol needs to accepted and incorporated by a group of developers
who contribute to the definition and maintenance of the standard.

21

http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Software_developers
http://en.wikipedia.org/wiki/Software

Software Standards

 The protocols HTML, TCP/IP, SMTP, POP and FTP are
software standards that an application designer must
understand and follow if their software expects to
interface with these standards

 In order for an email sent from Microsoft Outlook can be

read from within the Yahoo! Mail application, the email will
be sent using SMTP, which the different receiving program
understands and can parse properly to display the email.
Without a standardized technique to send an email, the
two different programs would be unable to accurately
share and display the delivered information.

22

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/TCP/IP
http://en.wikipedia.org/wiki/SMTP
http://en.wikipedia.org/wiki/Post_Office_Protocol
http://en.wikipedia.org/wiki/FTP
http://en.wikipedia.org/wiki/Microsoft_Outlook
http://en.wikipedia.org/wiki/Yahoo!_Mail

Software Standards

 Sources of Standards
– Standards organizations like WWW Consortium (W3C) and International

Standards Organization (ISO) which consist of groups of larger software
companies like Microsoft and Apple Inc. Representatives of these companies
contribute their ideas about how to make a single, unified software
standard to handle various problems they are facing and create standards
for all parties to agree to a certain software standard that they all should
use to make their software connect to each other

 Open v. closed standards

– Standard can be a closed standard or an open standard. The documentation
for an open standard is open to the public and anyone can create a
software that implements and uses the standard. The documentation and
specification for closed standards are not available to the public, enabling
its developer to sell and license the code to manage their data format to
other interested software developers

23

http://en.wikipedia.org/wiki/Standards_organization
http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/Internet_Society
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Apple_Inc.
http://en.wikipedia.org/wiki/Open_standard

Process Framework

 Process

– A set of activities whose goal is the development or

evolution of software.

– Generic activities in all software processes are:

 Specification - what the system should do and

its development constraints

 Development - production of the software system

 Validation - checking that the software is what

the customer wants

 Evolution - changing the software in response

to changing demands.

24

Process Framework

 Process

– Software Engineering methods provide the technical
“how to’s” for building software.

– Methods encompass a broad array of tasks that include

communication, requirements analysis, design

modeling, program construction, testing and support

– Software engineering tools provide automated or semi-

automated support for the process and methods

25

Process Framework

 Software Process

Process framework

Umbrella Activities

Frame work Activity #1
Software Engineering action #1.1

Task Sets
Work tasks

 Work Products

 Quality assurance

 points

 Project milestones

26

Process Framework

 Process framework

– A process framework establishes the foundation for a

complete software process by identifying a small

number of framework activities that are applicable to

all software projects, regardless of their size and

complexity. It also contains a set of umbrella activities

that are applicable across the entire software process

– Each framework activity is populated by a set of

software engineering actions – a collection of related

tasks that produces a major software engineering work

product. Each action is populated with individual work

tasks that accomplish some part of the work implied

by the action

27

Process Framework

 Process framework

– Generic framework activities

 Communication involving communication and

collaboration with the customer and encompasses

requirements gathering and other related activities

 Planning – this activity establishes a plan for the

software engineering work that follows. It describes

the technical task to be conducted, the risks that are

likely, the resources that will be required, work

products to be produced and a work schedule

28

Process Framework

 Process framework

– Generic framework activities

 Communication involving communication and

collaboration with the customer and encompasses

requirements gathering and other related activities

 Planning – this activity establishes a plan for the

software engineering work that follows. It describes

the technical task to be conducted, the risks that are

likely, the resources that will be required, work

products to be produced and a work schedule

29

Process Framework

 Process framework

– Generic framework activities

 Modeling which encompasses the creation of

models that allow the developer and customer to

better understand software requirements and the

design that will achieve those requirements

 Construction activity combines code generation

and the testing that is required to uncover errors in

the code

 Deployment involves delivery to the customer

who evaluates the delivered product and provides

feedback on the evaluation

30

Process Framework

 Process framework

– Umbrella activities

 Software Project Tracking and control – This

allows the software team to assess progress against

the project plan and take necessary action to

maintain schedule

 Risk management – assesses risks that may effect

the outcome of the project or the quality of the

product

 Software Quality Assurance – defines and conducts

the activities required to ensure software quality

31

Process Framework

 Process framework

– Umbrella activities

 Formal technical reviews – assesses software

engineering work products in an effort to uncover

and remove errors before they are propagated to

the next action or activity

 Measurement – defines and collects process,

project and product measures that assist the team

in delivering software that meets customers’ needs

 Software configuration management – manages the

effects of change throughout the software process

32

Process Framework

 Process framework

– Umbrella activities

 Reusability management – defines criteria for work

product reuse and establishes mechanisms to

achieve reusable components

 Work product preparation and production –

Encompasses the activities required to create work

products such as models, documents, logs, forms

– Umbrella activities are applied throughout the software

process

33

Capability Maturity Model Integrated (CMMI)

 Companies want to deliver products and services better,

faster and cheaper. All the organizations have found

themselves building increasingly complex products and

services. A single company does not develop all the

components that compose a product or service. Some

components are built in-house and some are acquired,

then all the components are integrated into the final

product or service.

 CMMI for development consists of best practices that

address development and maintenance activities applied

to products and services. It addresses practices that cover

the product’s lifecycle from conception through delivery

and maintenance

34

Process Assessment

– The existence of a software process is no guarantee that software will be

delivered on time, that it will meet the customer needs or that it will

exhibit the technical characteristics that will lead to long-term quality

characteristics. Process should be assessed to ensure that it meets a set of

basic process criteria that have been shown to be essential for a

successful software engineering. Different approaches of assessment are

 Standard CMMI Assessment Method for Process

Improvement (SCAMPI)
 CMM-Based Appraisal for Internal Process Improvement (CBA IPI)
 ISO/IECI5504

 ISO 9001:2000 for software stresses the importance for an

organization to identify, implement, manage, and continually improve

the effectiveness of the processes that are necessary for the quality

management system, and to manage the interactions of these processes

in order to achieve the organization’s objectives

35

The Waterfall Model

 This Model suggests a systematic, sequential approach to SW

development that begins with customer specification of requirements

and progresses through planning, modeling, construction and

deployment, culminating in on-going support of the completed software

Communication
Project initiation

requirement gathering
Planning

Estimating
Scheduling

tracking Modeling
Analysis

design Construction

Code
test

 Deployment
Delivery
Support

36
feedback36

The Waterfall Model

 Waterfall Assumptions
 Requirements are known from the start, before design
 Requirements are stable
 The design can be done abstractly and speculatively i.e. it is

possible to correctly guess in advance how to make it work
 Everything will fit together when we start the integration

 Pros and Cons
•Pro

 Can be used for projects with well-defined requirements
 Cons

 Inflexible
 Limited use of iteration, problems from earlier phases
are hard to fix

 Expects full requirements early
 Working program is not available early
•High risk issues are not tackled early enough

37

THE INCREMENTAL PROCESS MODELS

 Rather than deliver the system as a single delivery, the development and
delivery is broken down into increments with each increment delivering part of
the required functionality.

 User requirements are prioritised and the highest priority requirements

are included in early increments.

 Once the development of an increment is started, the requirements are

frozen though requirements for later increments can continue to evolve.

 Customer value can be delivered with each increment so system functionality

is available earlier.

 Early increments act as a prototype to help elicit requirements for

later increments.
 Lower risk of overall project failure.
 The highest priority system services tend to receive the most testing.

38
38

So
ft

w
ar

e
fu

n
ct

io
n

al
it

y
an

d
 f

ea
tu

re
s

The Incremental Model


Communication


Planning
 Increment # n

Modeling Planning



Communication

Modeling

Construction
test

 Support



Analysis

Construction

Deployment

 design Code Delivery


Deployment

 feedback

 delivery of

Increment#2

 nth increment

Communication

Planning

Modeling

Construction

Deployment

Increment # 1 Analysis Delivery of

 design Code Delivery

 test Support 2nd increment
 feedback

Communication

Planning

Modeling

Construction

Deployment

 Analysis

 design Code Delivery delivery of

 test Support

 feedback

1ST increment

Project calendar time

39
39

The Incremental Model

40

The Incremental Model

 Software releases in increments

 1st increment constitutes Core product
 Basic requirements are addressed
 Core product undergoes detailed evaluation by

the customer
 As a result, plan is developed for the next increment
 Plan addresses the modification of core product

to better meet the needs of customer
 Process is repeated until the complete product

is produced

41
41

THE RAD MODEL
(Rapid Application Development)

 An incremental software process model
 Having a short development cycle

 High-speed adoption of the waterfall

model using a component based
construction approach

 Creates a fully functional system within a

very short span time of 60 to 90 days

42
42

THE RAD MODEL

 Multiple software teams work in parallel on
different functions

 Modeling encompasses three major phases: Business
modeling, Data modeling and process modeling

 Construction uses reusable components, automatic
code generation and testing

 Problems in RAD
 Requires a number of RAD teams



 Requires commitment from both developer and customer for
rapid-fire completion of activities



 Requires modularity


 Not suited when technical risks are high

43
43

The RAD Model

 Team # n

Modeling

 Business modeling

 Data modeling

 Process modeling

Team # 2

Construction

Component reuse

 automatic code

Communication generation
 Modeling testing

Business modeling

 Data modeling
 Process modeling

Construction

Planning

 Team # 1 Component reuse

Modeling

automatic code
generation

testing

Business modeling

Data modeling
Process modeling

Construction
Component reuse
automatic code

generation
testing

Deployment
integration

delivery
feedback

44

EVOLUTIONARY PROCESS MODEL

 Software evolves over a period of time

 Business and product requirements often change as

development proceeds making a straight-line path to
an end product unrealistic

 Evolutionary models are iterative and as such
are applicable to modern day applications

 Types of evolutionary models
– Prototyping
– Spiral model
– Concurrent development model

45
45

Evolutionary development

46

Evolutionary development

 Problems

– Lack of process visibility;

– Systems are often poorly structured;

– Special skills (e.g. in languages for rapid prototyping)

may be required.

 Applicability

– For small or medium-size interactive systems;

– For parts of large systems (e.g. the user interface);

– For short-lifetime systems.

47

Prototype

 Prototyping
– A prototype is a mock-up of the proposed system,

which is released to the users during the
requirements definition or early design stages

– Prototyping is frequently used to provide early
feedback to customers and users to improve
communication of requirements between the
analysts and the users

– It acts as a vehicle for clarifying certain types of
requirements vividly

– Specifications document built with the assistance of
prototype tends to undergo fewer changes during
and after the development

48

Evolutionary Models: Prototype

 Quick

Communication Plan

Modeling
Quick design

Construction
Deployment of prototype

delivery &
feedback

49
49

Prototype

 Prototyping
– Prototypes serve three major purposes

 Clarify and complete the requirements- used as a
requirement tool, the prototype is a preliminary
implementation of a part of the system that is not
well understood.

 Explore design alternatives – Used as a design tool,
a prototype lets stakeholders explore different user
interaction techniques, optimize system usability,
and evaluate potential technical approaches

 Grow into the ultimate product – Used as a
construction tool, a prototype is a functional
implementation of an initial subset of the product,
which can be elaborated into the complete product
through a sequence of small-scale development

cycles 50

Prototype

 Prototyping
– Steps involved

 Establish goals for the prototype – lay down and agree on
the objectives of the prototype to be developed

 Define prototype features and functionality – A detailed list
of features and functions that are to be demonstrated in the
prototype are documented, discussed and agreed to

 Get the prototype ready – Prototype will be developed and
reviewed against the list of features and functionality to ensure

that all the required features and functionality are developed
 Evaluate the prototype – Prototype is executed. Users’ and

developers’ feedback is collected. The evaluation report is
then used to elicit and analyze new requirements

51

Prototype

 Prototyping
– Types of Prototypes

 Horizontal Prototypes
– A horizontal prototype is also called a

behavioral prototype or a mock-up. It is called
horizontal because it does not drive into all the
layers of an architecture but primarily depicts a
portion of the user interface

– Horizontal prototypes can demonstrate the
functional options the user will have, the
look and feel of the user interface and the
information architecture
– Horizontal prototype does not perform any

useful work, although it looks as if it should

52

Prototype

 Prototyping
– Types of Prototypes

 Vertical prototypes
– Also known as structural prototype or proof of

concept implements a slice of application
functionality from the user interface through
the technical service layers.

– A vertical prototype works like the real system
is supposed to work because it touches on all
levels of the system implementation. Vertical
prototypes are constructed using production
tools in a production like environment.

– Vertical prototypes are used to explore critical
interface and timing requirements and to
reduce risk during design

53

Prototype

 Prototyping
– Throwaway prototype

 A throwaway prototype is built to answer questions,
resolve uncertainties, and improve requirements.

 A throwaway prototype emphasizes quick
implementation and modification over
robustness, reliability, performance, and long-
term maintainability

 The throwaway prototype is most appropriate
when the team faces uncertainty, ambiguity,
incompleteness, or vagueness in the requirements

54

Prototype

 Prototyping
– Evolutionary prototype

 Evolutionary prototype provides a solid
architectural foundation for building the
product incrementally as the requirements
become clear over time.

 The tools, languages, platforms used to develop the
prototype be the same as the actual development
platform selected

 To maximize the re-use of the prototype, important
conventions for the design and programming be
laid down before the development of the prototype
begins

 The prototype be reviewed, not only externally
(behaviour) but also internally (design and code
review) 55

Prototype

 Prototyping
– Benefits of prototyping

 Improved communication between the
developers and the end-users

 Increased user involvement
 Ability to clarify hidden or ambiguous requirement
 Quicker review of the Specifications
 Better expectation setting of end-users

56

Prototype

 Prototyping
– Drawbacks

 A user may get disillusioned with a prototype since
the prototype is not as robust as the system and
does not contain the full functionality

 A user may think that the system is “ready” by
looking at the prototype and may think that the
developers are taking him for a ride by asking
for considerable amount of additional time

 Developers may use “prototype” as an excuse to
back the code, rather than to gather requirements

 The cost of prototype is added to the project cost
 Developers may start considering the prototype

as substitute for the documented Specifications

57

The Spiral Model

 The spiral model , also known as the spiral lifecycle model
is a risk driven process model generator that is used to
guide multi-stakeholder concurrent engineering of
software intensive systems. The main features are
– Cyclic approach for incrementally growing a system’s

degree of definition and implementation while
decreasing its degree of risk

– A set of anchor point milestones for ensuring stakeholder
commitment to feasible and mutually satisfactory
solutions

 This model of development combines the features of the
prototyping model and the waterfall model. The spiral model
is favored for large, expensive, and complicated projects.

58

The Spiral Model

 The steps in the spiral model can be generalized as follows:
– The new system requirements are defined in as much detail as

possible. This usually involves interviewing a number of users
representing all the external or internal users and other aspects
of the existing system.

– A preliminary design is created for the new system.
– A first prototype of the new system is constructed from the

preliminary design. This is usually a scaled-down system, and
represents an approximation of the characteristics of the
final product.

– A second prototype is evolved by a fourfold procedure:
 Evaluating the first prototype in terms of its strengths, weaknesses,

and risks
 Defining the requirements of the second prototype
 Planning and designing the second prototype
 Constructing and testing the second prototype.

59

The Spiral Model

– At the customer's option, the entire project can be aborted if the risk
is deemed too great. Risk factors might involve development cost
overruns, operating-cost miscalculation, or any other factor that
could, in the customer's judgment, result in a less-than-satisfactory
final product.

– The existing prototype is evaluated in the same manner as was the
previous prototype, and, if necessary, another prototype is
developed from it according to the fourfold procedure outlined
above.

– The preceding steps are iterated until the customer is satisfied that
the refined prototype represents the final product desired.

– The final system is constructed, based on the refined prototype.

– The final system is thoroughly evaluated and tested. Routine
maintenance is carried out on a continuing basis to prevent
large-scale failures and to minimize downtime.

60

The Spiral Model

61
61

The Spiral Model

The spiral model is divided into a number of framework activities
 COMMUNICATION

*Tasks required are establish effective communication
between developer

 PLANNING
*Estimation
*Scheduling
*Risk analysis

 MODELING
*Analysis
*Design

 CONSTRUCTION
*Code
*Test

 DEPLOYMENT
*Delivery
*Feedback

Each region is populated by a series of work tasks.

62

The Spiral Model

Advantages:
 Software evolves as the process progresses
 The developer and customer better understand

and react to risks at each evolutionary level
 Enables the developer to use prototyping
approach at any stage in the evolution of
the product

 It maintains the systematic stepwise approach
of classic life cycle but incorporates it into an
iterative framework that more realistically
reflects the real world

 The model demands a direct consideration of
technical risks at all stages of the project and, if
properly applied, should reduce risks before they

become problematic 63

The Spiral Model

Disadvantages:

 It may be difficult to convince customers that
the evolutionary approach is controllable

 It requires considerable risk assessment expertise
and relies on this expertise for the success

 If a major risk is not uncovered and
managed problems will occur

64

CONCURRENT DEVELOPMENT MODEL

•Constitutes a series of events that will trigger transitions
from state to state for each of the software engineering
activities framework activities, actions or tasks

 It can be represented as a series of framework activities,
software engineering actions and tasks and their
associated states

•All activities exist concurrently but reside in different states

•Applicable to all types of software development

•Event generated at one point in the process trigger
transitions among the states

65
65

CONCURRENT DEVELOPMENT MODEL

Modeling Activity None

Under
Development

Awaiting
changes

Under
Review

Under
revision

Baselined

Done
66

CONCURRENT DEVELOPMENT MODEL

•The modeling activity which existed in the ‘none’
state while initial communication was completed,
now makes a transition into the ‘under development’
state.

•If the customer indicates that changes in
requirements must be made, the modeling activity

moves from under development state into
awaiting changes state

67
67

SPECIALIZED PROCESS MODELS

•Component-Based Development

 Commercial off-the-shelf (COTS) software
components, built by vendors can be used
when software is to be built

 These components can be as either conventional

software modules or object-oriented packages
or packages of classes

 Steps involved in CBS are

 Available component-based products are

researched and evaluated for the
application domain in question

• Component Integration issues are considered 68
 68

SPECIALIZED PROCESS MODELS

•Component-Based Development

 Steps involved in CBS are

 A software architecture is designed
to accommodate the components

 Components are integrated into the architecture

 Comprehensive testing is conducted to

ensure proper functionality

69
69

SPECIALIZED PROCESS MODELS

•Component-Based Development

 Component-based development model leads to
software reuse and reusability helps software
engineers with a number of measurable benefits

 Component-based development leads to a 70

percent reduction in development cycle time, 84
percent reduction in project cost and productivity
index of 26.2 compared to an industry norm of 16.9

70
70

The Component Assembly Model

Planning

Risk Analysis

Customer

Communication

Engineering

Customer

Evaluation

Construction & Release

Identify
candidate
component

Construct
Look up

nth iteration

 components
of system

 in library

Put new
 Extract

components
components

if available
in library

Build
components
if unavailable

71

Unified Process

 Advantages of UP Software Development

– This is a complete methodology in itself with an emphasis
on accurate documentation

– It is proactively able to resolve the project risks

associated with the client's evolving requirements
requiring careful change request management

– Less time is required for integration as the process

of integration goes on throughout the software
development life cycle.

– The development time required is less due to reuse of
components.

72

http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html

Unified Process

 Disadvantages of RUP Software Development
– The team members need to be expert in their field to

develop a software under this methodology.
– On cutting edge projects which utilise new technology,

the reuse of components will not be possible. Hence
the time saving one could have made will be impossible
to fulfill.

– Integration throughout the process of software
development, in theory sounds a good thing. But on
particularly big projects with multiple development
streams it will only add to the confusion and cause
more issues during the stages of testing

73

http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html

SOFTWARE REQUIREMENTS

 IEEE defines Requirement as :
 A condition or capability needed by a user

to solve a problem or achieve an objective

 A condition or capability that must be met or
possessed by a system or a system
component to satisfy contract, standard,
specification or formally imposed document

 A documented representation of a condition or
capability as in 1 or 2

74
74

SOFTWARE REQUIREMENTS

 Requirements may range from a high-level abstract
statement of a service or of a system constraint to
a detailed mathematical functional specification.

 Requirements may serve a dual function

– May be the basis for a bid for a contract -
therefore must be open to interpretation

– May be the basis for the contract itself -

therefore must be defined in detail

75

Software Requirements

“If a company wishes to let a contract for a large software development

project, it must define its need s in a sufficien tly abstract way that a solution

is not pre-defined. The requirements must be written so that several

contractors can bid for the con tract, offering, perhaps, different ways of

meeting the client organi sation’s need s. Once a contract has been awarded,

the contractor must write a system definition for the client in more detail so

that the client und erstands and can validate what the software will do. Both of

these documents may be called the requirements document for the system.”

76

Types of Requirements

 Business Requirements

 User requirements

 System requirements

 Functional requirements

 Non-functional requirements

 Domain requirements
 Interface Specifications

77

Business Requirements

 A high-level business objective of the organization
that builds a product or of a customer who procures
it

 Generally stated by the business owner or

sponsor of the project

– Example: A system is needed to track
the attendance of employees

– A system is needed to account the inventory

of the organization

78

User Requirements

 A user requirement refers to a function that
the user requires a system to perform.

 Made through statements in natural language and

diagrams of the services the system provides and
its operational constraints. Written for customers.

 User requirements are set by client and confirmed

before system development.
– For example, in a system for a bank the user may require

a function to calculate interest over a set time period.

79

System Requirements

 A system requirement is a more technical requirement,
often relating to hardware or software required for a system
to function.
– System requirements may be something like - "The system must run

on a server with IIS
– System requirements may also include validation requirements such

as "File upload is limited to .xls format
 System requirements are more commonly used by

developers throughout the development life cycle. The
client will usually have less interest in these lower level
requirements.

 A structured document setting out detailed descriptions of

the system’s functions, services and operational constraints.

80

Functional Requirements

 Statements of services the system should provide, how the system
should react to particular inputs and how the system should behave in
particular situations.

 A functional requirement defines a function of a software system or
its component.

 A function is described as a set of inputs, the behavior, and outputs
 Functional requirements may be calculations, technical details, data

manipulation and processing and other specific functionality that
define what a system is supposed to accomplish.

 Behavioral requirements describing all the cases where the system
uses the functional requirements are captured in use cases

 Functional requirements drive the application architecture of a system
 The plan for implementing functional requirements is detailed in

the system design

81

Non-Functional Requirements

 A non-functional requirement is a requirement that specifies criteria
that can be used to judge the operation of a system, rather than specific
behaviors

 The plan for implementing non-functional requirements is detailed in
the system architecture.

 Non-functional requirements are often called qualities of a system.
Other terms for non-functional requirements are "constraints", "quality
attributes", "quality goals", "quality of service requirements" and "non-
behavioral requirements

 These define system properties and constraints e.g. reliability,
response time and storage requirements. Constraints are I/O device
capability, system representations, etc.

 Process requirements may also be specified mandating a particular

CASE system, programming language or development method.

 Non-functional requirements may be more critical than functional

requirements. If these are not met, the system may become useless.

82

Non-functional requirements

 These define system properties and constraints e.g.
reliability, response time and storage
requirements. Constraints are I/O device
capability, system representations, etc.

 Process requirements may also be specified mandating
a particular CASE system, programming language or
development method.

 Non-functional requirements may be more critical than
functional requirements. If these are not met, the system
is useless.

83

Non-functional Requirements classifications

 Product requirements

– Requirements which specify that the delivered product must

behave in a particular way e.g. execution speed, reliability, etc.

 Organisational requirements

– Requirements which are a consequence of organisational policies

and procedures e.g. process standards used, implementation

requirements, etc.

 External requirements

– Requirements which arise from factors which are external to the

system and its development process e.g. interoperability

requirements, legislative requirements, etc.

84

Non-functional requirement types

Non-functional
requir ements

 Product Organisational External

 requir ements requir ements requir ements

 Efficiency Relia bility Porta bility Inter oper a bility Ethical

 requir ements requir ements requir ements requir ements requir ements

 Usa bility Deli very Implementa tion Standar ds Leg islative

 requir ements requir ements requir ements requir ements requir ements

 Performance Space Pri vacy Safety

 requir ements requir ements requir ements requir ements

85

Non-functional requirements examples

 Product requirement

The user interface for the system shall be implemented as simple

HTML without frames or Java applets.

 Organisational requirement

The system development process and deliverable documents shall

conform to the process and deliverables defined in XYZCo-SP-

STAN-95.

 External requirement

The system shall not disclose any personal information about

customers apart from their name and reference number to the

operators of the system.

86

Non-Functional Requirements measures

Property Measure

Speed Processed transactions/second

 User/Event response time

 Screen refresh time

Size M Bytes

 Number of ROM chips

Ease of use Training time

 Number of help frames

Reliability Mean time to failure

 Probability of unavailability

 Rate of failure occurrence

 Availability

Robustness Time to restart after failure

 Percentage of events causing failure

 Probability of data corruption on failure

Portability Percentage of target dependent statements

 Number of target systems

87

Domain Requirements

 Domain requirements reflect the environment in which the system
operates so, when we talk about an application domain it means
environments such as train operation, medical records, e-commerce etc.

 Domain requirements may be expressed using specialized domain
terminology or reference to domain concepts. Because these
requirements are specialized, software engineers often find it difficult
to understand how they are related to other system requirements

 Domain requirements are important because they often reflect
fundamentals of the application domain. If these requirements are not
satisfied, it may be impossible to make the system work satisfactorily.

 For example, the requirements for an insulin pump system that
delivers insulin on demand include the following domain requirement:
– The system safety shall be assured according to standard IEC 60601-1:Medical

Electrical Equipment – Part 1:General Requirements for Basic Safety
and Essential Performance

88

Domain requirements problems

 Understandability

– Requirements are expressed in the language

of the application domain
– This is often not understood by software

engineers developing the system.
 Implicitness

– Domain specialists understand the area so

well that they do not think of making the

domain requirements explicit.

89

Characteristics of Good User

Requirements

A user requirement is
good if it is:

1. Verifiable

2. Clear and concise

3. Complete

4. Consistent

5. Traceable

6. Viable

7. Necessary

8. Implementation free

Think of these

characteristics as a
series of filters. A
good requirement

will pass through all
eight filters.

90

What Makes a UR Verifiable?

A verifiable requirement …

 is stated in such a way that it can be tested by:
 inspection,
 analysis, or
 demonstration.

 makes it possible to evaluate whether the
system met the requirement, and

 is verifiable by means that will not contaminate
the product or compromise the data integrity.

91

Is this UR Verifiable?

 Bad example:

 UR1: The
system must be
user friendly.

 How should we
measure user
friendliness?

 Good example:

 UR1: The user
interface shall be
menu driven. It
shall provide
dialog boxes, help
screens, radio
buttons, dropdown
list boxes, and spin
buttons for user
inputs.

92

What Makes a UR Clear & Concise?

A clear & concise requirement …

 must consist of a single requirement,
 should be no more than 30-50 words in length,
 must be easily read and understood by non

technical people,
 must be unambiguous and not susceptible to

multiple interpretations,
 must not contain definitions, descriptions of its use,

or reasons for its need, and
 must avoid subjective or open-ended terms.

93

Is this UR Clear & Concise?

 Bad example:

-UR2: All screens
must appear on
the monitor
quickly.

-How long is
quickly?

 Good example:

-UR2: When
the user
accesses any
screen, it must

appear on the
monitor within
2 seconds.

94

What Makes a UR Complete?

A complete requirement …

 contains all the information that is needed to
define the system function,

 leaves no one guessing (For how long?, 50 %
of what?), and

 includes measurement units (inches or centimeters?).

95

Is this UR Complete?

 Bad example:

-UR3: On loss of
power, the
battery backup
must support
normal
operations.

-For how long?

 Good example:

-UR3: On loss
of power, the
battery
backup must
support
normal
operations for
20 minutes.

96

What Makes a UR Consistent?

A consistent requirement …

 does not conflict with other requirements in
the requirement specification,

 uses the same terminology throughout
the requirement specification, and

 does not duplicate other URs or pieces of other
URs or create redundancy in any way.

97

Is this UR Consistent?

 Bad example:

 UR4: The
electronic batch
records shall be
Part 11 compliant.

 UR47: An on-going
training program
for 21 CFR Part 11
needs to be
established at the
sites.

 Do these refer to
the same regulation
or different ones?

 Good example:

 UR4: The
electronic batch
records shall be
21 CFR Part 11
compliant.

 UR47: An on-going
training program
for 21 CFR Part 11
needs to be
established at the
site.

98

What Makes a UR Traceable?

A traceable requirement …

 has a unique identity or number,
 cannot be separated or broken into

smaller requirements,
 can easily be traced through to specification,

design, and testing.
 Change Control on UR level.

99

Is this UR Traceable?

 Bad example:

 UR: The system must
generate a batch end
report and a discrepancy
report when a batch is
aborted.

 How is this uniquely

identified? If the
requirement is changed
later so that it does not
require a discrepancy
report, how will you
trace it back so you can
delete it?

 Good example:
 UR6v1: The system

must generate a batch
end report when a
batch is aborted.

 UR7v2: The system

must generate a
discrepancy report
when a batch is
completed or aborted.

100

Requirements imprecision

 Problems arise when requirements are not precisely stated.

 Ambiguous requirements may be interpreted in

different ways by developers and users.

 Consider the term ‘appropriate viewers’

– User intention - special purpose viewer for each

different document type;

– Developer interpretation - Provide a text viewer that

shows the contents of the document.

101

Requirements Mismatch

102
102

Interface specification

 Most systems must operate with other systems and the
operating interfaces must be specified as part of the
requirements.

 Three types of interface may have to be defined
– Procedural interfaces;
– Data structures that are exchanged;
– Data representations.

 Formal notations are an effective technique for

interface specification.

103

Example interface description

interface PrintServer {

// def ines an abstract printer server

// requires: interface Printer, interface PrintDoc

// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;

void print (Printer p, PrintDoc d) ;

void displayPrintQueue (Printer p) ;

void cancelPrintJob (Printer p, PrintDoc d) ;

void switchPrinter (Printer p1, Printer p2, PrintDoc

d) ; } //PrintServer

104

Requirements readers

105

Requirements and design

 In principle, requirements should state what the system
should do and the design should describe how it does this.

 In practice, requirements and design are inseparable
– A system architecture may be designed to structure the

requirements;
– The system may inter-operate with other systems that

generate design requirements;
– The use of a specific design may be a domain

requirement.

106

Definitions and specifications

User requir ement definition

1. The softw are m ust pr ovide a means of representing and

 accessing e xternal files cr ea ted b y other tools .

Sy stem requir ements specification

1.1 The user should be pr ovided with facilities to define the ty pe of

 1.2 external files .

 1.2 Each e xternal file ty pe ma y have an associa ted tool w hich ma y be

 1.2 applied to the file .

 1.3 Each e xternal file ty pe ma y be repr esented as a specific icon on

 1.2 the user’ s displa y.

 1.4 Facilities should be pr o vided for the icon r epresenting an

 1.2 external file ty pe to be defined b y the user .

 1.5 When a user selects an icon r epr esenting an e xternal file, the

 1.2 effect of that selection is to apply the tool associated with the ty pe of

 1.2 the external file to the file represented by the selected icon.

107

Specifying User requirements

 Should describe functional and non-

functional requirements in such a way

that they are understandable by system

users who don’t have detailed technical

knowledge.

 User requirements are defined using

natural language, tables and diagrams as

these can be understood by all users.

108

Problems with natural language

 Lack of clarity

– Precision is difficult without making the

document difficult to read.
 Requirements confusion

– Functional and non-functional requirements

tend to be mixed-up.
 Requirements amalgamation

– Several different requirements may

be expressed together.

109

Problems with NL specification

 Ambiguity
– The readers and writers of the requirement must

interpret the same words in the same way. NL is
naturally ambiguous so this is very difficult.

 Over-flexibility
– The same thing may be said in a number of different

ways in the specification.
 Lack of modularisation

– NL structures are inadequate to structure system
requirements.

110

Alternatives to NL specification

Notation Description

Structured natural This approach depends on defining standard forms or templates to express the
language requirements specification.

Design This approach uses a language like a programming langu age but with more ab stract
description features to specify the requirements by defining an operational model of the system.
language s This approach is not now widely used although it can be useful for interface

 specifications.

Graphical A graphical languag e, supplemented by text annotations is used to define the
notations functional requirements for the system. An early example of such a graphical

 language was SADT. Now, use-case descriptions and sequence d iagrams are
 commonly used .

Mathematical These are notations based on mathematical concep ts such as finite-state machines or
specifications sets. These unambiguous specifications reduce the argu ments between customer and

 contractor about system functionality. However, most customers don’t understand
 formal specifications and are reluctant to accept it as a system contract.

111

Structured language specifications

 The freedom of the requirements writer is limited
by a predefined template for requirements.

 All requirements are written in a standard way.
 The terminology used in the description may

be limited.
 The advantage is that the most of the

expressiveness of natural language is maintained
but a degree of uniformity is imposed on the
specification.

112

Form-based specifications

 Definition of the function or entity.

 Description of inputs and where they come from.

 Description of outputs and where they go to.

 Indication of other entities required.

 Action to be performed

 Pre and post conditions (if appropriate).

 The side effects (if any) of the function.

113

Form-based node specification

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: Safe sugar level

Description Computes the dose of insulin to be delivered when the current measured sugar level is in
the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2), the previous two readings (r0 and r1)

Source Current sugar reading from sensor. Other readings from memory.

Outputs CompDose Ğ the dose in insulin to be delivered

Destination Main control loop

Action: CompDose is zero if the sugar level is stable or fa lling or if the level is increasing but the

rate of increase is decreasing. If the level is increasing and the rate of increase is increasing, then

CompDose is computed by dividing the diff erence between the current sugar level and the

previous level by 4 and rounding the result. If the result, is rounded to zero then CompDose is set

to the minimum dose that can be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single dose of insulin..

Post-condition r0 is replaced by r1 then r1 is replaced b y r2

Side-effects None

114

Tabular specification

 Used to supplement natural language.

 Particularly useful to define a number of

possible alternative courses of action.

115

Tabular specification

Condition

Sugar level falling (r2 < r1)

Sugar level stable (r2 = r1)

Sugar level increasing and rate of

increase decreasing ((r2-r1)<(r1-r0))

Sugar level increasing and rate
of increase stable or increasing.
((r2-r1) • (r1-r0))

Action

CompDose = 0

CompDose = 0

CompDose = 0

CompDose = round ((r2-r1)/4)

If rounded result = 0 then

CompDose = MinimumDose

116

Graphical models

 Graphical models are most useful when

you need to show how state changes or

where there is a need to describe a

sequence of actions.

117

Sequence diagrams

 These show the sequence of events that take
place during some user interaction with a
system.

 You read them from top to bottom to see
the order of the actions that take place.

 Cash withdrawal from an ATM
– Validate card;
– Handle request;
– Complete transaction.

118

Sequence diagram of ATM withdrawal

AT M Database

Card

PIN request

PIN

Option menu

<<exception>>

invalid card

Withdraw request

Amount request

Amount

<<exception>>

insufficient cash

Card

Card removed

Cash

Cash removed

Receipt

Card number

Card OK

Balance request

Balance

Debit (amount)

Debit response

Validate card

Handle request

Complete
transaction

119

The Software Requirements Specifications

(SRS) Document

 The requirements document is the official

statement of what is required of the

system developers.

 Should include both a definition of user

requirements and a specification of the

system requirements.

 It is NOT a design document. As far as possible,

it should set of WHAT the system should do

rather than HOW it should do it

120

Users of a requirements document

121

Purpose of SRS

 Communication between the Customer,
Analyst, System Developers, Maintainers

 Firm foundation for the design phase
 Support system testing activities
 Support project management and control
 Controlling the evolution of the system

122
122

IEEE Requirements Standard

 Defines a generic structure for a
requirements document that must be
instantiated for each specific system.
– Introduction.
– General description.
– Specific requirements.
– Appendices.
– Index.

123
123

IEEE Requirements Standard

1.Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

124
124

IEEE requirements standard

2. General description

2.1 Product perspective

2.2 Product function summary

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

125
125

IEEE Requirements Standard

 Specific Requirements
 Functional requirements
 External interface requirements
 Performance requirements
 Design constraints
 Attributes

eg.security, availability, maintainability,

transferability/conversion

 Other requirements
 Appendices
 Index

126
126

Suggested SRS Document Structure

 Preface

– Should define the expected readership of the document and describe
its version history, including a rationale for the creation of a new
version and a summary of the changes made in each version

 Introduction

– This should describe the for the system. It should briefly describe its
functions and explain how it will work with other. It should describe
how it will with other systems. It should describe how the system
fits into the overall business or strategic objectives of the
organization commissioning the software

 Glossary

– This should define the technical terms used in the document. Should not
make assumptions about the experience or expertise of the reader

127
127

Suggested SRS Document Structure

 User Requirements Definition

– The services provided for the user and the non-functional system
requirements should be described in this section. This description
may use natural language, diagrams or other notations that are
understandable by customers. Product and process standards which
must be followed should be specified

 System Architecture

– This chapter should present a high-level overview of the anticipated
system architecture showing the distribution of functions across
modules. Architectural components that re reused should be
highlighted

 System Requirements Specification

– This should describe the functional and non-functional requirements in
more detail. If necessary, further detail may also be added to the non-
functional requirements e.g. interfaces to other systems may be

defined 128

128

Suggested SRS Document Structure

 System Models

– This should set out one or more system models showing the
relationships between the system components and the system and
its environment. These might be object models and data-flow models

 System Evolution

– This should describe the fundamental assumptions on which the
system is based and anticipated changes due to hardware
evolution, changing user needs etc

 Appendices
– These should provide detailed, specific information which is related to

the application which is being developed. E.g. Appendices that
may include hardware and database descriptions.

 Index
– Several indexes to the document may be included

129
129

SYLLABUS

 Requirements engineering process : Feasibility
studies, Requirements elicitation and

analysis, Requirements validation,
Requirements management.

 System models : Context Models, Behavioral models,
Data models, Object models, structured methods.

130
130

Requirements Engineering Processes

 A customer says “ I know you think you understand what
I said, but what you don’t understand is what I said is not
what I mean”

 Requirement engineering helps software engineers
to better understand the problem to solve.

 It is carried out by software engineers (analysts) and other
project stakeholders

 It is important to understand what the customer wants
before one begins to design and build a computer
based system

 Work products include user scenarios, functions
and feature lists, analysis models

131

Requirements Engineering Processes

 Requirements engineering (RE) is a systems and software
engineering process which covers all of the activities
involved in discovering, documenting and maintaining a
set of requirements for a computer-based system

 The processes used for RE vary widely depending on
the application domain, the people involved and the
organisation developing the requirements.

 Activities within the RE process may include:
– Requirements elicitation - discovering

requirements from system stakeholders
– Requirements analysis and negotiation - checking

requirements and resolving stakeholder conflicts

132

http://en.wikipedia.org/wiki/Requirements_elicitation
http://en.wikipedia.org/wiki/Requirements_analysis

Requirements Engineering Processes

 Activities within the RE process may include:
– Requirements specification (Software Requirements

Specification)- documenting the requirements in

a requirements document

– System modeling - deriving models of the system, often

using a notation such as the Unified Modeling Language

– Requirements validation - checking that the documented
requirements and models are consistent and meet

stakeholder needs

– Requirements management - managing changes to the

requirements as the system is developed and put into use

133

http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Requirements_management

Requirements Engineering Processes

Requirements Engineering

Requirements Analysis

Requirements Elicitation

Requirements Specification Requirements Verification

Requirements Management

134

Article printing use-case

135

LIBSYS use cases

136

Print article sequence

137

USE CASES

 A Use case can have high priority for
– It describes one of the business process that

the system enables
– Many users will use it frequently
– A favoured user class requested it
– It provides capability that’s required

for regularoty compliance
– Other system functions depend on its presence

138

Social and organisational factors

 Software systems are used in a social and
organisational context. This can influence
or even dominate the system requirements.

 Social and organisational factors are not
a single viewpoint but have influences on
all viewpoints.

 Good analysts must be sensitive to these
factors but currently no systematic way
to tackle their analysis.

139

Ethnography

 A social scientists spends a considerable
time observing and analysing how people
actually work.

 People do not have to explain or articulate
their work.

 Social and organisational factors of
importance may be observed.

 Ethnographic studies have shown that work is
usually richer and more complex than
suggested by simple system models.

140

Focused ethnography

 Developed in a project studying the air
traffic control process

 Combines ethnography with prototyping
 Prototype development results in unanswered

questions which focus the ethnographic analysis.
 The problem with ethnography is that it studies

existing practices which may have some
historical basis which is no longer relevant.

141

Ethnography and prototyping

142

Scope of Ethnography

 Requirements that are derived from the

way that people actually work rather than

the way which process definitions suggest

that they ought to work.

 Requirements that are derived from

cooperation and awareness of other

people’s activities.

143

Requirements Classification

In order to better understand and manage the large number of
requirements, it is important to organize them in logical clusters

 It is possible to classify the requirements by the following categories
(or any other clustering that appears to be convenient)
– Features
– Use cases
– Mode of operation
– User class
– Responsible subsystem

 This makes it easier to understand the intended capabilities of

the product

 And more effective to manage and prioritize large groups rather

than single requirements

144

Requirements Classification – Features

 A Feature is

– a set of logically related (functional)
requirements that provides a capability to the
user and enables the satisfaction of a business
objective

 The description of a feature should include1

– Name of feature (e.g. Spell check)
– Description and Priority
– Stimulus/response sequences
– List of associated functional requirements

145

Requirements Classification – Feature Example

 3.1 Order Meals
– 3.1.1 Description and Priority

 A cafeteria Patron whose identity has been verified may order meals

either to be delivered to a specified company location or to be picked
up in the cafeteria. A Patron may cancel or change a meal order if it has
not yet been prepared.

 Priority = High.
– 3.1.2 Stimulus/Response Sequences

 Stimulus: Patron requests to place an order for one or more meals.

 Response: System queries Patron for details of meal(s), payment,
and delivery instructions.

 Stimulus: Patron requests to change a meal order.

 Response: If status is “Accepted,” system allows user to edit a
previous meal order.

146

Requirements Classification – Feature Example

 Stimulus: Patron requests to cancel a meal order.

 Response: If status is “Accepted, ”system cancels a
meal order.

– 3.1.3 Functional Requirements

 3.1.3.1. The system shall let a Patron who is logged
into the Cafeteria Ordering System place an order for
one or more meals.

 3.1.3.2. The system shall confirm that the Patron is

registered for payroll deduction to place an order.

147

Requirements Validation

 Concerned with demonstrating that the

requirements define the system that the

customer really wants.

 Requirements error costs are high so validation

is very important

– Fixing a requirements error after delivery

may cost up to 100 times the cost of fixing an

implementation error.

148

Requirements Checking

 Validity. Does the system provide the functions

which best support the customer’s needs?

 Consistency. Are there any requirements conflicts?

 Completeness. Are all functions required by

the customer included?

 Realism. Can the requirements be implemented

given available budget and technology
 Verifiability. Can the requirements be checked?

149

Requirements Validation Techniques

 Requirements reviews
– Systematic manual analysis of the requirements.

 Prototyping

– Using an executable model of the system to check
requirements.

 Test-case generation
– Developing tests for requirements to check testability.

150

Requirements Reviews

 Regular reviews should be held while the

requirements definition is being formulated.

 Both client and contractor staff should be

involved in reviews.

 Reviews may be formal (with completed

documents) or informal. Good communications

between developers, customers and users can

resolve problems at an early stage.

151

Review Checks

 Verifiability. Is the requirement

realistically testable?

 Comprehensibility. Is the requirement

properly understood?

 Traceability. Is the origin of the

requirement clearly stated?

 Adaptability. Can the requirement be changed

without a large impact on other requirements?

152

Requirements Management

 Requirements management is the process of managing

changing requirements during the requirements

engineering process and system development.

 Requirements are inevitably incomplete and inconsistent

– New requirements emerge during the process as
business needs change and a better understanding

of the system is developed;

– Different viewpoints have different requirements and
these are often contradictory.

153

Requirements Change

 The priority of requirements from

different viewpoints changes during the

development process.

 System customers may specify requirements

from a business perspective that conflict with

end-user requirements.

 The business and technical environment of

the system changes during its development.

154

Requirements Evolution

155

Enduring and Volatile Requirements

 Enduring requirements

– These are relatively stable requirements that derive from
the core activity of the organization

– Relate directly to the domain of the system

– These requirements may be derived from domain models
that show the entities and relations which characterise
an application domain

– For example, in a hospital there will always be

requirements concerned with patients, doctors,
nurses, treatments, etc

156

Enduring and Volatile Requirements

 Volatile requirements

– These are requirements that are likely to change
during the system development process or after
the system has been become operational.

– Examples of volatile requirements are

requirements resulting from government health-
care policies or healthcare charging mechanisms.

157

Enduring and Volatile Requirements

 Volatile requirements can be classified as

Requirement Description

type

Mutable Requirements that change because of changes to the environment

requirements in which the organisation is operating. For example, in hospital

 systems, the funding of patient care may change and thus require

 different treatment information to be collected

Consequential Requirements that result from the introduction of the computer

requirements system. Introducing the computer system may change the

 organisations processes and open up new ways of working which

 generate new system requirements.

Compatibility Requirements that depend on the particular systems or business

requirements processes within an organisation. As these change, the

 compatibility requirements on the commissioned or delivered

 system may also have to evolve.

Emergent Requirements that emerge as the customer's understanding of the

requirements system develops during the system development. The design

 process may reveal new emergent requirements.

 158

Traceability

 Traceability is concerned with the relationships between

requirements, their sources and the system design

 Source traceability

– Links from requirements to stakeholders who proposed
these requirements;

 Requirements traceability
– Links between dependent requirements;

 Design traceability
– Links from the requirements to the design;

159

A traceability Matrix

Req. 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

id

1.1 D R

1.2 D D D

1.3 R R

2.1 R D D

2.2 D

2.3 R D

3.1 R

3.2 R

160

CASE tool support

 Requirements storage
– Requirements should be managed in a secure, managed

data store.
 Change management

– The process of change management is a workflow

process whose stages can be defined and information

flow between these stages partially automated.
 Traceability management

– Automated retrieval of the links between requirements.

161

Requirements Management Planning

 During the requirements engineering process,
one has to plan:
– Requirements identification

 How requirements are individually identified;
– A change management process

 The process followed when analysing a requirements change;
– Traceability policies

 The amount of information about requirements
relationships that is maintained;

– CASE tool support
 The tool support required to help manage

requirements change;

162

Requirements Change Management

 Should apply to all proposed changes to
the requirements.

 Principal stages
– Problem analysis. Discuss requirements

problem and propose change;
– Change analysis and costing. Assess effects

of change on other requirements;
– Change implementation. Modify

requirements document and other documents
to reflect change.

163

Change Management

164

System models

165

System modelling

 System modelling helps the analyst to understand the

functionality of the system and models are used to

communicate with customers.

 Different models present the system from

different perspectives

– External perspective showing the system’s context or
environment;

– Behavioural perspective showing the behaviour of the

system;

– Structural perspective showing the system or data
architecture.

166

Model types

 Data processing model showing how the data

is processed at different stages.

 Composition model showing how entities are

composed of other entities.
 Architectural model showing principal sub-systems.

 Classification model showing how entities

have common characteristics.

 Stimulus/response model showing the system’s

reaction to events.

167

Context models

 System Context Diagrams are diagrams used in
systems design to represent the more important
external factors that interact with the system at hand.

 Context diagrams are used early in a project to get
agreement on the scope under investigation.
Context diagrams are typically included in a
requirements document.

 These diagrams must be read by all project stakeholders
and thus should be written in plain language, so the
stakeholders can understand items within the document.

 Context models are used to illustrate the operational
context of a system - they show what lies outside the system
boundaries.

168

http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Systems_design
http://en.wikipedia.org/wiki/Systems_design

Context models

 Context diagrams can be developed with the use

of two types of building blocks:

– Entities (Actors): labeled boxes; one in the

center representing the system, and around

it multiple boxes for each external actor

– Relationships: labeled lines between the

entities and system

 Social and organisational concerns may affect the

decision on where to position system boundaries.

169

Context models

 A Context Diagram provides no information about the
timing, sequencing, or synchronization of processes such
as which processes occur in sequence or in parallel.
Therefore it should not be confused with a flowchart or
process flow which can show these things.

 Some of the benefits of a Context Diagram are:
– Shows the scope and boundaries of a system at a glance including

the other systems that interface with it
– No technical knowledge is assumed or required to understand the

diagram
– Easy to draw and amend due to its limited notation
– Easy to expand by adding different levels of Data Flow Diagrams
– Can benefit a wide audience including stakeholders, business

analyst, data analysts, developers

170

Creating Context Diagram

Example

The operations of a simple

lemonade stand will be

used to for the creation of

Context Diagrams

Steps:

 Create a list of activities

 Construct Context Level Diagram

(identifies sources and sink)

171

Creating Context Diagrams
Example 1. Create a list of activities

Also think of the additional

activities needed to support

the basic activities.

Customer Order

Serve Product
Collect Payment
Produce Product
Store Product
Order Raw Materials
Pay for Raw Materials
Pay for Labor

172

Creating Context Diagrams
Example 1. Create a list of activities

Group these activities in

some logical fashion,

possibly functional areas.

Customer Order

Serve Product
Collect Payment

Produce Product
Store Product

Order Raw Materials
Pay for Raw Materials

Pay for Labor

173

Creating Context Diagrams

Example

Create a context level

diagram identifying the

sources and sinks (users).

Customer Order
Serve Product
Collect Payment

Produce Product
Store Product

Order Raw Materials
Pay for Raw Materials

Pay for Labor

 Construct Context Level Diagram

Context Level Diagram

Order

0.0

Sales Forecast

Production Schedul
e

EMPLOYEE

CUSTOMER

Product Served
Lemonade

 System Pay

 Payment

Time Worked
Received Goods

 Payment

 Purchase Order

VENDOR

174

Context models

 Context Diagram pitfalls to avoid
– Examine context diagram to be sure that none of the

following were inadvertently included:
 Internal actors who initiate data flows or processes (as

mentioned above, these have no place in a context diagram)

 “Black holes,” meaning many inputs into the process

are depicted but no outputs.

 Or the converse, “miracles,” many outputs come out of

the process, but nothing goes in

 “Isolated entities,” meaning external entities are shown but

not linked
 Entity-to-entity data flows with no process in between

175

The context of an ATM system

Security

sy stem

Branch

Account

 accounting

da tabase

sy stem

Auto-teller

 sy stem

Branch

Usage

 counter

database

 sy stem

Maintenance

 sy stem

176

Context models

 Some of the benefits of a Context Diagram are:
– Shows the scope and boundaries of a system at a glance

including the other systems that interface with it
– No technical knowledge is assumed or required to

understand the diagram
– Easy to draw and amend due to its limited notation
– Easy to expand by adding different levels of Data Flow

Diagrams
– Can benefit a wide audience including stakeholders,

business analyst, data analysts, developers

177

Process models

 Context (Architectural Models) can be

further enhanced by Process models which

show the overall process and the processes

that are supported by the system.

 Data flow models may be used to show the

processes and the flow of information

from one process to another.

178

Equipment procurement process

179

Behavioural models

 Behavioural models are used to describe
the overall behaviour of a system.

 Two types of behavioural model are:
– Data processing models that show how data

is processed as it moves through the system;
– State machine models that show the

systems response to events.
 These models show different perspectives so

both of them are required to describe the
system’s behaviour.

180

Behavioural models

 Most business systems are primarily driven by

data. They are controlled by the data inputs to the

system with relatively little external event

processing. A Data Flow model represents the

behaviour of these systems

 Real-time systems are often event-driven with

minimal data processing. A state machine model is

the most effective way to represent their behaviour

181

Data processing models

 Data flow diagrams (DFDs) may be used to
model the system’s data processing.

 These show the processing steps as data
flows through a system.

 DFDs are an intrinsic part of many
analysis methods.

 Simple and intuitive notation that customers
can understand.

 Show end-to-end processing of data.

182

Data flow diagrams

 A data flow diagram (DFD) is a graphical representation
of the "flow" of data through an information system,
modeling its process aspects.

 DFDs model the system from a functional perspective.
 Tracking and documenting how the data associated with

a process is helpful to develop an overall understanding
of the system.

 Data flow diagrams may also be used in showing the data
exchange between a system and other systems in its
environment.

 The dataflow diagram is one of the most commonly used
systems-modeling tools, particularly for operational
systems in which the functions of the system are of
paramount importance and more complex than the data
that the system manipulates.

183

http://en.wikipedia.org/wiki/Information_system

Data flow diagrams

 Data Flow models are valuable because tracking
and documenting how the data associated with a
particular process moves through the system helps
analysts understand what is going on

 DFDs have the advantage that, unlike some other
modelling notations, they are simple and intuitive

 It is usually possible to explain them to potential
system users who can then participate in
validating the analysis

 Data flow models should be “top-down” process.

184

Data flow diagrams

 A Data Flow Diagram shows the flow of the data among a
set of components. The components may be tasks,
software components or even the abstraction of the
functionality that will be included in the software system

 Rules and interpretations for correct data flow diagrams
– Boxes are processes and must be verb phrases
– Arcs represent data and must be labeled with noun

phrases
– Control is not shown. Some sequencing may be inferred

from the ordering
– A process may be a one-time activity, or it may imply

a continuous processing
– Two arcs coming out of a box may indicate that

both outputs are produced or that one or the other
is produced

185

Data flow diagrams

 E.g Data Flow for unit testing

Source Code

Test

 Execute unit
Results

Review Test Review

Test Plan
tests Results Decision

 The phrases within the boxes are verb phrases. They
represent actions. Each arrow/line is labeled with a
noun phrase that represent some artifact.

 The data flow diagram does not show decisions explicitly

186

Creating Data Flow Diagrams

Example

Create a level 0 diagram

identifying the logical

subsystems that may exist.

Customer Order
Serve Product
Collect Payment

Produce Product
Store Product

Order Raw Materials
Pay for Raw Materials

Pay for Labor

 Construct Level 0 DFD
(identifies manageable sub processes)

 Level 0 DFD

 1.0

 Sale

Customer Order Sales Forecast

 Product Ordered

Payment

2.0

Production

CUSTOMER

EMPLOYEE

Product Served Production

Schedule

Received Goods

 3.0

Inventory

Order

VENDOR
Purchase Order

Procure-

ment Decisions

 Payment

Pay Time Worked

 4.0

 Payroll

187

Creating Data Flow Diagrams

Example

Create a level 1

decomposing the processes

in level 0 and identifying

data stores.

Customer Order
Serve Product
Collect Payment

Produce Product
Store Product

Order Raw Materials
Pay for Raw Materials

Pay for Labor

 Construct Level 1- n DFD
(identifies actual data flows and data stores)

Level 1 DFD

CUSTOMER

Customer Order

ORDER

Request for Forecast

1.1

Record

Order
1.3

Severed Order
Produce

 Sales

Payment
 Forecast

Sales Forecast

1.2

Receive PAYMENT

Payment

188

Creating Data Flow Diagrams

Example

 Construct Level 1 (continued)

Create a level 1

decomposing the processes

in level 0 and identifying

data stores.

Customer Order
Serve Product
Collect Payment

Produce Product
Store Product

Order Raw Materials
Pay for Raw Materials

Pay for Labor

Product Order

2.1
Serve

Product

Production

Schedule

2.2
Produce
Product

Production Data

2.3
Store

Product

Level 1 DFD

ORDER

Quantity Severed

RAW
MATERIALS

Quantity Used

INVENTORTY

Quantity Produced &

Location Stored

189

CASE workbenches

 A coherent set of tools that is designed to support
related software process activities such as analysis,
design or testing.

 Analysis and design workbenches support system
modelling during both requirements engineering
and system design.

 These workbenches may support a specific design
method or may provide support for a creating
several different types of system model.

190

An analysis and design workbench

Data

dictionary

Code

gener ator

Forms

cr ea tion

tools

Structur ed

diag ram m ing

tools

Centr al

infor m ation

repository

Design, anal y sis

and checking

tools

Repor t

gener ation

facilities

Query

langua ge

facilities

Import/e xpor t

facilities

191

Analysis workbench components

 Diagram editors
 Model analysis and checking tools
 Repository and associated query language
 Data dictionary
 Report definition and generation tools
 Forms definition tools
 Import/export translators
 Code generation tools

192

Design Engineering

 A good software should exhibit the following properties

– Firmness – A program should not have any bugs that
inhibit its function.

– Commodity – A program should be suitable for the
purposes for which it was intended

– Delight – The experience of using the program should be
a pleasurable one.

 The goal of design engineering is to produce a model or
representation that exhibits firmness, commodity and
delight. Design engineering for computer software
changes continuously as new methods, better analysis,
and broader understanding evolve.

193

Analysis  Design

194

194

Design Engineering

 Design creates a representation or model of the software,
but unlike the analysis model, the design model provides
detail about software data structures, architecture,
interfaces, and components that are necessary to
implement the system

 Design allows a software engineer to model the system

or product that is to be built

 A design model that encompasses architectural,

interface, component-level, and deployment
representations is the primary work product that is
produced during software design

195

Design Engineering

 The design model is assessed by the software team in an
effort to determine whether it contains errors,
inconsistencies, or omission, whether better alternatives
exist, and whether the model can be implemented
within the constraints, schedule, and cost that have been
established

 Design produces a data /class design, an architectural

design, an interface design, and a component design
 Data /analysis design transforms analysis –class models

into design class realizations and the requisite data
structures required to implement the software

196

Design Engineering

 The architectural design defines the relationship between
major structural elements of the software, the
architectural styles and design patterns that can be used to
achieve the requirements defined for the system, and the
constraints that effect the way in which architectural can
be implemented

 The interface design describes how the software

communicates with systems that interoperate with it,
and with humans who use it.

 The component level design transforms structural elements
of the software architecture into a procedural description
of software components

197

Design Process and Design Quality

 Design Guidelines
 A good design should

 exhibit good architectural structure
 be modular

 contain distinct representations of data, architecture, interfaces,

and components (modules)

 lead to data structures that are appropriate for the objects to be
implemented and be drawn from recognizable design patterns

 lead to components that exhibit independent

functional characteristics

 lead to interfaces that reduce the complexity of connections
between modules and with the external environment

 be derived using a reputable method that is driven by

information obtained during software requirements analysis

198

Design Process and Design Quality

 Design Principles

 The design process should not suffer from tunnel vision
– A good designer should consider alternative
approaches. Judging each based on the requirements of
the problem, the resources available to do the job and
any other constraints

 The design should be traceable to the analysis model –

because a single element of the design model often
traces to multiple requirements, it is necessary to have
a means of tracking how the requirements have been
satisfied by the model

199

Design Process and Design Quality

 Design Principles

 The design should not reinvent the wheel – Systems are
constructed using a set of design patterns, many of which
may have likely been encountered before. These patterns
should always be chosen as an alternative to reinvention.
Time is short and resources are limited! Design time
should be invested in representing truly new ideas and
integrating those patterns that already exist.

 The design should minimise intellectual distance

between the software and the problem as it exists in
the real world – That is, the structure of the software
design should (whenever possible) mimic the structure
of the problem domain.

200

Design Process and Design Quality

 Design Principles

 The design should exhibit uniformity and integration – a
design is uniform if it appears that one person
developed the whole thing. Rules of style and format
should be defined for a design team before design work
begins. A design is integrated if care is taken in defining
interfaces between design components.

 The design should be structured to degrade gently,

even with bad data, events, or operating conditions are
encountered – Well-designed software should never
“bomb”. It should be designed to accommodate unusual
circumstances, and if it must terminate processing, do
so in a graceful manner.

201

Design Process and Design Quality

 Design Principles

 The design should be reviewed to minimize conceptual
(semantic) errors – there is sometimes the tendency to
focus on minute details when the design is reviewed,
missing the forest for the trees. The designer team
should ensure that major conceptual elements of the
design have been addressed before worrying about
the syntax if the design model.

 Design is not coding, coding is not design – Even when

detailed designs are created for program components,
the level of abstraction of the design model is higher
than source code. The only design decisions made of
the coding level address the small implementation
details that enable the procedural design to be coded.

202

Design Process and Design Quality

 Design Principles

 The design should be structured to accommodate
change

 The design should be assessed for quality as it is

being created

 A design should be represented using a notation
that effectively communicates its meaning

203

Design Process and Design Quality

 Quality attributes

– Functionality is assessed by evaluating the feature set
and capabilities of the program, the generality of the
functions that are derived and the security of the
overall system

– Usability is assessed by considering human factors,
overall aesthetics, consistency and documentation

– Reliability is evaluated by measuring the frequency and
severity of failure, the accuracy of output results, the
mean-time-to-failure, the ability to recover form
failure, and the predictability of the program

204

Design Process and Design Quality

 Quality attributes

– Performance is measured by processing speed, response
time, resource consumption, throughput, and efficiency

– Supportability combines the ability to extend the
program, adaptability, serviceability, testability,
compatibility, configurability, the ease with which a
system can be installed, and the ease with which
problems can be localized

205

Design Concepts

 Fundamental software design concepts
– Abstraction
– Architecture
– Patterns
– Modularity
– Information hiding
– Functional independence
– Refinement
– Refactoring
– Design Classes

206

Design Concepts

 Abstraction

– Abstraction is the process by which data and programs
are defined with a representation similar in form to
its meaning (semantics), while hiding away the
implementation details.

– Abstraction tries to reduce and factor out details so that
the programmer can focus on a few concepts at a time

– At the highest level of abstraction, a solution is stated in
broad terms using the language of the problem
environment. At the lower levels of abstraction, a more
detailed description of the solution is provided.

207

http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Program_(machine)
http://en.wikipedia.org/wiki/Representation_(mathematics)
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Programmer

Design Concepts

 Abstraction
– Abstraction can be

 Data abstraction is a named collection of data that

describes a data object. Data abstraction for ‘door’
would encompass a set of attributes that describe the
door (e.g. door type, swing direction, opening
mechanism, weight, dimensions).

 The procedural abstraction ‘open’ would make use

of information contained in the attributes of the
data abstraction ‘door’

208

Data Abstraction

door

manufacturer
model number
type
swing direction
inserts
lights

type
number

weight
opening mechanism

implemented as a data structure

209

Design Concepts

 Abstraction

 Procedural abstraction refers to a sequence of
instructions that have as specific and limited function.
The name of the procedural abstraction implies these
functions, but specific details are suppressed.

e.g. ‘open’ for a door. ‘open’ implies a long sequence
of procedural steps (e.g. walk to the door, reach out

and grasp knob, turn knob, turn knob and pull
door, step away from moving door, etc)

210

Procedural Abstraction

open

details of enter
algorithm

implemented with a "knowledge" of the
object that is associated with enter

211

Design Concepts

 Architecture

– Architecture is the structure or organization of program
components (modules), the manner in which these
components interact, and the structure of data that
are used by the components. Architectural design can
be represented using
 Structural models
 Framework models
 Dynamic models
 Procedural models
 Function models

212

Design Concepts

 Architecture

 Structural models represent architecture as an
organized collection of program components

 Framework models increase the level of design
abstraction by attempting to identify repeatable
architectural design frameworks that are encountered
in similar types of application

 Dynamic models address the behavioural aspects of the
program architecture, indicating how the structure or
system configuration may change as a function of
external events

 Procedural models focus on the design of the business

or technical process that the system must accommodate
 Function models can be used to represent the

functional hierarchy of a system

213

Design Concepts

 Patterns

– Design pattern describes a design structure that solves a
particular design problem within a specific context.

– Each design pattern is to provide a description that
enables a designer to determine

 Whether the pattern is applicable to the current work
 Whether the pattern can be reused

 Whether the pattern can serve as a guide for

developing a similar, but functionally or
structurally different pattern

214

Design Concepts

 Modularity

– Software is divided into separately named and
addressable components, called modules that
are integrated to satisfy problem requirements

– Design has to be modularized so that development can
be more easily planned, software increments can be
defined and delivered, changes can be more easily
accommodated, testing and debugging can be
conducted more efficiently and long-term maintenance
can be conducted without serious side effects

215

Modular Design

easier to build, easier to change, easier to fix ...

216

Modularity: Trade-offs

What is the "right" number of modules

for a specific software design?

module development cost

cost of
software

module
integration

cost

optimal number
number of modules

of modules

217

Design Concepts

 Information Hiding

– Modules should be specified and designed so that information
(algorithms and data) contained in a module is inaccessible
to other modules that have no need for such information

– Hiding implies that effective modularity can be achieved by
defining a set of independent modules that communicate
with one another only that information necessary to achieve
software function

– Hiding defines and enforces access constraints to both data
procedural detail within a module and any local data structure
used by the module

– The use of information hiding as a design criterion for modular
systems provides the benefits when modifications are
required during testing and later during software maintenance

218

Design Concepts

 Information Hiding

 Reduces the likelihood of “side effects”
 Limits the global impact of local design

decisions
 Emphasizes communication

through controlled interfaces
 Discourages the use of global data
 Leads to encapsulation—an attribute of

high quality design
 Results in higher quality software

219

Design Model

 Architectural design elements
– The architectural model is derived from

 Information about the application domain for

the software to be built
 Specific analysis model elements such as data flow

diagrams or analysis classes, their relationships
and collaborations for the problem at hand

 The availability of architectural patterns and styles

220

Design Model

 Interface design elements

– The interface design elements for software tell how
information flows into and out of the system and how it
is communicated among the components defined as
part of the architecture

– Important elements of interface design
 The user interface

 External interfaces to other systems, devices,

networks or other producers or consumers
of information

 Internal interfaces between various
design components

221

Design Model - Interface Elements

222

Design Model

 Component-level design elements

 Component-level design for software fully describes
the internal detail of each software component.

 Component-level design defines data structures for all

local data objects and algorithmic detail for all
processing that occurs within a component and an
interface that allows access to all component operations

 The design details of a component can be modelled

at many different levels of abstraction.

 An activity diagram can be used to represent
processing logic. Detailed procedural flow for a
component can be represented using either
pseudocode or diagrammatic form

223

Component Elements

Sens orManagement
Sens or

224

Design Model

 Deployment-level design elements

– Deployment-level design elements indicate how software
functionality and subsystems will be allocated within the
physical computing environment that will support the
software.

– Deployment diagrams shows the computing environment
but does not explicitly indicate configuration details

225

Deployment Diagram

226

226

Pattern-based software design

 Pattern-based design is a technique that reuses design
elements that have proven successful in the past.

 Throughout the design process, designer should look for
every opportunity to reuse existing design patterns
rather than creating new ones

 A pattern for software architecture describes a particular
recurring design problem that arises in specific design
contexts, and presents a well-proven generic scheme for
its solution.

 The solution scheme is specified by describing its constituent
components, their responsibilities and relationships, and
the ways in which they collaborate.

227

Pattern-based software design

Design Pattern Template

 Pattern name—describes the essence of the pattern in a

short but expressive name

 Intent—describes the pattern and what it does
 Also-known-as—lists any synonyms for the pattern
 Motivation—provides an example of the problem
 Applicability—notes specific design situations in which

the pattern is applicable
 Structure—describes the classes that are required to

implement the pattern

228

Pattern-based software design

Design Pattern Template

 Participants—describes the responsibilities of the classes

that are required to implement the pattern

 Collaborations—describes how the participants

collaborate to carry out their responsibilities
 Consequences—describes the “design forces” that affect

the pattern and the potential trade-offs that must be

considered when the pattern is implemented
 Related patterns—cross-references related design

patterns

229

Pattern-based software design

 Design patterns can be used throughout software design.
Various patterns that can be examined are
– Architectural patterns – these patterns define the overall

structure of the software, indicate the relationships
among subsystems and software components, and
define the rules for specifying relationships among the
elements of the architecture

– Design patterns – these patterns address a specific

element of the design such as an aggregate of
components to solve some design problem,
relationships among components, or the mechanisms
for effecting component-to-component communication

230

Pattern-based software design

– Idioms – called coding patterns, there language-specific
patterns generally implement an algorithmic element of
a component, a specific interface protocol, or a
mechanism for communication among components

 Frameworks

– Frameworks are implementation-specific infrastructure
for design work. The designer may select a ‘reusable
mini-architecture’ that provides the generic structure
and behaviour for a family of software abstraction along
with a context, which specifies their collaboration and
use within a given domain

231

Creating an architectural design

232

Software Architecture

 The software architecture of a program or computing system
is the structure or structures of the system, which comprise
software components, the externally visible properties of
those components, and the relationships among them

 Software architecture enables to

– Analyze the effectiveness of the design in meeting its
stated requirements

– Consider architectural alternatives at a stage when
making design changes is still relatively easy

– Reduce the risks associated with the construction of the
software

233

Software Architecture

 Architectural design represents the structure of data and
program components that are required to build a
computer-based system.

 It considers the architectural style that the system will take,
the structure and properties of the components that
constitute the system, and the interrelationships that
occur among all architectural components of a system

 Architecture considers two levels of the design – data design
and architectural design. Data design enables us to
represent the data component of the architecture.

 Architectural design focuses on the representation of the

structure of software components, their properties, and
interactions

234

Software Architecture

 Importance of Architecture

– Representations of software architecture are an enabler
for communication between all parties, interested in
the development of a computer-based system

– The architecture highlights early design decisions that will
have a profound impact on all software engineering work
that follows and, as important, on ultimate success of the
system as an operational entity

– Architecture constitutes a relatively small, intellectually
graspable model of how the system is structured and
how its components work together

235

Example Software Architecture Diagrams

236
236

Data Design

 Purpose of Data Design

 Data design translates data objects defined as part of
the analysis model into
– Data structures at the software component level

– A possible database architecture at the

application level
 It focuses on the representation of data structures

that are directly accessed by one or more software
components

 The challenge is to store and retrieve the data in such
way that useful information can be extracted from
the data environment

 "Data quality is the difference between a
data warehouse and a data garbage dump"

237

Data Design Principles

 The systematic analysis principles that are applied to
function and behavior should also be applied to data

 All data structures and the operations to be performed on

each one should be identified
 A mechanism for defining the content of each data object

should be established and used to define both data and
the operations applied to it

 Low-level data design decisions should be deferred until
late in the design process

238

Data Design Principles

 The representation of a data structure should be known
only to those modules that must make direct use of the
data contained within the structure

 A library of useful data structures and the operations that
may be applied to them should be developed

 A software programming language should support the
specification and realization of abstract data types

239

Software Architectural Styles

240

Common Architectural Styles
of Homes

241

Software Architectural Style

 The software that is built for computer-based systems
exhibit one of many architectural styles

 Each style describes a system category that
encompasses
– A set of component types that perform a function

required by the system
– A set of connectors (subroutine call, remote

procedure call, data stream, socket) that
enable communication, coordination, and
cooperation among components

– Semantic constraints that define how components
can be integrated to form the system

– A topological layout of the components indicating
their runtime interrelationships

242

A Taxonomy of Architectural Styles

Independent Components

 Communicating Event Systems

Processes

Implicit Explicit
Client/Server Peer-to-Peer Invocation Invocation

Data Flow

Batch Sequential Pipe and
Filter

Virtual Machine

Interpreter Rule-Based
System

Data-Centered

Repository
 Blackbo
ard

 Call and Return

Main Program Object

and Subroutine Layered Oriented

243

Remote Procedure Call

Data Flow Style

 Has the goal of modifiability
 Characterized by viewing the system as a series of

transformations on successive pieces of input data
 Data enters the system and then flows through the

components one at a time until they are assigned to
output or a data store

 Batch sequential style
– The processing steps are independent components
– Each step runs to completion before the next step

begins

244

Data Flow Style

 Pipe-and-filter style
– Emphasizes the incremental transformation of data

by successive components
– The filters incrementally transform the data (entering

and exiting via streams)
– The filters use little contextual information and retain

no state between instantiations
– The pipes are stateless and simply exist to move data

between filters

245

Data Flow Style

 pipe

Validate Sort Update Report

fIilter

246

Data Flow Style

 Advantages
– Has a simplistic design in the limited ways in which

the components interact with the environment
– Consists of no more and no less than the construction

of its parts
– Simplifies reuse and maintenance
– Is easily made into a parallel or distributed

execution in order to enhance system performance

247

Data Flow Style

 Disadvantages
– Implicitly encourages a batch mentality so interactive

applications are difficult to create in this style
– Ordering of filters can be difficult to maintain so the filters

cannot cooperatively interact to solve a problem
– Exhibits poor performance

 Filters typically force the least common denominator
of data representation (usually ASCII stream)

 Filter may need unlimited buffers if they cannot start
producing output until they receive all of the input

 Each filter operates as a separate process or
procedure call, thus incurring overhead in set-up and
take-down time

248

Data Flow Style

 Use this style when it makes sense to view

your system as one that produces a well-

defined easily identified output

 The output should be a direct result of

sequentially transforming a well-defined

easily identified input in a time-

independent fashion

249

Call-and-Return Style

Main module

Subroutine A

Subroutine B

 Subroutine A-1 Subroutine A-2

Application layer

 Class V Class W

Transport layer

Network layer

 Class X Class Y

Data layer

 Class Z

Physical layer 250

Call-and-Return Style

 Has the goal of modifiability and scalability
 Has been the dominant architecture since the start of software

development
 Main program and subroutine style

– Decomposes a program hierarchically into small pieces (i.e.,
modules)

– Typically has a single thread of control that travels
through various components in the hierarchy

 Remote procedure call style
– Consists of main program and subroutine style of system that

is decomposed into parts that are resident on computers
connected via a network

– Strives to increase performance by distributing the
computations and taking advantage of multiple processors

– Incurs a finite communication time between subroutine call
and response

251

Call-and-Return Style

 Object-oriented or abstract data type system
– Emphasizes the bundling of data and how to manipulate

and access data
– Keeps the internal data representation hidden and allows

access to the object only through provided operations
– Permits inheritance and polymorphism

 Layered system
– Assigns components to layers in order to control inter-

component interaction
– Only allows a layer to communicate with its immediate

neighbor
– Assigns core functionality such as hardware interfacing or

system kernel operations to the lowest layer

252

Call-and-Return Style

 Layered system
– Builds each successive layer on its predecessor, hiding the

lower layer and providing services for the upper layer
– Is compromised by layer bridging that skips one or more

layers to improve runtime performance
 Use this style when the order of computation is fixed, when

interfaces are specific, and when components can make no
useful progress while awaiting the results of request to
other components

253

Data-Centered Style

Client A Client B Client C

Shared Data

Client D Client E Client F

254

Data-Centered Style

 Has the goal of integrating the data

 Refers to systems in which the access and update of a widely

accessed data store occur
 A client runs on an independent thread of control

 The shared data may be a passive repository or an active

blackboard
– A blackboard notifies subscriber clients when changes

occur in data of interest

 At its heart is a centralized data store that communicates with

a number of clients

 Clients are relatively independent of each other so they can be

added, removed, or changed in functionality
 The data store is independent of the clients

255

Data-Centered Style

 Use this style when a central issue is the storage,

representation, management, and retrieval of a large

amount of related persistent data

 Note that this style becomes client/server if the clients are

modeled as independent processes

256

Virtual Machine Style

Program
Program Data

Instructions

Interpretation Program
Engine Internal State

257

Virtual Machine Style

 Has the goal of portability
 Software systems in this style simulate some

functionality that is not native to the hardware and/or
software on which it is implemented
– Can simulate and test hardware platforms that have

not yet been built
– Can simulate "disaster modes" as in flight

simulators or safety-critical systems that would
be too complex, costly, or dangerous to test with
the real system

258

Virtual Machine Style

 Examples include interpreters, rule-based systems, and
command language processors

 Interpreters
– Add flexibility through the ability to interrupt and

query the program and introduce modifications at
runtime

– Incur a performance cost because of the additional
computation involved in execution

 Use this style when you have developed a program or
some form of computation but have no make of
machine to directly run it on

259

Independent Component Style

Client A Client B

Server

 Client C Client D

 Peer W Peer X

Peer Y Peer Z

260

Independent Component Style

 Consists of a number of independent processes that
communicate through messages

 Has the goal of modifiability by decoupling various
portions of the computation

 Sends data between processes but the processes do not
directly control each other

 Event systems style
– Individual components announce data that they

wish to share (publish) with their environment
– The other components may register an interest

in this class of data (subscribe)

261

Independent Component Style

– Makes use of a message component that manages
communication among the other components

– Components publish information by sending it to
the message manager

– When the data appears, the subscriber is invoked
and receives the data

– Decouples component implementation from
knowing the names and locations of other
components

262

Independent Component Style

 Communicating processes style
– These are classic multi-processing systems
– Well-know subtypes are client/server and peer-

to-peer
– The goal is to achieve scalability
– A server exists to provide data and/or services to

one or more clients
– The client originates a call to the server which

services the request

263

Independent Component Style

 Use this style when
– Your system has a graphical user interface
– Your system runs on a multiprocessor platform
– Your system can be structured as a set of

loosely coupled components
– Performance tuning by reallocating work among

processes is important
– Message passing is sufficient as an interaction

mechanism among components

264

Heterogeneous Styles

 Systems are seldom built from a single architectural style
 Three kinds of heterogeneity

– Locationally heterogeneous

 The drawing of the architecture reveals different styles

in different areas (e.g., a branch of a call-and-return

system may have a shared repository)
– Hierarchically heterogeneous

 A component of one style, when decomposed, is

structured according to the rules of a different style
– Simultaneously heterogeneous

 Two or more architectural styles may both be

appropriate descriptions for the style used by a computer-

based system

265

Architectural Patterns

– An architectural patterns for software define a specific approach for
handling some behavioural characteristic of the system. Some
patterns can be

 Concurrency - many applications must handle multiple tasks in a
manner that simulates parallelism

 Persistence – data persists if it survives past the execution of
the process that created it. Persistent data are stored in a
database or file and may be read or modified by other
processes at a later time

 Distribution – the distribution problem addresses the manner
in which system or components within systems communicate
with one another in a distributed environment. Most common
architectural pattern established to address the distribution
problem is the ‘broker’ pattern

266

Architectural Design Process

267

Architectural Design Steps

 Represent the system in context

 Define archetypes

 Refine the architecture into components

 Describe instantiations of the system

268

Communicational Cohesion

 All operations that access the same data are
defined within one class.

 In general, such classes focus solely on the

data in question, accessing and storing it.

 Example: A StudentRecord class that adds,

removes, updates, and accesses various fields
of a student record for client components.

269

Other Types of Cohesion

 Procedural Cohesion

– Components or operations are grouped in a manner that allows one

to be invoked immediately after the preceding one was invoked,
even when there is no data passed between them

 Sequential Cohesion

– Components or operations are grouped in a manner that allows the

first to provide input to the next and so on. The intent is to
implement sequence of operations

 Temporal Cohesion

– Operations that are performed to reflect a specific behaviour or state

e.g an operation performed at start up or all operations performed
when an error is detected

270

Coupling

 Coupling or Dependency is the degree to which
each program module relies on each one of
the other modules.

 Coupling is usually contrasted with cohesion. Low

coupling often correlates with high cohesion, and
vice versa

 Low coupling is often a sign of a well-structured

computer system and a good design, and when
combined with high cohesion, supports the general
goals of high readability and maintainability.

271

Coupling

 Coupling can be "low" (also "loose" and "weak") or "high"
(also "tight" and "strong"). Types of coupling, are as follows:

 Content coupling (high)

– Content coupling (also known as Pathological coupling) is

when one module modifies or relies on the internal
workings of another module (e.g., accessing local data of
another module).

– Therefore changing the way the second module

produces data (location, type, timing) will lead to
changing the dependent module.

– Violates information hiding

272

Coupling

 Content coupling (high)
– Example

 module a modifies statements of module b

 module a refers to local data of module b in terms
of some numerical displacement within b

 module a branches into local label of module b

– Why is this bad?
 almost any change to b requires changes to a

273

Coupling

 Common coupling
– Common coupling (also known as Global coupling) is when two

modules share the same global data (e.g., a global variable)
– Changing the shared resource implies changing all the modules using

it

274

Coupling

 External coupling
– External coupling occurs when two modules share an

externally imposed data format, communication
protocol, or device interface. This is basically related to
the communication to external tools and devices.

– Occurs when a component communicates or collaborates
with infrastructure components (operating systems,
data base capability, telecommunication functions).

– Although this type of coupling is necessary, it should be
limited to a small number of components or classes
within a system

275

Coupling

 Control coupling
– Control coupling is one module controlling the flow of

another, by passing it information on what to do
(e.g., passing a what-to-do flag).

– Occurs when operation A() invokes operation B()
and passes a control flag. The control flag then
“directs” logical flow within B.

– Problem with this form of coupling is that an
unrelated change in B can result in the necessity to
change the meaning of the control flag that A passes

276

Coupling

 Stamp coupling (Data-structured coupling)

– Stamp coupling is when modules share a composite data

structure and use only a part of it, possibly a different
part (e.g., passing a whole record to a function that only
needs one field of it).

– This may lead to changing the way a module reads a

record because a field that the module doesn't need
has been modified.

– Occurs when Class B is declared as a type for an argument

of an operation of Class A. Because Class B is now part of
the definition of Class A, modifying the system becomes
more complex

277

Coupling

 Data coupling
– Data coupling is when modules share data

through, for example, parameters. Each datum
is an elementary piece, and these are the only
data shared (e.g., passing an integer to a
function that computes a square root).

– Occurs when operations pass long strings of data
arguments. The bandwidth of communication
between classes and components grows and the
complexity of the interface increases. Testing and
maintenance are more difficult

278

Coupling

 Routine Coupling

– Certain types of coupling occur routinely in object-oriented

programming.

279

Coupling

 Message coupling (low)

– This is the loosest type of coupling. Component
communication is done via parameters or
message passing

 Software must communicate internally and externally and

hence coupling is essential. However the designer should
work to reduce coupling wherever possible and understand
the ramifications of high coupling when it cannot be avoided

280

Coupling

 Avoid
– Content coupling

 Use caution
– Common coupling

 Be aware
– Routine call coupling
– Type use coupling
– Inclusion or import coupling

281

Coupling

282

Conducting Component-level Design

 The designer has to transform information from analysis and
architectural models into a design representation that
provides sufficient detail to guide the construction
activity. Typical steps for a component level design are

 Identify design classes in problem domain
 Identify infrastructure design classes
 Elaborate design classes
 Describe persistent data sources
 Elaborate behavioral representations
 Elaborate deployment diagrams
 Refactor design and consider alternatives

283

Steps 1 & 2 – Identify Classes

 Most classes from the problem domain are
analysis classes created as part of the
analysis model

 The infrastructure design classes are

introduced as components during
architectural design

284

Step 3 – Class Elaboration

 Specify message details when classes or
components collaborate

 Identify appropriate interfaces for each
component

 Elaborate attributes and define data
structures required to implement them

 Describe processing flow within each
operation in detail

285

3a. Collaboration Details

 Messages can be elaborated by expanding their syntax in the following
manner:

– [guard condition] sequence expression (return value) :=

message name (argument list)

286

3a. Collaboration Details

 [guard condition] is written in a Constraint
Language (OCL) and specifies any set of conditions
that must be met before the message can be sent

 sequence expression is an integer value that indicates

the sequence order in which the message is sent

 (return value) is the name of the information that is

returned by the operation invoked by the message
 message name identifies the operation to be invoked

 (argument list) list of attributes that are passed to the

operation

287

3b. Appropriate Interfaces

•

288

3b. Appropriate Interfaces

 The PrintJob interface “initiateJob” does not exhibit sufficient cohesion
because it performs three different sub functions building a
workorder , checking job priority and passing job to production

 The interface design can be refactored as follows
– Define a new class WorkOrder that would take care of all

activities associated with the assemble of a work order. The
operation buildWorkOrder() becomes a part of that class

– Define a new class JobQueue that would incorporate the operation
checkPriority().

– A class ProductionJob would encompass all information associated
with a production job to be passed to the production facility

 The interface InitiateJob is now cohesive, focusing on one
function

289

3b. Appropriate Interfaces

 New interface InititateJob

290

3c. Elaborate Attributes

 Analysis classes will typically only list names of
general attributes (ex. paperType).

 List all attributes during component design.
 UML syntax:

– name : type-expression = initial-value { property string }

 For example, paperType can be broken into weight,

size, and color. The weight attribute would be:
– paperType-weight: string =

“A” { contains 1 of 4 values – A, B, C, or D }

291

3d. Describe Processing Flow

 Activity diagram
for computePaperCost().

292

Step 4 – Persistent Data

 Describe persistent

data sources (databases and

files) and identify the classes

required to manage them.

293

Step 5 – Elaborate Behavior

 The dynamic behaviour of an object is affected by events
that are external to it and the current state (mode of
behaviour) of the object.

 It is sometimes necessary to model the behavior of a

design class.

 The designer must examine all use- cases that are relevant to

the design class throughout its life

 The use-cases will help designer to delineate the events

that affect the object and its states in which the object
resides as time passes and events occur

294

Step 5 – Elaborate Behavior

•

295

Step 5 – Elaborate Behavior

 Transitions from state to state (represented by rectangle
with round corners) have the form:

– event-name (parameter-list) [guard-
condition] / action expression

– Where event-name identifies the event

– parameter-list incorporates data that are

associated with the event
– guard-condition specifies a condition that must

be met before the event can occur
– action-expression defines an action that occurs

as the transition takes place

296

Step 5 – Elaborate Behavior

 Each state may define entry/ and exit actions that occur as
transitions into and out of the state occur.

 The do indicator provides mechanism for indicating the

activities that occur while in the state

 The include indicator provides a means for elaborating the

behaviour by embedding more state chart detail within
the definition of the state

297

Step 6 – Elaborate Deployment

 Deployment diagrams are elaborated to represent the
location of key packages or components

•

298

Step 7 – Redesign/Reconsider

 The first component-level model that was
created will not be as complete, consistent,
or accurate as the nth iteration that
is applied to the model.

 The best designers will consider many

alternative design solutions before
settling on the final design model.

299

Object Constraint Language

 The Object Constraint Language was designed to be used
alongside UML to supplement the design specification

 Usage

– To provide a formal specification of a system
design.

– To express constraints formally.
– To express the semantics of methods formally

through pre & post conditions.

300

Object Constraint Language

 OCL expressions
– OCL is used to define invariants (constraints) on the

state of classes and to express the semantics
of methods through pre and post conditions.

– Objects of the class containing the expression are
referred to as self, and related objects in the
class diagram are referenced

– When referring to a property in another package, the
property name is prefixed with the package name :-
package::property

301

Object Constraint Language

 OCL expressions
– The simplest OCL statements are constructed in four parts

 A context that defines the limited situation in which
the statement is valid

 A property that represents some characteristics of the context

e.g., if the context is a class, a property might be an attribute

 An operation (e.g., arithmetic, set oriented) that
manipulates or qualifies the property

 keywords that (e.g., if, then, and) that are used to

specify conditional expressions

302

OCL Constraint

 Employee

Christian : Employee

 +age : Integer

age : Integer = 17

 Tom : Employee

 age : Integer = 32

inv: self.age>18
 Peter : Employee

 age : Integer = 20

instances of the
type Employee

constraint context for the expression

context Employee inv: self.age>18

OCL expression

kind of constraint

303

Constraints (Invariants)

Employee

age : Integer
wage : Integer

raiseWage(newWage : Integer)

 inv invariant: constraint must be true

 for all instances of constrained type at any time
 Constraint is always of the type Boolean

context Employee

inv: self.age > 18
304

Constraints (Pre- and Postconditions)

Employee

age : Integer
wage : Integer

raiseWage(newWage : Integer)

 pre precondition: constraint must be true, before execution of an

Operation

 post postcondition: constraint must be true, after execution of an

Operation
 self refers to the object on which the operation was called

 return designates the result of the operation (if available)

 The names of the parameters can also be used

context Employee::raiseWage(newWage:Integer)

pre: newWage > self.wage

post: wage = newWage

305

Designing Conventional Components

 Conventional design constructs emphasize the
maintainability of a functional/procedural
program
– Sequence, condition, and repetition

 Each construct has a predictable logical structure
where control enters at the top and exits at the
bottom, enabling a maintainer to easily follow the
procedural flow

 Various notations depict the use of these
constructs
– Graphical design notation

 Sequence, if-then-else, selection, repetition
(see next slide)

– Tabular design notation
– Program design language

306

Graphical Design Notation

T F

Sequence If-then-else

 T

F F
 T

F T

T

F

Selection Repetition

307

Tabular Design Notation

 List all actions that can be associated
with a specific procedure (or module)

 List all conditions (or decisions made)
during execution of the procedure

 Associate specific sets of conditions
with specific actions, eliminating
impossible combinations of conditions;
alternatively, develop every possible
permutation of conditions

 Define rules by indicating what
action(s) occurs for a set of conditions

308

Tabular Design Notation

(continued)

 Rules

Conditions 1 2 3 4

Condition A T T F

Condition B F T

Condition C T T

Actions

Action X  

Action Y 

Action Z   

 

Program Design Language

 Program Design Language is also called
structured English or psuedocode is a
pidgin language in that it uses the
vocabulary of one language (English)
and the overall syntax of another (
structured programming language)

 Difference between PDL and real
programming language lies in the use of
narrative text embedded directly within
the PDL statements

 PDL cannot be compiled

310

Program Design Language

 Program Design Language is also called
structured English or psuedocode is a
pidgin language in that it uses the
vocabulary of one language (English)
and the overall syntax of another (
structured programming language)

 Difference between PDL and real
programming language lies in the use of
narrative text embedded directly within
the PDL statements

 PDL cannot be compiled

311

Performing User interface design

312

User interface design

 Background
 Interface design focuses on the following

– The design of interfaces between software components

– The design of interfaces between the software and other
nonhuman producers and consumers of information

– The design of the interface between a human and the
computer

 Graphical user interfaces (GUIs) have helped to eliminate many
of the most horrific interface problems

 However, some are still difficult to learn, hard to use, confusing,

counterintuitive, unforgiving, and frustrating

 User interface analysis and design has to do with the study of
people and how they relate to technology

313

The User Interface

 User interfaces creates an effective communication
medium between a human and a computer

 Using a set of interface design principles, design identifies
interface objects and actions and then creates a screen
layout that forms the basis of a user interface prototype

 User interfaces should be designed to match the skills,
experience and expectations of its anticipated users.

 System users often judge a system by its
interface rather than its functionality.

 A poorly designed interface can cause a user to make
catastrophic errors.

 Poor user interface design is the reason why so many
software systems are never used.

314

The User Interface

 Easy to learn?
 Easy to use?
 Easy to Understand?

315

User Interface Design

 User interface design has as much to do with the study of
people as it does with technology issues

 Some of the questions that are to be asked and answered
are
– Who is the user?
– How does the user learn to interact with a new

computer-based system?
– How does the user interpret information produced by

the system?
– What will the user expect of the system?

 The designer might introduce constraints and limitations to simplify

implementation of the interface.

 The result is may be an interface that is easy to build, but frustrating to
use

316

User Interface Design

 Typical Design Errors
– Lack of consistency
– Too much memorization

– No guidance / help

– No context sensitivity

– Poor response

– Arcane/unfriendly

317

Human factors in interface design

 Limited short-term memory
– People can instantaneously remember about 7 items of

information. If you present more than this, they are more liable
to make mistakes.

 People make mistakes
– When people make mistakes and systems go wrong, inappropriate

alarms and messages can increase stress and hence the likelihood
of more mistakes.

 People are different
– People have a wide range of physical capabilities. Designers should

not just design for their own capabilities.
 People have different interaction preferences

– Some like pictures, some like text.

318

User Interface Design

 Golden Rules
– Place the user in control
– Reduce the user’s memory load
– Make the interface consistent

319

User Interface Design

 Place the User in Control
 Define interaction modes in a way that does not force a user

into unnecessary or undesired actions
– The user shall be able to enter and exit a mode with little or no effort

(e.g., spell check


 edit text


 spell check)
 Provide for flexible interaction

– The user shall be able to perform the same action via keyboard
commands, mouse movement, or voice recognition

 Allow user interaction to be interruptible and "undo"able

– The user shall be able to easily interrupt a sequence of actions
to do something else (without losing the work that has been
done so far)

– The user shall be able to "undo" any action

320

User Interface Design

 Place the User in Control
 Streamline interaction as skill levels advance and allow

the interaction to be customized
 The user shall be able to use a macro mechanism to perform a

sequence of repeated interactions and to customize the interface

 Hide technical internals from the casual user
 The user shall not be required to directly use operating system, file

management, networking. etc., commands to perform any
actions. Instead, these operations shall be hidden from the user
and performed "behind the scenes" in the form of a real-world
abstraction

 Design for direct interaction with objects that appear on
the screen
 The user shall be able to manipulate objects on the screen in a

manner similar to what would occur if the object were a physical
thing (e.g., stretch a rectangle, press a button, move a slider)

321

User Interface Design

 Reduce the User's Memory Load
 Reduce demand on short-term memory

– The interface shall reduce the user's requirement to remember past actions

and results by providing visual cues of such actions
 Establish meaningful defaults

– The system shall provide the user with default values that make sense to

the average user but allow the user to change these defaults
– The user shall be able to easily reset any value to its original default value

 Define shortcuts that are intuitive

– The user shall be provided mnemonics (i.e., control or alt combinations)
that tie easily to the action in a way that is easy to remember such as
the first letter

322

User Interface Design

 Reduce the User's Memory Load
 The visual layout of the interface should be based on a real

world metaphor
 The screen layout of the user interface shall contain well-

understood visual cues that the user can relate to real-world
actions

 Disclose information in a progressive fashion
 When interacting with a task, an object or some behavior, the

interface shall be organized hierarchically by moving the user
progressively in a step-wise fashion from an abstract concept to a

concrete action (e.g., text format options


 format dialog box)

The more a user has to remember, the more
error-prone interaction with the system will be

323

User Interface Design

 Make the Interface Consistent
 The interface should present and acquire information in a consistent

fashion
– All visual information shall be organized according to a design

standard that is maintained throughout all screen displays
– Input mechanisms shall be constrained to a limited set that is used

consistently throughout the application
– Mechanisms for navigating from task to task shall be consistently

defined and implemented
 Allow the user to put the current task into a meaningful context

– The interface shall provide indicators (e.g., window titles,

consistent color coding) that enable the user to know the
context of the work at hand

– The user shall be able to determine where he has come from and
what alternatives exist for a transition to a new task

324

User Interface Design

 Make the Interface Consistent

 Maintain consistency across a family of applications
 A set of applications performing complimentary functionality

shall all implement the same design rules so that consistency
is maintained for all interaction

 If past interactive models have created user expectations, do
not make changes unless there is a compelling reason to do so
 Once a particular interactive sequence has become a de facto
standard (e.g., alt-S to save a file), the application shall continue
this expectation in every part of its functionality

325

User Interface Design Models

 Four different models come into play when a user interface is analyzed
and designed
– User profile model – Established by a human engineer or software

engineer
– Design model – Created by a software engineer
– Implementation model – Created by the software implementers
– User's mental model – Developed by the user when interacting with

the application
 The role of the interface designer is to reconcile these differences and

derive a consistent representation of the interface

326

User Profile Model

 Establishes the profile of the end-users of the system

– Based on age, gender, physical abilities, education, cultural or ethnic
background, motivation, goals, and personality

 Considers syntactic knowledge of the user

– The mechanics of interaction that are required to use the interface
effectively

 Considers semantic knowledge of the user

– The underlying sense of the application; an understanding of the
functions that are performed, the meaning of input and output,
and the objectives of the system

327

User Profile Model

 Categorizes users as
– Novices

 No syntactic knowledge of the system, little semantic knowledge

of the application, only general computer usage
– Knowledgeable, intermittent users

 Reasonable semantic knowledge of the system, low recall of

syntactic information to use the interface
– Knowledgeable, frequent users

 Good semantic and syntactic knowledge (i.e., power user), look

for shortcuts and abbreviated modes of operation

328

Design Model

 Derived from the analysis model of the requirements

 Incorporates data, architectural, interface, and procedural

representations of the software

 Constrained by information in the requirements specification that

helps define the user of the system
 Normally is incidental to other parts of the design model

– But in many cases it is as important as the other parts

Dialog Task
Box Agent

 Status File

 Display Transfer

 Box Agent 329

Implementation Model

 Consists of the look and feel of the interface combined with all
supporting information (books, videos, help files) that describe
system syntax and semantics

 Strives to agree with the user's mental model; users then feel
comfortable with the software and use it effectively

 Serves as a translation of the design model by providing a
realization of the information contained in the user profile model
and the user’s mental model

330

User's Mental Model

 Often called the user's system perception
 Consists of the image of the system that users carry in their heads

 Accuracy of the description depends upon the user’s profile and

overall familiarity with the software in the application domain

331

User Interface Development

 User interface development follows a spiral process
– Interface analysis (user, task, and environment analysis)

 Focuses on the profile of the users who will interact with the
system

 Concentrates on users, tasks, content and work environment
 Studies different models of system function (as perceived from the

outside)
 Delineates the human- and computer-oriented tasks that are

required to achieve system function
– Interface design

 Defines a set of interface objects and actions (and their screen
representations) that enable a user to perform all defined tasks in
a manner that meets every usability goal defined for the system

332

User Interface Development

 User interface development follows a spiral process
– Interface construction

 Begins with a prototype that enables usage scenarios to
be evaluated

 Continues with development tools to complete the construction
– Interface validation, focuses on

 The ability of the interface to implement every user task correctly,
to accommodate all task variations, and to achieve all general
user requirements

 The degree to which the interface is easy to use and easy to learn
 The users' acceptance of the interface as a useful tool in their

work

333

User Interface Analysis

 Elements of the User Interface
– To perform user interface analysis, the practitioner needs to study

and understand four elements
 The users who will interact with the system through

the interface
 The tasks that end users must perform to do their work
 The content that is presented as part of the interface
 The work environment in which these tasks will be conducted

334

User Interface Analysis

 User Analysis
– The analyst strives to get the end user's mental model and the

design model to converge by understanding
 The users themselves
 How these people use the system

– Information can be obtained from
 User interviews with the end users
 Sales input from the sales people who interact with

customers and users on a regular basis
 Marketing input based on a market analysis to understand

how different population segments might use the software
 Support input from the support staff who are aware of what

works and what doesn't, what users like and dislike, what
features generate questions, and what features are easy to use

– A set of questions should be answered during user analysis

335

User Interface Analysis

 User Analysis Questions
 Are the users trained professionals, technicians, clerical

or manufacturing workers?
 What level of formal education does the average user have?
 Are the users capable of learning on their own from

written materials or have they expressed a desire for
classroom training?

 Are the users expert typists or are they keyboard phobic?
 What is the age range of the user community?
 Will the users be represented predominately by one gender?
 How are users compensated for the work they perform or

are they volunteers?

336

User Interface Analysis

 User Analysis Questions

 Do users work normal office hours, or do they work
whenever the job is required?

 Is the software to be an integral part of the work users do,
or will it be used only occasionally?

 What is the primary spoken language among users?
 What are the consequences if a user makes a mistake using

the system?
 Are users experts in the subject matter that is addressed by

the system?
 Do users want to know about the technology that sits behind the

interface?

337

User Interface Analysis

 Task Analysis and Modeling
– Task analysis strives to know and understand

 The work the user performs in specific circumstances
 The tasks and subtasks that will be performed as the user

does the work
 The specific problem domain objects that the user

manipulates as work is performed
 The sequence of work tasks (i.e., the workflow)
 The hierarchy of tasks

– Use cases
 Show how an end user performs some specific work-

related task
 Enable the software engineer to extract tasks, objects,

and overall workflow of the interaction
 Helps the software engineer to identify additional

helpful features

338

User Interface Analysis

 Content Analysis
– The display content may range from character-based reports,

to graphical displays, to multimedia information
– Display content may be

 Generated by components in other parts of the application
 Acquired from data stored in a database that is

accessible from the application
 Transmitted from systems external to the application

in question
– The format and aesthetics of the content (as it is displayed by

the interface) needs to be considered
– A set of questions should be answered during content analysis

339

User Interface Analysis

 Content Analysis Guidelines
 Are various types of data assigned to consistent locations on

the screen (e.g., photos always in upper right corner)?
 Are users able to customize the screen location for content?
 Is proper on-screen identification assigned to all content?
 Can large reports be partitioned for ease of understanding?
 Are mechanisms available for moving directly to

summary information for large collections of data?
 Is graphical output scaled to fit within the bounds of the

display device that is used?
 How is color used to enhance understanding?
 How are error messages and warnings presented in order to

make them quick and easy to see and understand?

340

User Interface Analysis

 Work Environment Analysis
– Software products need to be designed to fit into the work

environment, otherwise they may be difficult or frustrating
to use

– Factors to consider include
 Type of lighting
 Display size and height
 Keyboard size, height and ease of use
 Mouse type and ease of use
 Surrounding noise
 Space limitations for computer and/or user
 Weather or other atmospheric conditions
 Temperature or pressure restrictions
 Time restrictions (when, how fast, and for how long)

341

User Interface Design

 User interface design is an iterative process, where each iteration
elaborate and refines the information developed in the
preceding steps

 General steps for user interface design
 Using information developed during user interface analysis,

define user interface objects and actions (operations)
 Define events (user actions) that will cause the state of the

user interface to change; model this behavior
 Depict each interface state as it will actually look to the

end user
 Indicate how the user interprets the state of the system

from information provided through the interface
 During all of these steps, the designer must

– Always follow the three golden rules of user interfaces

– Model how the interface will be implemented

– Consider the computing environment (e.g., display technology,
operating system, development tools) that will be used

342

User Interface Design

 Interface Objects and Actions
– Interface objects and actions are obtained from a grammatical

parse of the use cases and the software problem statement
– Interface objects are categorized into types: source, target, and

application
 A source object is dragged and dropped into a target

object such as to create a hardcopy of a report
 An application object represents application-specific

data that are not directly manipulated as part of screen
interaction such as a list

– After identifying objects and their actions, an interface
designer performs screen layout which involves

 Graphical design and placement of icons
 Definition of descriptive screen text
 Specification and titling for windows
 Definition of major and minor menu items
 Specification of a real-world metaphor to follow

343

User Interface Design

 Design Issues to Consider
 Four common design issues usually surface in any user interface

– System response time (both length and variability)
– User help facilities

 When is it available, how is it accessed, how is it
represented to the user, how is it structured, what
happens when help is exited

– Error information handling
 How meaningful to the user, how descriptive of

the problem
– Menu and command labeling

 Consistent, easy to learn, accessibility, internationalization
 Many software engineers do not address these issues until late in

the design or construction process
– This results in unnecessary iteration, project delays, and

customer frustration

344

User Interface Design

 Guidelines for Error Messages

– The message should describe the problem in plain language that a
typical user can understand

– The message should provide constructive advice for recovering from

the error

– The message should indicate any negative consequences of the error
(e.g., potentially corrupted data files) so that the user can check to

ensure that they have not occurred (or correct them if they have)

– The message should be accompanied by an audible or visual cue
such as a beep, momentary flashing, or a special error color

– The message should be non-judgmental
 The message should never place blame on the user

An effective error message philosophy can do much to improve
the quality of an interactive system and will significantly reduce
user frustration when problems do occur

345

User Interface Design

 Questions for Menu Labeling and Typed Commands
– Will every menu option have a corresponding command?
– What form will a command take? A control sequence? A function

key? A typed word?
– How difficult will it be to learn and remember the commands?
– What can be done if a command is forgotten?
– Can commands be customized or abbreviated by the user?
– Are menu labels self-explanatory within the context of the

interface?
– Are submenus consistent with the function implied by a master

menu item?

346

User Interface Design

 Interface Design Patterns
– Patterns are available for

 The complete UI
 Page layout
 Forms and input
 Tables
 Direct data manipulation
 Navigation
 Searching
 Page elements
 e-Commerce

347

Design principles

 User familiarity
– The interface should be based on user-oriented

terms and concepts rather than computer concepts. For example,
an office system should use concepts such as letters, documents,
folders etc. rather than directories, file identifiers, etc.

 Consistency
– The system should display an appropriate level

of consistency. Commands and menus should have the
same format, command punctuation should be similar, etc.

 Minimal surprise
– If a command operates in a known way, the user should be

able to predict the operation of comparable commands

348

Design principles

 Recoverability
– The system should provide some resilience to

user errors and allow the user to recover from errors. This might
include an undo facility, confirmation of destructive actions, 'soft'
deletes, etc.

 User guidance
– Some user guidance such as help systems, on-line manuals, etc.

should be supplied
 User diversity

– Interaction facilities for different types of user should be
supported. For example, some users have seeing difficulties and
so larger text should be available

349

Interaction styles

 Direct manipulation
 Menu selection
 Form fill-in
 Command language
 Natural language

350

Interaction styles

Interaction Main advantages Main disadva ntages Application

style examples

Direct Fast and intuitive May be hard to implement. Video games

manip ulation interaction Only suitable where there is a CAD systems

 Easy to learn visual metaphor for tasks and

 objects.

Menu Avoids user error Slow for experienced users. M ost general-

selection Little typing required Can beco me complex if many purpose systems

 menu options.

Form fill-in Sim ple data entry

Easy to learn

Checkab le

Takes up a lot of screen space. Stock control,

Causes problems where user Personal loan

options do not match the form proces sing

fields.

Command Powerful and flexible Hard to learn. Operating systems,

language Poor error manage ment. Command and

 control systems

Natural Accessible to casual Requires more typing. Information

language users Natural language und erstanding retrieval systems

 Easily extended systems are un reliable.

351

Colour displays

 Colour adds an extra dimension to an interface

and can help the user understand complex

information structures.

 Colour can be used to highlight exceptional events.

 Common mistakes in the use of colour in

interface design include:
– The use of colour to communicate meaning;
– The over-use of colour in the display.

352

Colour use guidelines

 Limit the number of colours used and be
conservative in their use.

 Use colour change to show a change in system
status.

 Use colour coding to support the task that users
are trying to perform.

 Use colour coding in a thoughtful and consistent
way.

 Be careful about colour pairings.

353

Error messages

 Error message design is critically
important.

 Poor error messages can mean that a user
rejects rather than accepts a system.

 Messages should be polite, concise,
consistent and constructive.

 The background and experience of users
should be the determining factor in
message design.

354

User error

 Assume that a nurse misspells the name of a

patient whose records she is trying to retrieve.

Please ty pe the patient’s name in the bo x then c lic k on OK

Patient’s name

MacDonald, R.

OK Cancel

355

Good and bad message design

356

User Interface Evaluation

 Design and Prototype Evaluation
– Before prototyping occurs, a number of evaluation criteria can be

applied during design reviews to the design model itself
 The amount of learning required by the users

– Derived from the length and complexity of the written
specification and its interfaces

 The interaction time and overall efficiency
– Derived from the number of user tasks specified and

the average number of actions per task
 The memory load on users

– Derived from the number of actions, tasks, and system states
 The complexity of the interface and the degree to which it will

be accepted by the user
– Derived from the interface style, help facilities, and

error handling procedures

357

User Interface Evaluation

 Prototype evaluation can range from an informal test drive to a

formally designed study using statistical methods and questionnaires

 The prototype evaluation cycle consists of prototype creation followed

by user evaluation and back to prototype modification until all user

issues are resolved
 The prototype is evaluated for

– Satisfaction of user requirements
– Conformance to the three golden rules of user interface design
– Reconciliation of the four models of a user interface

358

User Interface Evaluation -Usability attributes

 Attribute Description

 Learnability How long does it take a new user to become productive with

 the system?

 Speed of operation How well does the system response match the userÕswork

 practice?

 Robustness How tolerant is the system of user error?

 Recoverability How good is the system at recovering from user errors?

 Adaptability How closely is the system tied to a single model of work?

359

User Interface Evaluation

 Simple evaluation techniques
– Questionnaires for user feedback.
– Video recording of system use and subsequent tape

evaluation.
– Instrumentation of code to collect information about

facility use and user errors.
– The provision of code in the software to collect on-line

user feedback.

360

Syllabus

 Testing Strategies : A strategic approach to
software testing, test strategies for conventional

software, Black-Box and White-Box testing,
Validation testing, System testing, the art of

Debugging.

 Product metrics : Software Quality, Metrics for

Analysis Model, Metrics for Design Model,

Metrics for source code, Metrics for testing,
Metrics for maintenance.

361
361

Strategic approach for software testing

 Software testing is a formal process carried out by
a specialized testing team in which a software
unit, several integrated software units or an entire
software package are examined by running the
programs on a computer.

 All the associated tests are performed according to
approved test procedures on approved test cases.

 Software is tested to uncover errors that were
made inadvertently as it was designed and
constructed

 A strategy for software testing is developed by the
project manager, software engineers and testing
specialists

362

Strategic approach for software testing

 A strategy for software testing integrates the design of
software test cases into a well-planned series of steps
that result in successful development of the software

 The strategy provides a road map that describes the steps
to be taken, when, and how much effort, time, and
resources will be required

 The strategy incorporates test planning, test case design,
test execution, and test result collection and evaluation

 The strategy provides guidance for the practitioner and a
set of milestones for the manager

 Because of time pressures, progress must be measurable
and problems must surface as early as possible

363

Strategic approach for software testing

 Testing often accounts for more project effort than
any other software engineering activity. If it is
conducted haphazardly, time is wasted,
unnecessary effort is expended, and even worse,
errors sneak through undetected. It would
therefore necessary to establish a systematic
strategy for testing software

 Early testing focuses on a single component or a
small group of related components and applies
tests to uncover errors in the data and processing
logic that have been encapsulated by the
components.

364

Strategic approach for software testing

 After components are tested they must be integrated until
the complete system is constructed. At this point, a series
of high-order tests are executed to uncover errors in the
meeting customer requirements.

 A test specification documents the software team’s
approach to testing by defining a plan that describes an
overall strategy and a procedure that defines specific
testing steps and the tests that will be conducted.

 By reviewing the test specification prior to testing, the
completeness of test cases and testing tasks.

 An effective test plan and procedure will lead to the
orderly construction of the software and the discovery
of errors at each stage in the construction process.

365

Strategic approach for software testing

 Software testing strategies provide a template for testing
and have the following characteristics
– To perform effective testing, a software team

should conduct effective formal technical reviews
– Testing begins at the component level and works

“outward” toward the integration of the
entire computer-based system

– Different testing techniques are appropriate at different
points in time

– Testing is conducted by the developer of the
software and an independent test group

– Testing and debugging are different activities, but
debugging must be accommodate in any testing strategy

366

Strategic approach for software testing

 Software testing is part of a broader group of activities
called verification and validation that are involved in
software quality assurance

 Verification and Validation
– Verification refers to the set of activities that ensure

that software correctly implements a specific function
or algorithm (are we building the product right) (Are
the algorithms coded correctly?)

– Validation refers to a different set of activities that

ensure that the software that has been built is
traceable to customer requirements (are we building
the right product) (Does it meet user requirements?)

367

Organizing for Software Testing

 Testing should aim at "breaking" the software
 Common misconceptions

– The developer of software should do no testing at all
– The software should be given to a secret team of testers

who will test it unmercifully
– The testers get involved with the project only when the

testing steps are about to begin
 Reality: Independent test group

– Removes the inherent problems associated with letting
the builder test the software that has been built

– Removes the conflict of interest that may otherwise be
present

– Works closely with the software developer during
analysis and design to ensure that thorough
testing occurs

368

Testing Strategy for Conventional

Software

System Testing

Validation Testing

Integration Testing

Unit Testing

Code

Design

Requirements

System Engineering

369

Testing Strategy for Conventional Software

 A strategy for software testing can be viewed in the context
of the spiral.
– Unit testing begins at the vortex of the spiral and

concentrates on each unit of the software as
implemented in source code

– Testing progresses by moving outward along the spiral
to integration testing, where the focus is on design and
the construction of the software architecture

– Taking another turn outward on the spiral, we
encounter validation testing, where requirements
established as part of the software requirements
analysis are validated against the software that has
been constructed

– Finally system testing where the software and other
system elements are tested as a whole.

370

Testing Strategy for Conventional Software

 Software testing strategies provide a template for testing
and have the following characteristics
– To perform effective testing, a software team

should conduct effective formal technical reviews
– Testing begins at the component level and works

“outward” toward the integration of the
entire computer-based system

– Different testing techniques are appropriate at different
points in time

– Testing is conducted by the developer of the
software and an independent test group

– Testing and debugging are different activities, but
debugging must be accommodate in any testing strategy

371

Testing Strategy for Conventional Software

 Unit testing
– Concentrates on each component/function of the software as

implemented in the source code
– Exercises specific paths in a component's control structure to

ensure complete coverage and maximum error detection
– Components are then assembled and integrated

 Integration testing
– Focuses on the design and construction of the software architecture
– Focuses on inputs and outputs, and how well the components fit

together and work together
 Validation testing

– Requirements are validated against the constructed software
– Provides final assurance that the software meets all functional,

behavioral, and performance requirements
 System testing

– The software and other system elements are tested as a whole
– Verifies that all system elements (software, hardware, people,

databases) mesh properly and that overall system function
and performance is achieved

372

Testing strategy for Object-Oriented Software

 Must broaden testing to include detections of errors in
analysis and design models

 Unit testing loses some of its meaning and integration
testing changes significantly

 Use the same philosophy but different approach as in
conventional software testing

 Test "in the small" and then work out to testing "in the
large"
– Testing in the small involves class attributes and

operations; the main focus is on communication
and collaboration within the class

– Testing in the large involves a series of regression
tests to uncover errors due to communication and
collaboration among classes

 Finally, the system as a whole is tested to detect errors in
fulfilling requirements

373

Criteria for Completion of Testing

 When is Testing Complete?
– There is no definitive answer to this question

– Every time a user executes the software, the program

is being tested

– Sadly, testing usually stops when a project is running
out of time, money, or both

– One approach is to divide the test results into

various severity levels

 Then consider testing to be complete when certain
levels of errors no longer occur or have been
repaired or eliminated

374

Strategic Issues

– Specify product requirements in a quantifiable manner long before
testing commences. These should be specified in a way that is
measurable so that testing results are unambiguous

– State testing objectives explicitly – The specific objective of testing
should be stated in measurable terms. E.g. Test effectiveness, test
coverage, mean time to failure, cost to find and fix defects etc

– Understand the users of the software and develop a profile for each
user category.

– Develop a testing plan that emphasizes “ rapid cycle testing”

– Build “ robust” software that is designed to test itself

– Use effective formal technical reviews as a filter prior to testing

– Conduct formal technical reviews to assess the test strategy and
test cases themselves

– Develop a continuous improvement approach for the testing
process

375

Test strategies for conventional software

– A testing strategy takes an incremental view of testing,
beginning with the testing to individual program
units, moving to tests designed to facilitate the
integration of the units, and culminating with tests
that exercise the constructed system

– Classes of Tests that are generally conducted are

 Unit Testing
 Integration Testing

376

Unit Testing

 Focuses testing on the function or software module

 Concentrates on the internal processing logic and data

structures
 Is simplified when a module is designed with high cohesion

– Reduces the number of test cases
– Allows errors to be more easily predicted and uncovered

 Concentrates on critical modules and those with high

cyclomatic complexity when testing resources are limited

377

Unit Testing

 Targets for Unit Test Cases
– Module interface

 Ensure that information flows properly into and out of the module
– Local data structures

 Ensure that data stored temporarily maintains its integrity during

all steps in an algorithm execution
– Boundary conditions

 Ensure that the module operates properly at boundary

values established to limit or restrict processing
– Independent paths (basis paths)

 Paths are exercised to ensure that all statements in a module have

been executed at least once
– Error handling paths

 Ensure that the algorithms respond correctly to specific error conditions

378

Unit Testing

 Targets for Unit Test Cases

–

379

Unit Testing

 Common Computational Errors in Execution Paths
 Misunderstood or incorrect arithmetic precedence
 Mixed mode operations (e.g., int, float, char)
 Incorrect initialization of values
 Precision inaccuracy and round-off errors
 Incorrect symbolic representation of an

expression (int vs. float)

380

Unit Testing

 Other Errors to Uncover
– Comparison of different data types
– Incorrect logical operators or precedence
– Expectation of equality when precision error makes equality unlikely

(using == with float types)
– Incorrect comparison of variables
– Improper or nonexistent loop termination
– Failure to exit when divergent iteration is encountered
– Improperly modified loop variables
– Boundary value violations

381

Unit Testing

 Problems to uncover in Error Handling
– Error description is unintelligible or ambiguous
– Error noted does not correspond to error encountered
– Error condition causes operating system

intervention prior to error handling
– Exception condition processing is incorrect
– Error description does not provide enough information to

assist in the location of the cause of the error

382

Unit Testing

 Unit test procedures
– Because a component is not a stand-alone program, driver and / or

stub software must be developed for each unit test.
 Driver

– A simple main program that accepts test case data, passes such data

to the component being tested, and prints the returned results
 Stubs

– Serve to replace modules that are subordinate to (called by) the
component to be tested

– It uses the module’s exact interface, may do minimal data
manipulation, provides verification of entry, and returns control
to the module undergoing testing

 Drivers and stubs both represent overhead
– Both must be written but don’t constitute part of the installed

software product

383

Unit Testing

•

384

Integration Testing

– Integration testing is systematic technique for

constructing the software architecture while at the

same time conducting tests to cover to uncover errors

associated with interfacing

– Objective is to take unit tested modules and build a
program structure based on the prescribed design

– Two Approaches

 Non-incremental Integration Testing
 Incremental Integration Testing

385

Integration Testing

 Non-incremental Integration Testing
– Commonly called the “Big Bang” approach
– All components are combined in advance
– The entire program is tested as a whole
– Disadvantages

 Chaos results
 Many seemingly-unrelated errors are encountered

 Correction is difficult because isolation of causes

is complicated

 Once a set of errors are corrected, more errors

occur, and testing appears to enter an endless loop

386

Integration Testing

 Incremental Integration Testing
– Three kinds

 Top-down integration
 Bottom-up integration
 Sandwich integration

– The program is constructed and tested in

small increments

– Errors are easier to isolate and correct

– Interfaces are more likely to be

tested completely

– A systematic test approach is applied

387

Integration Testing

 Top-down Integration
– Modules are integrated by moving downward through the control

hierarchy, beginning with the main module
– Subordinate modules are incorporated in either a depth-first or

breadth-first fashion
 DF: All modules on a major control path are integrated
 BF: All modules directly subordinate at each level are integrated

– The main control module is used as a test driver, and stubs are
substituted for all components directly subordinate to the
main control module

– Depending on the integration approach selected subordinate stubs
are replaced one at a time with actual components

– Tests are conducted as each component is integrated
– On completion of each set of tests, another stub is replaced with

real component

388

Integration Testing

 Top-down Integration
– Advantages

 This approach verifies major control or

decision points early in the test process
– Disadvantages

 Stubs need to be created to substitute for

modules that have not been built or tested yet;

this code is later discarded

 Because stubs are used to replace lower level

modules, no significant data flow can occur until

much later in the integration/testing process

389

 Integration D

 Integration C

 Integration B

Integration A

Stage 1

M11

Stage 2 M9 M10

Stage 3

M8

Stage 4 M6 M7

Stage 5 M1 M2

Stage 6 M3 M4 M5

390

Integration Testing

 Bottom-up Integration
– Integration and testing starts with the most atomic modules in the

control hierarchy
– Begins construction and testing with atomic modules. As

components are integrated from the bottom up, processing
required for components subordinate to a given level is
always available and the need for stubs is eliminated

– Low-level components are combined into clusters that perform a
specific software sub-function

– A driver is written to coordinate test case input and output
– The cluster is tested
– Drivers are removed and clusters are combined moving upward in

the program structure
– As integration moves upward, the need for separate test drivers

lessens. If the top two levels of program structure are integrated
top down, the number of drivers can be reduced substantially
and integration of clusters is greatly simplified

391

Integration Testing

 Bottom-up Integration
– Advantages

 This approach verifies low-level data

processing early in the testing process
 Need for stubs is eliminated

– Disadvantages

 Driver modules need to be built to test the

lower-level modules; this code is later discarded

or expanded into a full-featured version

 Drivers inherently do not contain the complete

algorithms that will eventually use the services of the

lower-level modules; consequently, testing may be

incomplete or more testing may be needed later

when the upper level modules are available

392

Stage 4 M11

 Integration B Integration c

Stage 3

M9

 M10

Integration A

Stage 2 M8

Stage 1 M1 M2 M3 M4 M5 M6 M7

393

Top-down testing of module M8

Module

 M9 tested in
 an earlier

 stage

Module M8 on test

Stub Stub

of M1 of M2

Bottom-up testing of module M8

Driver
of M9

M8 Module

on test

Modules
tested in

M1

M2
an earlier stage

394

Sandwich Integration

 Consists of a combination of both top-down and bottom-up
integration

 Occurs both at the highest level modules and also at the lowest level
modules

 Proceeds using functional groups of modules, with each group
completed before the next

– High and low-level modules are grouped based on the control
and data processing they provide for a specific program feature

– Integration within the group progresses in alternating steps
between the high and low level modules of the group

– When integration for a certain functional group is complete,
integration and testing moves onto the next group

 Reaps the advantages of both types of integration while minimizing
the need for drivers and stubs

 Requires a disciplined approach so that integration doesn’t tend
towards the “big bang” scenario

395

Regression Testing

– Each time a new module is added as part of integration testing,
the software changes.

– New data flow paths are established, new I/O may occur, and
new control logic is invoked. These changes may cause
problems with functions that previously worked flawlessly.

– Regression testing is the re-execution of some subset of tests
that have already been conducted to ensure that changes
have not propagated unintended side effects

– The regression test suite contains

 A representative sample of tests that will exercise
all software functions

 Additional tests that focus on software functions that

are likely to be affected by the change

 Test that focus on the software components that have
been changed

396

Smoke Testing

 Taken from the world of hardware

– Power is applied and a technician checks for sparks,
smoke, or other dramatic signs of fundamental failure

 Designed as a pacing mechanism for time-critical projects

– Allows the software team to assess its project on a
frequent basis

 Includes the following activities
– The software is compiled and linked into a build

– A series of breadth tests is designed to expose errors

that will keep the build from properly performing its
function

397

Smoke Testing

 The goal is to uncover “show stopper” errors
that have the highest likelihood of throwing the
software project behind schedule

– The build is integrated with other builds and the

entire product is smoke tested daily

 Daily testing gives managers and practitioners
a realistic assessment of the progress of the
integration testing

– After a smoke test is completed, detailed test scripts

are executed

398

Smoke Testing

 Benefits of Smoke Testing
– Integration risk is minimized

 Daily testing uncovers incompatibilities and show-stoppers

early in the testing process, thereby reducing schedule impact
– The quality of the end-product is improved

 Smoke testing is likely to uncover both functional errors

and architectural and component-level design errors
– Error diagnosis and correction are simplified

 Smoke testing will probably uncover errors in the

newest components that were integrated
– Progress is easier to assess

 As integration testing progresses, more software has been

integrated and more has been demonstrated to work
 Managers get a good indication that progress is being made

399

Integration Testing

 Strategic Options

– Selection of an integration strategy depends upon software
characteristics and project schedule. Combined approach (
sandwich testing) that uses top-down tests for upper levels of
the program structure coupled with bottom-up tests for
subordinate levels may be the best compromise

 Integration test documentation

– Contains a test plan, a test procedure, is a work product of the
software process, and becomes part of the software configuration

– The test plan describes the overall strategy for integration.
– A schedule for integration

– The detailed testing procedure that is required to accomplish the

test plan

– A history of actual test results, problems, or peculiarities is
recorded in a Test Report that can be appended to the
Test Specification

400

Test Strategies for Object-Oriented Software

 With object-oriented software, we can no longer
test a single operation in isolation (conventional
thinking)

 Traditional top-down or bottom-up integration

testing has little meaning

 Class testing for object-oriented software is the

equivalent of unit testing for conventional
software

– Focuses on operations encapsulated by

the class and the state behavior of the class

401

Test Strategies for Object-Oriented Software

 Drivers can be used

– To test operations at the lowest level and for
testing whole groups of classes

– To replace the user interface so that tests of

system functionality can be conducted prior to
implementation of the actual interface

 Stubs can be used

– In situations in which collaboration between classes is
required but one or more of the collaborating classes
has not yet been fully implemented

402

Test Strategies for Object-Oriented Software

 Two different object-oriented testing strategies
– Thread-based testing

 Integrates the set of classes required to respond

to one input or event for the system
 Each thread is integrated and tested individually

 Regression testing is applied to ensure that no

side effects occur
– Use-based testing

 First tests the independent classes that use

very few, if any, server classes

 Then the next layer of classes, called
dependent classes, are integrated

 This sequence of testing layer of dependent classes
continues until the entire system is constructed

403

Test Strategies for Object-Oriented Software

– Integration Testing in the OO context

 Drivers can be used to test operations at the lowest
level and for the testing of whole group of classes.

 Stubs can be used in situations in which

collaboration between classes is required but
one or more of the collaborating classes has not
yet been fully implemented

 Cluster of collaborating classes is exercised by

designing test cases that attempt to uncover
errors in the collaborations

404

Validation Testing

 Validation testing follows integration testing

– The distinction between conventional and object-
oriented software disappears

– Focuses on user-visible actions and user-recognizable

output from the system
– Demonstrates conformity with requirements

 Designed to ensure that
– All functional requirements are satisfied
– All behavioral characteristics are achieved
– All performance requirements are attained
– Documentation is correct

– Usability and other requirements are met (e.g.,

transportability, compatibility, error recovery,
maintainability) 405

Validation Testing

 After each validation test

– The function or performance characteristic conforms to
specification and is accepted

– A deviation from specification is uncovered and a

deficiency list is created

 Deviation or error discovered at this stage in a project can

rarely be corrected prior to scheduled delivery

 A configuration review or audit ensures that all elements

of the software configuration have been properly
developed, cataloged, and have the necessary detail for
entering the support phase of the software life cycle

406

Validation Testing

 Alpha and Beta Testing
– Alpha Testing

 Conducted at the developer’s site by end users

 Software is used in a natural setting
with developers watching intently

 Testing is conducted in a controlled environment
– Beta Testing

 Conducted at end-user sites
 Developer is generally not present

 It serves as a live application of the software in

an environment that cannot be controlled by the
developer

407

Validation Testing

 Alpha and Beta Testing
– Beta Testing

 The end-user records all problems that are

encountered and reports these to the developers
at regular intervals

 After beta testing is complete, software engineers make

software modifications and prepare for release of the
software product to the entire customer base

408

System Testing

 System testing is a series of different test whose primary
purpose is to fully exercise the computer-based system.

 Recovery testing
– Tests for recovery from system faults

– Forces the software to fail in a variety of ways and

verifies that recovery is properly performed

– Tests reinitialization, checkpointing mechanisms, data
recovery, and restart for correctness

– If recovery is automatic, reinitialization, checkpointing

mechanisms, data recovery, and restart are evaluated
for correctness

– If recovery requires human intervention, the mean-

time-to-repair is evaluated to determine whether it
is within acceptable limits

409

System Testing

 Security testing

– Verifies that protection mechanisms built into a system will, in
fact, protect it from improper access

– During security testing, the tester plays the role of the individual
who desires to penetrate the system.

 Stress testing

– Executes a system in a manner that demands resources in
abnormal quantity, frequency, or volume

 Performance Testing

 Performance testing is designed to test the run-time
performance of software within the context of an
integrated system.

 Performance tests are often coupled with stress testing and

usually requires both hardware and software instrumentation

410

Metrics for the Design Model

 Architectural Design Metrics
– Structural complexity

 S(i) = f2
out(i), where fout(i) is the “fan out” of module i

– Data complexity
 D(i) = v(i)/[fout(i) + 1], where v(i) is the number of input

and output variables that are passed to and from module i
– System complexity

 C(i) = S(i) + D(i)

– As each of these complexity values increases, the overall
architectural complexity of the system also increases

– This leads to greater likelihood that the integration and testing

effort will also increase

411

Metrics for the Design Model

 Architectural Design Metrics
– Shape complexity

 size = n + a, where n is the number of nodes

and a is the number of arcs

 Allows different program software architectures
to be compared in a straightforward manner

– Connectivity density (i.e., the arc-to-node ratio)
 r = a/n

 May provide a simple indication of the

coupling in the software architecture

412

Metrics for Object-Oriented Design

 Size
– Population: a static count of all classes and methods

– Volume: a dynamic count of all instantiated objects at a given

time
– Length: the depth of an inheritance tree

 Coupling

– The number of collaborations between classes or the number of
methods called between objects

 Cohesion

– The cohesion of a class is the degree to which its set of
properties is part of the problem or design domain

 Primitiveness

– The degree to which a method in a class is atomic (i.e., the
method cannot be constructed out of a sequence of other
methods provided by the class)

413

Metrics for Object-Oriented Design

 Specific Class-oriented Metrics
 Weighted methods per class

– The normalized complexity of the methods in a class

– Indicates the amount of effort to implement and test a
class

 Depth of the inheritance tree

– The maximum length from the derived class (the
node) to the base class (the root)

– Indicates the potential difficulties when attempting

to predict the behavior of a class because of the
number of inherited methods

414

Metrics for Object-Oriented Design

 Specific Class-oriented Metrics
 Number of children (i.e., subclasses)

– As the number of children of a class grows
 Reuse increases

 The abstraction represented by the parent class can

be diluted by inappropriate children
 The amount of testing required will increase

 Coupling between object classes

– Measures the number of collaborations a class has with any
other classes

– Higher coupling decreases the reusability of a class
– Higher coupling complicates modifications and testing
– Coupling should be kept as low as possible

415

Metrics for Object-Oriented Design

 Specific Class-oriented Metrics
 Response for a class

– This is the set of methods that can potentially be executed in a
class in response to a public method call from outside the class

– As the response value increases, the effort required for testing also

increases as does the overall design complexity of the class
 Lack of cohesion in methods

– This measures the number of methods that access one or more of
the same instance variables (i.e., attributes) of a class

– If no methods access the same attribute, then the measure is

zero

– As the measure increases, methods become more coupled to one
another via attributes, thereby increasing the complexity of the
class design

416

Metrics for Maintenance

 Software maturity index (SMI)

– Provides an indication of the stability of a software product
based on changes that occur for each release

 SMI = [MT - (Fa + Fc + Fd)]/MT
where

MT = #modules in the current release
Fa = #modules in the current release that have been added Fc

= #modules in the current release that have been changed Fd
= #modules from the preceding release that were deleted in

the current release

 As the SMI (i.e., the fraction) approaches 1.0, the software product
begins to stabilize

 The average time to produce a release of a software product can be

correlated with the SMI

417

Syllabus

 Metrics for Process and Products : Software
Measurement, Metrics for software quality.

 Risk management : Reactive vs. Proactive Risk

strategies, software risks, Risk identification, Risk
projection, Risk refinement, RMMM, RMMM Plan.

418

Process and Project Metrics

 Software process and project metrics are quantitative
measures

 They are a management tool
 They offer insight into the effectiveness of the software

process and the projects that are conducted using the
process as a framework

 Basic quality and productivity data are collected
 These data are analyzed, compared against past averages, and

assessed
 The goal is to determine whether quality and productivity

improvements have occurred
 The data can also be used to pinpoint problem areas
 Remedies can then be developed and the software process

can be improved

419

Uses of Measurement

 Can be applied to the software process with the
intent of improving it on a continuous basis

 Can be used throughout a software project to assist

in estimation, quality control, productivity
assessment, and project control

 Can be used to help assess the quality of software

work products and to assist in tactical decision
making as a project proceeds

Software Metrics let you know when to laugh and when to cry

420

Reasons to Measure

 To characterize in order to
– Gain an understanding of processes, products, resources, and

environments
– Establish baselines for comparisons with future assessments

 To evaluate in order to
– Determine status with respect to plans

 To predict in order to
– Gain understanding of relationships among processes and products
– Build models of these relationships

 To improve in order to
– Identify roadblocks, root causes, inefficiencies, and other

opportunities for improving product quality and process
performance

421

Metrics in the Process Domain

 Process metrics are collected across all projects and over
long periods of time

 They are used for making strategic decisions

 The intent is to provide a set of process indicators that lead

to long-term software process improvement

 The only way to know how/where to improve any process is

to
– Measure specific attributes of the process
– Develop a set of meaningful metrics based on

these attributes
– Use the metrics to provide indicators that will lead to

a strategy for improvement

422

Metrics in the Process Domain

 We measure the effectiveness of a process by
deriving a set of metrics based on outcomes of
the process such as
– Errors uncovered before release of the software
– Defects delivered to and reported by the end users
– Work products delivered
– Human effort expended
– Calendar time expended
– Conformance to the schedule
– Time and effort to complete each generic activity

423

Etiquette of Process Metrics

 Use common sense and organizational sensitivity when
interpreting metrics data

 Provide regular feedback to the individuals and teams who

collect measures and metrics
 Don’t use metrics to evaluate individuals

 Work with practitioners and teams to set clear goals and

metrics that will be used to achieve them
 Never use metrics to threaten individuals or teams

 Metrics data that indicate a problem should not be

considered “negative”
– Such data are merely an indicator for process improvement

 Don’t obsess on a single metric to the exclusion of other

important metrics

424

Metrics in the Project Domain

 Project metrics enable a software project manager to
– Assess the status of an ongoing project
– Track potential risks
– Uncover problem areas before their status becomes critical
– Adjust work flow or tasks
– Evaluate the project team’s ability to control quality of software

work products
 Many of the same metrics are used in both the process and

project domain
 Project metrics are used for making tactical decisions

– They are used to adapt project workflow and technical activities

425

Use of Project Metrics

 The first application of project metrics occurs during
estimation
– Metrics from past projects are used as a basis for estimating time

and effort
 As a project proceeds, the amount of time and effort

expended are compared to original estimates

 As technical work commences, other project metrics become

important
– Production rates are measured (represented in terms of models

created, review hours, function points, and delivered source lines
of code)

– Error uncovered during each generic framework activity (i.e,
communication, planning, modeling, construction, deployment)
are measured

426

Use of Project Metrics

 Project metrics are used to
– Minimize the development schedule by making the

adjustments necessary to avoid delays and
mitigate potential problems and risks

– Assess product quality on an ongoing basis and, when
necessary, to modify the technical approach to
improve quality

 In summary
– As quality improves, defects are minimized
– As defects go down, the amount of rework

required during the project is also reduced
– As rework goes down, the overall project cost is reduced

427

Software Measurement

 Two categories of software measurement
– Direct measures of the

 Software process (cost, effort, etc.)

 Software product (lines of code produced, execution
speed, defects reported over time, etc.)

– Indirect measures of the

 Software product (functionality, quality, complexity,
efficiency, reliability, maintainability, etc.)

 Project metrics can be consolidated to create
process metrics for an organization

428

Size-oriented Metrics

 Derived by normalizing quality and/or productivity
measures by considering the size of the software
produced

 Thousand lines of code (KLOC) are often chosen as

the normalization value
 Metrics include

– Errors per KLOC - Errors per person-month
– Defects per KLOC - KLOC per person-month
– Dollars per KLOC - Dollars per page of

documentation

– Pages of documentation per KLOC

429

Size-oriented Metrics

 Size-oriented metrics are not universally accepted
as the best way to measure the software process

 Opponents argue that KLOC measurements
– Are dependent on the programming language
– Penalize well-designed but short programs
– Cannot easily accommodate nonprocedural languages
– Require a level of detail that may be difficult to achieve

430

Getting Started with Metrics

 Establish a measurement collection process
a)What is the source of the data? b)Can
tools be used to collect the data?
c) Who is responsible for collecting the data?
d)When are the data collected and recorded?
e)How are the data stored?

 What validation mechanisms are used to ensure the
data are correct?

 Acquire appropriate tools to assist in collection and
assessment

 Establish a metrics database
 Define appropriate feedback mechanisms on what the

metrics indicate about your process so that the process
and the metrics program can be improved

431

Establishing a Software Metrics Program

432

Definition of Risk

 A risk is a potential problem – it might happen and it might
not

 Conceptual definition of risk
– Risk concerns future happenings
– Risk involves change in mind, opinion, actions, places, etc.
– Risk involves choice and the uncertainty that choice entails

 Two characteristics of risk
– Uncertainty – the risk may or may not happen, that is, there are no

100% risks (those, instead, are called constraints)
– Loss – the risk becomes a reality and unwanted consequences or

losses occur

433

Risk Categorization – Approach #1

 Project risks
– They threaten the project plan
– If they become real, it is likely that the project schedule will slip and

that costs will increase
 Technical risks

– They threaten the quality and timeliness of the software to be
produced

– If they become real, implementation may become difficult or
impossible

 Business risks
– They threaten the viability of the software to be built
– If they become real, they jeopardize the project or the product

434

Risk Categorization – Approach #1

 Sub-categories of Business risks
– Market risk – building an excellent product or system

that no one really wants
– Strategic risk – building a product that no longer fits

into the overall business strategy for the company
– Sales risk – building a product that the sales force

doesn't understand how to sell
– Management risk – losing the support of senior

management due to a change in focus or a change
in people

– Budget risk – losing budgetary or personnel commitment

435

Risk Categorization – Approach #2

 Known risks
– Those risks that can be uncovered after careful evaluation

of the project plan, the business and technical
environment in which the project is being developed, and
other reliable information sources (e.g., unrealistic
delivery date)

 Predictable risks
– Those risks that are extrapolated from past

project experience (e.g., past turnover)
 Unpredictable risks

– Those risks that can and do occur, but are
extremely difficult to identify in advance

436

Reactive vs. Proactive Risk Strategies

 Reactive risk strategies
– "Don't worry, I'll think of something"
– The majority of software teams and managers rely on this approach
– Nothing is done about risks until something goes wrong

 The team then flies into action in an attempt to correct the
problem rapidly (fire fighting)

– Crisis management is the choice of management techniques

 Proactive risk strategies
– Steps for risk management are followed
– Primary objective is to avoid risk and to have a contingency plan

in place to handle unavoidable risks in a controlled and effective
manner

437

Steps for Risk Management

 Identify possible risks; recognize what can go
wrong

 Analyze each risk to estimate the probability that it
will occur and the impact (i.e., damage) that it will
do if it does occur

 Rank the risks by probability and impact
 Impact may be negligible, marginal, critical,

and catastrophic
 Develop a contingency plan to manage those risks

having high probability and high impact

438

Risk Identification

 Background
– Risk identification is a systematic attempt to

specify threats to the project plan
– By identifying known and predictable risks, the

project manager takes a first step toward
avoiding them when possible and controlling
them when necessary

– Generic risks
 Risks that are a potential threat to every

software project

439

Risk Identification

 Product-specific risks

– Risks that can be identified only by those a with

a clear understanding of the technology, the
people, and the environment that is specific to
the software that is to be built

– This requires examination of the project plan
and the statement of scope

– "What special characteristics of this product
may threaten our project plan

440

Risk Item Checklist

 Used as one way to identify risks

 Focuses on known and predictable risks in specific

subcategories
 Can be organized in several ways

– A list of characteristics relevant to each risk subcategory
– Questionnaire that leads to an estimate on the impact

of each risk
– A list containing a set of risk component and drivers and

their probability of occurrence

441

Known and Predictable Risk Categories

 Product size – Risks associated with overall size of
the software to be built

 Business impact – Risks associated with
constraints imposed by management or
the marketplace

 Customer characteristics – Risks associated with
sophistication of the customer and the
developer's ability to communicate with the
customer in a timely manner

 Process definition – Risks associated with the
degree to which the software process has
been defined and is followed

442

Known and Predictable Risk Categories

 Development environment – Risks associated with
availability and quality of the tools to be used to
build the project

 Technology to be built – Risks associated with

complexity of the system to be built and the
"newness" of the technology in the system

 Staff size and experience – Risks associated with

overall technical and project experience of the
software engineers who will do the work

443

Risk Control Strategies

An organization must choose one of four

basic strategies to control risks:

Avoidance: applying safeguards that eliminate

or reduce the remaining uncontrolled risks for

the vulnerability

Transference: shifting the risk to other areas or

to outside entities

Mitigation: reducing the impact should

the vulnerability be exploited

Acceptance: understanding the consequences

and accept the risk without control or mitigation

444

Risk Control Strategies

Avoidance

Avoidance is the risk control strategy that
attempts to prevent the exploitation of the

vulnerability.

 Avoidance is accomplished through:
Application of policy
Application of training and education
Countering threats
Implementation of technical security controls
and safeguards

445

Risk Control Strategies

Transference
 Transference is the control approach that

attempts to shift the risk to other assets, other
processes, or other organizations.
• This may be accomplished by rethinking how

services are offered, revising deployment
models, outsourcing to other organizations,
purchasing insurance, or by implementing
service contracts with providers.

446

Risk Control Strategies

Mitigation

Mitigation is the control approach that attempts to
reduce, by means of planning and preparation, the
damage caused by the exploitation of vulnerability.
This approach includes three types of plans:

 The disaster recovery plan (DRP),
 Incident response plan (IRP)
 Business continuity plan (BCP).
 Mitigation depends upon the ability to detect
and respond to an attack as quickly as possible.

447

Assessing Risk Impact

 Three factors affect the consequences that
are likely if a risk does occur

– Its nature – This indicates the problems that are

likely if the risk occurs

– Its scope – This combines the severity of the risk
(how serious was it) with its overall distribution
(how much was affected)

– Its timing – This considers when and for how

long the impact will be felt

448

Assessing Risk Impact

 The overall risk exposure formula is RE = P x C
– P = the probability of occurrence for a risk
– C = the cost to the project should the risk actually occur

 Example

– P = 80% probability that 18 of 60 software components
will have to be developed

– C = Total cost of developing 18 components is $25,000
– RE = .80 x $25,000 = $20,000

449

Risk Mitigation, Monitoring, and Management

 An effective strategy for dealing with risk
must consider three issues

(Note: these are not mutually exclusive)

– Risk mitigation

– Risk monitoring

– Risk management and contingency planning

 Risk mitigation - is the primary strategy and is

achieved through a plan
– Example: Risk of high staff turnover

450

Risk Mitigation, Monitoring, and Management

Strategy for Reducing Staff Turnover
 Meet with current staff to determine causes for

turnover (e.g., poor working conditions, low pay,
competitive job market)




 Mitigate those causes that are under our control before
the project starts




 Once the project commences, assume turnover will
occur and develop techniques to ensure continuity
when people leave



451

Risk Mitigation, Monitoring, and Management

Strategy for Reducing Staff Turnover
 Organize project teams so that information about each

development activity is widely dispersed




 Define documentation standards and establish
mechanisms to ensure that documents are
developed in a timely manner




 Conduct peer reviews of all work (so that more than one
person is "up to speed")




 Assign a backup staff member for every critical
technologist



452

Risk Mitigation, Monitoring, and Management

 During risk monitoring, the project manager
monitors factors that may provide an
indication of whether a risk is becoming
more or less likely

 Risk management and contingency planning

assume that mitigation efforts have failed
and that the risk has become a reality

453

Risk Mitigation, Monitoring, and Management

 RMMM steps incur additional project cost
– Large projects may have identified 30 – 40 risks

 Risk is not limited to the software project

itself

– Risks can occur after the software has been
delivered to the user

454

Risk Mitigation, Monitoring, and Management

 Software safety and hazard analysis

– These are software quality assurance activities
that focus on the identification and assessment
of potential hazards that may affect software
negatively and cause an entire system to fail

– If hazards can be identified early in the software

process, software design features can be
specified that will either eliminate or control
potential hazards

455

The RMMM Plan

 The RMMM plan may be a part of the
software development plan or may be a
separate document

 Once RMMM has been documented and the

project has begun, the risk mitigation, and
monitoring steps begin

– Risk mitigation is a problem avoidance activity
– Risk monitoring is a project tracking activity

456

The RMMM Plan

 Risk monitoring has three objectives

– To assess whether predicted risks do, in fact,
occur

– To ensure that risk aversion steps defined for the

risk are being properly applied

– To collect information that can be used for future
risk analysis

 The findings from risk monitoring may allow the

project manager to ascertain what risks
caused which problems throughout the project

457

Seven Principles of Risk Management

 Maintain a global perspective

– View software risks within the context of a
system and the business problem that is is
intended to solve

 Take a forward-looking view

– Think about risks that may arise in the future;
establish contingency plans

 Encourage open communication

– Encourage all stakeholders and users to point out
risks at any time

458

Seven Principles of Risk Management

 Integrate risk management

– Integrate the consideration of risk into the software
process

 Emphasize a continuous process of risk management

– Modify identified risks as more becomes known and add
new risks as better insight is achieved

 Develop a shared product vision

– A shared vision by all stakeholders facilitates better risk
identification and assessment

 Encourage teamwork when managing risk

– Pool the skills and experience of all stakeholders when
conducting risk management activities

459

Summary of Risk Management

 Whenever much is riding on a software project, common
sense dictates risk analysis

– Yet, most project managers do it informally and

superficially, if at all
 However, the time spent in risk management results in

– Less upheaval during the project
– A greater ability to track and control a project

– The confidence that comes with planning for problems

before they occur

 Risk management can absorb a significant amount of the

project planning effort…but the effort is worth it

460

Syllabus

 Quality Management : Quality concepts,
Software quality assurance, Software
Reviews, Formal technical reviews, Statistical
Software quality Assurance, Software
reliability, The ISO 9000quality standards.

461

Quality Concepts

 Quality Management
– Also called software quality assurance (SQA)
– Serves as an umbrella activity that is

applied throughout the software process
– Involves doing the software development

correctly versus doing it over again
– Reduces the amount of rework, which results

in lower costs and improved time to market

462

Quality Concepts

 Quality Management
– Encompasses

 A software quality assurance process

 Specific quality assurance and quality control tasks (including
formal technical reviews and a multi-tiered testing strategy)

 Effective software engineering practices (methods and tools)

 Control of all software work products and the changes made
to them

 A procedure to ensure compliance with software

development standards
 Measurement and reporting mechanisms

463

Quality

 Two kinds of quality are sought out
– Quality of design

 The characteristic that designers specify for an item

 This encompasses requirements, specifications, and the design
of the system

– Quality of conformance (i.e., implementation)

 The degree to which the design specifications are
followed during manufacturing

 This focuses on how well the implementation follows the design

and how well the resulting system meets its requirements

464

Quality

 Quality also can be looked at in terms of user
satisfaction

User satisfaction = compliant product

 good quality
 delivery within budget

and schedule

465

Quality Control

 Involves a series of inspections, reviews, and tests used
throughout the software process

 Ensures that each work product meets the requirements
placed on it

 Includes a feedback loop to the process that created the
work product
– This is essential in minimizing the errors produced

 Combines measurement and feedback in order to adjust the
process when product specifications are not met

 Requires all work products to have defined, measurable
specifications to which practitioners may compare to
the output of each process

466

Quality Assurance Functions

 Consists of a set of auditing and reporting functions
that assess the effectiveness and completeness of
quality control activities

 Provides management personnel with data that

provides insight into the quality of the products

 Alerts management personnel to quality problems

so that they can apply the necessary resources to
resolve quality issues

467

Quality Assurance Functions

 Consists of a set of auditing and reporting functions
that assess the effectiveness and completeness of
quality control activities

 Provides management personnel with data that

provides insight into the quality of the products

 Alerts management personnel to quality problems

so that they can apply the necessary resources to
resolve quality issues

468

The Cost of Quality

 Includes all costs incurred in the pursuit of quality or in
performing quality-related activities

 Is studied to
– Provide a baseline for the current cost of quality
– Identify opportunities for reducing the cost of quality
– Provide a normalized basis of comparison (which is usually dollars)

 Involves various kinds of quality costs Increases dramatically

as the activities progress from

– Prevention


 Detection


 Internal failure


 External failure

"It takes less time to do a thing right than to explain why you did it wrong." Longfellow

469

Kinds of Quality Costs

 Prevention costs
– Quality planning, formal technical reviews, test equipment, training

 Appraisal costs
– Inspections, equipment calibration and maintenance, testing

 Failure costs – subdivided into internal failure costs and external failure
costs
– Internal failure costs

 Incurred when an error is detected in a product prior to shipment
 Include rework, repair, and failure mode analysis

– External failure costs
 Involves defects found after the product has been shipped
 Include complaint resolution, product return and

replacement, help line support, and warranty work

470

Software Quality Assurance

 Software Quality
– Definition: "Conformance to explicitly stated functional and

performance requirements, explicitly documented
development standards, and implicit characteristics that are
expected of all professionally developed software

 This definition emphasizes three points
– Software requirements are the foundation from which quality is

measured; lack of conformance to requirements is lack of quality
– Specified standards define a set of development criteria that guide

the manner in which software is engineered; if the criteria are not
followed, lack of quality will almost surely result

– A set of implicit requirements often goes unmentioned; if software
fails to meet implicit requirements, software quality is suspect

471

Software Quality Assurance

 Software quality is no longer the sole responsibility of the programmer
– It extends to software engineers, project managers, customers,

salespeople, and the SQA group
– Software engineers apply solid technical methods and measures,

conduct formal technical reviews, and perform well-planned
software testing

472

Software Quality Assurance

 The SQA Group

– Serves as the customer's in-house representative
– Assists the software team in achieving a high-quality

product
– Views the software from the customer's point of view

 Does the software adequately meet quality factors?
 Has software development been conducted

according to pre-established standards?
 Have technical disciplines properly performed

their roles as part of the SQA activity?
– Performs a set of activities that address quality assurance

planning, oversight, record keeping, analysis, and
reporting

473

SQA Activities

 Prepares an SQA plan for a project
 Participates in the development of the project's software

process description
 Reviews software engineering activities to verify compliance

with the defined software process
 Audits designated software work products to verify

compliance with those defined as part of the software
process

 Ensures that deviations in software work and work products
are documented and handled according to a documented
procedure

 Records any noncompliance and reports to senior
management

 Coordinates the control and management of change

 Helps to collect and analyze software metrics

474

Software Reviews
 Purpose of Reviews

– Serve as a filter for the software process
– Are applied at various points during the software process
– Uncover errors that can then be removed
– Purify the software analysis, design, coding, and testing activities
– Catch large classes of errors that escape the originator more

than other practitioners
– Include the formal technical review (also called a walkthrough or

inspection)
 Acts as the most effective SQA filter
 Conducted by software engineers for software engineers
 Effectively uncovers errors and improves software quality
 Has been shown to be up to 75% effective in uncovering

design flaws (which constitute 50-65% of all errors in software)
– Require the software engineers to expend time and effort, and the

organization to cover the costs

475

Formal Technical Review (FTR)

 Objectives
– To uncover errors in function, logic, or implementation for any

representation of the software
– To verify that the software under review meets its requirements
– To ensure that the software has been represented according

to predefined standards
– To achieve software that is developed in a uniform manner
– To make projects more manageable

 Serves as a training ground for junior software engineers to observe
different approaches to software analysis, design, and construction

 Promotes backup and continuity because a number of people become
familiar with other parts of the software

 May sometimes be a sample-driven review
– Project managers must quantify those work products that are the

primary targets for formal technical reviews
– The sample of products that are reviewed must be representative of

the products as a whole

476

Formal Technical Review (FTR)

 The FTR Meeting

– Has the following constraints
 From 3-5 people should be involved
 Advance preparation (i.e., reading) should occur for each

participant but should require no more than two hours a
piece and involve only a small subset of components

 The duration of the meeting should be less than two hours
– Focuses on a specific work product (a software requirements

specification, a detailed design, a source code listing)

477

Formal Technical Review (FTR)

 The FTR Meeting

– Activities before the meeting
 The producer informs the project manager that a work product

is complete and ready for review
 The project manager contacts a review leader, who evaluates

the product for readiness, generates copies of product materials,
and distributes them to the reviewers for advance preparation

 Each reviewer spends one to two hours reviewing the product
and making notes before the actual review meeting

 The review leader establishes an agenda for the review
meeting and schedules the time and location

478

Formal Technical Review (FTR)

 The FTR Meeting

– Activities during the meeting
 The meeting is attended by the review leader, all reviewers,

and the producer
 One of the reviewers also serves as the recorder for all issues

and decisions concerning the product
 After a brief introduction by the review leader, the producer

proceeds to "walk through" the work product while reviewers
ask questions and raise issues

 The recorder notes any valid problems or errors that are
discovered; no time or effort is spent in this meeting to solve
any of these problems or errors

479

Formal Technical Review (FTR)

 The FTR Meeting

– Activities at the conclusion of the meeting
 All attendees must decide whether to

– Accept the product without further modification
– Reject the product due to severe errors (After

these errors are corrected, another review will
then occur)

– Accept the product provisionally (Minor errors
need to be corrected but no additional review
is required)

 All attendees then complete a sign-off in which they
indicate that they took part in the review and that
they concur with the findings

480

Formal Technical Review (FTR)

 The FTR Meeting

– Activities following the meeting
 The recorder produces a list of review issues that

– Identifies problem areas within the product
– Serves as an action item checklist to guide

the producer in making corrections
 The recorder includes the list in an FTR

summary report
– This one to two-page report describes what

was reviewed, who reviewed it, and what were
the findings and conclusions

 The review leader follows up on the findings to ensure
that the producer makes the requested corrections

481

