SIGNALS AND SYSTEMS

Prepared BY

Mr. N Nagaraju, Assistant Professor,
Mrs. L Shruthi, Assistant Professor

Signal Analysis

Signal and Vectors

- Any vector A in 3 dimensional space can be expressed as

$$
A=A_{1} a+A_{2} b+A_{3} C
$$

$-a, b, c$ are vectors that do not lie in the same plane and are not collinear

- A_{1}, A_{2}, and A_{3} are linearly independent
- No one of the vectors can be expressed as a linear combination of the other 2
$-a, b, c$ is said to form a basis for a 3 dimensional vector space
- To represent a time signal or function $\mathrm{X}(\mathrm{t})$ on a T interval (to to to+T) consider a set of time function independent of $\mathrm{x}(\mathrm{t}) \quad \cdot{ }_{1}(t), \cdot{ }_{2}(t), \cdot{ }_{3}(t)$
$\cdot{ }_{N}(t)$

Signal and Vectors

- $\mathrm{X}(\mathrm{t})$ can expanded as

$$
x_{a}{ }_{n}(t) \cdot{ }_{n \cdot 0}^{N} x_{n} \cdot{ }_{n}(t)
$$

- N coefficients X_{n} are independent of time and subscript x_{a} is an approximation

Signals and Vectors

- Signal \mathbf{g} can be written as N dimensional vector

$$
\mathbf{g}=\left[g\left(\mathrm{t}_{1}\right) \mathrm{g}(\mathrm{t} 2) \ldots \ldots \ldots \ldots . \mathrm{g}(\mathrm{t} \mathrm{n})\right]
$$

- Continuous time signals are straightforward generalization of fipite dimension vectors $g \cdot g(t)$

$$
t \cdot[a, b]
$$

- In vector (dot or scalar), inner product of two realvalued vector g and x :
$-\langle g, x>=\|g\| .\|x\| \cos \theta \theta$ - angle between vector \mathbf{g} and \mathbf{x}
- Length of a vector x :

$$
\|x\|_{2}=<x . x>
$$

Analogy between Signal Spaces and Vector Spaces

- Consider two vectors V1 and V2 as shown in Fig. If V1 is to be
- represented in terms of V2

$$
V_{1}=C_{12} V_{2}+V_{e}
$$

- where Ve is the error.

Figure : Representation in vector space

- Vector \mathbf{g} in Figure 1 can be expressed in terms of vector \mathbf{x}

$$
\begin{aligned}
& \mathbf{g}=\mathbf{C x}+\mathbf{e} \\
& \mathbf{g} \cdot \mathbf{c x} \\
& \mathbf{e}=\mathbf{g}-\mathrm{cx} \text { (error vector) }
\end{aligned}
$$

Figure 1

- Figure 2 shows infinite possibilities to express vector \mathbf{g} in terms of vector \mathbf{x}

Figure 2

$$
\mathbf{g}=\mathrm{c}_{1} \mathbf{x}+\mathrm{e}_{1}=\mathrm{c}_{2} \mathbf{x}+\mathrm{e}_{2}
$$

- Let $\mathrm{f} 1(\mathrm{t})$ and $\mathrm{f} 2(\mathrm{t})$ be two real signals. Approximation of $\mathrm{f} 1(\mathrm{t})$ by $\mathrm{f} 2(\mathrm{t})$ over a time interval $\mathrm{t} 1<\mathrm{t}<\mathrm{t} 2$ can be given by

$$
f_{e}(t)=f_{1}(t)-C_{12} f_{2}(t)
$$

where $\mathrm{fe}(\mathrm{t})$ is the error function.

- The goal is to find C 12 such that $\mathrm{fe}(\mathrm{t})$ is minimum over the interval considered. The energy of the error signal ε given by

$$
\varepsilon=\frac{1}{t_{2}-t_{1}} \int_{\iota_{1}}^{t_{2}}\left[f_{1}(t)-C_{12} f_{2}(t)\right]^{2} d t
$$

To find C12,

$$
\begin{gathered}
\partial \varepsilon \\
\partial C_{12}
\end{gathered}=0
$$

- Solving the above equation we get

$$
C_{12}=\frac{\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} f_{1}(t) \cdot f_{2}(t) d t}{t_{2}-t_{1} \int_{t_{1}}^{t_{2}} f_{2}^{2}(t) d t}
$$

- The denominator is the energy of the signal $\mathrm{f} 2(\mathrm{t})$.
- When $\mathrm{f} 1(\mathrm{t})$ and $\mathrm{f} 2(\mathrm{t})$ are orthogonal to each other $\mathrm{C} 12=0$.

Scalar or Dot Product of Two Vectors $\mathbf{g} \cdot \mathbf{x}=|\mathbf{g}||\mathbf{x}| \cos \theta$

- . is the angle between vectors \mathbf{g} and \mathbf{x}.
- The length of the component \mathbf{g} along \mathbf{x} is: $\quad c|\mathbf{x}|=|\mathbf{g}| \cos \theta$
- Multiplying both sides by $|\mathbf{x}|$ yields: $\quad c|\mathbf{x}|^{2}=|\mathbf{g}||\mathbf{x}| \cos \theta=\mathbf{g} \cdot \mathbf{x}$
- Where: $|\mathbf{x}|^{2}=\mathbf{x} \cdot \mathbf{x}$
- Therefore:

$$
c=\frac{\mathbf{g} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}}=\frac{1}{|\mathbf{x}|^{2}} \mathbf{g} \cdot \mathbf{x}
$$

- If g and x are Orthogonal (perpendicular):
$\mathbf{g} \cdot \mathbf{x}=0$
- Vectors g and x are defined to be Orthogonal if the dot product of the two vectors are zero.

Components and Orthogonality of Signals

- Concepts of vector component and orthogonality can be extended to CTS
- If signal $g(t)$ is approximated by another signal $x(t)$ as :

$$
g(t) \simeq c x(t) \quad t_{1} \leq t \leq t_{2}
$$

- The optimum value of c that minimizes the energy of the error signal is:

$$
\mathrm{C}=\frac{1}{E_{x}} \int_{t_{1}}^{t_{2}} g(t) x(t) d t
$$

- We define real signals $g(t)$ and $x(t)$ to be orthogonal over the interval [$\mathrm{t} 1, \mathrm{t} 2$], if:

$$
\int_{t_{1}}^{t_{2}} g(t) x(t) d t=0
$$

- We define complex signals* $x_{1}(t)$ and $x_{2}(t)$ to be orthogonal over the interval [$\mathrm{t} 1, \mathrm{t}_{2}$]:

$$
\int_{t_{1}}^{t_{2}} x_{1}(t) x_{2}^{*}(t) d t=0 \quad \text { or } \quad \int_{t_{1}}^{t_{2}} x_{1}^{*}(t) x_{2}(t) d t=0
$$

Example

- For the square signal $g(t)$ find the component in $g(t)$ of the form sin t. In order words, approximate $g(t)$ in terms of sin t so that the energy of the error signal is minimum

$$
g(t) \simeq c \sin t \quad 0 \leq t \leq 2 \pi
$$

Figure 2.17 Approximation of a square signal in terms of a single sinusoid.

$$
\begin{gathered}
x(t)=\sin t \quad \text { and } \quad E_{z}=\int_{0}^{2 \pi} \sin ^{2} t d t=\pi \\
c=\frac{1}{\pi} \int_{0}^{2 \pi} g(t) \sin t d t=\frac{1}{\pi}\left[\int_{0}^{\pi} \sin t d t+\int_{\pi}^{2 \pi}-\sin t d t\right]=\frac{4}{\pi} \\
g(t)=\frac{4}{\pi} \sin t
\end{gathered}
$$

Introduction to Signals

- A Signal is the function of one or more independent variables that carries some information to represent a physical phenomenon.
- A continuous-time signal, also called an analog signal, is defined along a continuum of time.

Typical Continuous-Time Signals

Amplitude-Modulated Carrier in a Communication System

Light Intensity from a Q-Switched Laser

Step Response of an RC Lowpass Filter

Frequency-Shift-Keyed
Binary Bit Stream

Car Bumper Height After Car Strikes a Speed Bump

Manchester Encoded Baseband Binary Bit Stream

Continuous vs Continuous-Time Signals

All continuous signals that are functions of time are continuous-time but not all continuous-time signals are continuous

Continuous-Time Sinusoids

$$
\begin{array}{ccc}
\mathrm{g}(t)=A \cos \left(2 \mathrm{p} t / T_{0}+\mathrm{q}\right)=A \cos \left(2 \mathrm{p} f_{0} t+\mathrm{q}\right)=A \cos \left(\mathrm{w}_{0} t+\mathrm{q}\right) \\
\text { Amplitude } & \text { Period Phase Shift } & \text { Cyclic } \\
& (\mathrm{s}) & \text { (radians) }
\end{array}
$$

$$
\mathrm{g}(t)=A \cos \left(2 \pi f_{0} t+\theta\right)
$$

Elementary Signals

Sinusoidal \& Exponential Signals

- Sinusoids and exponentials are important in signal and system analysis because they arise naturally in the solutions of the differential equations.
- Sinusoidal Signals can expressed in either of two ways:
cyclic frequency form- $\mathrm{A} \sin 2 \Pi f_{o} t=A \sin \left(2 \Pi / T_{\circ}\right) t$
radian frequency form- $\mathrm{A} \sin \omega_{o} t$

$$
\omega_{o}=2 \Pi f_{o}=2 \Pi / T_{o}
$$

To = Time Period of the Sinusoidal Wave

Sinusoidal \& Exponential Signals Contd.

$$
\left.\begin{array}{rl}
x(t) & =A \sin \left(2 \Pi f_{o} t+\theta\right) \\
& =A \sin \left(\omega_{o} t+\theta\right)
\end{array}\right\} \quad \text { Sinusoidal signal } \quad \begin{aligned}
& x(t)=\text { Aeat } \quad \text { Real Exponential } \\
&=\text { A } e^{2} \omega t=A\left[\cos \left(\omega_{\circ} t\right)+j \sin \left(\omega_{\circ} t\right)\right] \quad \text { Complex } \\
& \text { Exponential }
\end{aligned}
$$

$\theta=$ Phase of sinusoidal wave
A = amplitude of a sinusoidal or exponential signal $f_{o}=$ fundamental cyclic frequency of sinusoidal signal $\omega_{o}=$ radian frequency

Continuous-Time Exponentials

$$
\mathrm{g}(t)=A e_{-t / \mathrm{t}}
$$

Amplitude Time Constant (s)

A discrete-time signal is defined at discrete times.

Unit Step Function

$$
\begin{aligned}
& \text { - } 1 \text {, } t \cdot 0 \\
& \mathrm{u} \cdot t^{\bullet} \cdot 1 / 2, \quad t \cdot 0 \\
& .0 \quad, t \cdot 0
\end{aligned}
$$

Precise Graph

Commonly-Used Graph

Signum Function

Precise Graph
Commonly-Used Graph

The signum function, is closely related to the unit-step function.

Unit Ramp Function

-The unit ramp function is the integral of the unit step function. -It is called the unit ramp function because for positive t, its slope is one amplitude unit per time.

The Unit Ramp Function

Rectangular Pulse or Gate Function

Rectangular pulse, $\quad \bullet_{a} \quad \begin{array}{lll}\bullet & 1 / a, & |t| a / 2 \\ \bullet 0 & , t \cdot \mid a / 2\end{array}$

Unit Impulse Function

As a approaches zero, ge $t \cdot$
approaches a unit
step and g^{\bullet} approaches a unit impulse ${ }^{\bullet} t^{\bullet}$

Functions that approach unit step and unit impulse
So unit impulse function is the derivative of the unit step function or unit step is the integral of the unit impulse function

Representation of Impulse Function

The area under an impulse is called its strength or weight. It is represented graphically by a vertical arrow. An impulse with a strength of one is called a unit impulse.

Representation of Unit Impulse Shifted Impulse of Amplitude5

Properties of the Impulse Function

The Sampling Property

$$
\cdot \mathrm{g} t^{\bullet} \cdot \bullet_{t} \cdot{ }_{\hbar} \cdot d t \cdot \mathrm{~g}_{\sigma^{*}} \cdot
$$

The Scaling Property

$$
\cdot a t \cdot{ }_{b} \cdot \frac{1}{|a|} \cdot{ }_{t \cdot t} \cdot
$$

The Replication Property

$$
g(t) \otimes \delta(t)=g(t)
$$

Unit Impulse Train

The unit impulse train is a sum of infinitely uniformlyspaced impulses and is given by

$$
{ }_{T} t^{\bullet} \cdot \cdots \cdot{ }^{\cdot} \cdot n T \cdot, \quad n \text { an integer }
$$

The Unit Rectangle Function

The unit rectangle or gate signal can be represented as combination of two shifted unit step signals as shown

$$
\operatorname{rect}(\mathrm{t})=\mathrm{u}(\mathrm{t}+\mathrm{a})-\mathrm{u}(\mathrm{t}-\mathrm{a})
$$

The Unit Triangle Function

A triangular pulse whose height and area are both one but its base width is not, is called unit triangle function. The unit triangle is related to the unit rectangle through an operation called convolution.

Sinc Function

$$
\operatorname{sinc} t^{\bullet} \frac{\sin ^{\bullet} \cdot t^{\bullet}}{\bullet t}
$$

Discrete-Time Signals

- Sampling is the acquisition of the values of a continuous-time signal at discrete points in time
- $\mathrm{x}(t)$ is a continuous-time signal, $\mathrm{x}[n]$ is a discrete-time signal

$\mathrm{x} \cdot{ }_{n} \cdot{ }_{\mathrm{x}} n T_{s} \cdot$ where T_{s} is the time between samples

Discrete Time Exponential and Sinusoidal Signals

- DT signals can be defined in a manner analogous to their continuous-time counter part

$$
\begin{aligned}
x[n] & =A \sin \left(2 \Pi n / N_{o}+\theta\right) \quad \text { Discrete Time Sinusoidal Signal } \\
& =A \sin \left(2 \Pi F_{o} n+\theta\right)
\end{aligned}
$$

$$
\mathrm{x}[\mathrm{n}]=\mathrm{an} \quad \text { Discrete Time Exponential Signal }
$$

$\mathrm{n}=$ the discrete time
A = amplitude
$\theta=$ phase shifting radians,
No = Discrete Period of the wave
$1 / N_{0}=F_{o}=\Omega_{0} / 2 \Pi=$ Discrete Frequency

Discrete Time Sinusoidal Signals

Discrete Time Unit Step Function or Unit Sequence Function

Discrete Time Unit Ramp Function

Piscrete Time Unit Impulse Function or Unit Pulse Sequence

$$
\begin{array}{r}
\cdot 1, \quad n \cdot 0 \\
\cdot n \cdot 0, \\
\bullet \cdot 0
\end{array}
$$

- n • • $a n^{\bullet} \cdot$
for any non-zero, finite

Unit Pulse Sequence Contd.

- The discrete-time unit impulse is a function in the ordinary sense in contrast with the continuous-time unit impulse.
- It has a sampling property.
- It has no scaling property i.e.

$$
\delta[n]=\delta[a n] \text { for any non-zero finite integer „a" }
$$

Operations of Signals

- Sometime a given mathematical function may completely describe a signal .
- Different operations are required for different purposes of arbitrary signals.
- The operations on signals can be

Time Shifting
Time Scaling
Time Inversion or Time Folding

Time Shifting

- The original signal $x(t)$ is shifted by an amount t_{o}.

- $\mathrm{X}(\mathrm{t}) \cdot \mathrm{X}(\mathrm{t}-\mathrm{to}) \cdot$ Signal Delayed• Shift to the right

Time Shifting Contd.

$\cdot X(t) \cdot X(t+t o) \cdot$ Signal Advanced•Shift to the left

Time Scaling

- For the given function $x(t), x(a t)$ is the time scaled version of $x(t)$
- For a > 1, period of function $x(t)$ reduces and function speeds up. Graph of the function shrinks.
- For a < 1, the period of the $x(t)$ increases and the function slows down. Graph of the function expands.

Time scaling Contd.

Example: Given $x(t)$ and we are to find $y(t)=x(2 t)$.

The period of $x(t)$ is 2 and the period of $y(t)$ is 1 ,

Time scaling Contd.

- Given $y(t)$,
- find $w(t)=y(3 t)$
 and $v(t)=y(t / 3)$.

Time Reversal

- Time reversal is also called time folding
- In Time reversal signal is reversed with respect to time i.e.

$y(t)=x(-t)$ is obtained for the given function

Time reversal Contd.

Operations of Discrete Time Functions

Timeshifting
$n \cdot n \cdot n{ }_{0}, n_{0}$ an integer

Operations of Discrete Functions Contd.

Scaling; Signal Compression
$n \cdot K n K$ an integer > 1

Classification of Signals

- Deterministic \& Non Deterministic Signals
- Periodic \& A periodic Signals
- Even \& Odd Signals
- Energy \& Power Signals

Deterministic \& Non Deterministic Signals

Deterministic signals

- Behavior of these signals is predictable w.r.t time
- There is no uncertainty with respect to its value at any time.
- These signals can be expressed mathematically. For example $x(t)=\sin (3 t)$ is deterministic signal.

Deterministic \& Non Deterministic Signals Contd.

Non Deterministic or Random signals

- Behavior of these signals is random i.e. not predictable w.r.t time.
- There is an uncertainty with respect to its value at any time.
- These signals can't be expressed mathematically.
- For example Thermal Noise generated is non deterministic signal.

Periodic and Non-periodic Signals

- Given $x(t)$ is a continuous-time signal
- $x(t)$ is periodic iff $x(t)=x\left(t+T_{0}\right)$ for any T and any integer n
- Example
$-x(t)=A \cos (w t)$
$\left.-x\left(t+T_{o}\right)=A \cos \left[w \cdot t+T_{o}\right)\right]=A \cos \left(w t+w T_{o}\right)=A$
$\cos (w t+2 \cdot)=A \cos (w t)$
- Note: $T_{o}=1 / f_{o} ; w \cdot 2 \cdot f_{o}$

Periodic and Non-periodic Signals Contd.
 - For non-periodic signals

$$
x(t) \neq x\left(t+T_{o}\right)
$$

- A non-periodic signal is assumed to have
a period $T=\infty$
- Example of non periodic signal is an exponential signal

Important Condition of Periodicity for

 Discrete Time Signals- A discrete time signal is periodic if

$$
x(n)=x(n+N)
$$

- For satisfying the above condition the frequency of the discrete time signal should be ratio of two integers

$$
\text { i.e. } f_{o}=k / N
$$

Sum of periodic Signals

- $\mathrm{X}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})+\mathrm{X} 2(\mathrm{t})$
- $\mathrm{X}(\mathrm{t}+\mathrm{T})=\mathrm{x} 1\left(\mathrm{t}+\mathrm{m}_{1} \mathrm{~T}_{1}\right)+\mathrm{X} 2\left(\mathrm{t}+\mathrm{m}_{2} \mathrm{~T}_{2}\right)$
- $\mathrm{m}_{1} \mathrm{~T}_{1}=\mathrm{m}_{2} \mathrm{~T}_{2}=\mathrm{T}_{\mathrm{o}}=$ Fundamental period
- Example: $\cos (\mathrm{t} \cdot / 3)+\sin (\mathrm{t} \cdot / 4)$
$-\mathrm{T} 1=(2 \cdot) /(\cdot / 3)=6 ; \mathrm{T} 2=(2 \cdot) /(\cdot / 4)=8$;
- $\mathrm{T} 1 / \mathrm{T} 2=6 / 8=3 / 4=($ rational number $)=$ $\mathrm{m} 2 / \mathrm{m} 1$
$-\mathrm{m}_{1} \mathrm{~T}_{1}=\mathrm{m}_{2} \mathrm{~T}_{2}$. Find m 1 and m 2 .
$-6.4=3.8=24=\mathrm{T}$ 。

Sum of periodic Signals - may not always be periodic!

$$
\begin{aligned}
& x(t) \cdot \quad x_{1}(t) \cdot \quad x(t) \cdot \quad \operatorname{cots} \sin \sqrt{2 t} \\
& \mathrm{~T} 1=(2 \cdot) /(1)=2 \cdot ; \quad \mathrm{T} 2=(2 \cdot) /(\operatorname{sqrt}(2)) ; \\
& \mathrm{T} 1 / \mathrm{T} 2=\operatorname{sqrt}(2) ;
\end{aligned}
$$

- Note: $\mathrm{T} 1 / \mathrm{T} 2=\operatorname{sqrt}(2)$ is an irrational number
- $\mathrm{X}(\mathrm{t})$ is aperiodic

Even and Odd Signals Even Functions Odd Functions

Even and Odd Parts of Functions

Theeven partof a function is $\mathrm{g} \quad \mathrm{g}^{(} \mathrm{g}^{\cdot} t^{\cdot} \cdot \mathrm{g}^{\cdot} \cdot t^{\cdot}$
Theeven partof a function is $\mathrm{g} e_{e} \cdot$
2
Theodd part of a function is $\mathrm{g}_{o} \cdot t^{\bullet} \frac{\mathrm{g}^{\bullet} t^{\bullet} \cdot \mathrm{g}^{\bullet}}{2} t^{\cdot}$
A function whose even part is zero, is odd and a function whose odd part is zero, is even.

Various Combinations of even and odd functions

Function type	Sum	Difference	Product	Quotient
Both even	Even	Even	Even	Even
Both odd	Odd	Odd	Even	Even
Even and odd	Neither	Neither	Odd	Odd

Product of Even and Odd Functions

Product of Two Even Functions

Product of Even and Odd Functions Contd.

Product of an Even Function and an Odd Function

Product of Even and Odd Functions Contd.

Product of an Even Function and an Odd Function

Product of Even and Odd Functions

 Contd.Product of Two Odd Functions

Derivatives and Integrals of Functions

Function type	Derivative	Integral
Even	Odd	Odd + constant
Odd	Even	Even

Discrete Time Even and Odd Signals
 $$
g^{\bullet} n^{\bullet} \cdot g^{\bullet} \cdot n^{\bullet}
$$
 $$
g^{\bullet} n^{\bullet} \cdot \cdot g^{\bullet} \cdot n^{\bullet}
$$

Even Function

$$
\mathrm{g}_{e} \cdot n^{\bullet} \frac{\mathrm{g} \cdot n^{\bullet} \cdot \mathrm{g} \cdot \cdot}{2} n^{\bullet}
$$

Odd Function

$\mathrm{g}_{o} \cdot n^{\bullet} \frac{\mathrm{g} \cdot n^{\bullet} \cdot \mathrm{g} \cdot}{2} n^{\bullet}$

Combination of even and odd function for DT Signals

Function type	Sum	Difference	Product	Quotient
Both even	Even	Even	Even	Even
Both oddl	Odd	Odd	Even	Even
Even and odd	Even or Odd	Even or odd	Odd	Odd

Products of DT Even and Odd Functions

Two Even Functions

Products of DT Even and Odd Functions Contd.

An Even Function and an Odd Function

Proof Examples

- Prove that product of two even signals is even.
- Prove that product of two odd signals is odd.
- What is the product of an even signal and an odd signal?
Prove it!

$$
\begin{aligned}
& x(t) \cdot x_{1}(t) \cdot x_{2}(t) \cdot \\
& x(\cdot t) \cdot x\left(\cdot{ }_{1} t\right) \cdot x\left(\cdot t_{2}\right. \\
& x(t) \cdot x_{2}(t) \cdot x(t) \cdot \\
& x(\cdot t) \cdot \quad \text { Even }
\end{aligned}
$$

Products of DT Even and Odd Functions Contd.

Two Odd Functions

Energy and Power Signals

Energy Signal

- A signal with finite energy and zero power is called Energy Signal i.e.for energy signal

$$
0<E<\infty \text { and } P=0
$$

- Signal energy of a signal is defined as the area under the square of the magnitude of the signal.

$$
E_{\mathrm{x}} \cdot \cdot \mid \mathrm{x} \cdot t^{2} d t
$$

- The units of signal energy depends on the unit of the signal.

Energy and Power Signals

 Contd.
Power Signal

- Some signals have infinite signal energy. In that caseit is more convenient to deal with average signal power.
- For power signals

$$
0<P<\infty \text { and } E=\infty
$$

- Average power of the signal is given by

$$
P_{\mathrm{x}} \cdot \lim _{T \cdot} \frac{1}{T}{ }^{T / 2} \cdot\left|\mathrm{x} \cdot t^{2}\right|^{2} d t
$$

Energy and Power Signals Contd.

- For a periodic signal $x(t)$ the average signal power is

$$
P_{\dot{x}} \frac{1}{T} \cdot|x \cdot t|^{2} d t
$$

- T is any period of the signal.
- Periodic signals are generally power signals.

Signal Energy and Power for DT Signal

-A discrtet time signal with finite energy and zero power is called Energy Signal i.e.for energy signal

$$
0<E<\infty \text { and } P=0
$$

-The signal energy of a for a discrete time signal $\mathrm{x}[n]$ is

$$
E_{\mathrm{x}}^{\bullet} \underset{n \cdot}{\bullet} \mid \mathrm{x} \cdot \stackrel{\eta^{2}}{2}
$$

Signal Energy and Power for DT Signal Contd.

The average signal power of a discrete time power signal $\mathrm{x}[n]$ is

$$
P_{\mathrm{x}} \cdot \lim _{N \cdot} \frac{1}{2 N_{n}} \cdot{ }_{N}^{N \cdot 1}|\mathrm{X} \cdot n|^{2}
$$

For a periodic signal $\mathrm{x}[n]$ the average signal power is

$$
P_{\mathrm{x}} \cdot \frac{1}{N_{n}} \cdot{ }_{N}|\mathrm{x} \cdot n|{ }_{2}
$$

- The notation
-
- ${ }_{n \cdot\langle M\rangle}$ means the sum over any set of
. consecutive n 's exactly N in length.

What is System?

- Systems process input signals to produce output signals
- A system is combination of elements that manipulates one or more signals to accomplish a function and produces some output.

Examples of Systems

- A circuit involving a capacitor can be viewed as a system that transforms the source voltage (signal) to the voltage (signal) across the capacitor
- A communication system is generally composed of three sub-systems, the transmitter, the channel and the receiver. The channel typically attenuates and adds noise to the transmitted signal which must be processed by the receiver
- Biomedical system resulting in biomedical signal processing
- Control systems

System - Example

- Consider an RL series circuit
- Using a first order equation:

$$
\begin{aligned}
& V(t) \cdot L \quad \frac{d i(t)}{d t} \\
& V(t) \cdot V_{R} \cdot V(t) \cdot i(t) \cdot R \cdot \frac{d i(t)}{\frac{d i}{d t}}
\end{aligned}
$$

Mathematical Modeling of Continuous Systems

Most continuous time systems represent how continuous signals are transformed via differential equations.
E.g. RC circuit

System indicatin $\frac{d v v_{c}(t)}{d t} \underset{R C}{\text { velocitty }} \cdot \frac{1}{R C} v(t)$

$$
\left.m \frac{d v(t)}{d t} \cdot \cdot v t\right) \cdot f(t)
$$

Mathematical Modeling of Discrete Time Systems

Most discrete time systems represent how discrete signals are transformed via difference equations
e.g. bank account, discrete car velocity system

$$
\begin{gathered}
y[n] \cdot 1.01 y[n \cdot 1] \cdot x[n] \\
v[n] \cdot \frac{m}{m \cdot} v[n \cdot 1] \cdot \frac{\cdot}{m \cdot \cdots} f[n]
\end{gathered}
$$

Order of System

- Order of the Continuous System is the highest power of the derivative associated with the output in the differential equation
- For example the order of the system shown is 1.

$$
\left.m \frac{d v(t)}{d t} \cdot \cdot v t\right) \cdot f(t)
$$

Order of System Contd.

- Order of the Discrete Time system is the highest number in the difference equation by which the output is delayed
- For example the order of the system shown is 1 .

$$
y[n] \cdot 1.01 y[n \cdot 1] \cdot x[n]
$$

Interconnected Systems

- Parallel
- Serial (cascaded)
- Feedback

(a)

(b)

(c)

Interconnected System Example

- Consider the following systems with 4 subsystem
- Each subsystem transforms it input signal
- The result will be:
$-\mathrm{y} 3(\mathrm{t})=\mathrm{y} 1(\mathrm{t})+\mathrm{y} 2(\mathrm{t})=\mathrm{T} 1[\mathrm{x}(\mathrm{t})]+\mathrm{T} 2[\mathrm{x}(\mathrm{t})]$
$-\mathrm{y} 4(\mathrm{t})=\mathrm{T} 3[\mathrm{y} 3(\mathrm{t})]=\mathrm{T} 3(\mathrm{~T} 1[\mathrm{x}(\mathrm{t})]+\mathrm{T} 2[\mathrm{x}(\mathrm{t})])$
$-y(t)=y 4(t)^{*} y 5(t)=T 3(T 1[x(t)]+T 2[x(t)])^{*} T 4[x(t)]$

Feedback System

- Used in automatic control

$$
\begin{aligned}
& -\mathrm{e}(\mathrm{t})=\mathrm{x}(\mathrm{t})-\mathrm{y} 3(\mathrm{t})=\mathrm{x}(\mathrm{t})-\mathrm{T} 3[\mathrm{y}(\mathrm{t})]= \\
& -\mathrm{y}(\mathrm{t})=\mathrm{T} 2[\mathrm{~m}(\mathrm{t})]=\mathrm{T} 2(\mathrm{~T} 1[\mathrm{e}(\mathrm{t})]) \\
& -\quad \mathrm{y}(\mathrm{t})=\mathrm{T} 2(\mathrm{~T} 1[\mathrm{x}(\mathrm{t})-\mathrm{y} 3(\mathrm{t})])=\mathrm{T} 2(\mathrm{~T} 1([\mathrm{x}(\mathrm{t})]-\mathrm{T} 3[\mathrm{y}(\mathrm{t})]))= \\
& -=\mathrm{T} 2(\mathrm{~T} 1([\mathrm{x}(\mathrm{t})]-\mathrm{T} 3[\mathrm{y}(\mathrm{t})]))
\end{aligned}
$$

Types of Systems

- Causal \& Anticausal
- Linear \& Non Linear
- Time Variant \&Time-invariant
- Stable \& Unstable
- Static \& Dynamic
- Invertible \& Inverse Systems

Causal \& Anticausal Systems

- Causal system : A system is said to be causal
if the present value of the output signal depends only on the present and/or past values of the input signal.
- Example: $y[n]=x[n]+1 / 2 x[n-1]$

Causal \& Anticausal Systems Contd.

- Anticausal system : A system is said to be anticausal if the present value of the output signal depends only on the future values of the input signal.
- Example: $y[n]=x[n+1]+1 / 2 x[n-1]$

Linear \& Non Linear Systems

- A system is said to be linear if it satisfies the principle of superposition
- For checking the linearity of the given system, firstly we check the response due to linear combination of inputs
- Then we combine the two outputs linearly in the same manner as the inputs are combined and again total response is checked
- If response in step 2 and 3 are the same,the system is linear othewise it is non linear.

Time Invariant and Time Variant Systems

- A system is said to be time invariant if a time delay or time advance of the input signal leads to a identical time shift in the output signal.

$$
\begin{array}{ll}
\left.y_{i} t\right) \cdot H x(t \cdot t & \left.\left.{ }_{0}\right)\right\} \\
\left.\cdot H\left\{S^{t 0} x(t)\right\}\right\} \cdot & \left.H S^{t 0} x(t)\right\} \\
\left.\left.y_{0} t\right) \cdot S^{t 0} y(t)\right\} & \\
\left.\cdot S^{t 0}\{H x(t)\}\right\} \cdot & \left.S^{t 0} H x(t)\right\}
\end{array}
$$

Stable \& Unstable Systems

- A system is said to be bounded-input bounded-output stable (BIBO stable) iff every bounded input results in a bounded output.
i.e.

$$
\left.\cdot t \mid x t)\left|\cdot M_{x} \cdots \cdots t\right| y t\right) \mid \cdot M
$$

Stable \& Unstable Systems Contd.

Example

$$
-y[n]=1 / 3(x[n]+x[n-1]+x[n-2])
$$

$$
\begin{aligned}
y[n] \cdot & \frac{1}{3} \left\lvert\, x[n] \cdot x\left[\begin{array}{ll}
n & 1
\end{array}\right] \cdot x\left[\begin{array}{ll}
n \cdot 2]
\end{array}\right.\right. \\
& \cdot \frac{1}{3}(|x[n]| \cdot|x[n \cdot 1]| \cdot|x[n \cdot 2]|) \\
& \cdot \frac{1}{3}\left(M_{x} \cdot M_{x} \cdot M_{x}\right) \cdot M_{x}
\end{aligned}
$$

Stable \& Unstable Systems Contd.

Example: The system represented by

$$
y(t)=A x(t) \text { is unstable } ; A>1
$$

Reason: let us assume $x(t)=u(t)$, then at every instant $u(t)$ will keep on multiplying with A and hence it will not be bonded.

Static \& Dynamic Systems

- A static system is memoryless system
- It has no storage devices
- its output signal depends on present values of the input signal
- For example

$$
i(t)=1 / R^{v(t)}
$$

Static \& Dynamic Systems Contd.

- A dynamic system possesses memory
- It has the storage devices
- A system is said to possess memory if its output signal depends on past values and future values of the input signal

$$
\begin{aligned}
& i(t)=1 / L \int_{-\infty}^{t} v(\tau) d \tau \\
& y[n]=x[n]+x[n-1]
\end{aligned}
$$

Example: Static or Dynamic?

Example: Static or Dynamic?

Answer:

- The system shown above is RC circuit
- R is memoryless
- C is memory device as it stores charge because of which voltage across it can"t change immediately
- Hence given system is dynamic or memory system

Invertible \& Inverse Systems

- If a system is invertible it has an Inverse System

- Example: $y(t)=2 x(t)$
- System is invertible - must have inverse, that is:
- For any $x(t)$ we get a distinct output $y(t)$
- Thus, the system must have an Inverse
- $x(t)=1 / 2 y(t)=z(t)$

LTI Systems

- LTI Systems are completely characterized by its unit sample response
- The output of any LTI System is a convolution of the input signal with the unit-impulse response, i.e.

$$
\begin{aligned}
y[n] & =x[n]^{*} h[n] \\
& =\sum_{k=-\infty}^{+\infty} x[k] h[n-k]
\end{aligned}
$$

Properties of Convolution

Commutative Property

$$
x[n]^{*} h[n] \cdot \quad h[n]^{*} x[n]
$$

Distributive Property


```
(x[n]*h }\mp@subsup{}{1}{}[n])\cdot(x[n]*\mp@subsup{h}{2}{}[n]
```

$$
\xrightarrow{\mathrm{x}[\mathrm{n}]} \mathrm{h}[\mathrm{n}] \xrightarrow{\mathrm{y}[\mathrm{n}]}=\xrightarrow{\mathrm{h}[\mathrm{n}]} \mathrm{x[n]} \xrightarrow{\mathrm{y}[\mathrm{n}]}
$$

Associative Property
$x[n]^{*} h{ }_{1}[n]^{* h} \quad{ }_{2}[n] \cdot$ $\left(x[n] * h_{1}[n]\right) * h_{2}[n]$.
$\left(x[n] * h \quad{ }_{2}[n]\right) * h_{1}[n]$

$$
\xrightarrow{x[n]}-h_{1}[n]+h_{2}[n] \quad y[n]
$$

Useful Properties of (DT) LTI Systems

- Causality:

$$
h[n] \cdot 0 \quad n \cdot 0
$$

-Stability:

Bounded Input \leftrightarrow Bounded Output

$$
\begin{aligned}
& \text { for }|x[n] \cdot| x \max \cdot \\
& |y[n] \cdot| \quad \left\lvert\, \begin{array}{cc}
\cdot & x[k]\left[\left.\begin{array}{ll}
n & k] \\
\cdot & \cdot
\end{array}|\quad \max | \begin{array}{lll}
\cdot & h\left[\left.\begin{array}{ll}
n & k
\end{array} \right\rvert\, \cdot\right. \\
k & \cdots &
\end{array} \right\rvert\, .\right.
\end{array}\right.
\end{aligned}
$$

Periodic Functions and Fourier Series

The Fourier

Sinusoidal Inputs

Nonsinusoidal Inputs

Nonsinusoidal Inputs

The Fourier

Joseph Fourier
1768 to 1830

Fourier studied the mathematical theory of heat conduction. He established the partial differential equation governing heat diffusion and solved it by using infinite series of trigonometric functions.

The Fourier Series

Fourier proposed in 1807

A periodic waveform $f(t)$ could be broken down into an infinite series of simple sinusoids which, when added together, would construct the exact form of the original waveform.

Consider the periodic function

$$
f(t) \cdot f(t \cdot n T) ; n \cdot \bullet 1, \cdot 2, \cdot 3, \cdot
$$

$T=$ Period, the smallest value of T that satisfies the above Equation.

The Fourier Series

The expression for a Fourier Series is

$$
f t) \cdot a{ }_{0} \cdot \stackrel{N}{{ }_{n} \cdot 1} a_{n} \cos n \mathrm{~W}_{0} t \cdot{ }_{n \cdot 1}^{N} b \sin n \mathrm{~W} t \quad{ }_{0}
$$

$a_{0,} a_{n}$, and b are real and are called
Fourier Trigonometric Coefficients \quad and $\quad \mathrm{w}_{0} \cdot \frac{2 \cdot}{T}$
Or, alternative form

$$
f t) \cdot C \quad{ }_{0} \cdot \underset{n \cdot 1}{\bullet} C_{n} \cos \left(n \mathrm{~W}_{0} t \cdot{ }_{n}\right)
$$

$C_{0} \cdot a_{0}$ and C_{n} are the Complex Coefficients
Fourier Series = a finite sum of harmonically related sinusoids

The Fourier Series

N

$$
f t) \cdot C \quad{ }_{0} \cdot \underset{n \cdot 1}{\bullet} C_{n} \cos \left(n \mathrm{~W} t{ }_{0}^{\bullet}\right)_{n}
$$

C_{0} is the average (or DC) value of $f(t)$

For $n=1$ the corresponding sinusoid is called the fundamental

$$
C \cos \left(\mathrm{~W} t^{\bullet} \quad \dot{0}\right) \quad 1
$$

For $n=k$ the corresponding sinusoid is called the k th harmonic term
$C \cos \left(k \mathrm{~W} t^{\circ}{ }_{0}{ }^{\bullet}\right)_{k}$

Similarly, wo is call the fundamental frequency $k w o$ is called the kth harmonic frequency

The Fourier Series

Definition

A Fourier Series is an accurate representation of a periodic signal and consists of the sum of sinusoids at the fundamental and harmonic frequencies.

The waveform $f(t)$ depends on the amplitude and phase of every harmonic components, and we can generate any non-sinusoidal waveform by an appropriate combination of sinusoidal functions.

The Fourier Series (Dirichlet's Conditions)

To be described by the Fourier Series the waveform $f(t)$ must satisfy the following mathematical properties:

1. $f(t)$ is a single-value function except at possibly a finite number of points.
2. The integral for any to.
3. $f(t)$ has a finite number of discontinuities within the period T.
4. $f(t)$ has a finite number of maxima and minima within the period T.

$$
\left.\cdot_{t 0}^{t 0 \cdot} \mid f t\right) d t \mid
$$

In practice, $f(t)=v(t)$ or $i(t)$ so the above 4 conditions are always satisfied.

Periodic Functions

A function f • • is periodic
if it is defined for all real and if there is some positive number,

Tsuch that $f \cdot \cdots T^{\bullet} \cdot f \cdot \cdots$
MN

Fourier Series

f. . be a periodic function with peri 2 d
The function can be represented by a trigonometric series as:

$$
f \cdot \cdot{ }_{0} \cdot a_{n \cdot 1} \cdot a_{n} \cos n \cdot b_{n} \sin n
$$

$$
\cdots \boldsymbol{q}_{n \cdot 1}^{\bullet} a_{n} \cos n \cdot{ }_{n \cdot 1} b_{n} \sin n
$$

What kind of trigonometric (series) functions are we talking about?
$\cos \cdot, \cos 2^{\cdot}, \cos 3^{\cdot} \cdot$ and
$\sin \cdot, \sin 2^{\cdot}, \sin 3^{\cdot} \cdot$

$— \sin \cdot \quad — \sin \cdot 2 \cdot \quad — \sin \cdot 3 \cdot$

We want to determine the coefficients,

 $\boldsymbol{a}_{\boldsymbol{n}}$ and \boldsymbol{b}

 $\boldsymbol{a}_{\boldsymbol{n}}$ and \boldsymbol{b} n

 n}

Let us first remember some useful integrations.

- $\cos n \cdot \cos m \cdot d \cdot$
$\cdot \frac{1}{2} \cdot \cos \cdot n \cdot m \cdot d \cdot \cdot \frac{1}{2} \cdot \cos \cdot n \cdot m \cdot \cdot d \cdot$
$\cdot \cos \boldsymbol{n} \cdot \cos \boldsymbol{m} \boldsymbol{d} \cdot \mathbf{0} \quad \boldsymbol{n} \cdot \boldsymbol{m}$
$\cdot \cos \boldsymbol{n} \cdot \cos \boldsymbol{m} \boldsymbol{d} \cdot \cdot \boldsymbol{n}^{\cdot} \boldsymbol{m}$

$\sin n \cdot \cos m \cdot d \cdot$

$\frac{1}{2} \cdot \sin \cdot n \cdot m \cdot d \cdot \frac{1}{2} \cdot \sin \cdot n \cdot m \cdot d \cdot$
$\bullet \sin \boldsymbol{n} \cdot \cos \boldsymbol{m} \boldsymbol{d} \quad 0$
for all values of \boldsymbol{m}.

- $\sin n \cdot \sin m \cdot d \cdot$
$\cdot \frac{1}{2} \cdot \cos \cdot n \cdot m d \cdot \frac{1}{2} \cdot \cos \cdot n \cdot m \cdot d \cdot$
- $\sin \boldsymbol{n} \cdot \sin \boldsymbol{m} \cdot \boldsymbol{d}^{\cdot} \cdot \mathbf{0} \boldsymbol{\Pi}^{\bullet} \boldsymbol{m}$
- $\sin \boldsymbol{n} \cdot \sin \boldsymbol{m} \cdot \boldsymbol{d} \cdot \cdots \boldsymbol{\Pi}^{\cdot} \boldsymbol{m}$

Determine \boldsymbol{a}_{0}

Integrate both sides of (1) from

- to •
- $\boldsymbol{f} \cdot \cdot \boldsymbol{d} \cdot$

$$
f \cdots d
$$

$\cdot \operatorname{ad.}_{0} \cdot{ }^{\circ} \cdot{ }_{n} \cdot a_{n} \cos n^{\circ} \quad \cdot d \cdot$

$$
\bullet \cdot{ }_{n} \sin n \cdot{ }^{\bullet} d
$$

$$
\cdot f^{\bullet} \cdot \bullet d^{\bullet} \cdot a d \cdot \cdot 0 \cdot 0
$$

$$
\begin{aligned}
& \cdot f \cdot \cdot d \cdot \cdot 2_{0} \cdot a 0 \cdot 0 \\
& a_{0} \cdot \frac{1}{2 \cdot} \cdot f \cdot \cdots d \cdot
\end{aligned}
$$

\boldsymbol{a}_{0} is the average (dc) value of the function, $f \cdot$ •

You may integrate both sides of (1) from 0 to 2. instead.
${ }_{0}^{2 \cdot} f \cdot d \cdot$

It is alright as long as the integration is performed over one period.
2.

$$
f \cdot \cdot d
$$

$$
\bullet_{0}^{2} \cdot f \cdot \cdot d^{4} \cdot{ }_{0}^{2 \cdot} a_{0} d \cdot \cdot 0 \cdot 0
$$

$$
\begin{aligned}
& \text { 2. 2. • }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{0} f \cdot \cdot d \cdot 2 \cdot a_{0} \cdot 0 \cdot 0 \\
& a_{0} \cdot \frac{1}{2 \cdot}{ }_{0}^{2 \cdot} f \cdot \cdot d \cdot
\end{aligned}
$$

Determine a

n

Multiply (1) by $\cos m^{\bullet}$

and then Integrate both sides from

- • to •
- $f \cdot \cdot \cos m \cdot d \cdot$

Let us do the integration on the right-hand-side one term at a time.

First term,
$-a_{0} \operatorname{cosm} \cdot d \cdot \quad \mathbf{0}$
Second term,

$$
\boldsymbol{a}_{\boldsymbol{n} \operatorname{Cos}} \boldsymbol{n} \cdot \cos \boldsymbol{m} \cdot \boldsymbol{d}
$$

$$
n \cdot 1
$$

Second term,

$$
\cdots a_{n} \cos n \cdot \cos m \cdot d \cdot \cdots \quad a_{m}
$$

Third term,

$$
\cdots{ }_{n \cdot 1} \boldsymbol{b}_{n} \sin n \cdot \operatorname{cosm} \cdot d \cdot \cdot 0
$$

Therefore,

$$
\cdot f \cdot \cdot \cdot \cos \cdot d^{\cdot} \cdot a_{m}
$$

$$
a_{m} \cdot \frac{1}{-} \cdot f \cdot \cdot \cdot \cos m \cdot d \cdot m \cdot 1,2
$$

Determine \boldsymbol{b}

\boldsymbol{n}

Multiply (1) by sinm and then Integrate both sides from

- f. $\cdot \operatorname{sint} d$.

Let us do the integration on the right-hand-side one term at a time.

First term,

- $a_{0} \operatorname{sinm} \quad d \cdot 0$

Second term,
$\because{ }_{n \cdot 1} a_{n} \cos n \cdot \operatorname{sinm} \cdot d \cdot$

Second term,

${ }^{\cdot}{ }_{n \cdot 1} a_{n} \cos n \cdot \operatorname{sinm} \cdot d \cdot \cdot 0$

Third term,

${ }_{\substack{ \\{ }_{n \cdot 1}}}^{\boldsymbol{b}_{n} \sin n \cdot \sin m \cdot d \cdot} \cdot \boldsymbol{b}_{m}$

Therefore,

$\cdot f \cdot \cdot \sin m \cdot d^{\cdot} \cdot \boldsymbol{b}_{m}$.

$$
b_{m} \cdot \frac{1}{\cdot} \cdot f^{\cdot} \cdot \cdot \sin m \cdot d \cdot m Q^{\circ}
$$

The coefficients are:

$$
\begin{aligned}
& a_{0} \cdot \frac{1}{2 \cdot} \cdot f \cdot \cdot \cdot d \cdot \\
& a_{m} \cdot \frac{1}{\cdot} \cdot f \cdot \cdot \cos m \cdot d \cdot m \cdot 1,2, \cdot \\
& b_{m} \cdot \frac{1}{\cdot} \cdot f \cdot \cdot \cdot \sin m \cdot d \cdot m \cdot 1,2,
\end{aligned}
$$

We can write \boldsymbol{n} in place of \boldsymbol{m} :

$$
\begin{aligned}
& a_{0} \cdot \frac{1}{2 \cdot} \cdot f \cdot \cdot \cdot d \cdot \\
& a_{n} \cdot \frac{1}{\cdot} \cdot f \cdot \cdot \cdot \cos n \cdot d n \cdot 1,2, \cdot \\
& b_{n} \cdot \frac{1}{\cdot} \cdot f \cdot \cdot \cdot \sin n \cdot d n \cdot 1,2, \cdot
\end{aligned}
$$

The integrations can be performed from

0 to 2• instead.

$$
a_{0} \cdot \frac{1}{2 \cdot} \cdot_{0}^{2} f \cdot \cdots d \cdot
$$

$$
a_{n} \cdot \frac{1}{\cdot} \cdot_{0}^{2} f^{\cdot} \cdot \cos n \cdot d n \cdot 1,2,
$$

$$
b_{n} \cdot \frac{1}{\cdot} \cdot_{0}^{2 \cdot} f \cdot \cdot \cdot \sin n \cdot d n \cdot 1,2, \cdot
$$

Example 1. Find the Fourier series of

 the following periodic function.

$$
\begin{aligned}
f \cdot & \cdot A \text { when } \\
& 0 \cdot \\
& 0 \text { a when }
\end{aligned} \quad \cdots \cdot{ }_{2} \cdot
$$

$$
\begin{aligned}
& { }_{0} \frac{1}{2 \cdot} \cdot_{0}^{2 \cdot} f \cdot \cdot d \cdot \\
& \cdot \frac{1}{2 \cdot} \cdot{ }_{0}^{2} f \cdot d \cdot \cdot^{2} f \cdot \cdots d \\
& \cdot \frac{1}{2 \cdot} \cdot{ }_{0} A d \cdot \cdot \cdot^{2} \cdot A d \cdot \\
& \cdot
\end{aligned}
$$

$$
n \cdot \frac{1}{\cdot} \cdot_{0}^{2 \cdot} f \cdot \cdot \cos n \cdot d \cdot
$$

$$
\frac{1}{\cdot} \cdot{ }_{0}^{\cdot} A \cos n \cdot d \cdot \quad \bullet^{2 \cdot} \cdot A^{\cdot} \cos \cdot d \cdot
$$

$$
\frac{1}{\cdot} \cdot A \frac{\sin n \cdot}{n} \cdot \cdot_{0} \cdot \frac{1}{\cdot} \cdot A \frac{\sin n \cdot}{n} \cdot{ }^{2}
$$

$\frac{1}{-}{ }_{0}^{2 \cdot} f \cdot$ sine $d \cdot$
$\frac{1}{-} \cdot \bullet_{0}^{\cdot} A \sin n^{\cdot} d \cdot \quad{ }^{2} \cdot \cdot A^{\cdot} \sin n^{\cdot} d^{\cdot} \quad$.
$\frac{1}{\cdot}: A \frac{\cos n \cdot}{n} \cdot{ }^{\bullet} \cdot \frac{1}{\cdot} \cdot A \frac{\operatorname{cosn} \cdot}{n} \cdot{ }^{2 \cdot}$

- $-\quad \cdot \cos n^{\cdots} \cos 0^{\cdot} \cos 2 n^{\circ} \cdot \cos n \cdot$ n.

$$
\begin{aligned}
& { }_{n} \cdot \frac{A}{n \cdot} \cdot \cos n \cdot \cos 0 \cdot \cos 2 n \cdot \cos n \\
& \cdot \frac{A}{n^{\cdot}} \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot \\
& \cdot \frac{4 A}{} \text { when } \mathrm{n} \text { is odd }
\end{aligned}
$$

$$
n .
$$

$$
\begin{aligned}
& \frac{A}{n^{\cdot}} \cdot \cos n \cdot \cos 0 \cdot \cos 2 n \cdot \cdot \cos n \cdot \\
& \frac{A^{-} \cdot}{n^{\cdot}} \cdot 11 \cdot 1 \cdot 1 \cdot \\
& \cdot 0 \text { when } n \text { is even }
\end{aligned}
$$

Therefore, the corresponding Fourier series is

$$
\frac{4 A^{\cdot}}{\cdot} \cdot \sin \cdot \frac{1}{3} \sin 3 \cdot \cdot \frac{1}{5} \sin 5 \cdot \cdot \frac{1}{7} \sin 7 \cdot
$$

In writing the Fourier series we may not be able to consider infinite number of terms for practical reasons. The question therefore, is - how many terms to consider?

When we consider 4 terms as shown in the previous slide, the function looks like the following.

When we consider 6 terms, the function looks like the following.

When we consider 8 terms, the function looks like the following.

When we consider 12 terms, the function looks like the following.

The red curve was drawn with 12 terms and the blue curve was drawn with 4 terms.

The red curve was drawn with 12 terms and the blue curve was drawn with 4 terms.

The red curve was drawn with 20 terms and the blue curve was drawn with 4 terms.

Even and Odd Functions

(We are not talking about even or odd numbers.)

Even Functions

Mathematically speaking -

The value of the function would be the same when we walk equal distances along the X -axis in opposite directions.
$f^{\circ} \cdot$ • • $f \cdot$ •

Odd Functions

The value of the function would change its sign but with the same magnitude when we walk equal distances along the X -axis in opposite directions.

Mathematically speaking $f^{\circ} \cdot$ ••••f•••

Even functions can solely be represented by cosine waves because, cosine waves are even functions. A sum of even functions is another even function.

Odd functions can solely be represented by sine waves because, sine waves are odd functions. A sum of odd functions is another odd function.

The Fourier series of an even function \boldsymbol{f} • is expressed in terms of a cosine series.

$$
f \cdot \cdot \cdot{ }_{0} a \cdot a_{n} \cos n
$$

The Fourier series of an odd function \boldsymbol{f} • is expressed in terms of a sine series.

$$
f \cdot \cdots \underset{n \cdot 1}{\cdot} b_{n} \sin n
$$

Example 2. Find the Fourier series of

 the following periodic function.
$f \cdot x \cdot x_{2}$ when $\cdot x$.
f. $\cdot 2 \cdot \cdot \boldsymbol{f} \cdot$

$$
\begin{aligned}
& a_{0} \cdot \frac{1}{2 \cdot} \cdot f \cdot x \cdot d x \cdot \frac{1}{2 \cdot} \cdot x^{2} d x \\
& \cdot \frac{1}{2 \cdot} \cdot \frac{x^{3}}{3} \cdot{ }_{x} \cdot \frac{.^{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{-} \cdot f \cdot x \cdot \cos n x d x \\
& \frac{1}{-} \cdot x^{2} \cos n x d x
\end{aligned}
$$

Use integration by parts. Details are shown in your class note.

This is an even function.

Therefore, $\boldsymbol{b}_{\boldsymbol{n}} \cdot \mathbf{0}$
The corresponding Fourier series is

Functions Having Arbitrary Period

Assume that a function $f_{\cdot} \cdot \boldsymbol{t}$. has period, \boldsymbol{T}. We can relate angle (•) with time (t) in the following manner.

- W_{t}

W is the angular velocity in radians per second.

$$
\cdot 2 \cdot f
$$

f is the frequency of the periodic function,

$$
\begin{aligned}
& t \\
& \text { • } \cdot 2 \cdot f t \text { where } f \cdot \frac{1}{T} \\
& \text { Therefore, } \cdot \frac{2 \cdot}{T} t
\end{aligned}
$$

Now change the limits of integration.

$t \cdot \frac{T}{2}$

$$
\begin{aligned}
& 0 \cdot \frac{1}{2} \cdot f \cdot \cdot \cdot d \cdot \\
& a_{0} \cdot \frac{1}{T} \cdot{ }^{\frac{T}{2}} t
\end{aligned}
$$

$$
n \cdot \frac{1}{\cdot} \cdot f \cdot \cdot \cdot \cos n \cdot d \cdot n \cdot 1,2
$$

$$
a_{n} \cdot \frac{2}{T} \cdot f t_{\cdot \frac{T}{2}}^{\frac{T}{c}} \cos \frac{2 \cdot n}{T} t \cdot d t \quad n \cdot 1,2
$$

$$
\begin{aligned}
& n \cdot \frac{1}{\cdot} \cdot f \cdot \cdot \cdot \sin n \cdot d \cdot n \cdot 1,2, \\
& b_{n} \cdot \frac{2}{T} \cdot f t^{\cdot} \sin \frac{2 \cdot n}{T} t \cdot d t \quad n \cdot 1,2,
\end{aligned}
$$

Example 4. Find the Fourier series of the following periodic function.

$$
f t \cdot \cdot t \quad \text { when } \cdot \frac{T}{4} \cdot t \cdot \frac{T}{4}
$$

$$
\cdot \cdot t \cdot \frac{T}{2} \text { when } \frac{T}{4} \cdot t \cdot \frac{3 T}{4}
$$ t

This is an odd function. Therefore, \boldsymbol{a}
$b_{n} \cdot \frac{2}{T} \cdot f t \cdot \sin \cdot \frac{2 \cdot n}{T} t \cdot d t$

$$
\frac{4}{T} \cdot f t \cdot \sin \cdot \frac{2 \cdot n}{T} t \cdot d t
$$

$$
\cdot-\cdot \cdot \cdot t \cdot \frac{-}{-} \cdot \sin \cdot \frac{}{T} \cdot d t
$$

$$
T_{\frac{T}{4}} .
$$

$$
2 \text {. }
$$

$$
\text { . } \boldsymbol{T}
$$

Use integration by parts.

$$
n \cdot \frac{4}{T} \cdot 2 \cdot \frac{T}{2 \cdot n} \cdot \sin \cdot \frac{n \cdot}{2} \cdot
$$

$$
\frac{2 T}{n 2^{\circ}} \sin \cdot \frac{n^{\cdot}}{2}
$$

$\boldsymbol{b}_{\boldsymbol{n}} \cdot \mathbf{0}$ when \boldsymbol{n} is even.

Therefore, the Fourier series is

$$
\frac{2 T^{\cdot}}{.^{2}} \cdot \sin \cdot \frac{2 \cdot}{\boldsymbol{t}} \cdot \cdot \frac{1}{3^{2}} \sin \cdot \frac{6 \cdot}{\boldsymbol{T}} \cdot \frac{1}{5^{2}} \sin \cdot \frac{10}{T} \boldsymbol{t} \cdot \cdot .
$$

He Complex Form of Fourier Series

$$
f \cdot \cdot \cdot{ }_{0} a \cdot a_{n} \cos n \cdot{ }_{n} \cdot b_{n} \sin n
$$

Let us utilize the Euler formulae.

The $\boldsymbol{\pi}$ th harmonic component of (1) can be expressed as:
$a_{n} \cos n \cdot \quad b_{n} \sin n$.
$\cdot a_{n} \frac{e^{j n \cdot} \cdot e^{\cdot j n}}{2} \cdot b_{n} \frac{e^{j n \cdot} \cdot e^{\cdot j n}}{2 i}$

$\cos n \cdot b \quad{ }_{n} \sin n \cdot$

Denoting

and $\mathcal{C}_{0} \cdot \boldsymbol{a}_{0}$

$a_{n} \cos n \cdot b_{n} \sin n \cdot$ $\cdot c_{n} e^{j n \cdot} \cdot c_{n} e^{\cdot j n \cdot}$

The Fourier series for \boldsymbol{f} • can be expressed as:

The coefficients can be evaluated in the following manner.

$$
\left.c_{n} \cdot \stackrel{\cdot}{q^{\cdot} j b_{n}}\right)
$$

$\cdot \frac{1}{2 \cdot} \cdot f \cdot \cdot \cdot \cos n \cdot d \cdot \frac{j}{2 \cdot} \cdot f \cdot \cdot \cdot \sin n \cdot d \cdot$
$\cdot \frac{1}{2 \cdot} \cdot f \cdot \cdot \cdot \cos n \cdot j \sin n \cdot d \cdot$
$\cdot \frac{1}{2 \cdot} \cdot f \cdot \cdot \dot{e}^{j n} d \cdot$

$$
\begin{aligned}
& \cdots \frac{q \cdot j b_{n}}{2} \cdot \\
& \frac{1}{2 \cdot} \cdot f \cdot \cos n \cdot d \cdot \frac{j}{2 \cdot} \cdot f \cdot \cdots \sin n \cdot d \cdot \\
& \frac{1}{2 \cdot} \cdot f \cdot \cdot \cos n \cdot j \sin n \cdot d \cdot \\
& \cdot \frac{1}{2 \cdot} \cdot f \cdot \cdots e_{j n d}
\end{aligned}
$$

Note that $\boldsymbol{C} ._{\boldsymbol{n}}$ is the complex conjugate of
$\boldsymbol{C}_{\boldsymbol{n}} \quad$ Hence we may write that

$$
n \cdot 0, \cdot 1, \cdot 2,^{\circ}
$$

The complex form of the Fourier series of

f • withperiod $2 \cdot$ is:

$$
f \cdot \cdots \cdot \cdot c_{n} e^{j n}
$$

$$
n \cdot \cdot \cdot
$$

Example 1. Find the Fourier series of

 the following periodic function.

$$
\begin{aligned}
f \cdot & \cdot A \text { when } \\
& 0 \cdot \\
& 0 \text { a when }
\end{aligned} \quad \cdots \cdot{ }_{2} \cdot
$$

5

$$
\mathrm{A} 0 \quad \frac{1}{2 \cdot} \cdot{ }_{0}^{2 \cdot} \mathrm{f}(\mathrm{x}) \mathrm{dx}
$$

An. 0

$$
\begin{aligned}
& f(x) \quad \cdot \left\lvert\, \begin{array}{llllll}
\text { A if } & 0 & & x & \cdot \\
\cdot & A & \text { if } & \cdot & x & 2 \cdot
\end{array}\right. \\
& 0 \text { otherwise }
\end{aligned}
$$

$$
A n \cdot \frac{1}{\cdot} \cdot{ }^{2 \cdot} f(x) \cdot \cos \left(n^{\cdot} x\right) d x
$$

$$
\begin{array}{lllll}
\mathrm{A} 1 \cdot 0 & \text { A2 } \cdot 0 & \text { A3 } \cdot 0 & \text { A4 } \cdot 0
\end{array}
$$

$$
\text { A5 } \cdot 0
$$

$$
\text { A6• } 0
$$

$$
\text { A7. } 0
$$

$$
\text { A8• } 0
$$

| B1 • 6.366 | B2 • 0 | B3 2.122 | B4 • 0 |
| :--- | :--- | :--- | :--- | :--- |
| B5 • 1.273 | B6 • 0 | B7 • 0.909 | B8 • 0 |

Complex Form

$$
f \cdot \cdots c_{n} e^{j n} \quad c_{n} \cdot \frac{1}{2 \cdot} \cdot f \cdot \cdot{ }^{j n} d
$$

$$
n \cdot \mathbf{0} \cdot \cdot \mathbf{1}, \cdot
$$

$$
\mathrm{C}(\mathrm{n}) \quad \frac{1}{2 \cdot} \cdot{ }_{0}^{2 \cdot} \mathrm{f}(\mathrm{x}) \cdot \mathrm{e} \cdot 1 \mathrm{i} \cdot \mathrm{n} \cdot \mathrm{xdx}
$$

$$
C(n) \quad \cdot \frac{1}{2 \cdot} \cdot{ }_{0}^{2 \cdot} f(x) \cdot e \cdot 1 i \cdot n \cdot x d x
$$

$$
\begin{array}{ccll}
(1) \cdot 0 & \mathrm{C}(1) \cdot 3.183 \mathrm{i} & \mathrm{C}(2) \cdot 0 & \mathrm{C}(3) \cdot 1.061 \mathrm{i} \\
\mathrm{C}(4) \cdot 0 & \mathrm{C}(5) \cdot 0.637 \mathrm{i} & \mathrm{C}(6) \cdot 0 & \mathrm{C}(7) \cdot 0.455 \mathrm{i} \\
& & & \\
& \mathrm{C}(\cdot 1) \cdot 3.183 \mathrm{i} & \mathrm{C}(\cdot 2) \cdot 0 & \mathrm{C}(\cdot 3) \cdot 1.061 \mathrm{i} \\
\mathrm{C}(\cdot 4) \cdot 0 & \mathrm{C}(\cdot 5) \cdot 0.637 \mathrm{i} & \mathrm{C}(\cdot 6) \cdot 0 & \mathrm{C}(\cdot 7) \cdot 0.455 \mathrm{i}
\end{array}
$$

The Fourier Series

Recall from calculus that sinusoids whose frequencies are integer multiples of some fundamental frequency $f_{0}=1 / T$ form an orthogonal set of functions.

$$
\frac{2}{T} \cdot{ }_{0}^{T} \sin \frac{2 \cdot n t}{T} \cos \frac{2 \cdot}{T} m t d t \cdot 0 ; \quad \cdot n, m
$$

$$
\begin{aligned}
\frac{2}{T} \cdot{ }_{0}^{T} \sin \frac{2 \cdot n t}{T} \sin \frac{2 \cdot m t}{T} d t \cdot & \frac{2}{T}{\underset{0}{T} \cos \frac{2 \cdot n t}{T} \cos \frac{2 \cdot m t}{T} d t} \begin{aligned}
& \cdot 0 \\
& \cdot n \cdot m
\end{aligned} \\
& \cdot 1 \quad ; n \cdot m \cdot 0
\end{aligned}
$$

The Fourier Series

The Fourier Trigonometric Coefficients can be obtained from

$$
\begin{aligned}
& \left.a_{0} \cdot \frac{1}{T} \cdot{ }_{t_{0}}^{t_{0} \cdot T} f t\right) d t \quad \text { average value over one period } \\
& \left.a_{n} \cdot \frac{2}{T}{ }^{t_{0} \cdot{ }_{0}}{ }^{t_{0}} f t\right) \cos n \mathrm{~W} \quad{ }_{0} t d t \quad{ }_{n>0} \\
& \left.b_{n} \cdot \frac{2}{T}{ }_{{ }_{0}}^{t_{0}} \cdot{ }^{T} f t\right) \sin n \mathrm{~W}_{0} t d t \quad n>0
\end{aligned}
$$

The Fourier Series

To obtain a_{k}
$\left.\cdot_{0}^{T} f t\right) \cos k \mathrm{~W}{ }_{0} t d t \cdot \quad \dot{0}_{0}^{T} a_{0} \cos k \mathrm{~W} t d t$

- ${ }^{N} \quad{ }_{0}^{T}\left(a_{n} \cos n \mathrm{~W}{ }_{0} t \cdot \quad b_{n} \sin n \mathrm{~W} t_{0}\right) \cos k \mathrm{~W} t d t$ $n \cdot 1$

The only nonzero term is for $n=k$

$$
\left.\bullet_{0}^{T} f t\right) \operatorname{cosk} \mathrm{W} \quad 0 t d t \cdot a k \cdot \frac{\cdot}{2}
$$

Similar approach can be used to obtain b_{k}
E. ple 1 determine Fourier Series and plot for $\mathrm{N}=7$

$$
\begin{array}{rll}
a & \\
a_{0} & \left.\cdot \frac{1}{T} \cdot{ }_{t_{0}}^{t_{0} \cdot T} f t\right) d t \\
& \left.\cdot \frac{1}{T} \cdot{ }_{T / 2}^{T / 2} f t\right) d t \quad \cdot \frac{1}{T} \cdot{ }_{T / 4}^{T / 4} 1 d t \cdot & \frac{1}{2}
\end{array}
$$

Example 1(cont.)

Arfeven function exhibits symmetry around the vertical axis at $t=0 \quad$ so that $f(t)=f(-t)$.

$$
\begin{array}{r}
\left.b_{n} \cdot \frac{2}{T} \cdot_{t_{0}}^{t_{0} \cdot T} f t\right) \sin n \mathrm{~W} t d t_{0} \\
\cdot \\
\quad \frac{2}{T} \cdot{ }_{T / 4}^{T / 4} 1 \sin n \mathrm{~W} t d t \cdot 0
\end{array}
$$

Determine only a_{n}

$$
\begin{gathered}
a_{n} \cdot \frac{2}{T} \cdot{ }_{T / 4}^{T / 4} 1 \cos n \mathrm{~W} t_{0} d t \\
\left.\cdot \frac{2}{T \mathrm{~W}_{0} n} \sin n \mathrm{~W}_{0} t\right|_{T / 4} ^{T / 4}
\end{gathered}
$$

Example 1(cont.)

$a_{n} \cdot 0$ when $n \cdot 2,4,6, \cdot$
and

$$
a_{n} \cdot \frac{2(\cdot 1)^{q}}{\cdot n} \text { when } n \quad \cdot 1,3,5,
$$

$$
\begin{array}{ll}
\text { where } & q \cdot \frac{(n \cdot 1)}{2} \\
f t)^{\cdot} & \frac{1}{2} \cdot{ }_{n \cdot 1, o d d}^{\bullet} \frac{2(\cdot 1)^{q}}{\bullet n} \\
& \cos n \mathbf{W} t
\end{array}{ }_{0} \quad l
$$

$$
a_{1} \cdot \frac{2}{-}, a_{3} \cdot \frac{-2}{3 \cdot}, a_{5} \cdot \frac{2}{5 \cdot},\left.a_{7} \cdot \frac{\cdot 2}{7 \cdot} \xrightarrow[-\frac{T}{2}]{ }\right|_{0} \overbrace{\frac{T}{2} \rightarrow}
$$

Symmetry of the Function

Four types

1. Even-function symmetry
2. Odd-function symmetry
3. Half-wave symmetry
4. Quarter-wave symmetry

Even function

$$
f(t) \cdot f(\cdot t) \quad \text { All } b_{n}=0
$$

Symmetry of the Function

Odd function

$$
f(t) \cdot \cdot f(\cdot t)^{\text {All } a_{n}=0}
$$

Half-wave symmetry

$$
f t) \cdot \cdot f\left(t \cdot \quad \frac{T}{2}\right)
$$

a_{n} and $b_{n}=0$ for even values of n and $a_{0}=0$

Symmetry of the Function

Quarter-wave symmetry

All $a_{n}=0$ and $b_{n}=0$ for even values of n and $a_{0}=0$

$$
\left.b_{n} \cdot \frac{8}{T} \cdot{ }_{0}^{T / 4} f t\right) \sin n \mathrm{w} \quad{ }_{0} t d t \quad ; \text { for odd } n
$$

Symmetry of the Function

For Even \& Quarter-wave

All $b_{n}=0$ and $a_{n}=0$ for even values of n and $a_{0}=0$

$$
\left.a_{n} \cdot \frac{8}{T} \cdot{ }_{0}^{T / 4} f t\right) \cos n \mathrm{~W} \quad{ }_{0} t d t \quad ; \text { for odd } n
$$

Table 15.4-1 gives a summary of Fourier coefficients and symmetry.

To obtain the most advantages form of symmetry, we choose $t_{1}=0 \mathrm{~s}$
. Odd \& Quarter-wave

All $a_{n}=0$ and $b_{n}=0$ for even values of n and $a_{0}=0$

$$
\left.b_{n} \cdot \frac{8}{T} \cdot{ }_{0}^{T / 4} f t\right) \sin n \mathrm{w} \quad{ }_{0}^{t} t d t \quad ; \text { for odd } n
$$

Example 2(cont.)

$$
\begin{aligned}
& \begin{aligned}
f t) & \frac{f_{m}}{T / 4} t \cdot \frac{4 f_{m}}{T} t
\end{aligned} ;_{0}^{4}, t \cdot T / 4 \\
& b_{n} \cdot \frac{8}{T \cdot} \cdot \frac{32 \cdot}{\cdot} \cdot \dot{0}^{T / 4} t \sin n \mathrm{~W} t d \hbar \\
& \text { - } \sin n \mathrm{~W} t \\
& \text { T/4 } \\
& \text { • } \frac{512}{.^{2}} \cdot \frac{0}{n^{2} \mathrm{~W}_{0}^{2}} \cdot \frac{t \cos n \mathrm{~W} t{ }_{0}}{n \mathrm{~W}_{0}} \cdot{ }_{0} \\
& \frac{32}{\cdot{ }^{2} n^{2}} \sin \frac{n \cdot}{2} \\
& \text {; for odd } n
\end{aligned}
$$

Example 2(cont.)

The Fourier Series is

The first 4 terms (upto and including $N=7$)
$f t) \cdot 3.24(\sin 4 t \cdot$

$$
\left.\frac{1}{9} \sin 12 t \cdot \quad \frac{1}{25} \sin 20 t \cdot \quad \frac{1}{49} \sin 28 t\right)
$$

Next harmonic is for $\mathrm{N}=9$ which has magnitude
$3.24 / 81=0.04<2 \%$ of $b_{1}(=3.24)$

Therefore the first 4 terms (including $N=7$) is enough for the desired approximation

Exponential Form of the Fourier Series

$$
f t) \cdot C \quad{ }_{0} \cdot{ }_{n}{ }^{\bullet} \cdot C_{n} \cos \left(n \mathrm{~W} t \cdot{ }_{0} \cdot\right)_{n}
$$

C_{0} is the average (or DC) value of $f(t)$ and

$$
\mathbf{C}_{n} \cdot \frac{\left(a_{n} \cdot j b\right)_{n}}{2} \cdot C_{n} \cdot{ }_{n}
$$

where
and

$$
\begin{aligned}
& C_{n} \cdot\left|C_{n}\right| \cdot \frac{\sqrt{a_{n}^{2} \cdot b_{n}^{2}}}{2} \\
& \quad \cdot \\
& \quad \cdot \tan \cdot{ }^{\cdot} \cdot \frac{b_{n}}{n} \cdot \quad ; \text { if } a_{n} \cdot 0
\end{aligned}
$$

$$
180 \cdot \tan \cdot{ }^{\cdot} \cdot \frac{b_{n} \cdot}{a_{n}} \cdot ; \text { if } a_{n} \cdot 0
$$

Exponential Form of the Fourier Series

$$
a_{n} \cdot 2 C_{n} \cos \cdot{ }_{n}^{\text {and }} \quad b_{n} \cdot 2 C_{n} \sin ^{\cdot}{ }_{n}
$$

Writing $\underset{\text { Euler"s identity with }}{\cos }\left(n \mathrm{~W}_{\sigma^{\bullet}} \cdot{ }_{n^{n}}\right)_{n t i a l}$ form using
$N \cdot$ •

$$
\begin{aligned}
& f t) \cdot C \quad{ }_{0} \cdot \mathbf{C e}_{n}{ }^{j n \omega t_{0}} \cdot \quad \bullet \mathbf{C} e_{n}{ }^{j n w t_{0}} \\
& { }_{n}{ }_{n} \cdot 0
\end{aligned}
$$

where the complex coefficients are defined as

$$
\left.\mathbf{C}_{n} \cdot \frac{1}{T} \cdot_{t_{0}}^{t_{0} \cdot T} f t\right) e^{\cdot j n \mathrm{w} 0 t} d t \cdot C e_{n}^{j \cdot n}
$$

And C . ${ }^{\text {* }}$ complex $n \quad \cdot n$

E ple 3 determine complex Fourier Series

The average value of $f(t)$ is zero

- $\quad C_{0} \cdot 0$

$$
\left.\mathbf{C}_{n} \cdot \frac{1}{T} \cdot_{t_{0}}^{t_{0} \cdot T} f t\right) e^{\cdot j n \mathrm{w} 0 t} d t
$$

We select

$$
t_{0} \cdot \frac{1}{2}
$$

$$
j n \mathrm{~W}_{0} \cdot m
$$

Example 3(cont.)

$$
\left.\mathbf{C}_{n} \frac{1}{T} \cdot{ }_{\cdot T / 2}^{T / 2} f t\right) e^{\cdot j \text { wot }} d t
$$

$\cdot \frac{1}{T} \cdot{ }_{T / 2}^{\cdot T / 4} \cdot A e^{\cdot m t} d t \cdot \frac{1}{T} \cdot{ }_{T / 4}^{T / 4} A e^{\cdot{ }^{m t}} d t \cdot \frac{1}{T} \cdot \cdot_{T / 4}^{T / 2} \cdot A e^{\cdot{ }^{m t}} d t$
$\left.\left.\left.\cdot \frac{A}{m T} \cdot \dot{e^{m t}}\right|_{\cdot T / 2} ^{T / 4} \cdot \dot{e}^{m t}\right|_{T / 4} ^{T / 4} \cdot \dot{e}^{m t}\right|_{T / 4} ^{T / 2} \cdot$
$\cdot \frac{A}{j n \mathrm{~W}_{0} T} \cdot 2 e^{j n \cdot 12} \cdot 2 e^{\cdot{ }^{j n} \cdot / 2} \cdot e^{\cdot j_{n n}} \cdot e^{j n \cdot} \cdot$
$\frac{A}{2 \cdot n} \cdot 4 \sin \frac{n \cdot}{2} \cdot 2 \sin (n \cdot) \quad: \quad \underbrace{0} \quad ; \frac{2 A}{n} \sin n \frac{-}{2}$; for even n
$\cdot A \frac{\sin x}{x}$ where $x . \quad \frac{n \cdot}{2}$

Example 3(cont.)

Since $f(t)$ is even function, all \boldsymbol{C}_{n} are real and $=0$ for n even

For $n=1$

$$
\mathbf{C}_{1} \cdot \frac{A \sin \cdot / 2}{\cdot / 2} \cdot \frac{2 A}{\cdot} \cdot \mathbf{C} \cdot{ }_{1}
$$

For $n=2$

$$
\mathbf{C}_{2} \cdot A \frac{\sin \cdot}{\cdot} \cdot 0 \cdot \mathbf{C}_{2}
$$

For $n=3$

$$
\mathbf{C}_{3} \cdot \frac{A \sin (3 \cdot / 2)}{3 \cdot / 2} \cdot \frac{\cdot 2 A}{3 \cdot} \cdot \mathbf{C}_{3}
$$

Example 3(cont.)

The complex Fourier Series is

$$
\begin{aligned}
& f t) \cdot \cdot \cdot \frac{\cdot 2 A}{3 \cdot} e^{\cdot j 3 \mathrm{w} 0 t} \cdot \frac{2 A}{\cdot} e^{\cdot j \mathrm{w} 0 t} \cdot \frac{2 A}{\cdot} e^{j \mathrm{w} 0 t} \cdot \frac{\cdot 2 A}{3 \cdot} e^{j 3 \mathrm{w} 0 t} \cdot \cdot \\
& \cdot \frac{2 A}{\cdot} \cdot e^{j \mathrm{w} 0 t} \cdot e^{\cdot j \mathrm{w} 0 t} \cdot \cdot \frac{2 A}{3 \cdot} \cdot{ }^{j 3 \mathrm{~W} 0 t} \cdot e^{\cdot j 3 \mathrm{w} 0 t} \cdot \cdot \cdot \\
& \text { - } \frac{4 A}{.} \cos \mathrm{W} t{ }_{0} \quad \frac{4 A}{3 \cdot} \cos 3 \mathrm{w} t{ }_{0} . \\
& e^{j x} \cdot e^{\cdot j x} \cdot 2 \cos x \\
& e^{j x} \cdot e^{\cdot j x} \cdot 2 j \sin x \\
& \cdot \frac{4 A}{\cdot} \cdot \frac{(\cdot 1)^{q}}{n} \cos n \mathbf{W} \epsilon_{6} \quad \text { where } \quad q \cdot \frac{n \cdot 1}{2}
\end{aligned}
$$

For real $f(t)$

$$
\left|\mathbf{C}_{n}\right| \cdot\left|\mathrm{C} \cdot{ }_{n}\right|
$$

E ple 4 determine complex Fourier Series

Use $j n \mathrm{~W}_{0} \cdot m$

$$
\begin{aligned}
\mathbf{C}_{n} & \cdot \frac{1}{T} \cdot{ }^{T / 4} 1 e^{\cdot m t} d t \\
& \left.\cdot \frac{1}{} \frac{m T}{} e^{\cdot m t}\right|^{T / 4} \cdot T / 4 \\
& \cdot \frac{1}{} \quad \frac{m T}{} \cdot e^{\cdot m T / 4} \cdot e^{\cdot m T / 4}
\end{aligned}
$$

Example 4(cont.)

$$
\begin{aligned}
\mathbf{C}_{n} \cdot & \frac{1}{\cdot j n 2 \cdot} \cdot e^{j n \cdot 12} \cdot e^{\cdot j n \cdot 12} \cdot \\
& \cdot 0 \quad ; n \quad \text { even }, n \cdot 0 \\
& \cdot \\
& \cdot(\cdot 1)^{(n \cdot 1) / 2} ; n \text { odd }
\end{aligned}
$$

To find C_{0}

$$
\begin{array}{rlr}
C_{0} & \left.\cdot \frac{1}{T} \cdot{ }_{0}^{T} f t\right) d t \\
& \cdot \frac{1}{T} \cdot{ }_{T / 4}^{T / 4} 1 d t \cdot & \frac{1}{2}
\end{array}
$$

The Fourier Spectrum

The complex Fourier coefficients

$$
\mathbf{C}_{n} \cdot\left|\mathbf{C}_{n}\right| \cdot{ }_{n}
$$

$\left|\mathbf{C}_{n}\right|$

Amplitude spectrum

- n

Phase spectrum

The Fourier Spectrum

The Fourier Spectrum is a graphical display of the amplitude and phase of the complex Fourier coe at the fundamental and harmonic frequencies.

Example

A periodic sequence of pulses each of width •

The Fourier Spectrum

The Fourier coefficients are

$$
\mathbf{C}_{n} \cdot \frac{1}{T} \cdot{ }_{T / 2}^{T / 2} A e^{\cdot j n w o t} d t
$$

For $n \cdot 0$

$$
\begin{aligned}
\mathbf{C}_{n} & \cdot \frac{A}{T} \cdot \ddots_{12} e^{\cdot j n \mathrm{wt} t_{0}} d t \\
& \cdot \frac{\cdot A}{j n \mathrm{~W}_{0} T} \cdot e^{\cdot j n \mathrm{w} \cdot / 2} \cdot e^{j n \mathrm{w} \cdot / 12} \cdot \\
& \cdot \frac{2 A}{n \mathrm{~W} T_{0}} \sin \cdot \frac{n \mathrm{~W}_{0} \cdot}{2} \cdot
\end{aligned}
$$

The Fourier Spectrum

$$
\begin{aligned}
\mathbf{C}_{n} & \cdot \frac{A \cdot}{T(n \mathrm{w} \cdot / 2)_{0}} \frac{\sin (n \mathrm{w} \cdot / 2)}{} \\
& \cdot \frac{A \cdot}{T} x
\end{aligned}
$$

where $\quad x \cdot n \mathrm{~W}_{0} / 2$
For $n \cdot 0 \quad \mathbf{C}_{0} \cdot \frac{1}{T} \cdot{ }_{12} A d t \cdot \frac{A \cdot}{T}$

The Fourier Spectrum

LHopital's rule
$\frac{\sin x}{x} \cdot 1$ for $x \cdot 0$

The Truncated Fourier Series

A practical calculation of the Fourier series requires that we truncate the series to a finite number of terms.

$$
f(t) \cdot \quad{ }_{n} \quad \mathbf{C}_{n} e^{j n \mathrm{w} 0 t} \cdot S_{\left.N^{t}\right)}
$$

The error for N terms is

$$
\left.\cdot t) \cdot f t) \cdot S_{N} t\right)
$$

We use the mean-square error (MSE) defined as

$$
\operatorname{MSE} \cdot \frac{1}{T} \cdot{ }_{0}^{T} \cdot{ }^{2}(t) d t
$$

MSE is minimum when $\boldsymbol{C}_{n}=$ Fourier series" coefficients

The Truncated Fourier Series

Circuits and Fourier Series

It is often desired to determine the response of a circuit excited by a periodic signal vs (t).

Example 15.8-1 An RC Circuit vo(t) = ?

$$
R \cdot 1 \cdot, C \cdot 2 \mathrm{~F}, T \cdot \cdot \sec
$$

Example 15.3-1

(a)

An $R C$ circuit excited by a periodic voltage $v s(t)$.

Circuits and Fourier Series

(c)

(d)
hiple 5 (cont.)

$$
\left.v_{s}^{t}\right) \cdot \quad \frac{1}{2} \cdot{ }_{n \cdot 1, o d d}^{N} \frac{2(\cdot 1)^{y}}{\cdot n} \cos n \mathrm{~W}_{G}
$$

where

$$
q \cdot \frac{}{2}
$$

The first 4 terms of $v s(t)$ is

The steady state response $v o(t)$ can then be found using superposition.

$$
\left.\left.\left.\left.\left.v_{o} t\right) \cdot v_{00} t\right) \cdot v_{o t} t\right) \cdot v_{03} t\right) \cdot v_{o} t\right)
$$

hple 5 (cont.)

The impedance of the capacitor is

$$
\mathbf{Z}_{C} \cdot \frac{1}{j n \mathrm{~W} C} \quad ; \text { forn } \cdot 0,1,3,5,
$$

We can find

- $\overline{1 \cdot} \quad j n \mathrm{w}_{0} C R$

4
niple 5 (cont.)
The steady-state response can be written as

$$
\begin{aligned}
\left.v_{o n} t\right) & \cdot\left|\mathbf{V}_{o n}\right| \cos \left(n \mathrm{~W}_{0} t \cdot \mathbf{V}_{o n}\right. \\
& \cdot \frac{\left|\mathbf{V}_{s n}\right|}{\sqrt{1 \cdot 16 n^{2}}} \cos \left(n \mathrm{~W} t_{0} \cdot \mathbf{V}_{s n} \cdot \tan \cdot{ }^{1} 4 n\right)
\end{aligned}
$$

In this example we have

$$
\begin{aligned}
& \left|\mathbf{V}_{s 0}\right| \cdot \frac{1}{2} \\
& \left|\mathbf{V}_{s n}\right| \cdot \frac{2}{n \cdot} \text { forn } \cdot 1,3,5 \\
& \cdot \mathbf{V}_{s n} \cdot 0 \text { for } n \quad \cdot 0,1,3,5
\end{aligned}
$$

nple 5 (cont.)

$$
{ }_{o 0}(t) \cdot \frac{1}{2}
$$

$$
\left.v_{o} t\right) \quad \cdot 0.154 \cos (2 t \cdot 76 \cdot)
$$

$$
\left.v_{o 3} t\right) \cdot 0.018 \cos \left(6 t^{\cdot} \cdot 85^{\cdot}\right)
$$

$$
\left.v_{o 5} t\right) \cdot 0.006 \cos (10 t \cdot 87 \cdot)
$$

$$
\left.\cdot v_{o}^{t}\right) \cdot \frac{1}{2} \cdot 0.154 \cos (2 t \quad \cdot 76 \cdot) \cdot 0.018 \cos (6 t \cdot 85 \cdot)
$$

$$
\text { - } 0.006 \cos (10 t \quad \cdot 87 \cdot)
$$

Properties of Fourier Series

$$
x t \cdot{ }^{F S} \cdot a
$$

- Linearity

$$
\begin{aligned}
& x t \cdot \cdot F S \cdot a_{k}, y t \cdot \cdot F \cdot b_{k} \\
& A x t^{\cdot} \cdot B y t \cdot \cdot{ }^{F S} \cdot A a_{k} \cdot B b_{k}
\end{aligned}
$$

Time Shift

$x \cdot t \cdot$ to \cdot • $e^{\cdot j k w o t 0} a_{k}$
phase shift linear in frequency with amplitude unchanged

Time Reversal

- $t^{\bullet} \cdot \bullet \cdot \bullet a{ }^{-k}$
the effect of sign change for $x(t)$ and a_{k} are identical

unique representation for orthogonal basis

Time Scaling

- :positive real number
$x \cdot \quad t^{\bullet} \quad$:periodic with period T / α and fundamenta frequency $\alpha \omega 0$
$x \cdot \quad t \cdot \cdots a_{k} e^{j k \cdot w \cdot t}$
k. •
a_{k} unchanged, but $x(\alpha t)$ and each harmonic component are different

Multiplication

Conjugation

$$
x^{\cdot} t \cdot{ }^{F S} \cdot a_{\cdot}^{\cdot}
$$

$a_{k} \cdot a_{k}$, if $x \cdot t \cdot$ real

Differentiation

$$
\frac{d x t^{\bullet}}{d t} \cdot \cdot \cdot \cdot j k \mathrm{w}{ }_{0} a_{k}
$$

$$
\frac{d}{d t}\left(a_{k} e^{j k \omega_{0} t}\right)=j k \omega_{0} a_{k} e^{j k \omega_{0} t}
$$

$j \cdot\left[\frac{\cos \omega_{0} t}{\frac{d}{d t} \downarrow}+j \frac{\sin \omega_{0} t}{\frac{d}{d t} \downarrow}\right]$

Parseval's Relation

$$
\frac{1}{T} \cdot|x t \cdot|^{2} d t \cdot \underset{k}{\cdot} \cdot\left|a_{k}\right|^{2}
$$

total average power in a period T

$$
\frac{1}{T} \cdot{ }_{T}\left|a_{k} e^{j k \mathrm{w}_{0} t}\right|^{2} d t \cdot \quad\left|a_{k}\right|^{2}
$$

average power in the k-th harmonic component in a period T

Continuous-Time Signal Analysis: The Fourier Transform

Chapter Outline

- Aperiodic Signal Representation by Fourier Integral
- Fourier Transform of Useful Functions
- Properties of Fourier Transform
- Signal Transmission Through LTIC Systems
- Ideal and Practical Filters
- Signal Energy
- Applications to Communications
- Data Truncation: Window Functions

Link between FT and FS

Fourier series (FS) allows us to represent periodic signal in term of sinusoidal or exponentials ejnwot.

Fourier transform (FT) allows us to represent aperiodic (not periodic) signal in term of exponentials ejwt.

$$
\begin{gathered}
x_{T 0} t \cdot \stackrel{\bullet}{n \cdot} D_{n} e^{j n \mathrm{w}_{0}} \\
D_{n} \cdot \frac{1}{T_{0}}{ }^{T_{0 / 2}} \cdot{ }_{0}^{T_{1 / 2}} x_{T_{0}}(t) e^{\cdot j n \mathrm{w}{ }_{0} t}
\end{gathered}
$$

As To gets larger and larger the fundamental frequency wo gets smaller and smaller so the spectrum becomes continuous.

The Fourier Transform Spectrum

The Fourier transform:

$$
X(\mathbf{w}) . \quad \bullet x(t) e^{\cdot j \mathbf{w} t} d t
$$

The Amplitude (Magnitude) Spectrum

The amplitude spectrum is an even function and the phase is an odd function.

The Inverse Fourier transform:

$$
x(t) \cdot \quad \frac{1}{2 \cdot} \cdot X(\mathrm{w}) e_{j \mathrm{w} i} d \mathrm{w}
$$

Example

 Find the Fourier transform of $x(t)=e-a t u(t)$, the magnitude, and the spectrum Solution:
$|X(\mathrm{w})| \cdot \frac{1}{\sqrt{a^{2} \cdot \mathrm{w}^{2}}} \quad \cdot X(\mathrm{w}) \cdots \tan { }^{1}(\mathrm{w} / a)$
How does $X(w)$ relates to $X(s)$?
$\left.X(s) \cdot \quad \cdot e^{\cdot a t} e^{\cdot s t} d t \cdot \frac{1}{a \cdot s} e^{\cdot(s \cdot a) t}\right|_{0} ^{\cdot}$
$X(s) \cdot \frac{1}{a \cdot s} \quad$ if $\operatorname{Re}(\mathrm{s}) \cdot-\mathrm{a}$
Since the jw-axis is in the region of convergence then FT exist.

Useful Functions

Unit Gate Function

$$
\begin{aligned}
& \text { - } 0 \quad|x| \cdot \cdot / 2 \\
& \text { rect }: \underline{x}^{\cdot} \cdot \cdot: 0.5 \quad|x| \cdot \cdot / 2 \\
& \begin{array}{ll}
.1 & |x|
\end{array} \cdot / 2
\end{aligned}
$$

Unit Triangle Function

Useful Functions

Interpolation Function

Example

Find the FT, the magnitude, and the phase spectrum of $x(t)=\operatorname{rect}(t / \cdot \quad$.

Answer

$$
X(\mathrm{w}) \cdot \quad \cdot \operatorname{rect}(t / \cdot) e^{\cdot j \mathrm{w} t} d t \cdot \cdot \operatorname{sinc}(\mathrm{w} \cdot / 2)
$$

-•/2

What is the bandwidth of the above pulse?

The spectrum of a pulse extend from 0 to • . However, much of the spectrum is concentrated within the first lobe ($\mathrm{w}=0$ to $2 \cdot / \cdot$)

Examples

Find the FT of the unit impulse • (t). Answer

$$
X(\mathrm{w}) \cdot \quad \cdot(t) e^{\cdot j \mathrm{w} t} d t \cdot 1
$$

Find the inverse FT of • (w).
Answer

$$
x(t) \cdot \frac{1}{2 \cdot} \cdot(\mathbf{w}) e^{j \mathbf{w} t} d \mathbf{w} \cdot \quad \frac{1}{2 \cdot}
$$

so thespectrumof a constantisan impulse

$$
1 \cdot 2 \cdot \cdot(\mathrm{w})
$$

Examples

Find the inverse FT of • (w-w o). Answer
$x(t) \cdot \frac{1}{2 \cdot} \cdot\left(\mathbf{w} \cdot \mathbf{w}_{0}\right) e^{j \mathbf{w} t} d \mathbf{w} \cdot \frac{1}{2 \cdot} e^{j \mathbf{w}_{0} t}$
sothespectrumof a complex exponent is a shiftedimpulse
$e^{j w_{0}} \cdot 2 \cdot\left(\mathbf{w} \cdot \mathrm{w}_{0}\right) \quad$ and $\quad e^{\cdot j \mathrm{w}_{0}} \cdot 2 \cdot(\mathrm{w} \cdot \mathrm{w})_{0}$
Find the FT of the everlasting sinusoid $\cos \left(w_{0} \mathrm{t}\right)$. Answer

$$
\begin{aligned}
& \operatorname{cosW}_{0} t \cdot \frac{1}{2} \cdot j \mathrm{w}^{t} \cdot e^{\cdot j w_{t}} \cdot \\
& \frac{1}{2}^{\cdot j w_{0} t} \cdot e^{\cdot j w_{0} t} \cdot \cdots \cdot(\mathbf{w} \cdot \mathbf{w}) \cdot\left(\mathbf{w} \cdot \mathbf{w}_{0} \cdot\right.
\end{aligned}
$$

Examples

Find the FT of a periodic signal. Answer
$x(t) \cdot \underset{n}{ } \cdot D_{n}{ }^{j n \mathrm{Wot}} \quad \mathrm{w}_{0} \cdot 2 \cdot 1 T_{0}$
TaketheFT of both sideand use linearity propertyof FT
$X(\mathrm{w}) \cdot 2 \cdot \quad$ - $D_{n}^{\cdot}(\mathrm{w} \cdot n \mathrm{w})_{0}$ $n \cdot$ ••

Examples

Find the FT of the unit impulse train $\left.{ }_{T 0} t\right)($ Answer

$$
\begin{aligned}
& { }^{T_{0}}(t) \cdot \\
& \frac{1}{T_{0 n} \cdot \cdot} e^{j n \mathrm{w} 0 t} \\
& X(\mathrm{w}) \cdot \\
& \frac{2 \cdot{ }_{n}^{n} \cdot}{T_{0 n} \cdot \cdots} \cdot(\mathrm{w} \cdot n \mathrm{w})_{0}
\end{aligned}
$$

No.	$x(t)$	$X(\omega)$	
1	$e^{-a t} u(t)$	$\frac{1}{a+j \omega}$	$a>0$
2	$e^{a t} u(-t)$	$\frac{1}{a-j \omega}$	$a>0$
3	$e^{-a i t \mid}$	$\frac{2 a}{a^{2}+\omega^{2}}$	$a>0$
4	$t e^{-a t} u(t)$	$\frac{1}{(a+j \omega)^{2}}$	
5	$t^{n} e^{-a t} u(t)$	$\frac{n!}{(a+j \omega)^{n+1}}$	$a>0$
6	$\delta(t)$	1	$a>0$
7	1	$2 \pi \delta(\omega)$	
8	$e^{j \omega_{0} t}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	
9	$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	
10	$\sin \omega_{0} t$	$j \pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]$	
11	$u(t)$	$\pi \delta(\omega)+\frac{1}{j \omega}$	
12	$\operatorname{sgn} t$	$\frac{2}{j \omega}$	

No.	$x(t)$	$X(\omega)$	
13	$\cos \omega_{0} t u(t)$	$\frac{\pi}{2}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]+\frac{j \omega}{\omega_{0}^{2}-\omega^{2}}$	
14	$\sin \omega_{0} t u(t)$	$\frac{\pi}{2 j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]+\frac{\omega_{0}}{\omega_{0}^{2}-\omega^{2}}$	
15	$e^{-a t} \sin \omega_{0} t u(t)$	$\frac{\omega_{0}}{(a+j \omega)^{2}+\omega_{0}^{2}}$	$a>0$
16	$e^{-a t} \cos \omega_{0} t u(t)$	$\frac{a+j \omega}{(a+j \omega)^{2}+\omega_{0}^{2}}$	$a>0$
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$	
18	$\frac{W}{\pi} \operatorname{sinc}(W t)$	$\operatorname{rect}\left(\frac{\omega}{2 W}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2} \operatorname{sinc}\left(\frac{\omega \tau}{4}\right)$	
20	$\frac{W}{2 \pi} \operatorname{sinc}^{2}\left(\frac{W t}{2}\right)$	$\Delta\left(\frac{\omega}{2 W}\right)$	$\omega_{0}=\frac{2 \pi}{T}$
21	$\sum_{n=-\infty}^{\infty} \delta(t-n T)$	$\omega_{0} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{0}\right)$	
22	$e^{-t^{2} / 2 \sigma^{2}}$	$\sigma \sqrt{2 \pi} e^{-\sigma^{2} \omega^{2} / 2}$	
10			

Properties of the Fourier Transform

- Lilineásity:

- TTinnésoáiigng:
- Letet $x^{\bullet} \quad t^{\bullet} X^{\bullet} W^{\bullet}$

then

$$
x \cdot \operatorname{act} \cdot \frac{1}{|a|} X^{\cdot} \cdot \frac{\mathrm{w}}{a}
$$

Internet channel A can transmit 100k pulse/sec and channel B can transmit 200k pulse/sec. Which channel does require higher bandwidth?

Properties of the Fourier Transform

- TTimatrecersal:

- Leet $x^{\bullet} t^{\bullet} \cdot \mathrm{w} X^{\bullet}$
then $x(\cdot t) \cdot X(\cdot \mathrm{w})$
Example: Find the FT of eatu(-t) and e-alt|

Time shift effects the phase and not the magnitude.
- Let

$$
x^{\bullet} t^{\bullet} \quad \cdot \mathrm{w} X^{\bullet}
$$

then

$$
x \cdot t \cdot{ }_{0} t \cdot \cdot X \cdot \mathrm{~W} \cdot{ }^{j w t} e^{0}
$$

Example: if $x(t)=\sin (w t)$ then what is the FT of $x(t-t o)$?

Example: Find the FT of

$$
e^{\cdot a t \cdot} \hbar
$$

Properties of the Fourier Transform

- Let
then $x^{\bullet} t^{\bullet} \quad X^{\bullet} \mathrm{W}^{\bullet}$

$$
x t) e^{j w_{6}} \cdot X\left(w^{\prime} \cdot w_{0}\right)
$$

Let

$$
x^{\bullet} t^{\bullet} \cdot X^{\bullet} \mathrm{w}^{\bullet}
$$

then

$$
x t \cdot \cos \cdot{ }_{0} \mathrm{w} t \cdot \frac{1}{2} \cdot X \cdot \mathrm{w} \cdot{ }_{0} \mathrm{w} \cdot X \cdot \mathrm{w} \cdot{ }_{0} \mathrm{w} \cdot
$$

coswot is the carrier, $\mathrm{x}(\mathrm{t})$ is the modulating signal (message), $x(t)$ coswot is the modulated signal.

Example: Amplitude Modulation

x(t)
Example: Find the FT for the signal
$x(t) \cdot \operatorname{rect}(t / 4) \cos 10 t$

Modulation

Amplitude Modulation

Demodulation
$\cdot{ }_{A M}(t) \cos \mathrm{W} t \cdot 0.5 m(t)[1 \cdot \cos 2 \mathrm{w} t]$ Then lowpass filtering
$\cos \omega_{c} t$
(carrier)
(a)

- ${ }_{A M}(t) \cdot m(t) \cos W{ }_{c} t$

(b)

(a)

(b)

Applic. of Modulation: Frequency-Division Multiplexing

1- Transmission of different signals over different bands

(a)

2- Require smaller antenna

Properties of the Fourier Transform

- Divifferntatiomin toderequencyDomain:

- Lèt

$$
x^{\bullet} t^{\bullet} \cdot X^{\bullet} \mathrm{W}^{\bullet}
$$

then

$$
\left.t^{n} x t\right) \cdot(j) \quad n \frac{d^{n}}{d \mathbf{w}^{n}} X(\mathbf{W})
$$

- DDifferentatiomin'the Timeneomain:

Let

$$
x^{\bullet} \quad t^{\bullet} \quad \cdot \quad \mathrm{w} X^{\bullet}
$$

then

$$
\left.\frac{d^{n}}{d t^{n}} x t\right) \cdot(\quad j \mathbf{W})^{n} X(\mathbf{W})
$$

Example: Use the time-differentiation property to find the Fourier Transform of the triangle pulse $x(t)=\cdot(t \cdot \cdot)$

Properties of the Fourier Transform

- Intrategratiomin'the Tine Domain:

Let

$$
x^{\bullet} t^{\bullet} \cdot X^{\bullet} \mathrm{w}^{\bullet}
$$

Then

$$
\cdot x(\cdot) d \cdot \cdot \frac{1}{j \mathrm{~W}} X(\mathrm{w}) \cdot \cdot X(0) \cdot(\mathrm{w})
$$

Let
$x t^{\bullet} \cdot X^{\cdot} \mathbf{W} \cdot$
$y t^{\bullet} \cdot Y \cdot \mathrm{w} \cdot$
Then

$$
\begin{array}{ll}
x(t) \cdot y(t) \cdot X(\mathrm{w}) Y(\mathrm{w}) \\
x_{1}(t) x(t)_{2} & \frac{1}{2 \cdot} X(\mathrm{w}) \cdot X_{2}(\mathrm{w}) \quad \text { Frequency convolution }
\end{array}
$$

Example

Find the system response to the input $x(t)=e-a t u(t)$ if the system impulse response is $h(t)=e-b t u(t)$.

Properties of the Fourier Transform

$$
\left.E \cdot \quad \cdot|x t \cdot|^{2} d t \cdot \frac{1}{2 \cdot} \cdot \right\rvert\, X \cdot \mathrm{~W} \cdot d \mathrm{w}
$$

Real signal has even spectrum $X(w): X(-w)$

$$
\left.E \cdot \frac{1}{\cdot} \cdot|X \cdot| \mathrm{w}\right|^{2} \cdot d \mathrm{w}
$$

Example
Find the energy of signal $x(t)=e-a t u(t)$. Determine the frequency w so that the energy contributed by the spectrum components of all frequencies below wis 95% of the signal energy Ex.

Answer: w=12.7a rad/sec

Properties of the Fourier Transform

- DDuality $\overline{\text { s Bimbilatrity) : }}$
- Liet

$$
x^{\bullet} t^{\bullet} \cdot \mathrm{w} X^{\bullet}
$$

then

$$
X(t) \cdot 2 \cdot x(\cdot \mathrm{w})
$$

Operation	$x(t)$	$X(\omega)$
Scalar multiplication	$k x(t)$	$k X(\omega)$
Addition	$x_{1}(t)+x_{2}(t)$	$X_{1}(\omega)+X_{2}(\omega)$
Conjugation	$x^{*}(t)$	$X^{*}(-\omega)$
Duality	$X(t)$	$2 \pi x(-\omega)$
Scaling (a real)	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{\omega}{a}\right)$
Time shifting	$x\left(t-t_{0}\right)$	$X(\omega) e^{-j \omega t_{0}}$
Frequency shifting $\left(\omega_{0}\right.$ real $)$	$x(t) e^{j \omega_{0} t}$	$X\left(\omega-\omega_{0}\right)$
Time convolution	$x_{1}(t) * x_{2}(t)$	$X_{1}(\omega) X_{2}(\omega)$
Frequency convolution	$x_{1}(t) x_{2}(t)$	$\frac{1}{2 \pi} X_{1}(\omega) * X_{2}(\omega)$
Time differentiation	$\frac{d^{n} x}{d t^{n}}$	$(j \omega)^{n} X(\omega)$
	$\int_{-\infty}^{i} x(u) d u$	$\frac{X(\omega)}{j \omega}+\pi X(0) \delta(\omega)$

Sampling Theorem

A real signal whose spectrum is bandlimited to $\mathrm{BHz}[\mathrm{X}(\mathrm{w})=0$ for $|\mathrm{w}|>2$. B$]$ can be reconstructed exactly from its samples taken uniformly at a rate $\mathrm{f}_{\mathrm{s}}>2 \mathrm{~B}$ samples per second. When $f_{s}=2 B$ then f_{s} is the Nyquist rate.

$\bar{x}(t) \cdot x(n T) \cdot x(t)$
-• $(t \cdot n T)$

$\bar{x}(t) \cdot x(n T) \cdot x(t) \quad \begin{aligned} & { }^{n} \cdot \cdot \\ & T_{n} \cdot e^{j n \mathrm{~W}_{s}}\end{aligned}$

$\bar{X}(\mathrm{w}) \cdot \quad \frac{1}{T_{n}}{ }_{n}^{n \cdot} X\left(\mathrm{~W} \cdot n \mathrm{~W}_{s}\right)$

(g)

(h)

Prconstructing the Signal from the Samples

Example

Determine the Nyquist sampling rate for the signal

$$
x(t)=3+2 \cos \left(10^{\cdot}\right)+\sin \left(30^{\cdot}\right) .
$$

Solution

The highest frequency is $f_{\max }=30 \cdot / 2 \cdot=15 \mathrm{~Hz}$ The Nyquist rate $=2 f_{\max }=2^{*} 15=30$ sample $/$ sec

Aliasing

If a continuous time signal is sampled below the Nyquist rate then some of the high frequencies will appear as low frequencies and the original signal can not be recovered from the samples.

Frequency above $\mathrm{Fs}_{\mathrm{s}} / 2$ will appear (aliased) as frequency below Fs/2

LPF With cutoff frequency

Fs/2

Quantization \& Binary Representation

$$
L \cdot 2^{n}
$$

L : number of levels
n : Number of bits
Quantization error $=\cdot x / 2$

- $x \cdot{ }^{x_{\max }}{ }^{x}$ min
$L \cdot 1$

Example

A 5 minutes segment of music sampled at 44000 samples per second. The amplitudes of the samples are quantized to 1024 levels. Determine the size of the segment in bits.

Solution

\# of bits per sample $=\ln (1024) \quad\{$ remember $\mathrm{L}=2 \mathrm{n}\}$
$\mathrm{n}=10$ bits per sample
$\#$ of bits $=5$ * 60 * 44000 * $10=13200000=13.2$ Mbit

Discrete-Time Processing of Continuous-Time Signals

Discrete Fourier Transform

$$
X(k) \cdot \quad \text { • } x(n) e^{\cdot j 2 \cdot k n / N}
$$

$$
\mathrm{n} \cdot 0
$$

$$
\Leftrightarrow
$$

(b)

(c)

$$
\begin{equation*}
X(\mathrm{w}) \cdot \quad \frac{1}{T_{n}} \cdot x() e^{\cdot j \mathrm{w} n} \tag{b}
\end{equation*}
$$

(a)

(d)

$$
X(\mathrm{w})^{\cdot} \cdot \cdot x(t) e^{\cdot j \mathrm{w} t} d t
$$

(e)

Relationship between samples of $x(t)$ and $X(\omega)$.

Link between Continuous and Discrete

$x(t) \xrightarrow{\text { Sampling Theorem }} x(n)$

Continuous
$x(t) \xrightarrow{\text { Laplace Transform }} X(s)$
$X(s) \cdot \quad . x(t) e^{\cdot s t} d t$
$x(t) \xrightarrow{\text { Fourier Transform }} X(j \mathrm{w})$
$X(\mathrm{w}) \cdot \quad . x(t) e^{\cdot j w t} d t$
$x(n)$

Discrete

HILBERT TRANSFORM

- Fourier, Laplace, and z-transforms change from the time-domain representation of a signal to the frequency-domain representation of the signal
- The resulting two signals are equivalent representations of the same signal in terms of time or frequency
- In contrast, The Hilbert transform does not involve a change of domain, unlike many other transforms

HILBERT TRANSFORM

- Strictly speaking, the Hilbert transform is not a transform in this sense
- First, the result of a Hilbert transform is not equivalent to the original signal, rather it is a completely different signal
- Second, the Hilbert transform does not involve a domain change, i.e., the Hilbert transform of a signal $x(\mathrm{t})$ is another signal denoted by $x(t)$ in the same domain (i.e.,time domain)

HILBERT TRANSFORM

- The Hilbert transform of a signal $\mathrm{x}(\mathrm{t})$ is a signal $x(t)$ whose frequency components lag the frequency components of $\mathrm{x}(\mathrm{t})$ by 90 -
- $x(t)$ has exactly the same frequency components present in $x(t)$ with the same amplitude-except there is a 90 - phase delay
- The Hilbert transform of $x(t)=A \cos (2 \cdot$ fot $+\cdot)$ is $\operatorname{Acos}(2 \cdot$ fot $+\cdot-90 \cdot)=A \sin (2 \cdot$ fot $+\cdot)$

HILBERT TRANSFORM

- A delay of - /2 at all frequencies
- $e_{j 2 \cdot}$ fot will become $e^{j 2 \cdot f_{0} \cdot \frac{\dot{2}}{2}} \cdots j e^{j 2 \cdot \hbar_{t} t}$
- $e_{-j 2} \cdot$ fot will become $e^{\left.\cdot j 2 \cdot \cdot f_{0} \cdot \dot{i}\right)} \cdot j e^{j 2 \cdot f_{0} t}$
- At positive frequencies, the spectrum of the signal is multiplied by $-j$
- At negative frequencies, it is multiplied by $+j$
- This is equivalent to saying that the spectrum
(Fourier transform) of the signal is multiplied
by
$-j \operatorname{sgn}(f)$.

HILBERT TRANSFORM

- Assume that $\mathrm{x}(\mathrm{t})$ is real and has no DC component : $X(f) \mid f=0=$ 0 ,
then

$$
\begin{aligned}
& F x t) \cdot \cdot j \operatorname{sgn}(f) X(f) \\
& F^{\cdot} \cdot \cdot j \operatorname{sgn}(f) \cdot \frac{1}{\cdot t} \\
& \vartheta_{(t)} \cdot \frac{1}{\cdot t} \cdot x(t) \cdot \frac{1}{\cdot} \cdot \frac{x(\cdot)}{t \cdot} d \cdot
\end{aligned}
$$

- The operation of the Hilbert transform is equivalent to a convolution, i.e., filtering

Example

- Determine the Hilbert transform of the signal $x(t)=$ $2 \operatorname{sinc}(2 \mathrm{t})$

- Solution

- We use the frequency-domain approach. Using the scaling property of the Fourier transform, we have

$$
F \cdot x(t) \cdot 2 \frac{1}{2} \cdot \frac{: f}{\cdot 2} \cdot \cdot \cdot \frac{f}{2} \cdot \cdot \cdot f \cdot \frac{1 \cdot}{2 \cdot} \cdot f \quad \cdot \frac{1}{2}
$$

- In this expression, the first term contains all the negative frequencies and the second term contains all the positive frequencies
- To obtain the frequency-domain representation of the Hilbert transform of $\boldsymbol{x}(\boldsymbol{t})$, we use the relation $\quad F^{\cdot} x(t) \cdot=-j \operatorname{sgn}(f) F[x(\mathrm{t})]$, which results in

$$
F \cdot x(t) \cdot{ }_{j} \cdot{ }_{\cdot f} \cdot \frac{1^{\cdot}}{2 \cdot} j \cdot f^{\cdot} \cdot \frac{1^{\cdot}}{2}
$$

- Taking the inverse Fourier transform, we have

$$
\begin{gathered}
\left.x(t) \cdot j e \cdot j \cdot{ }_{\operatorname{sinc} t)} \cdot j e^{j \cdot t} \operatorname{sinc} t\right) \cdot j\left(e^{j \cdot t} \cdot e^{\cdot j \cdot t}\right) \operatorname{sinc}(t) \\
\cdot \cdot j \cdot 2 j \sin (\cdot t) \operatorname{sinc} t) \cdot 2 \sin (\cdot t) \operatorname{sinc}(t)
\end{gathered}
$$

HILBERT TRANSFORM

- Obviously performing the Hilbert transform on a signal is equivalent to a $90 \cdot$ phase shift in all its frequency components
- Therefore, the only change that the Hilbert transform performs on a signal is changing its phase
- The amplitude of the frequency components of the signal do not change by performing the Hilbert-transform

$$
x(t)
$$

transform changes cosines into sines, the Hilbert transform of a signal $x(t)$ is orthogonal to $x(t)$

- Also, since the Hilbert transform introduces a 90 - phase shift, carrying it out twice causes a 180• phase shift, which can cause a sign reversal of the original signal

HILBERT TRANSFORM - ITS PROPERTIES

- Evenness and Oddness
- The Hilbert transform of an even signal is odd, and the Hilbert transform of an odd signal is even
- Proof
- If $x(t)$ is even, then $X(f)$ is a real and even function
- Therefore, -jsgn(f)X(f) is an imaginary and odd function
- Hence, its inverse Fourier transform $x(t)$ will be odd
- If $x(t)$ is odd, then $X(f)$ is imaginary and odd
- Thus -jsgn $(\mathrm{f}) \mathrm{X}(\mathrm{f})$ is real and even
- Therefore, $x(t)$ is even

HILBERT TRANSFORM - ITS PROPERTIES

- Sign Reversal
- Applying the Hilbert-transform operation to a signal twice causes a sign reversal of the signal, i.e.,

$$
x_{t)} \cdot \cdot x(t)
$$

- Proof

$$
\begin{aligned}
& F x(t)] \cdot \cdot j \operatorname{sgn}(f) \cdot{ }^{2} X(f) \\
& F[x(t)] \cdot \cdot X(f)
\end{aligned}
$$

- $X(f)$ does not contain any impulses at the origin

HILBERT TRANSFORM - ITS PROPERTIES

- Energy
- The energy content of a signal is equal to the energy content of its Hilbert transform
- Proof
- Using Rayleigh's theorem of the Fourier transform,

$$
\begin{aligned}
& E_{x} \cdot \therefore|x(t)|^{2} d t \cdot \quad \therefore|X(f)|^{2} d f \\
& \left.\left.E \cdot \quad \therefore\right|^{\wedge}(t)\right|^{2} d t \cdot \therefore|\cdot j \operatorname{jgn}(f) X(f) \quad|^{2} d f \cdot \quad \therefore|X(f)|^{2} d f
\end{aligned}
$$

- Using the fact that $|-j \operatorname{sgn}(f)| 2=1$ except for $f=0$, and the fact that $X(f)$ does not contain any impulses at the origin completes the proof

HILBERT TRANSFORM - ITS PROPERTIES

- Orthogonality
- The signal $x(t)$ and its Hilbert transform are orthogonal
- Proof
- Using Parseval's theorem of the Fourier transform, we obtain
$\therefore x(t)^{2} *(t) d t \quad \quad \therefore X(f)[\cdot j \operatorname{sgn}(f) X(f)] * d f$

$$
\cdots j!_{\bullet}^{0}|X(f)|^{2} d f \cdot j \quad{ }_{0}|X(f)|^{2} d f \cdot 0
$$

- In the last step, we have used the fact that $X(f)$ is Hermitian; $|X(f)| 2$ is even

Sampling and reconstruction

Sampling: Time Domain

- Many signals originate as continuoustime signals, e.g. conventional music or voice
- By sampling a continuous-time signal at isolated, equally-spaced points in time, we obtain a sequence of nusmbrrs sampled $s n^{\cdot} \cdot s_{n} T_{s}$.
$n \cdot\{\ldots,-2,-1,0,1,2, \ldots\}$

$s_{\text {sampled }} t \cdot \cdot s(t) \underbrace{\text { Sampled analog }}_{n \cdot \cdot \cdot \cdot \operatorname{~\cdot ~} n_{s} \cdot}$ impulse waveform

Sampling: Frequency Domain

- Replicates spectrum of continuous-time signal

At offsets that are integer multiples of sampling frequency

- Fourier series of impulse train where $\mathrm{W}_{s}=2 \cdot f_{s}$

$$
\left.\cdot_{T_{s}} t\right) \cdot \underset{n}{\bullet} \cdot t \cdot n T \cdot_{s} \cdot \frac{1}{T_{s}} \cdot \frac{2}{T_{s}} \cos \left(\mathrm{~W}_{s} t\right) \cdot \frac{2}{T_{s}} \cos \left(2 \mathrm{~W}_{s} t\right) \cdot \ldots
$$

$$
g t) \cdot f(t) \cdot \quad{T_{s}}^{(t)} \cdot \frac{1}{T_{s}} \cdot f(t) \cdot \underbrace{2 f t) \cos \left(\mathrm{W} \quad{ }_{s} t\right)} \cdot \underbrace{2 f t) \cos \left(2 \mathrm{~W} \quad{ }_{s} t\right)} \cdot \ldots
$$

- Example

Modulation by cos(Ws t)

Modulation by $\cos (2$ Ws t)

Shannon Sampling Theorem

- A continuous-time signal $x(t)$ with frequencies no higher than $f_{\max }$ can be reconstructed from its samples $x[n]=x\left(n T_{s}\right)$ if the samples are taken at a rate f_{s} which is greater than $2 f_{\text {max. }}$

Nyquist rate $=2 f_{\text {max }}$
Nyquist frequency $=f_{s} / 2$.

- What happens if $f_{s}=2 f_{\max }$?
- Consider a sinusoid $\sin \left(2 \cdot f_{\max } t\right)$

Use a sampling period of $T_{s}=1 / f_{s}=1 / 2 f_{\text {max }}$.
Sketch: sinusoid with zeros at $t=0,1 / 2 f_{\max }, 1 / \mathrm{f}_{\max }, \ldots$

Shannon Sampling Theorem

Assumption

In Practice

- Continuous-time signal has no frequency content above $f_{\text {max }}$
- Sampling time is exactly the same between any two samples
- Sequence of numbers obtained by sampling is represented in exact precision
- Conversion of sequence to continuous time is ideal

Why 44.1 kHz for Audio CDs?

- Sound is audible in 20 Hz to 20 kHz range: $f_{\text {max }}=20 \mathrm{kHz}$ and the Nyquist rate $2 f_{\max }=40 \mathrm{kHz}$
- What is the extra 10% of the bandwidth used?

Rolloff from passband to stopband in the magnitude response of the anti-aliasing filter

- Okay, 44 kHz makes sense. Why 44.1 kHz ? At the time the choice was made, only recorders capable of storing such high rates were VCRs. NTSC: 490 lines/frame, 3 samples/line, 30 frames/s = 44100 samples/s
PAL: 588 lines/frame, 3 samples/line, 25 frames/s = 44100 samples/s

Sampling

- As sampling rate increases, sampled waveform looks more and more like the original
- Many applications (e.g. communication systems) care more about frequency content in the waveform and not its shape
- Zero crossings: frequency content of a sinusoid

Distance between two zero crossings: one half period.
With the sampling theorem satisfied, sampled sinusoid
crosses zero at the right times even though its waveform shape may be difficult to recognize

Aliasing

- Analog sinusoid

$$
x(t)=A \cos \left(2 \cdot f_{0} t+\cdot\right)
$$

- Sample at $T_{s}=1 / f_{s}$

$$
\begin{aligned}
& x[n]=x\left(T_{s} n\right)= \\
& \quad A \cos \left(2 \cdot f_{0} T_{s} n+\cdot\right)
\end{aligned}
$$

- Keeping the sampling period same, sample

$$
y(t)=A \cos \left(2 \cdot\left(f_{0}+I f_{s}\right) t+\cdot\right)
$$

where I is an integer

$$
\begin{aligned}
y[n] & =y\left(T_{s} n\right) \\
& =A \cos \left(2 \cdot\left(f_{0}+I f_{s}\right) T_{s} n+\cdot\right) \\
& =A \cos \left(2 \cdot f_{0} T_{s} n+2 \cdot \cdot I f_{s} T_{s} n+\cdot\right) \\
& =A \cos \left(2 \cdot f_{0} T_{s} n+2 \cdot \cdot I n+\cdot\right) \\
& =A \cos \left(2 \cdot f_{0} T_{s} n+\cdot\right) \\
& =x[n]
\end{aligned}
$$

Here, $f_{s} T_{s}=1$
Since $/$ is an integer,

$$
\cos (x+2 \cdot 1)=\cos (x)
$$

- $y[n]$ indistinguishable from $x[n]$

Frequencies $f_{0}+I f_{s}$ for $I \cdot 0$ are aliases of frequency f_{0}

The Sampling Theorem

Impulse-Train Sampling

Sampling

$$
\begin{gathered}
\left.\left.x_{p} t\right) \cdot x t\right) p(t) \\
:^{X_{p}(j \mathrm{w}) \cdot} \frac{1}{2 \cdot}\left[X(j \mathrm{w})^{*} P(j \mathrm{w})\right]
\end{gathered}
$$

$$
\text { where } p(t) \cdot \cdot \quad{ }_{T}(t) \cdot \quad \cdot \quad(t \cdot n T)
$$

Time domain:

$$
x_{p}(t) \cdot x(t) \cdot \cdot{ }_{T}(t) \cdot \quad \cdot x(n T) \cdot(t \cdot n T)
$$

Frequency domain:

$$
\begin{aligned}
& x(t) \cdot \cdot F \cdot X(\quad j \mathrm{w}) \\
& p(t) \cdot F s \cdot \cdot a_{k} \cdot \frac{1}{T} \quad \text { (Periodic signal) } \\
& p(t) \cdot{ }_{F} \cdot P(j \mathrm{~W}) \cdot \text { • } 2 \cdot a_{k}^{\cdot}(\mathrm{w} \cdot k \mathrm{~W})_{s} \cdot \mathrm{w}_{s}(\mathrm{~W} \cdot k \mathrm{~W})_{s} \\
& x_{p}(t) \cdot{ }^{\circ}{ }_{F} \cdot X_{p}(j \mathrm{w}) \cdot \quad \frac{\mathrm{W}_{s}}{2 \cdot} \cdot X(\mathrm{w} \cdot k \mathrm{w})_{s} \cdot \frac{1}{T_{k}} \cdot{ }_{k \cdot} \cdot X(\mathrm{w} \cdot k \mathrm{w})
\end{aligned}
$$

$X_{p}(j \mathrm{w}) \cdot \quad X(j \mathrm{w}) * P(j \mathrm{w})$
$-\mathrm{w}_{s} \cdot 2 \mathrm{w}_{M}$

Sampling Theorem:

Let be a band-limited signal with
then $x^{\bullet} t_{\text {is uniquely determined by its samples }}^{\cdot} X \cdot j \mathrm{w} \cdot \cdot 0, j \mathrm{w} \cdot \mid \mathrm{w}{ }_{M}$
if $x^{\bullet} t^{\cdot} \quad$ where $x \cdot n T, n \cdot 0,1, \cdot$

$$
\mathrm{w}_{s} \cdot 2 \mathrm{w}_{M}
$$

$$
\mathrm{w}_{s} \cdot \frac{2 \cdot}{T}
$$

$2 \mathrm{w}_{\mathrm{M}}$: Nyquisy Rate
(Minimum distortionless sampling frequency)
w_{M} : NyquistFrequency
(Maximum distortionless sampled signal frequency)

The reconstruction of the signal

Natural Sampling

Difficult:
1 ILPF is unpractical;
2 narrow, large-amplitude pulses are difficult to generate and transmit.

Sampling with a Zero-Order Hold

$$
x_{0} t^{\bullet} \cdot{ }_{p}^{x} t^{\bullet} \quad \dot{0} h \cdot t^{\bullet} \cdot x^{\bullet} n T_{0}^{\cdot} \cdot h \cdot n T \cdot
$$

$$
H_{o}(j \mathrm{w}) \cdot e^{\cdot j \mathrm{w} T / 2 \cdot} \cdot \frac{2 \sin (\mathrm{w} T / 2) \cdot}{\mathrm{w}} \cdot
$$

Reconstruction
Filter

Zero-Order Hold

$$
p^{\bullet} t \cdot \bullet \cdot . \quad t \cdot n T \cdot
$$

Impulse-Train
Sampling

$$
H_{r}(\mathrm{j} \mathbf{w}) \cdot
$$

w

Reconstruction

Band-limited interpolation

$$
\begin{aligned}
& x_{r}(t) \cdot x_{p}(t)^{*} h(t) \quad h(t) \cdot \frac{T \sin (\mathrm{~W} t)}{\cdot t} \\
& \text { - . . } x(n T) \cdot(t \quad n T) \cdot * h(t) \\
& \text { - - } x(n T) h(t \cdot n T) \\
& \cdot{ }_{n} \cdot x(n T) \frac{T \sin \left[\mathrm{~W}_{c} t \cdot n T \cdot\right]}{\cdot \cdot i n T}
\end{aligned}
$$

Original CT Signal
\square
\square

After passing LPF

The LPF smoothes out shape and fill in the gaps

Zero-order hold

Original CT Signal

After sampling

After passing zero-order hold

Sampling theory

Reconstruction theory

Sampling at the Nyquist rate

Reconstruction at the Nyquist rate

Sampling below the Nyquist rate

Reconstruction below the Nyquist rate

Reconstruction error

Reconstruction with a triangle function

Reconstruction error

Reconstruction with a rectangle function

Reconstruction error

Sampling a rectangle

Reconstructing a rectangle (jaggies)

Sampling and reconstruction

Aliasing is caused by

- Sampling below the Nyquist rate,
- Improper reconstruction, or
- Both

We can distinguish between

- Aliasing of fundamentals (demo)
- Aliasing of harmonics (jaggies)

Time-Domain System Analysis

Impulse Response

Let a system be described by

$$
a_{2} \mathrm{y} \phi \phi(t)+a_{1} \quad \mathrm{y} \phi(t)+a_{0} \mathrm{y}(t)=\mathrm{x}(t)
$$

and let the excitation be a unit impulse at time $t=0$. Then the zero-state response y is the impulse response h.

$$
a_{2} \mathrm{~h} \phi \phi(t)+a_{1} \mathrm{~h} \phi(t)+a_{0} \mathrm{~h}(t)=\mathrm{d}(t)
$$

Since the impulse occurs at time $t=0$ and nothing has excited the system before that time, the impulse response before time $t=0$ is zero (because this is a causal system). After time $t=0$ the impulse has occurred and gone away. Therefore there is no longer an excitation and the impulse response is the homogeneous solution of the differential equation.

Impulse Response

$$
{ }_{2} \mathrm{~h} \phi \phi(t)+a_{1} h \phi(t)+a_{0} \mathrm{~h}(t)=\mathrm{d}(t)
$$

What happens at time, $t=0$? The equation must be satisfied at all times. So the left side of the equation must be a unit impulse.

We already know that the left side is zero before time $t=0$ because the system has never been excited. We know that the left side is zero after time $t=0$ because it is the solution of the homogeneous equation whose right side is zero. These two facts are both consistent with an impulse. The impulse response might have in it an impulse or derivatives of an impulse since all of these occur only at time, $t=0$. What the impulse response does have in it depends on the form of the differential equation.

Impulse Response

Continuous-time LTI systems are described by differential equations of the general form,

$$
\begin{aligned}
& { }^{()}(t)+a_{n-1 \mathrm{y}(n-1)}^{(t)+\cdots}+\begin{array}{lll}
& \mathrm{y} \phi(t)+a_{0} \mathrm{y}(t) \\
& { }^{\prime}(t) & +b_{m-1 \mathrm{X}(m-1)}(t)+\cdots
\end{array}+b_{1} \quad \mathrm{x} \phi(t)+b_{0} \mathrm{x}(t)
\end{aligned}
$$

For all times, $t<0$:
If the excitation $\mathrm{x}(t)$ is an impulse, then for all time $t<0$
it is zero. The response $\mathrm{y}(t)$ is zero before time $t=0$
because there has never been an excitation before that time.

Impulse Response

For all time $t>0$:
The excitation is zero. The response is the homogeneous solution of the differential equation.
At time $t=0$:
The excitation is an impulse. In general it would be possible for the response to contain an impulse plus derivatives of an impulse because these all occur at time $t=0$ and are zero before and after that time. Whether or not the response contains an impulse or derivatives of an impulse at time $t=0$ depends on the form of the differential equation

$$
\begin{aligned}
& ()(t)+a_{n-1} \mathrm{y}(n-1)(t)+\cdot+a_{1} \quad \mathrm{y} \phi(t)+a_{0} \mathrm{y}(t) \\
& \quad()(t)+b_{m-1 \mathrm{X}(m-1)}(t)+\cdots+b_{1} \quad \mathrm{x} \phi(t)+b_{0} \mathrm{x}(t)
\end{aligned}
$$

Impulse Response

${ }^{()}(t)+a_{n-1} \mathrm{y}(n-1)(t)+\cdots+a_{1} \quad \mathrm{y} \phi(t)+a_{0} \mathrm{y}(t)$

$$
{ }^{()}(t)+b_{m-1} \mathrm{X}(m-1)(t)+\cdot+b_{1} \quad \times \phi(t)+b_{0} \times(t)
$$

Case 1: $m<n$
If the response contained an impulse at time $t=0$ then the nth derivative of the response would contain the nth derivative of an impulse. Since the excitation contains only the m th derivative of an impulse and $m<n$, the differential equation cannot be satisfied at time $t=0$.
Therefore the response cannot contain an impulse or any derivatives of an impulse.

Impulse Response

$$
\left.\begin{array}{l}
{ }^{()}(t)+a_{n-1} \mathrm{y}(n-1)(t)+\cdot+a_{1} \quad \mathrm{y} \phi(t)+a_{0} \mathrm{y}(t) \\
\\
\\
\\
\\
\end{array}\right)(t)+b_{m-1} \mathrm{X}(m-1)(t)+\cdots+b_{1} \quad \mathrm{x} \phi(t)+b_{0} \mathrm{x}(t) .
$$

Case 2: $m=n$
In this case the highest derivative of the excitation and response are the same and the response could contain an impulse at time $t=0$ but no derivatives of an impulse.
Case 3: $m>n$
In this case, the response could contain an impulse at time $t=0$ plus derivatives of an impulse up to the ($m-n$)th derivative.

Case 3 is rare in the analysis of practical systems.

Impulse Response

Example
Let a system be described by $\mathrm{y} \phi(t)+3 \mathrm{y}(t)=\mathrm{x}(t)$. If the excitation x is an impulse we have $\mathrm{h} \phi(t)+3 \mathrm{~h}(t)=\mathrm{d}(t)$. We know that $\mathrm{h}(t)=0$ for $t<0$ and that $\mathrm{h}(t)$ is the homogeneous solution for $t>0$ which is $\mathrm{h}(t)=K e-3 t$. There are more derivatives of y than of x. Therefore the impulse response cannot contain an impulse. So the impulse response is $\mathrm{h}(t)=K e-3 t \mathrm{u}(t)$.

Impulse Response

Example
To find the constant K integrate $\mathrm{h}^{\prime}(t)+3 \mathrm{~h}(t)=\delta(t)$ over the infinitesimal range 0^{-}to 0^{+}.

$$
\begin{aligned}
& \int_{0^{-}}^{0^{+}} \mathrm{h}^{\prime}(t) d t+3 \int_{0^{-}}^{0^{+}} \mathrm{h}(t)=\int_{0^{-}}^{0^{+}} \delta(t) \\
& \underbrace{\mathrm{h}\left(0^{+}\right)}_{=K}-\underbrace{\mathrm{h}\left(0^{-}\right)}_{=0}+3 \int_{0^{-}}^{0^{+}} K e^{-3 t} \mathrm{u}(t) d t=\underbrace{\mathrm{u}\left(0^{+}\right)}_{=1}-\underbrace{\mathrm{u}\left(0^{-}\right)}_{=0} \\
& K+3 K\left[\frac{e^{-3 t}}{-3}\right]_{0}^{0^{+}}=K+3 K \underbrace{[(-1 / 3)-(-1 / 3)]}_{=0}=1 \\
& K=1 \Rightarrow \mathrm{~h}(t)=e^{-3 t} \mathrm{u}(t)
\end{aligned}
$$

Impulse Response

Example

To check the solution, put it into the differential equation to see whether it is satisfied.

$$
\begin{aligned}
& \frac{d}{d t}\left(e^{-3 t} \mathrm{u}(t)\right)+3 e^{-3 t} \mathbf{u}(t)=\delta(t) \\
& e^{-3 t} \delta(t)-3 e^{-3 t} \mathbf{u}(t)+3 e^{-3 t} \mathbf{u}(t)=\delta(t) \\
& \underbrace{e^{-3 t} \delta(t)}_{=e^{0} \delta(t)=\delta(t)}=\delta(t) \Rightarrow \delta(t)=\delta(t) \quad \text { Check. }
\end{aligned}
$$

Impulse Response

Example
Let a system be described by $4 y^{\prime}(t)+3 y(t)=x^{\prime}(t)$. The homogeneous solution is $\mathrm{y}_{\mathrm{h}}(t)=K e^{-3 t / 4}$ and that is the form of the impulse response for $t>0$. The number of y derivatives and the number of x derivatives are the same. Therefore the impulse response has an impulse in it and its form is $\mathrm{h}(t)=K e^{-3 / 4} \mathrm{u}(t)+K_{\delta} \delta(t)$. Integrate between 0^{-}and 0^{+}.

$$
\begin{gathered}
4 \int_{0}^{0^{+}} \mathrm{h}^{\prime}(t) d t+3 \int_{0^{-}}^{0^{+}} \mathrm{h}(t) d t=\int_{0^{-}}^{0^{+}} \delta^{\prime}(t) d t \\
\left\{\begin{array}{l}
4 \underbrace{\mathrm{~h}\left(0^{+}\right)}_{=K}-\underbrace{\mathrm{h}\left(0^{-}\right)}_{=0}+K_{\delta}(\underbrace{\delta\left(0^{+}\right)}_{=0}-\underbrace{\delta\left(0^{-}\right)}_{=0})] \\
+3 \underbrace{\int_{0^{-}}^{0^{+}} K e^{-3 / 4}}_{=0} \mathrm{u}(t) d t+3 K_{\delta}[\underbrace{\mathrm{u}\left(0^{+}\right)}_{=1}-\underbrace{\mathrm{u}\left(0^{-}\right)}_{=0}]
\end{array}\right\}=\underbrace{\delta\left(0^{+}\right)}_{=0}-\underbrace{\delta\left(0^{-}\right)}_{=0}
\end{gathered}
$$

Impulse Response

Example

$$
4 K+3 K_{\delta}=0
$$

Now integrate again over the same infinitesimal interval.

$$
\begin{aligned}
& 4 \int_{0}^{0^{+}} \int_{-\infty}^{t} \mathrm{~h}^{\prime}(\lambda) d \lambda d t+3 \int_{0^{-}}^{\mathrm{J}^{+}} \int_{-\infty}^{t} K e^{-3 \lambda / 4} \mathrm{u}(\lambda) d \lambda d t+3 \int_{0^{-}}^{0^{+}} \int_{-\infty}^{t} K_{\dot{j}} \delta(\lambda) d \lambda d t=\int_{0^{-}}^{0^{+}} \int_{-\infty}^{t} \delta^{\prime}(\lambda) d \lambda d t \\
& 4 \underbrace{\int_{0^{-}}^{0^{+}} h(t) d t}_{=K_{i}}-4 K \underbrace{\int_{0^{-}}^{0^{+}}\left(1-e^{-3 t / 4}\right) u(t) d t}_{=0}+3 K_{0}^{\int_{0}^{0^{+}} u(t) d t} \underbrace{\int_{0^{-}}^{J^{+}} \delta(t) d t}_{=0} \underbrace{\int^{-}}_{=1} \\
& 4 K_{\dot{b}}=1 \rightarrow K_{j}=1 / 4 \rightarrow 4 K+3 / 4=0 \rightarrow K=-3 / 16 \\
& \mathrm{~h}(t)=(-3 / 16) e^{-3 / 4} \mathrm{u}(t)+(1 / 4) \delta(t)
\end{aligned}
$$

Impulse Response

Example $\mathrm{h}(t)=(-3 / 16) e-3 t / 4 \mathrm{u}(t)+(1 / 4) \mathrm{d}(t)$
The original differential equation is $4 \mathrm{~h} \phi(t)+3 \mathrm{~h}(t)=\mathrm{d} \phi(t)$.

Substituting the solution we get

$-(3 / 4) e-3 t / 4 \mathrm{~d}(t)+(9 / 16) e-3 t / 4 \mathrm{u}(t)+\mathrm{d} \phi(t)-(9 / 16) e-3 t / 4 \mathrm{u}(t)+(3 / 4) \mathrm{d}(t)=\mathrm{d} \phi(t)$
$\mathrm{d} \phi(t)=\mathrm{d} \phi(t) \quad$ Check.

Signal Transmission Through a Linear System

$H(f)$: Transfer function/frequency response

Signal transmission through a linear time-invariant system.

Distortionless transmission:

a signal to pass without distortion delayed ouput retains the waveform

Linear time invariant system frequency response for distortionless transmission.

Determine the transfer function $H(f)$,

(a)

(b)

(c)
(a) Simple $R C$ filter. (b) Its frequency response and time delay.

Ideal filters: allow distortionless transmission of a certain band of frequencies and suppress all the remaining frequencies.

(a)

(b)
(a) Ideal low-pass filter frequency response and (b) its impulse response.

(b)

Ideal high-pass and bandpass filter frequency responses.
Paley-Wiener criterion

For a physically realizable system $h(t)$ must be causal $h(t)=0 \quad$ for $t<0$

(b)

Approximate realization of an ideal low-pass filter by truncating its impulse response.

Digital Filters

Sampling, quantizing, and coding

Basic diagram of a digital filter in practical applications.

Linear Distortion

Magnitude distortion
Phase Distortion: Spreading/dispersion

(a)

Wh : While

Pulse is dispersed when it passes through a system that is not distortionless.

Distortion Caused by Channel Nonlinearities

(a)

(d)

Signal distortion caused by nonlinear operation: (a) desired (input) signal spectrum;
(b) spectrum of the unwanted signal (distortion) in the received signal; (c) spectrum of the received si
(d) spectrum of the received signal after low-pass filtering.

Multipath Effects

Multipath transmission.

Sighal Energy: Parseval's Theorem

Energy Spectral Density

(a)

Interpretation of the energy spectral density of a signal.

Essential Bandwidth: the energy content of the components of frequeicies greater than BHz is negligible.

Figure Estimating the essential bandwidth of a signal.

(b)

Find the essential bandwidth where it contains at least 90% of the pulse energy.

Energy of Modulated Signals

Energy spectral densities of (a) modulating and (b) modulated signals.

Determine the ESD of

Autocorrelation Function

Figure Computation of the time autocorrelation function.

Limiting process in derivation of PSD.

Time Autocorrelation Function of Power Signals

PSD of Modulated Signals

DT Unit-Impulse Respomse

- Consider the DT SISO system:

$$
x[n] \longrightarrow y[n]
$$

- If the input signal is $x[n]$ • • [n]and the system has no energy at $n \cdot 0$, the outout $\gamma[n] \cdot h[n]$ is called the impulse response f the system

Exainple

- Consider the DT system described by

$$
y[n] \cdot a y[n \cdot 1] \cdot b x[n]
$$

- Its impulse response can be found to be

$$
\begin{array}{ll}
\cdot\left(\cdot a^{n} b,\right. & n \cdot 0,1,2, \cdot \\
\cdot 0, & n \cdot \cdot 1, \cdot 2, \cdot 3,
\end{array}
$$

Representing Sighalls lîn Tremms of Shifted and Scaled Impulses

- Let $x[n]$ be an arbitrary input signal to a DT LTI system
- Suppose that $x[n] \cdot 0$ forn • • $1, \cdot 2$,
- This signal can be represented as
$x[n] \cdot x[0] \cdot[n] \cdot x[1] \cdot\left[\begin{array}{ll}n & 1] \cdot x[2] \cdot\left[\begin{array}{ll}n & 2]\end{array} \cdot . . . ~\right.\end{array}\right.$

$$
\left.{ }_{i \cdot 0}^{\bullet} x i\right] \cdot\left[\begin{array}{ll}
n & i
\end{array}\right], \quad n \cdot 0,1,2
$$

Exploiting Tirne-Invarizince and Linearity

$$
y[n] \cdot \underset{i \cdot 0}{\bullet} x i] h[n \cdot i], \quad n \cdot 0
$$

The Convolution Suirn

- This narticular summation is called the convolution sum

$$
\begin{array}{cc}
y[n] \cdot & \bullet x i] h[n \cdot i] \\
& \cdot 0 \cdot \bullet \cdot \\
& x[n] \cdot h[n]
\end{array}
$$

- Equationv[n] - $x[n] \cdot h[n]$ is called the corroviulion reptoserataiion of the sysiem
- Remark: a DT LTI system is completely described by its impulse response $h[n]$

Block Diagram Representátión of DT LTII System.

 the complete description of a DT LTI system, we write

The Convolution Sum for Noncausal Signals

and $v[n]$ that are not zero for negative times noncausal signals

- Then, their convolution is expressed by the two-sided series

$$
\underset{i \cdot}{y[n] \cdot} \underset{i}{\bullet} x i] v\left[\begin{array}{ll}
n \cdot & i
\end{array}\right]
$$

Example: Convolution of Two

 Rectangular Pulses - suppose unat ootn X[n] ann V[r] are equal to the rectangular pulse $p[n]$ (causal signal) depicted below

The Folded Pullse

- The signal $v[\cdot i]$ is equal to the pulse $p[1]$ folded about the vertical axis

Sliding w[n-i]lover x[i]

(a)

(b)

(c)

Sliding w[m-i]lover x[il $]=$ Cont ${ }^{t} d$

(a)

(b)

(c)

Plot offx[m]*v[$n]$

Properties of the Convolution Suirn

- Asssociativity

$$
x[n] \cdot(v[n] \cdot w[n]) \cdot\left(x \left[\begin{array}{ll}
v & n]) \cdot w[n]
\end{array}\right.\right.
$$

(commutedtivity

$$
x[n] \cdot v[n] \cdot v[n] \cdot x[n]
$$

- Diestroudtivity writ.aaddition

$$
x[n] \cdot(v[n] \cdot w[n]) \cdot x\left[\begin{array}{lll}
n & v & n
\end{array}\right] \cdot x[n] \cdot w[n]
$$

Properties of the Convolution Surn - Cont'd

- Şififtpropenty: efine

$$
\begin{array}{ll}
x_{q} & x\left[\begin{array}{ll}
n \cdot & q
\end{array}\right] \\
\cdot v[n] \cdot & v[n] \cdot x\left[\begin{array}{ll}
n & v n
\end{array}\right]
\end{array}
$$

$$
w[n \cdot q] \cdot x_{q}[n] \cdot v[n] \cdot x[n] \cdot v[n]
$$

- Comwoblution withottrouniti ingpuise

$$
x[n] \cdot \quad[n] \cdot x[n]
$$

- Compodution withintinessifilerduniti inpulise

$$
x[n] \cdot{ }_{q}[n] \cdot x\left[\begin{array}{ll}
n \cdot q
\end{array}\right]
$$

Example: Computing Convolutition with Matlab

- Consider the DT LTI system

- impulse response:

$$
h[n] \cdot \sin (0.5 n), \quad n \cdot 0
$$

- input signal:

$$
x[n] \cdot \sin (0.2 n), n \cdot 0
$$

Exainnple: Computing Convolution with Mat̂lab - cconttd

$h[n] \cdot \sin (0.5 n), \quad n \cdot 0$

$x[n] \cdot \sin (0.2 n), n \cdot 0$
(b) (b) $\frac{5}{5}$

Exainple: Computing Convolutition with Mat̃lab - cconted

- Matlab code:

$$
n \cdot 0,1, \cdot, 40
$$

$$
\begin{aligned}
& n=0: 40 \\
& x=\sin \left(0.2^{*} n\right) \\
& h=\sin \left(0.5^{*} n\right) \\
& y=\operatorname{conv}(x, h) \\
& \text { stem(n,y(1 :length(n))) }
\end{aligned}
$$

Exainple: Computing Convolution with Matilab - contted

$$
y[n] \cdot x[n] \cdot h[n]
$$

CT Unit-Irnpulse Respomse

- Consider the CT SISO system:

$$
x(t) \longrightarrow \text { System } \longrightarrow y(t)
$$

- If the input signal is $x(t) \cdot$ • (t) and the system has no energy at $t^{\cdot} 0{ }^{\cdot}$, the output $v(t) \cdot h(t)$ is called the irnpulse response f the system
$\cdot(t) \longrightarrow$ System $\longrightarrow h(t)$

Exploiting Tirne-Invariaince

- Let $x[n]$ be an arbitrary input signal with $x(t) \cdot 0$, fort $\cdot 0$
- Using the siftitigppropreity $\cdot(t)$, we may write

$$
x(t)^{\cdot} \quad . x(\cdot) \cdot\left(t^{\cdot} \cdot\right) d^{\bullet}, \quad t^{\cdot} 0
$$

- Exploiting time-inwartance is
$(t \cdot) \xrightarrow{\text { System } \longrightarrow h(t \cdot \cdot)) ~(~) ~}$

Exploiting Time-Invariaince

Exploiting Linearity

- Exploiting llinearily, is

$$
y(t) \cdot \quad . x(\cdot) h\left(t^{\cdot} \cdot\right) d \cdot, \quad t \cdot 0
$$

0 .

- If the integrand $x(\cdot) h(t \cdot$ - does not contain an impulse $1 \cdot$ • 0ed at , the lower limit of the integral can be taken to be 0,i.e.,

$$
y(t) \cdot \quad \bullet x(\cdot) h(t \cdot \bullet) d \cdot, \quad t \cdot 0
$$

The Convolution Integral

- This_narticular intearation is called the convolution integral

$$
\begin{array}{cl}
y(t) \cdot & \cdot x(\cdot) h(t \cdot \bullet) d \cdot, \quad t \cdot 0 \\
& \cdot \bullet \cdot \cdot \\
x(t) \cdot h(t)
\end{array}
$$

- Equation $v(t)$ • $x(t) \cdot h(t)$ is called the

- Remark: a CT LTI system is completely described by its impulse response $h(t)$

Block Diagrarn Representieation of CT LTI Systiems

the complete description of a CT LTI system, we write

Exanple: Analytical Computation of the Convolution Integral

orppoou arm $p(t)$ is the rectangular pulse depicted in figure $\quad x(t) \cdot h(t) \cdot p(t)$,

Exainple - cconttíd

- In order to compute the convolution integral

$$
y(t)^{\cdot} \quad . x(\cdot) h\left(t^{\bullet} \cdot\right) d \cdot, \quad t^{\cdot} 0
$$

0
we have to consider four cases:

Exainple - ccontíld

- Case 1:t. 0

$$
y(t) \cdot 0
$$

Example - ccontíld

- Case 2:0 • $t \cdot T$

$$
y t) \cdot \cdot^{t} d \cdot \cdot t
$$

0

Exainple - cconttid

- Case 3: $0 \cdot t \cdot T \cdot T \quad \cdot T \cdot t \cdot 2 T$

$$
y t) \cdot \begin{gathered}
T \\
t \cdot T
\end{gathered} \quad \cdot d \cdot T \cdot(t \cdot T) \cdot 2 T \cdot t
$$

Exainple - ccontíld

- Case 4: $T \cdot t \cdot T \quad$. $2 T \cdot t$

$$
y(t) \cdot 0
$$

Example - cconttíd

Properties of the Convolution Integrall

- Asscociativity

$$
x(t) \cdot(v(t) \cdot w(t)) \cdot(x(t) \cdot v(t)) \cdot w(t)
$$

- Com

$$
x(t) \cdot v(t) \cdot v(t) \cdot x(t)
$$

- Distitioutivitywnrit.aadidition

$$
x(t) \cdot(v(t) \cdot w(t)) \cdot x(t) \cdot v(t) \cdot x(t) \cdot w(t)
$$

Properties of the

Convolution Integral - Cont'd

: Şsififtpoperity: efine

- $\left.x_{q}^{t}\right) \cdot x\left(t^{\cdot} q\right)$
- $\left.v_{q}\right) \cdot v\left(t^{\cdot} q\right)$
then

$$
\left.\left.\left.\left.w(t \cdot q) \cdot x_{a} t\right) \cdot v t\right) \cdot x t\right) \cdot v_{s} t\right)
$$

- Cromwoldutionwitth threuniti inppuise

$$
x(t) \cdot \cdot(t) \cdot x(t)
$$

- (comwodution withtinessifilerduniti inpulise

$$
x t) \cdot \dot{q} t) \cdot x t \cdot q()
$$

Properties of the Convolution Integral - Cont'cd

- Desineativepropenty: he signal $x(t)$ is differentiable, then it is

$$
\left.\left.\left.\frac{d}{d t} \cdot x t\right) \cdot v t\right) \cdot \frac{d x t)}{d t} \cdot v t\right)
$$

- If both $x(t)$ and $v(t)$ are differentiable, then it is also

$$
\left.\left.\frac{d^{2}}{d t^{2}} \cdot x t\right) \cdot v t\right) \cdot \frac{d x t)}{d t} \cdot \frac{d v t)}{d t}
$$

Propertiestof the ComvoliationeIrsteghal's Cont'd

- Infategiratiopporoperty:

$$
\begin{array}{ll}
\cdot x\left(\frac{1}{t}\right) & \cdot x(\cdot) d \cdot \\
\cdot & \cdot \\
\cdot & t \\
v^{(.1}(t) \cdot & \bullet v(\cdot) d \cdot
\end{array}
$$

then
$(x \cdot v)\left(\cdot{ }^{1)}(t) \cdot x^{(\cdot 1)}(t) \cdot v(t) \cdot x(t) \cdot v^{(1)}(t)\right.$

Representation of a CT LTTI Sysitem in Terinis of tine Unit-Step Response

- Let $g(t)$ be the response of a system with impulse response $h(t)$ when $x(t) \cdot u(t)$ with no initial energy at timet $\cdot 0$, i.e.,

- Therefore, it is

$$
g(t) \cdot h(t) \cdot u(t)
$$

Representation of al CT LTII System in Terms of tine Unit-Step Response - Ccontild

- Differentiating both sides

$$
\left.\left.\frac{d g t)}{d t} \cdot \frac{d h t)}{d t} \cdot u t\right) \cdot h t\right) \cdot \frac{d u t)}{d t}
$$

- Recalling that

$$
\frac{d u t)}{d t} \cdot(t) \quad \text { and } \quad h(t) \cdot h(t) \cdot
$$

it is

$$
\left.\left.\frac{d g t)}{d t} \cdot h t\right) \quad \text { or } g t\right) \cdot \bullet_{0}^{t} h(\cdot) d \cdot
$$

Definitions of the components/Keywords:

Convolution of two signals:
Let $x(t)$ and $h(t)$ are two continuous signals to be convolved.
The convolution of twonsinnals is denoted by
which means

where • is the variable of integration.

Master Layout

Step 1:

Instruction for the animator	Text to be displayed in the working area (DT)
- The first point in DT has to appear before the figures. - Then the blue figure has to appear. - After that the red figure has to appear. - After the figures, the next point in DT has to appear.	- $f(t)$ and $g(t)$ are the two continuous signals to be convolved. which means where - is a dummy variable.

Step 2:

Fig. a

Fig. b

Instruction for the animator	Text to be displayed in the working area (DT)
- The figure in blue in fig. a has to appear then its label should appear. - Then the red figure has to appear. - After that the labeling of red figure has to appear. - In parallel to the fig. the text in DT has to appear. - First two sentences in DT has to appear with fig. a - The last sentence should appear with fig. b.	- The signal $f(\cdot$ •) is shown - The reversed version of $g\left(^{\bullet}\right.$) i.e., $g\left(^{-\bullet} \cdot\right.$ is shown - The shifted version of $\mathrm{g}\left(^{-}\right.$• • i.e., $g\left(t^{-}\right.$) $)$is shown

24:3: Calculation of $y(t)$ in five stages

$$
\text { Stage }-1: \text { t }<-2
$$

Instruction for the animator	Text to be displayed in the working area (DT)
- The figure in blue has to appear then its label should appear. - Then the red figure has to appear. - After that the labeling of red figure has to appear. - In parallel to the fig. the text in DT has to appear. - After the figures, the 3, 4 lines in DT should appear.	- The signal $f(\cdot$ •) is shown - The reversal and shifted version of $g(t)$ i.e., $g(t-\cdot$ • is shown - Two functions do not overlap - Area under the product of the functions is zero

Step 4:

Stage - II: $-2 \leq \mathrm{t}<-1$

Instruction for the animator	Text to be displayed in the working area (DT)
- The figure in blue has to appear then its label should appear. - Then the red figure has to appear. - After that the labeling of red figure has to appear. - In parallel to the fig. the text in DT has to appear. - After the figures, the 3, 4 lines in DT should appear.	- The signal $f(\cdot$ •) is shown - The reversal and shifted version of $g(t)$ i.e., $g(t-$ • • is shown - Part of $g\left(t\right.$ - $^{-}$• overlaps part of $f\left({ }^{\bullet}\right.$ •) - Area under the product

Step 5:

Stage - III: $-1 \leq \mathrm{t}<2$

Instruction for the animator	Text to be displayed in the working area (DT)
- The figure in blue has to appear then its label should appear. - Then the red figure has to appear. - After that the labeling of red figure has to appear. - In parallel to the fig. the text in DT has to appear. - After the figures, the 3, 4 lines in DT should appear.	- The signal $f(\cdot$ •) is shown - The reversal and shifted version of $g(t)$ i.e., $g(t-$ - • is shown - $g(t-$ • • completely overlaps $f(\cdot$ •) - Area under the product

Step 6:

$$
\text { Stage - IV : } 2 \leq \mathrm{t}<3
$$

Instruction for the animator	Text to be displayed in the working area (DT)
- The figure in blue has to appear then its label should appear. - Then the red figure has to appear. - After that the labeling of red figure has to appear. - In parallel to the fig. the text in DT has to appear. - After the figures, the 3, 4 lines in DT should appear.	- The signal $f(\cdot$ •) is shown - The reversal and shifted version of $g(t)$ i.e., $g\left(t-{ }^{-}\right.$• • is shown - Part of $g\left(t^{-}\right.$• • overlaps part of $f\left({ }^{\bullet}\right.$ •) - Area under the product

Step 7:

$$
\text { Stage }-\mathrm{V}: \mathrm{t} \geq 3
$$

Instruction for the animator	Text to be displayed in the working area (DT)
- The figure in blue has to appear then its label should appear. - Then the red figure has to appear. - After that the labeling of red figure has to appear. - In parallel to the fig. the text in DT has to appear. - After the figures, the 3, 4 lines in DT should appear.	- The signal $f(\cdot$ •) is shown - The reversal and shifted version of $g(t)$ i.e., $g\left(t t^{-}\right.$• • is shown - Two functions do not overlap - Area under the product of the functions is zero

24808: Output of Convolution

Instruction for the animator	Text to be displayed in the working area (DT)
- The figure in green has to appear then its label should appear. - In parallel to the fig. the text in DT has to appear. - After the figure, the equations in DT should appear .	- The signal $y(t)$ is shown

Correlation and AutoCorrelation of Signals

Objectives

- Develop an intuitive understanding of the crosscorrelation of two signals.
- Define the meaning of the auto-correlation of a signal.
- Develop a method to calculate the cross-correlation and auto-correlation of signals.
- Demonstrate the relationship between auto-correlation and signal power.
- Demonstrate how to detect periodicities in noisy signals using auto-correlation techniques.
- Demonstrate the application of cross-correlation to sonar or radar ranging

Correlation

- Correlation addresses the question: "to what degree is signal A similar to signal B."
- An intuitive answer can be developed by comparing deterministic signals with stochastic signals.
- Deterministic = a predictable signal equivalent to that produced by a mathematical function
- Stochastic = an unpredictable signal equivalent to that produced by a random process

Three Signals

```
>> \(\mathrm{n}=0: 23\);
>> A=[ones(1,4),zeros(1,8),ones(1,4),zeros(1,8)];
>> subplot (3,1,1),stem(n,A);axis([0 2501.5\(]\) );title('Signal A')
>> B1=randn(size(A)); \%The signal B1 is Gaussian noise with the same length as \(A\)
>> subplot( \(3,1,2\) ),stem(n,B1);axis([0 \(25-3\) 3]);title('Signal B1')
>> B2=A;
>> subplot(3,1,3),stem(n,B2); axis([0 250 1.5]);title('Signal B2');xlabel('Sample')
```

By inspection, A is "correlated" with B2, but B1 is "uncorrelated" with both A and B2. This is an intuitive and visual definition of "correlation."

Signal A

Signal B1

Quantitative Correlation

- We seek a quantitative and algorithmic way of assessing correlation
- A possibility is to multiple signals sample-bysample and average the results. This would give a relatively large positive value for identical signals and a near zero value for two random signals.

$$
r_{12} \cdot \frac{1}{N_{n} \cdot 0} \cdot x_{1}[n] x[n]
$$

Simple Cross-Correlation

- Taking the previous signals, A, B1 (random), and B2 (identical to A):
>> A*B1'/length(A)
ans =
-0.0047
>> A*B2'/length(A)
ans =
0.3333

The small numerical result with A and B1 suggests those signals are uncorrelated while A and B2 are correlated.

Simple Cross-Correlation of Random Signals

>> n=0:100;
>> noise1=randn(size(n));
>> noise2=randn(size(n));
>> noise1*noise2'/length(noise1)
ans =
0.0893

Are the two signals correlated?

With high probability, the result is expected to be
$\leq \pm 2 / \sqrt{ } \mathrm{N}= \pm 0.1990$
for two random (uncorrelated) signals
We would conclude these two signals are uncorrelated.

The Flaw in Simple CrossCorrelation

In this case, the simple cross-correlation would be zero despite the fact the two signals are obviously "correlated."

Sample-Shifted CrossCorrelation

- Shift the signals k steps with respect to one another and calculate r12(k).
- All possible k shifts would produce a vector of values, the "full" cross-correlation.
- The process is performed in MATLAB by the command xcorr
- xcorr is equivalent to conv (convolution) with one of the signals taken in reverse order.

$$
r_{12}(k) \cdot \frac{1^{N \cdot 1}}{N_{n \cdot 0}} \cdot x_{1}[n] x[n \cdot k]
$$

Full Cross-Correlation

```
>> A=[ones(1,4),zeros(1,8),ones(1,4),zeros(1,8)];
>> A2=filter([0,0,0,0,0,1],1,A);
>> [acor,lags]=xcorr(A,A2);
>> subplot(3,1,1),stem(A); title('Original Signal A')
>> subplot(3,1,2),stem(A2); title('Sample Shifted Signal A2')
>> subplot(3,1,3),stem(lags,acor/length(A)),title('Full Cross-Correlation of A and A2')
```

Signal A2 shifted to the left by 5 steps makes the signals identical and $\mathrm{r}_{12}=0.333$

Full Cross-Correlation of Two Random Signals

```
>> N=1:100;
>> n1=randn(size(N));
>> n2=randn(size(N));
>> [acor,lags]=xcorr(n1,n2);
>> stem(lags,acor/length(n1));
```

The crosscorrelation is random and shows no peak, which implies no correlation

Auto-Correlation

- The cross-correlation of a signal with itself is called the auto-correlation

$$
\left.r_{11}(k) \cdot \frac{1}{N}_{n, 0}^{N \cdot 1} x_{1[n][][n} \cdot k\right]
$$

- The "zero-lag" auto-correlation is the same as the mean-square signal power.

Auto-Correlation of a Random Signal

```
>> n=0:50;
>> N=randn(size(n));
>> [rNN,k]=xcorr(N,N);
>> stem(k,rNN/length(N));title('Auto-correlation of a Random Signal')
```

Auto-correlation of a Random Signal

Mathematically, the auto-correlation of a random signal is like the impulse function

Auto-Correlation of a Sinusoid

```
>> n=0:99;
>> omega=2*pi*100/1000;
>> d1000=sin(omega*n);
>> [acor_d1000,k]=xcorr(d1000,d1000);
>> plot(k,acor_d1000/length(d1000));
>> title('Auto-correlation of signal d1000')
```

The autocorrelation vector has the same frequency components as the original signal

Identifying a Sinusoidal Signal Masked by Noise

```
>> n=0:1999;
>> omega=2*pi*100/1000;
>> d=sin(omega*n);
>> d3n=d+3*randn(size(d)); % The sinusoid is contaminated with 3X noise
>> d5n=d+5*randn(size(d)); % The sinusoid is contaminated with 5X noise.
>> subplot(3,1,1),plot(d(1:100)),title('Clean Signal')
>> subplot(3,1,2),plot(d3n(1:100)),title('3X Noisy Signal'), axis([0,100,-15,15])
>> subplot(3,1,3),plot(d5n(1:100)),title('5X Noisy Signal'), axis([0,100,-15,15])
```

It is very difficult to "see" the sinusoid in the noisy signals

Identifying a Sinusoidal Signal Masked by Noise (Normal Spectra)

```
>> n=0:1999;
>> omega=2*pi*100/1000;
>> d=sin(omega*n);
>> d3n=d+3*randn(size(d)); % The sinusoid is contaminated with 3X noise
>> d5n=d+5*randn(size(d)); % The sinusoid is contaminated with 5X noise.
>> subplot(2,1,1),fft_plot(d3n,1000);title('100 Hz 3X Noise')
>> subplot(2,1,2),fft_plot(d5n,1000);itle('100 Hz 5X Noise')
```

Normal spectra of a sinusoid masked by noise: High noise power makes detection less certain

Identifying a Sinusoidal Signal Masked by Noise (Auto-correlation Spectra)

>> acor3n=xcorr(d3n,d3n);
>> acor5n=xcorr(d5n,d5n);
>> subplot(2,1,1),fft_plot(d3n,1000);title('100 Hz, 3X Noise, Signal Spectrum')
>> subplot(2,1,2),fft_plot(acor3n, 1000);title('100 Hz, 3X Noise, Auto-correlation Spectrum')
>> figure, subplot(2,1,1),fft_plot(d5n,1000);itile('100 Hz, 5X Noise, Signal Spectrum')
>> subplot(2,1,2),fft_plot(acor5n, 1000);title('100 Hz, 5X Noise, Auto-correlation Spectrum')

The autocorrelation of a noisy signal provides greater S / N in detecting dominant frequency components compared to a normal FFT

Detecting Periodicities in Noisy Data: Annual Sunspot Data

>> load wolfer_numbers
>> year=sunspots(:,1);
>> spots=sunspots(:,2);
>> stem(year,spots);title('Wolfer Sunspot Numbers');xlabel('Year')

Wolfer Sunspot Numbers

Detecting Periodicities in Noisy Data: Annual Sunspot Data

>> [acor,lag]=xcorr(spots);
>> stem(lag,acor/length(spots));
>> title('Full Auto-correlation of Wolfer Sunspot Numbers')
>> xlabel('Lag, in years')
>> figure, stem(lag(100:120),acor(100:120)/length(spots));
>> title('Auto-correlation from 0 to 20 years')
>> xlabel('Years')

Autocorrelatio n has
detected a periodicity of 9 to 11 years

Sonar and Radar Ranging

```
>> X=[ones(1,100),zeros(1,924)];
>> n=0:1023;
>> plot(n,x); axis([0 1023-.2, 1.2])
>> title('Transmitted Pulse');xlabel('Sample,n')
>> h=[zeros(1,399),1]; % Impulse response for z-400 delay
>> x_return=filter(h,1,x); % Put signal thru delay filter
>> figure,plot(n,x_return); axis([0 1023-.2, 1.2])
>> title('Pulse Return Signal');xlabel('Sample, n')
```

Simulation of a transmitted and received pulse (echo) with a 400 sample delay

Sonar and Radar Ranging

```
>> [xcor_pure,lags]=xcorr(x_return,x);
>> plot(lags,xcor_pure/length(x))
>> title('Cross-correlation, transmitted and received pure signals')
>> xlabel('lag, samples')
```

The cross-correlation of the transmitted and received signals shows they are correlated with a 400 sample delay

Cross-correlation, transmitted and received pure signals

Sonar and Radar Ranging

```
>> x_ret_n=x_return+1.5*randn(size(x_return));
>> plot(n,x_ret_n); axis([0 1023-6, 6]) %Note change in axis range
>> title('Return signal contaminated with noise')
>> xlabel('Sample,n')
```

The presence of the return signal in the presence of noise is almost impossible to see

Sonar and Radar Ranging

>> [xcor,lags]=xcorr(x_ret_n,x);
>> plot(lags,xcor/length(x))

Crosscorrelation of the transmitted signal with the noisy echo clearly shows a correlation at a delay of 400 samples

Summary

- Cross-correlation allows assessment of the degree of similarity between two signals.
- Its application to identifying a sonar/radar return echo in heavy noise was illustrated.
- Auto-correlation (the correlation of a signal with itself) helps identify signal features buried in noise.

The Laplace Transform

Generalizing the Fourier Transform

The CTFT expresses a time-domain signal as a linear combination of complex sinusoids of the form $e^{j \omega t}$. In the generalization of the CTFT to the Laplace transform, the complex sinusoids become complex exponentials of the form $e^{s t}$ where s can have any complex value. Replacing the complex sinusoids with complex exponentials leads to this definition of the Laplace transform.

$$
\begin{gathered}
\mathrm{L}(\mathrm{x}(t))=\mathrm{X}(s)=\int_{-\infty}^{\infty} \mathrm{x}(t) e^{-s t} d t \\
\mathrm{X}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \mathrm{X}(s)
\end{gathered}
$$

Generalizing the Fourier Transform

The variable s is viewed as a generalization of the variable ω of the form $s=\sigma+j \omega$. Then, when σ, the real part of s, is zero, the Laplace transform reduces to the CTFT. Using $s=\sigma+j \omega$ the Laplace transform is

$$
\begin{aligned}
\mathrm{X}(s) & =\int_{-\infty}^{\infty} \mathrm{x}(t) e^{-(\sigma+j \omega) t} d t \\
& =\mathrm{F}\left[\mathrm{x}(t) e^{-\sigma t}\right]
\end{aligned}
$$

which is the Fourier
transform of $\mathrm{x}(t) e^{-\sigma t}$

Generalizing the Fourier Transform

e extra factor e-st is sometimes called a convergence factor because, when chosen properly, it makes the integral converge for some signals for which it would not otherwise converge. For example, strictly speaking, the signal $A \mathrm{u}(t)$ does not have a CTFT because the integral does not converge. But if it is multiplied by the convergence factor, and the real part of s is chosen appropriately, the CTFT integral will converge.

Complex Exponential Excitation

If a continuous-time LTI system is excited by a complex exponential $\mathrm{x}(t)=A e^{s t}$, where A and s can each be any complex number, the system response is also a complex exponential of the same functional form except multiplied by a complex constant. The response is the convolution of the excitation with the impulse response and that is

$$
\mathrm{y}(t)=\int_{-\infty}^{\infty} \mathrm{h}(\tau) \mathrm{x}(t-\tau) d \tau=\int_{-\infty}^{\infty} \mathrm{h}(\tau) A e^{s(t-\tau)} d \tau=\underbrace{A e^{s t}}_{\mathrm{x}(t)} \int_{-\infty}^{\infty} \mathrm{h}(\tau) e^{-s t} d \tau
$$

The quantity $\mathrm{H}(s)=\int_{-\infty}^{\infty} \mathrm{h}(\tau) e^{-s \tau} d \tau$ is called the Laplace transform of $h(t)$.

Complex Exponential Excitation

Let $\mathrm{x}(t)=\underbrace{(6+j 3)}_{A} e^{\overleftarrow{i 3-j 2) t}}=(6.708 \angle 0.4637) e^{(3-j 2) t}$
and let $\mathrm{h}(t)=e^{-4 t} \mathrm{u}(t)$. Then $\mathrm{H}(s)=\frac{1}{s+4}, \sigma>-4$ and, in this case, $s=3-j 2=\sigma+j \omega$ with $\sigma=3>-4$ and $\omega=-2$.
$\mathrm{y}(t)=\mathrm{x}(t) \mathrm{H}(s)=\frac{6+j 3}{3-j 2+4} e^{(3-j 2) t}=(0.6793 \angle 0.742) e^{(3-j 2 t}$.
The response is the same functional form as the excitation but multiplied by a different complex constant. This only happens when the excitation is a complex exponential and that is what makes complex exponentials unique.

Pierre-Simon Laplace

3/23/1749-3/2/1827

The Transfer Function

e $x(t)$ be the excitation and let $y(t)$ be the response of a system with impulse response $\mathrm{h}(t)$. The Laplace transform of $\mathrm{y}(t)$ is

$$
\begin{aligned}
& \mathrm{Y}(s)=\underset{-\neq \mathrm{O}}{\stackrel{¥}{\mathrm{O}} \mathrm{y}}(t) e \text {-st } d t=\underset{-\neq}{\stackrel{\ddagger}{\mathrm{O}}} \stackrel{\neq \mathrm{e} h}{ }(t)^{*} \mathrm{x}(t) \hat{\mathrm{u}} e \text {-st } d t
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Y}(s)=\underset{-\neq}{\stackrel{¥}{\mathrm{O}}} \mathrm{~h}(\mathrm{t}) d \mathrm{t} \underset{-}{\underset{\sim}{\mathrm{O}}} \underset{\stackrel{¥}{*}}{\mathrm{x}}(t-\mathrm{t}) e_{\text {-st }} d t
\end{aligned}
$$

The Transfer Function

Let $\mathrm{x}(t)=\mathrm{u}(t)$ and let $\mathrm{h}(t)=e_{-4 t} \mathrm{u}(t)$. Find $\mathrm{y}(t)$.
$\mathrm{y}(t) \quad \underset{ }{*} \quad \underset{\sim}{*} \quad \underset{-}{\neq} \quad$ ò $\quad(\quad \mathrm{u}(t-\mathrm{t}) d \mathrm{t}$

ïô̂

$$
, t<0
$$

$$
\begin{aligned}
& \mathrm{y}(t) \quad(\mathrm{u}(t) \\
& \mathrm{X}(s)=1 / s, \\
& \\
& \\
& (\quad) \mathrm{H}(s)=\frac{1}{s+4} \mathrm{PY}(s)=\frac{1}{s} \cdot \frac{1}{s+4}=1 / 4-\frac{1 / 4}{s+4} \\
&
\end{aligned}
$$

Cascade-Connected Systems

If two systems are cascade connected the transfer function of the overall system is the product of the transfer functions of the two individual systems.

$$
\begin{array}{r}
\mathrm{X}(s) \rightarrow \mathrm{H}_{1}(\mathrm{~s}) \rightarrow \mathrm{X}(\mathrm{~s}) \mathrm{H}_{1}(\mathrm{~s}) \rightarrow \mathrm{H}_{2}(\mathrm{~s}) \rightarrow \mathrm{Y}(\mathrm{~s})=\mathrm{X}(s) \mathrm{H}_{1}(s) \mathrm{H}_{2}(s) \\
\mathrm{X}(\mathrm{~s}) \rightarrow \mathrm{H}_{1}(s) \mathrm{H}_{2}(s) \rightarrow \mathrm{Y}(s)
\end{array}
$$

Direct Form II Realization

A very common form of transfer function is a ratio of two polynomials in s,

$$
\mathrm{H}(s)=\frac{\mathrm{Y}(s)}{\mathrm{X}(s)}=\frac{\sum_{k=0}^{N} b_{k} s^{k}}{\sum_{k=0}^{N} a_{k} s^{k}}=\frac{b_{N} s^{N}+b_{N-1} s^{N-1}+\cdots+b_{1} s+b_{0}}{a_{N} s^{N}+a_{N-1} s^{N-1}+\cdots+a_{1} s+a_{0}}
$$

Direct Form II Realization

The transfer function can be conceived as the product of two transfer functions,

$$
\mathrm{H}_{1}(s)=\frac{\mathrm{Y}_{1}(s)}{\mathrm{X}(s)}=\frac{1}{a_{N} s^{N}+a_{N-1} s^{N-1}+\cdots+a_{1} s+a_{0}}
$$

and

$$
\mathrm{H}_{2}(s)=\frac{\mathrm{Y}(s)}{\mathrm{Y}_{1}(s)}=b_{N} s^{N}+b_{N-1} s^{N-1}+\cdots+b_{1} s+b_{0}
$$

$$
\mathrm{X}(s) \rightarrow \mathrm{H}_{1}(s)=\frac{1}{a_{N} s^{N}+a_{N-1} s^{N-1}+\ldots+a_{1} s+a_{0}} \rightarrow \mathrm{Y}_{1}(s) \rightarrow \mathrm{H}_{2}(s)=b_{N} s^{N}+b_{N-1} s^{N-1}+\ldots+b_{1} s+b_{0} \rightarrow \mathrm{Y}(s)
$$

Direct Form II Realization

From

$$
\mathrm{H}_{1}(s)=\frac{\mathrm{Y}_{1}(s)}{\mathrm{X}(s)}=\frac{1}{a_{N} s^{N}+a_{N-1} s^{N-1}+\cdots+a_{1} s+a_{0}}
$$

we get

$$
\mathrm{X}(s)=\left[a_{N} s^{N}+a_{N-1} s^{N-1}+\cdots+a_{1} s+a_{0}\right] \mathrm{Y}_{1}(s)
$$

or
$\mathrm{X}(s)=a_{N} s^{N} \mathrm{Y}_{1}(s)+a_{N-1} s^{N-1} \mathrm{Y}_{1}(s)+\cdots+a_{1} s \mathrm{Y}_{1}(s)+a_{0} \mathrm{Y}_{1}(s)$
Rearranging
$s^{N} \mathrm{Y}_{1}(s)=\frac{1}{a_{N}}\left\{\mathrm{X}(s)-\left[a_{N-1} s^{N-1} \mathrm{Y}_{1}(s)+\cdots+a_{1} s \mathrm{Y}_{1}(s)+a_{0} \mathrm{Y}_{1}(s)\right]\right\}$

Direct Form II Realization

Direct Form II Realization

Direct Form II Realization

A system is defined by $\mathrm{y} \phi \phi(t)+3 \mathrm{y} \phi(t)+7 \mathrm{y}(t)=\mathrm{x} \phi(t)-5 \mathrm{x}(t)$.

$$
\mathrm{H}(s)=\frac{s-5}{s_{2}+3 s+7}
$$

Inverse Laplace Transform

There is an inversion integral
for finding $\mathrm{y}(t)$ from $\mathrm{Y}(s)$, but it is rarely used in practice.
Usually inverse Laplace transforms are found by using tables of standard functions and the properties of the Laplace transform.

Existence of the Laplace Transform

Time Limited Signals
If $\mathrm{x}(t)=0$ for $t<t_{0}$ and $t>t_{1}$ it is a time limited signal. If $\mathrm{x}(t)$ is also bounded for all t, the Laplace transform integral converges and the Laplace transform exists for all s.

Existence of the Laplace Transform

Let $\mathrm{x}(t)=\operatorname{rect}(t)=\mathrm{u}(t+1 / 2)-\mathrm{u}(t-1 / 2)$.

Existence of the Laplace Transform

Right- and Left-Sided Signals

Right-Sided

Left-Sided

Existence of the Laplace Transform

Right- and Left-Sided Exponentials

Right-Sided

$$
\mathrm{x}(t)=e_{\mathrm{a} t} \mathrm{u}\left(t-t_{0}\right), \mathrm{a} \hat{\imath} \cdot
$$

Left-Sided

Existence of the Laplace Transform

Right-Sided Exponential

$$
\begin{aligned}
& \mathrm{x}(t)=e_{\mathrm{a} t} \mathbf{u}\left(t-t_{0}\right), \mathrm{a} \hat{\imath} \cdot \\
& \text { ¥ } \\
& ¥ \\
& \text { ò (re-jwidt } \\
& t 0
\end{aligned}
$$

If $\operatorname{Re}(s)=s>a$ the asymptotic

$$
\text { (} \quad)_{t-j \mathrm{w} t} \text { as } t ® \nsupseteq
$$

is to approach zero and the Laplace transform integral converges.

Existence of the Laplace Transform

Left-Sided Exponential

$$
\begin{aligned}
& \mathrm{x}(t)=e_{\mathrm{b} t} \mathrm{u}\left(t_{0}-t\right), \mathrm{b} \hat{\imath} \cdot \\
& \mathrm{X}(s)=\underset{-\sharp}{\stackrel{t 0}{\mathrm{O}}} \mathrm{eb}_{t}-e_{-s t} d t=\dot{\mathrm{O}}_{-\sharp}^{t 0} e(\mathrm{~b}-\mathrm{s}) t e-j \mathrm{w} t d t
\end{aligned}
$$

If $\mathrm{s}<\mathrm{b}$ the asymptotic behavior of $e_{(\mathrm{b}-\mathrm{s}) t} e_{-j \mathrm{w} t}$ as $t ®-\neq$ is to approach zero and the Laplace transform
 integral converges.

Existence of the Laplace Transform

The two conditions $\mathrm{s}>\mathrm{a}$ and $\mathrm{s}<\mathrm{b}$ define the region of convergence (ROC) for the Laplace transform of right- and left-sided signals.

Existence of the Laplace Transform

Any right-sided signal that grows no faster than an exponential in positive time and any left-sided signal that grows no faster than an exponential in negative time has a Laplace transform. If $\mathrm{x}(t)=\mathrm{x}_{r}(t)+\mathrm{x}_{l}(t)$ where $\mathrm{x}_{r}(t)$ is the right-sided part and $\mathrm{x}_{l}(t)$ is the left-sided part and ifx $\left.\right|_{r}(t)<\mid K_{r} e_{a t}$ andx ${ }_{l}(t)<K_{l e}{ }_{t}$ and a and b are as small as possible, then the Laplace-transform integral converges and the Laplace transform exists for $\mathrm{a}<\mathrm{s}<\mathrm{b}$. Therefore if $a<b$ the ROC is the region $a<b$. If $a>b$, there is no ROC and the Laplace transform does not exist.

Laplace Transform Pairs

The Laplace transform of $\mathrm{g}_{1}(t)=A e_{a t} \mathrm{u}(t)$ is
 $¥$
$\hat{0}^{(\quad) t e_{-j w t} d t=} \begin{gathered}A \\ S-a\end{gathered}$
This function has a pole at $s=\mathrm{a}$ and the ROC is the region to the right of that point. The Laplace transform of $\mathrm{g}_{2}(t)=A e_{b} \mathrm{u}(-t)$ is

This function has a pole at $s=\mathrm{b}$ and the ROC is the region to the left of that point.

Region of Convergence

The following two Laplace transform pairs illustrate the importance of the region of convergence.

$$
\begin{array}{r}
e^{-\alpha t} \mathrm{u}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \frac{1}{s+\alpha}, \sigma>-\alpha \\
-e^{-\alpha t} \mathrm{u}(-t) \stackrel{\mathrm{L}}{\longleftrightarrow} \frac{1}{s+\alpha}, \sigma<-\alpha
\end{array}
$$

The two time-domain functions are different but the algebraic expressions for their Laplace transforms are the same. Only the ROC's are different.

Region of Convergence

Some of the most common Laplace transform pairs (There is more extensive table in the book.)

$$
\begin{aligned}
& \delta(t) \stackrel{L}{\longleftrightarrow} 1 \text {, All } \sigma \\
& \mathrm{u}(t) \stackrel{L}{\longleftrightarrow} 1 / s, \sigma>0 \\
& \operatorname{ramp}(t)=t \mathrm{u}(t) \stackrel{L}{\longleftrightarrow} 1 / s^{2}, \sigma>0 \\
& e^{-\alpha t} \mathrm{u}(t) \stackrel{L}{\longleftrightarrow} 1 /(s+\alpha), \sigma>-\alpha \\
& -\mathrm{u}(-t) \stackrel{\mathrm{L}}{\longleftrightarrow} 1 / s, \sigma<0 \\
& \operatorname{ramp}(-t)=-t \mathrm{u}(-t) \stackrel{L}{\longleftrightarrow} 1 / s^{2}, \sigma<0 \\
& -e^{-\alpha t} \mathrm{u}(-t) \stackrel{L}{\longleftrightarrow} 1 /(s+\alpha), \sigma<-\alpha \\
& e^{-\alpha t} \sin \left(\omega_{0} t\right) \mathrm{u}(t) \longleftrightarrow \frac{\omega_{0}}{(s+\alpha)^{2}+\omega_{0}^{2}}, \sigma>-\alpha \quad-e^{-\alpha t} \sin \left(\omega_{0} t\right) \mathrm{u}(-t) \stackrel{\llcorner }{\longleftrightarrow} \frac{\omega_{0}}{(s+\alpha)^{2}+\omega_{0}^{2}}, \sigma<-\alpha \\
& e^{-\alpha t} \cos \left(\omega_{0} t\right) \mathrm{u}(t) \longleftrightarrow \frac{s+\alpha}{(s+\alpha)^{2}+\omega_{0}^{2}}, \sigma>-\alpha \quad-e^{-\alpha t} \cos \left(\omega_{0} t\right) \mathrm{u}(-t) \longleftrightarrow \frac{s+\alpha}{(s+\alpha)^{2}+\omega_{0}^{2}}, \sigma<-\alpha
\end{aligned}
$$

Laplace Transform Example

Find the Laplace transform of
$\mathrm{x}(t)=e^{-t} \mathrm{u}(t)+e^{2 t} \mathrm{u}(-t)$
$e^{-t} \mathrm{u}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \frac{1}{s+1}, \sigma>-1$
$e^{2 t} \mathrm{u}(-t) \stackrel{\mathrm{L}}{\longleftrightarrow}-\frac{1}{s-2}, \sigma<2$
$e^{-t} \mathrm{u}(t)+e^{2 t} \mathrm{u}(-t) \stackrel{\mathrm{L}}{\longleftrightarrow} \frac{1}{s+1}-\frac{1}{s-2},-1<\sigma<2$

Laplace Transform Example

Find the inverse Laplace transform of

$$
\mathrm{X}(s)=\frac{4}{s+3}-\frac{10}{s-6},-3<s<6
$$

The ROC tells us that $\frac{4}{s+3}$ must inverse transform into a 10
right-sided signal and that $\frac{}{s-6}$ must inverse transform into a left-sided signal.

$$
\mathrm{x}(t)=4 e_{-3 t} \mathrm{u}(t)+10 e_{6 t} \mathrm{u}(-t)
$$

Laplace Transform Example

Find the inverse Laplace transform of

$$
\mathrm{X}(s)=\frac{4}{s+3}-\frac{10}{s-6}, s>6
$$

The ROC tells us that both terms must inverse transform into a right-sided signal.

$$
\mathrm{x}(t)=4 e_{-3 t} \mathrm{u}(t)-10 e_{6 t} \mathrm{u}(t)
$$

Laplace Transform Example

Find the inverse Laplace transform of

$$
\mathrm{X}(s)=\frac{4}{s+3}-\frac{10}{s-6}, \mathrm{~s}<-3
$$

The ROC tells us that both terms must inverse transform into a left-sided signal.

$$
\mathrm{x}(t)=-4 e-3 t \mathrm{u}(-t)+10 e_{6 t} \mathrm{u}(-t)
$$

MATLAB System Objects

A MATLAB system object is a special kind of variable in MATLAB that contains all the information about a system.
It can be created with the $t f$ command whose syntax is

$$
\text { sys }=\operatorname{tf}(\text { num, den })
$$

where num is a vector of numerator coefficients of powers of s, den is a vector of denominator coefficients of powers of s, both in descending order and sys is the system object.

MATLAB System Objects

For example, the transfer function

$$
\mathrm{H}_{1}(s)=\frac{s^{2}+4}{s^{5}+4 s^{4}+7 s^{3}+15 s^{2}+31 s+75}
$$

can be created by the commands

```
»num = [llll
»H1 = tf(num,den);
»H1
```

Transfer function:

$$
s^{\wedge} 2+4
$$

$$
s^{\wedge} 5+4 s^{\wedge} 4+7 s^{\wedge} 3+15 s^{\wedge} 2+31 s+75
$$

Partial-Fraction Expansion

The inverse Laplace transform can always be found (in principle at least) by using the inversion integral. But that is rare in engineering practice. The most common type of Laplace-transform expression is a ratio of polynomials in S ,

$$
\mathrm{G}(s)=\frac{b_{M} s^{M}+b_{M-1} s^{M-1}+\cdots+b_{1} s+b_{0}}{s^{N}+a_{N-1} s^{N-1}+\cdots a_{1} s+a_{0}}
$$

The denominator can be factored, putting it into the form,

$$
\mathrm{G}(s)=\frac{b_{M} s^{M}+b_{M-1} s^{M-1}+\cdots+b_{1} s+b_{0}}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{N}\right)}
$$

Partial-Fraction Expansion

For now, assume that there are no repeated poles and that $N>M$, making the fraction proper in s . Then it is possible to write the expression in the partial fraction form,

$$
\mathrm{G}(s)=\frac{K_{1}}{s-p_{1}}+\frac{K_{2}}{s-p_{2}}+\cdots+\frac{K_{N}}{s-p_{N}}
$$

where

$$
\frac{b_{M} s^{M}+b_{M-1} s^{M-1}+\cdots b_{1} s+b_{0}}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{N}\right)}=\frac{K_{1}}{s-p_{1}}+\frac{K_{2}}{s-p_{2}}+\cdots+\frac{K_{N}}{s-p_{N}}
$$

The K 's can be found be any convenient method.

Partial-Fraction Expansion

Multiply both sides by $s-p_{1}$
$\left(s-p_{1}\right) \frac{b_{M} s^{M}+b_{M-1} s^{M-1}+\cdots+b_{1} s+b_{0}}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{N}\right)}=\left[\begin{array}{l}K_{1}+\left(s-p_{1}\right) \frac{K_{2}}{s-p_{2}}+\cdots \\ +\left(s-p_{1}\right) \frac{K_{N}}{s-p_{N}}\end{array}\right]$
$K_{1}=\frac{b_{M} p_{1}^{M}+b_{M} p_{1}^{M-1}+\cdots+b_{1} p_{1}+b_{0}}{\left(p_{1}-p_{2}\right) \cdots\left(p_{1}-p_{N}\right)}$
All the K 's can be found by the same method and the inverse Laplace transform is then found by table look-up.

Partial-Fraction Expansion

$\mathrm{H}(s) \frac{10 s}{(s+4)(s+9)=s^{+}} \quad \frac{1}{4}+\underset{s+9}{K 2}, s>-4$

$\mathrm{H}(s)=\frac{-8}{s+4}+\frac{18}{s+9}=-\frac{8 s-72+18 s+72=}{(s+4)(s+9)} \quad \frac{10 s}{(s+4)(s+9)}$. Check.
$\mathrm{h}(t)=\left(-8 e_{-4 t}+18 e_{-9 t}\right) \mathrm{u}(t)$

Partial-Fraction Expansion

If the expression has a repeated pole of the form,

$$
\mathrm{G}(s)=\frac{b_{M} s^{M}+b_{M-1} s^{M-1}+\cdots+b_{1} s+b_{0}}{\left(s-p_{1}\right)^{2}\left(s-p_{3}\right) \cdots\left(s-p_{N}\right)}
$$

the partial fraction expansion is of the form,

$$
\mathrm{G}(s)=\frac{K_{12}}{\left(s-p_{1}\right)^{2}}+\frac{K_{11}}{s-p_{1}}+\frac{K_{3}}{s-p_{3}}+\cdots+\frac{K_{N}}{s-p_{N}}
$$

and K_{12} can be found using the same method as before.
But K_{11} cannot be found using the same method.

Partial-Fraction Expansion

Instead K_{11} can be found by using the more general formula
$K_{q k}=\frac{1}{(m-k)!} \frac{d^{m-k}}{d s^{m-k}}\left[\left(s-p_{q}\right)^{m} \mathrm{H}(s)\right]_{s \rightarrow p_{q}} \quad, \quad k=1,2, \cdots, m$
where m is the order of the q th pole, which applies to repeated poles of any order.

If the expression is not a proper fraction in s the partialfraction method will not work. But it is always possible to
synthetically divide the numerator by the denominator until
the remainder is a proper fraction and then apply partial-fraction expansion.

Partial-Fraction Expansion

$$
\mathrm{H}(s)=\frac{10 s}{(s+4)_{2}(s+9)}\left(\frac{12}{(s+4)_{2}+}+\frac{K_{11}}{s+4}+\underset{s+9}{K_{2}}, s>4\right.
$$

Repeated Pole

Using

$$
\begin{aligned}
& K_{q k}=\frac{1}{(m-k)!} \frac{d_{m-k}}{d s_{m-k}} \stackrel{\text { é }}{\ddot{e}}\left(s-p_{q}\right)_{m} \mathrm{H}(s) \quad{\underset{\hat{\mathrm{u}}_{s ® p_{q}}^{\text {ù }}}{ } \quad, k=1,2, \cdot, m}
\end{aligned}
$$

Partial-Fraction Expansion

$$
\begin{aligned}
& K_{2}=-18 \frac{-}{5} \mathrm{PH}(s)=\quad \frac{(s+84)_{2}+1}{s / 5} \frac{8}{s+4}+-18 / 5, s \rightarrow-4 \\
& \frac{-8 s-72+\frac{18}{5}\left(s_{2}+13 s+36\right)-18-5\left(s_{2}+8 s+16\right)}{(s+4)_{2}(s+9)}, s>-4 \\
& \mathrm{H}(s)=\frac{10 s}{(s+4)_{2}(s+9)}, \mathrm{s}>-4 \\
& \mathrm{~h}(t)={ }_{\mathrm{c}_{\mathrm{c}}^{-8 t e-4 t}}^{æ}+18 \underset{5}{e_{-4 t}-18 e_{-9 \pi}^{5}} \quad \begin{array}{l}
\text { ö } \\
\div \mathrm{u}(t)
\end{array}
\end{aligned}
$$

Partial-Fraction Expansion

$$
\begin{aligned}
& \mathrm{H}(s)=\frac{10 s^{2}}{(s+4)(s+9)}, \mathrm{s}>-4 \neg \text { Improper in } \mathrm{s} \\
& \mathrm{H}(s)=\frac{10 s^{2}}{s_{2}+13 s+36}, \mathrm{~s}>-4
\end{aligned}
$$

Synthetic Division $\circledR^{\circledR} s_{2}+13 s+36$

$$
\frac{10 s_{2}+130 s+360}{-130 s-360}
$$

$$
\mathrm{H}(s)=10-\quad \frac{130 s+360}{(s+4)(s+9)=10-\text { êes }+4} \quad \stackrel{\text { é-32 }}{ }+\frac{162 \mathrm{u}}{s+9 \mathrm{ú}} \quad, s>-4
$$

$$
\mathrm{h}(t)=10 \mathrm{~d}(t)-\dot{e} 162 e-9 t-32 e-4 \Delta \grave{u} u(t) \hat{\mathrm{u}}
$$

Inverse Laplace Transform Example

Method 1

$$
\begin{gathered}
\mathrm{G}(s)=\frac{s}{(s-3)(s 2-4 s+5)}, \mathrm{s}<2 \\
\mathrm{G}(s)=(s-3)(s-2+j)(s-2-j) \\
\mathrm{G}(s)=\frac{3 / 2}{s-3}-(3+j) / 4-(3-j) / 4, \mathrm{~s}<2 \\
s-2+j \\
\mathrm{~g}(t)={ }_{\mathrm{C}}^{\mathrm{C}}-\frac{3}{2} e_{3 t}+\frac{3+j}{4} e(2-j) t+\frac{3-j}{4} e(2+j) t \stackrel{\ddot{ }}{\div} \div \mathrm{u}(-t)
\end{gathered}
$$

Inverse Laplace Transform Example

$$
\mathrm{g}(t)={ }_{\varsigma}{ }_{\mathrm{c}}-\frac{3}{2} e_{3 t}+\frac{3+j}{4} e\left((2-j) t+\frac{3-j}{4} e(2+j) t \stackrel{\ddot{ }}{\div \mathrm{u}(-t)}\right.
$$

This looks like a function of time that is complex-valued. But, with the use of some trigonometric identities it can be put into the form

$$
\mathrm{g}(t)=(3 / 2)\left\{e_{2 t} \mathrm{e} \cos (t)+(1 / 3) \sin (t) \hat{\mathrm{u}}-e_{3 t}\right\} \mathrm{u}(-t)
$$

which has only real values.

Inverse Laplace Transform Example

$$
\begin{aligned}
& \mathrm{G}(s)=\frac{s}{(s-3)\left(s_{2}-4 s+5\right)}, \mathrm{s}<2 \\
& \mathrm{G}(s)=(s-3)\left(s-2+^{s} j\right)(s-2-j), \quad, \quad<2 \\
& \mathrm{G}(s)=\frac{3 / 2}{s-3}-\underset{s-2+j}{(3+j) 4}-(3-j) 4-2-\bar{j}-\mathrm{s}<2
\end{aligned}
$$

Getting a common denominator and simplifying

$$
\mathrm{G}(s)=\frac{3 / 2}{s-3}-\frac{1}{4 s 2-4 s+5}=\frac{6 s-10}{s-3}-\frac{6}{4} \frac{s-5 / 3}{(s-2)_{2}+1}, \mathrm{~s}<2
$$

Inverse Laplace Transform

Example

M ethod 2

$$
\mathrm{G}(s)=\frac{3 / 2}{s-3}-\frac{6}{4} \frac{s-5 / 3}{(s-2)_{2}+1}, \mathrm{~s}<2
$$

The denominator of the second term has the form of the Laplace transform of a damped cosine or damped sine but the numerator is not yet in the correct form. But by adding and subtracting the correct expression from that term and factoring we can put it into the form

$$
\mathrm{G}(s)=\frac{3 / 2}{s-3}-\frac{3 \text { é }}{2} \frac{s-2}{\text { è }} \frac{1 / 3}{\mathrm{e}(s-2)_{2}+1+(s-2)_{2}+1} \quad \begin{aligned}
& \text { ù } \\
& \text { û, } s<2
\end{aligned}
$$

Inverse Laplace Transform Example

$$
\begin{gathered}
\text { M ethod } 2 \\
\mathrm{G}(s)=\frac{3 / 2}{s-3}-\frac{3 \text { é }}{2} \frac{s-2}{e} \frac{1 / 3}{\text { ë }(s-2)_{2}+1+(s-2)_{2}+1} \quad \text { ù } \quad \text { ù, } \mathrm{s}<2
\end{gathered}
$$

This can now be directly inverse Laplace transformed into

$$
\mathrm{g}(t)=(3 / 2)\left\{e_{2 t} \ddot{\left.\operatorname{ercos}(t)+(1 / 3) \sin (t) \hat{\mathrm{u}}-e_{3 t}\right\} \mathrm{u}(-t), ~(t)}\right.
$$

which is the same as the previous result.

Inverse Laplace Transform Example

M ethod 3

When we have a pair of poles p_{2} and p_{3} that are complex conjugates
we can convert the form $\mathrm{G}(s)=\frac{A}{s-3}+\frac{K_{2}}{s-p_{2}}+\frac{K_{3}}{s-p_{3}}$ into the
form $\mathrm{G}(s)=\frac{A}{s-3}+s \frac{\left(K_{2}+K_{3}\right)-K_{3} p_{2}-K_{2} p_{3}}{s_{2}-\left(p_{1}+p_{2}\right) s+p_{1} p_{2}}=A-+\frac{B s+C}{s-z_{2}-\left(p_{1}+p_{2}\right) s+p_{1} p_{2}}$
In this example we can find the constants A, B and C by realizing that

$$
\mathrm{G}(s)=\frac{s}{(s-3)\left(s_{2}-4 s+5\right)} \quad \frac{}{s-3}+\underset{s_{2}-4 s+5}{B s+C}, \mathrm{~s}<2
$$

is not just an equation, it is an identity. That means it must be an equality for any value of s.

Inverse Laplace Transform Example
 M ethod 3

A can be found as before to be $3 / 2$. Letting $s=0$, the
identity becomes $0^{\circ}-3 / 2_{3}+C_{5}$ and $C=5 / 2$. Then, letting
$s=1$, and solving we get $B=-3 / 2$. Now

$$
\mathrm{G}(s)=\frac{3 / 2}{s-3}+\frac{(-3 / 2)_{s}+5 / 2}{s_{2}-4 s+5}, \mathrm{~s}<2
$$

or

$$
\mathrm{G}(s)=\frac{3 / 2}{s-3}-\frac{3}{2} \frac{s-5 / 3}{s 2-4 s+5}, \mathrm{~s}<2
$$

This is the same as a result in Method 2 and the rest of the solution is also the same. The advantage of this method is that all the numbers are real.

Use of MATLAB in Partial Fraction Expansion

MATLAB has a function residue that can be very helpful in partial fraction expansion. Its syntax is $[r, p, k]=\operatorname{residue}(b, a)$ where b is a vector of coefficients of descending powers of s in the numerator of the expression and a is a vector of coefficients of descending powers of s in the denominator of the expression, r is a vector of residues, p is a vector of finite pole locations and k is a vector of so-called direct terms which result when the degree of the numerator is equal to or greater than the degree of the denominator. For our purposes, residues are simply the numerators in the partial-fraction expansion.

Laplace Transform Properties

Let $\mathrm{g}(t)$ and $\mathrm{h}(t)$ form the transform pairs, $\mathrm{g}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \mathrm{G}(s)$ and $\mathrm{h}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \mathrm{H}(s)$ with ROC's, $\mathrm{ROC}_{\mathrm{G}}$ and $\mathrm{ROC}_{\mathrm{H}}$ respectively.

Linearity

$$
\begin{aligned}
& \alpha \mathrm{g}(t)+\beta \mathrm{h}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \alpha \mathrm{G}(s)+\beta \mathrm{H}(s) \\
& \mathrm{ROC} \supseteq \mathrm{ROC}_{\mathrm{G}} \cap \mathrm{ROC}_{\mathrm{H}}
\end{aligned}
$$

Time Shifting
$\mathrm{g}\left(t-t_{0}\right) \stackrel{\mathrm{L}}{\longleftrightarrow} \mathrm{G}(s) e^{-s t_{0}}$

$$
\mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}}
$$

s-Domain Shift $\quad e^{s_{0} t} \mathrm{~g}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \mathrm{G}\left(s-s_{0}\right)$
$\mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}}$ shifted by s_{0},
(s is in ROC if $s-s_{0}$ is in $\mathrm{ROC}_{\mathrm{G}}$)

Laplace Transform Properties

Time Scaling

$$
\begin{aligned}
& \mathrm{g}(a t) \stackrel{\mathrm{L}}{\longleftrightarrow}(1 /|a|) \mathrm{G}(s / a) \\
& \mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}} \text { scaled by } a
\end{aligned}
$$

$$
\left(s \text { is in } \operatorname{ROC} \text { if } s / a \text { is in } \mathrm{ROC}_{\mathrm{G}}\right. \text {) }
$$

Time Differentiation

$$
\begin{aligned}
& \frac{d}{d t} \mathrm{~g}(t) \stackrel{\llcorner }{\longleftrightarrow} s \mathrm{G}(s) \\
& \mathrm{ROC} \supseteq \mathrm{ROC}_{\mathrm{G}}
\end{aligned}
$$

s-Domain Differentiation $-t \mathrm{~g}(t) \stackrel{L}{\longleftrightarrow} \frac{d}{d s} \mathrm{G}(s)$

$$
\mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}}
$$

Laplace Transform Properties

Convolution in Time

$$
\begin{aligned}
& \mathrm{g}(t) * \mathrm{~h}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \mathrm{G}(s) \mathrm{H}(s) \\
& \mathrm{ROC} \supseteq \mathrm{ROC}_{\mathrm{G}} \cap \mathrm{ROC}_{\mathrm{H}} \\
& \int_{-\infty}^{t} \mathrm{~g}(\tau) d \tau \stackrel{\mathrm{~L}}{\longleftrightarrow} \mathrm{G}(s) / s \\
& \mathrm{ROC} \supseteq \mathrm{ROC}_{\mathrm{G}} \cap(\sigma>0)
\end{aligned}
$$

Time Integration

If $\mathrm{g}(t)=0, t<0$ and there are no impulses or higher-order singularities at $t=0$ then

Initial Value Theorem:
Final Value Theorem:

$$
\mathrm{g}\left(0^{+}\right)=\lim _{s \rightarrow \infty} s \mathrm{G}(s)
$$

$\lim _{t \rightarrow \infty} g(t)=\lim _{s \rightarrow 0} s G(s)$ if $\lim _{t \rightarrow \infty} g(t)$ exists

Laplace Transform Properties

Final Value Theorem $\lim _{t \rightarrow \infty}(t)=\lim _{s \rightarrow 0} s \mathrm{G}(s)$

This theorem only applies if the limit $\lim _{t \rightarrow \infty} \mathrm{~g}(t)$ actually exists.
It is possible for the limit $\lim _{s \rightarrow 0} s \mathrm{G}(s)$ to exist even though the
limit $\lim _{t \rightarrow \infty} \mathrm{~g}(t)$ does not exist. For example

$$
\begin{gathered}
\mathrm{X}(t)=\cos \left(\omega_{0} t\right) \stackrel{\llcorner }{\longleftrightarrow} \mathrm{X}(s)=\frac{s}{s^{2}+\omega_{0}^{2}} \\
\lim _{s \rightarrow 0} s \mathrm{X}(s)=\lim _{s \rightarrow 0} \frac{s^{2}}{s^{2}+\omega_{0}^{2}}=0
\end{gathered}
$$

but $\lim _{t \rightarrow \infty} \cos \left(\omega_{0} t\right)$ does not exist.

Laplace Transform Properties

Final Value Theorem

The final value theorem applies to a function $\mathrm{G}(s)$ if all the poles of $s \mathrm{G}(s)$ lie in the open left half of the s plane. Be sure to notice that this does not say that all the poles of $\mathrm{G}(s)$ must lie in the open left half of the s plane. G (s) could have a single pole at $s=0$ and the final value theorem would still apply.

Use of Laplace Transform Properties

Find the Laplace transforms of $\mathrm{x}(t)=\mathrm{u}(t)-\mathrm{u}(t-a)$ and $\mathrm{x}(2 t)=\mathrm{u}(2 t)-\mathrm{u}(2 t-a)$. From the table $\mathrm{u}(t) \longleftrightarrow \mathrm{L} 1 / s, \sigma>0$. Then, using the time-shifting property $\mathrm{u}(t-a) \longleftrightarrow \mathrm{L}^{-a s} / s, \sigma>0$. Using the linearity property $\mathrm{u}(t)-\mathrm{u}(t-a) \longleftrightarrow \mathrm{L}\left(1-e^{-a s}\right) / s, \sigma>0$. Using the time-scaling property

$$
\mathrm{u}(2 t)-\mathrm{u}(2 t-a) \longleftrightarrow \mathrm{L} \frac{1}{2}\left[\frac{1-e^{-a s}}{s}\right]_{s \rightarrow s / 2}=\frac{1-e^{-a s / 2}}{s}, \sigma>0
$$

Use of Laplace Transform Properties

Use the s-domain differentiation property and

$$
\mathrm{u}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} 1 / s, \sigma>0
$$

to find the inverse Laplace transform of $1 / s^{2}$. The s-domain differentiation property is $-t \mathrm{~g}(t) \longleftrightarrow \mathrm{L} \frac{d}{d s}(\mathrm{G}(s))$. Then
$-t \mathrm{u}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \frac{d}{d s}\left(\frac{1}{s}\right)=-\frac{1}{s^{2}}$. Then using the linearity property

$$
t \mathrm{u}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} \frac{1}{s^{2}}
$$

The Unilateral Laplace Transform

In most practical signal and system analysis using the Laplace transform a modified form of the transform, called the unilateral Laplace transform, is used. The unilateral Laplace transform is defined by $\mathrm{G}(s)=\mathrm{O}_{0} \mathrm{O}^{\mathrm{F}} \mathrm{g}(t) e_{\text {-st }} d t$. The only difference between this version and the previous definition is the change of the lower integration limit from $-¥$ to 0 .. With this definition, all the Laplace transforms of causal functions are the same as before with the same ROC, the region of the s plane to the right of all the finite poles.

The Unilateral Laplace Transform

The unilateral Laplace transform integral excludes negative time. If a function has non-zero behavior in negative time its unilateral and bilateral transforms will be different. Also functions with the same positive time behavior but different negative time behavior will have the same unilateral Laplace transform. Therefore, to avoid ambiguity and confusion, the unilateral Laplace transform should only be used in analysis of causal signals and systems. This is a limitation but in most practical analysis this limitation is not significant and the unilateral Laplace transform actually has advantages.

The Unilateral Laplace Transform

The main advantage of the unilateral Laplace transform is that the ROC is simpler than for the bilateral Laplace transform and, in most practical analysis, involved consideration of the ROC is unnecessary. The inverse Laplace transform is unchanged. It is

$$
\mathrm{g}(t)={\frac{1}{j 2 \mathrm{p}_{\mathrm{s}-j}}{ }^{\mathrm{s}+\neq \neq} \mathrm{j}}_{\mathrm{G}}^{\mathrm{j}}(s) e_{+s s} d s
$$

The Unilateral Laplace Transform

Some of the properties of the unilateral Laplace transform are different from the bilateral Laplace transform.
Time-Shifting

$$
\mathrm{g}\left(t-t_{0}\right) \longleftrightarrow \mathrm{L} \longleftrightarrow \mathrm{G}(s) e^{-s t_{0}}, t_{0}>0
$$

Time Scaling

$$
\mathrm{g}(a t) \stackrel{\mathrm{L}}{\longleftrightarrow}(1 /|a|) \mathrm{G}(s / a), a>0
$$

$$
\frac{d}{d t} \mathrm{~g}(t) \stackrel{\mathrm{L}}{\longleftrightarrow} s \mathrm{G}(s)-\mathrm{g}\left(0^{-}\right)
$$

N th Time Derivative

$$
\frac{d^{N}}{d t^{N}}(\mathrm{~g}(t)) \longleftrightarrow s^{N} \mathrm{G}(s)-\sum_{n=1}^{N} s^{N-n}\left[\frac{d^{n-1}}{d t^{n-1}}(\mathrm{~g}(t))\right]_{t=0^{-}}
$$

Time Integration

$$
\int_{0^{-}}^{t} \mathrm{~g}(\tau) d \tau \longleftrightarrow \mathrm{~L} \mathrm{G}(s) / s
$$

The Unilateral Laplace Transform

The time shifting property applies only for shifts to the right because a shift to the left could cause a signal to become non-causal. For the same reason scaling in time must only be done with positive scaling coefficients so that time is not reversed producing an anti-causal function.
The derivative property must now take into account the initial value of the function at time $t=0$ - and the integral property applies only to functional behavior after time $t=0$. Since the unilateral and bilateral Laplace transforms are the same for causal functions, the bilateral table of transform pairs can be used for causal functions.

The Unilateral Laplace Transform

The Laplace transform was developed for the solution of differential equations and the unilateral form is especially well suited for solving differential equations with initial conditions. For example,

$$
\frac{d^{2}}{d t_{2}} \mathrm{e} \mathrm{x}(t) \hat{\mathrm{u}}+7 \frac{d}{d t} \mathrm{e} \mathrm{x}(t) \hat{\mathrm{u}}+12 \mathrm{x}(t)=0
$$

with initial conditions $x(0-)=2$

$$
\text { and } \frac{d}{d t}(\mathrm{x}(t))_{t=0 .}=-4
$$

Laplace transforming both sides of the equation, using the new derivative property for unilateral Laplace transforms,
$s_{2} \mathrm{X}(s)-s \mathrm{X}(0-)-\quad \frac{d}{d t}(\mathrm{x}(t))_{t=0-}+7$ ë \quad 吕 $12 \mathrm{X}(s)=0$

The Unilateral Laplace Transform

Solving for $\mathrm{X}(s)$

$$
\mathrm{X}(s)=\frac{\overbrace{\mathrm{x}\left(0^{-}\right)}^{=2}+7 \overbrace{\mathrm{x}\left(0^{-}\right)}^{=2}+\overbrace{\frac{d}{d t}(\mathrm{x}(t))_{t=0^{-}}}^{=-4}}{s^{2}+7 s+12}
$$

or $\mathrm{X}(s)=\frac{2 s+10}{s^{2}+7 s+12}=\frac{4}{s+3}-\frac{2}{s+4}$. The inverse transform yields
$\mathrm{x}(t)=\left(4 e^{-3 t}-2 e^{-4 t}\right) \mathrm{u}(t)$. This solution solves the differential equation
with the given initial conditions.

Pole-Zero Diagrams and Frequency Response

If the transfer function of a stable system is $\mathrm{H}(s)$, the frequency response is $\mathrm{H}(j \omega)$. The most common type of transfer function is of the form,

$$
\mathrm{H}(s)=A \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{M}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{N}\right)}
$$

Therefore $\mathrm{H}(j \omega)$ is

$$
\mathrm{H}(j \omega)=A \frac{\left(j \omega-z_{1}\right)\left(j \omega-z_{2}\right) \cdots\left(j \omega-z_{M}\right)}{\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \cdots\left(j \omega-p_{N}\right)}
$$

Pole-Zero Diagrams and Frequency Response

Let $H(s)=\frac{3 s}{s+3}$.
$\mathrm{H}(j \omega)=3 \frac{j \omega}{j \omega+3}$
The numerator $j \omega$ and the denominator $j \omega+3$ can be conceived as vectors in the s plane.
$|\mathrm{H}(j \omega)|=3 \frac{|j \omega|}{|j \omega+3|}$

$$
\Varangle \mathrm{H}(j \omega)=\underbrace{\Varangle}_{=0} 3+\Varangle j \omega-\Varangle(j \omega+3)
$$

Pole-Zero Diagrams and Frequency Response

Pole-Zero Diagrams and Frequency Response

Pole-Zero Diagrams and Frequency Response

Pole-Zero Diagrams and Frequency Response

Pole-Zero Diagrams and Frequency Response

Pole-Zero Diagrams and Frequency Response

Pole-Zero Diagrams and Frequency Response

Pole-Zero Diagrams and Frequency Response

Pole-Zero Diagrams and Frequency Response

Pole-Zero Diagrams and Frequency Response

The z Transform

Generalizing the DTFT

W is discrete－time radian frequency，a real variable．The quantity $e_{j} w_{n}$ is then a complex sinusoid whose magnitude is always one and whose phase can range over all angles．It always lies on the unit circle in the complex plane．If we now replace $e_{j w}$ with a variable z that can
have any complex value we define the z transform $\mathrm{X}(z)={\underset{\mathrm{a}}{n=*}}_{\stackrel{⿳ ㇒ ⿻ ⿱ 一 ⿱ 日 一 丨 一 口 𧘇}{ }}^{\mathrm{x}}[n] z-n$ The DTFT expresses signals as linear combinations of complex sinusoids．The z transform expresses signals as linear combinations of complex exponentials．

Complex Exponential Excitation

Let the excitation of a discrete-time LTI system be a complex exponential of the form $A z^{n}$ where z is, in general, complex and A is any constant. Using convolution, the response $\mathrm{y}[n]$ of an LTI system with impulse response $\mathrm{h}[n]$ to a complex exponential excitation $\mathrm{x}[n]$ is

$$
\mathrm{y}[n]=\mathrm{h}[n] * A z^{n}=A \sum_{m=-\infty}^{\infty} \mathrm{h}[m] z^{n-m}=\underbrace{A z^{n}}_{=x[n]} \sum_{m=-\infty}^{\infty} \mathrm{h}[m] z^{-m}
$$

The response is the product of the excitation and the z transform of $\mathrm{h}[n]$ defined by $\mathrm{H}(z)=\sum_{m=-\infty}^{\infty} \mathrm{h}[n] z^{-n}$.

The Transfer Function

If an LTI system with impulse response $\mathrm{h}[n]$ is excited by a signal, $\mathrm{x}[n]$, the z transform $\mathrm{Y}(z)$ of the response $\mathrm{y}[n]$ is

$$
\begin{gathered}
\mathrm{Y}(z)=\sum_{n=-\infty}^{\infty} \mathrm{y}[n] z^{-n}=\sum_{n=-\infty}^{\infty}(\mathrm{h}[n] * \mathrm{x}[n]) z^{-n}=\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \mathrm{h}[m] \mathrm{x}[n-m] z^{-n} \\
\mathrm{Y}(z)=\sum_{m=-\infty}^{\infty} \mathrm{h}[m] \sum_{n=-\infty}^{\infty} \mathrm{x}[n-m] z^{-n}
\end{gathered}
$$

Let $q=n-m$. Then

$$
\begin{gathered}
\mathrm{Y}(z)=\sum_{m=-\infty}^{\infty} \mathrm{h}[m] \sum_{q=-\infty}^{\infty} \mathrm{x}[q] z^{-(q+m)}=\underbrace{\sum_{m=-\infty}^{\infty} \mathrm{h}[m] z^{-m}}_{=\mathrm{H}(=)} \underbrace{\sum_{q=-\infty}^{\infty} \mathrm{x}[q] z^{-q}}_{=\mathrm{X}(=)} \\
\mathrm{Y}(z)=\mathrm{H}(z) \mathrm{X}(z)
\end{gathered}
$$

$\mathrm{H}(z)$ is the transfer function.

Systems Described by Difference Equations

The most common description of a discrete-time system is a difference equation of the general form

$$
\sum_{k=0}^{N} a_{k} \mathrm{y}[n-k]=\sum_{k=0}^{M} b_{k} \mathrm{x}[n-k] .
$$

It was shown in Chapter 5 that the transfer function for a system of this type is

$$
\mathrm{H}(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\cdots+a_{N} z^{-N}}
$$

or

$$
\mathrm{H}(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}=z^{N-M} \frac{b_{0} z^{M}+b_{1} z^{M-1}+\cdots+b_{M-1} z+b_{M}}{a_{0} z^{N}+a_{1} z^{N-1}+\cdots+a_{N-1} z+a_{N}}
$$

Direct Form II Realization

Direct Form II realization of a discrete-time system is similar in form to Direct Form II realization of continuous-time systems

A continuous-time system can be realized with integrators, summing junctions and multipliers

A discrete-time system can be realized with delays, summing junctions and multipliers

Direct Form II Realization

The Inverse z Transform

The inversion integral is

$$
\mathrm{x}[n]=\frac{1}{j 2 \pi} \oint_{\mathrm{C}} \mathrm{X}(z) z^{n-1} d z
$$

This is a contour integral in the complex plane and is beyond the scope of this course. The notation $\mathrm{x}[n] \stackrel{z}{\longleftrightarrow} \mathrm{X}(z)$ indicates that $\mathrm{x}[n]$ and $\mathrm{X}(z)$ form a " z-transform pair".

Existence of the z Transform

Time Limited Signals
If a discrete－time signal x［ n ］ is time limited and bounded， the z transformation summation $\underset{n=\neq *}{\stackrel{⿳ 亠 二 口 阝}{\text { a }}} \mathrm{x}[n] z_{-n}$ is finite and the z transform of $\mathrm{x}[n]$ exists for any non－zero value of z ．

Existence of the z Transform

Right- and Left-Sided Signals
A right-sided signal $\mathrm{x}_{r}[n]$ is one for which $\mathrm{x}_{r}[n]=0$ for any $n<n_{0}$ and a left-sided signal $\mathrm{x}_{l}[n]$ is one for which $\mathrm{x}_{l}[n]=0$ for any $n>n_{0}$.

Existence of the z Transform

Right- and Left-Sided Exponentials

$$
\mathrm{x}[n]=\mathrm{a}_{n} \mathrm{u}\left[n-n_{0}\right], \mathrm{a} \hat{\mathrm{I}} \cdot
$$

$$
\mathrm{x}[n]=\mathrm{b}_{n} \mathrm{u}\left[n_{0}-n\right], \mathrm{b} \hat{\mathrm{I}} \cdot
$$

Existence of the z Transform

The z transform of $\mathrm{x}[n]=\mathrm{a}_{n} \mathrm{u}\left[n-n_{0}\right]$, a $\hat{I} \cdot$ is

$$
\begin{aligned}
& \mathrm{X}(z)=\stackrel{\circ}{\mathrm{a}}^{\neq} \mathrm{a} \mathrm{u}\left[n-n_{0}\right] z-n=\mathrm{a}\left(\mathrm{a}_{-1} \stackrel{\neq}{ } \quad\right)^{n} \\
& n=-\neq \quad n=n 0
\end{aligned}
$$

if the series converges and it converges if $z \gg$. The path of integration of the inverse z transform must lie in the region of the z plane outside a circle of radiusa|

Existence of the z Transform

The z transform of $\mathrm{x}[n]=\mathrm{b}_{n} \mathrm{u}\left[n_{0}-n\right], \mathrm{b} \hat{\mathrm{l}} \cdot$ is

$$
\begin{aligned}
& \mathrm{X}(z)=\stackrel{\circ}{\mathrm{a}}_{n}{ }_{n} z-n=\text { à }\left(\mathrm{b} z-1{ }^{n 0}\right. \\
& { }^{n 0} \\
& n=-\neq \quad n=-\neq \\
&)^{n}=\stackrel{\text { ⿳亠 }}{\text { a }}(\mathrm{b}-1 z \quad)^{n}
\end{aligned}
$$

if the series converges and it converges if $\quad|z|<|\mathrm{b}|$ ．The path
of integration of the inverse z transform must lie in the region of the z plane inside a circle of radius $|b|$

Existence of the z Transform

Some Common z Transform Pairs

$$
\begin{aligned}
& \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \frac{z}{z-1}=\frac{1}{1-z^{-1}},|z|>1 \\
& \alpha^{n} \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|>|\alpha| \\
& n \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \frac{z}{(z-1)^{2}}=\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}},|z|>1 \\
& n \alpha^{n} \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \frac{\alpha z}{(z-\alpha)^{2}}=\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}},|z|>|\alpha| \quad, \\
& -\mathrm{u}[-n-1] \stackrel{z}{\longleftrightarrow} \frac{z}{z-1},|z|<1 \\
& -\alpha^{n} \mathrm{u}[-n-1] \stackrel{z}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|<|\alpha| \\
& -n \mathrm{u}[-n-1] \stackrel{z}{\longleftrightarrow} \frac{z}{(z-1)^{2}}=\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}},|z|<1 \\
& -n \alpha^{n} \mathrm{u}[-n-1] \stackrel{z}{\longleftrightarrow} \frac{\alpha z}{(z-\alpha)^{2}}=\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}},|z|<|\alpha| \\
& \sin \left(\Omega_{0} n\right) \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \frac{z \sin \left(\Omega_{0}\right)}{z^{2}-2 z \cos \left(\Omega_{0}\right)+1},|z|>1 \\
& -\sin \left(\Omega_{0} n\right) \mathrm{u}[-n-1] \stackrel{z}{\longleftrightarrow} \frac{z \sin \left(\Omega_{0}\right)}{z^{2}-2 z \cos \left(\Omega_{0}\right)+1},|z|<1 \\
& \cos \left(\Omega_{0} n\right) \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \frac{z\left[z-\cos \left(\Omega_{0}\right)\right]}{z^{2}-2 z \cos \left(\Omega_{0}\right)+1},|z|>1 \\
& -\cos \left(\Omega_{0} n\right) \mathrm{u}[-n-1] \stackrel{z}{\longleftrightarrow}=\frac{z\left[z-\cos \left(\Omega_{0}\right)\right]}{z^{2}-2 z \cos \left(\Omega_{0}\right)+1},|z|<1 \\
& \alpha^{n} \sin \left(\Omega_{0} n\right) \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \frac{z \alpha \sin \left(\Omega_{0}\right)}{z^{2}-2 \alpha z \cos \left(\Omega_{0}\right)+\alpha^{2}},|z|>|\alpha|,-\alpha^{n} \sin \left(\Omega_{0} n\right) \mathrm{u}[-n-1] \stackrel{z}{\longleftrightarrow} \frac{z \alpha \sin \left(\Omega_{0}\right)}{z^{2}-2 \alpha z \cos \left(\Omega_{0}\right)+\alpha^{2}},|z|<|\alpha| \\
& \alpha^{n} \cos \left(\Omega_{0} n\right) \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \frac{z\left[z-\alpha \cos \left(\Omega_{0}\right)\right]}{z^{2}-2 \alpha z \cos \left(\Omega_{0}\right)+\alpha^{2}},|z|>|\alpha|,-\alpha^{n} \cos \left(\Omega_{0} n\right) \mathrm{u}[-n-1] \stackrel{z}{\longleftrightarrow} \frac{z\left[z-\alpha \cos \left(\Omega_{0}\right)\right]}{z^{2}-2 \alpha z \cos \left(\Omega_{0}\right)+\alpha^{2}},|z|<|\alpha| \\
& \alpha^{|n|} \longleftrightarrow \frac{z}{z-\alpha}-\frac{z}{z-\alpha^{-1}},|\alpha|<|z|<\left|\alpha^{-1}\right| \\
& \mathrm{u}\left[n-n_{0}\right]-\mathrm{u}\left[n-n_{1}\right] \longleftrightarrow \frac{z}{z-1}\left(z^{-n_{0}}-z^{-n_{1}}\right)=\frac{z^{n_{1}-n_{0}-1}+z^{n_{1}-n_{0}-2}+\cdots+z+1}{z^{n_{1}-1}},|z|>0
\end{aligned}
$$

z-Transform Properties

Given the z-transform pairs $\mathrm{g}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{G}(z)$ and $\mathrm{h}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{H}(z)$ with ROC's of $\mathrm{ROC}_{\mathrm{G}}$ and $\mathrm{ROC}_{\mathrm{H}}$ respectively the following properties apply to the z transform.

Linearity

$$
\begin{aligned}
& \alpha \mathrm{g}[n]+\beta \mathrm{h}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \alpha \mathrm{G}(z)+\beta \mathrm{H}(z) \\
& \mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}} \cap \mathrm{ROC}_{\mathrm{H}}
\end{aligned}
$$

Time Shifting

$$
\begin{aligned}
& \mathrm{g}\left[n-n_{0}\right] \stackrel{\mathrm{z}}{\longleftrightarrow} z^{-n_{0}} \mathrm{G}(z) \\
& \text { ROC }=\mathrm{ROC}_{\mathrm{G}} \text { except perhaps } z=0 \text { or } z \rightarrow \infty
\end{aligned}
$$

Change of Scale in z

$$
\begin{aligned}
& \alpha^{n} \mathrm{~g}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{G}(z / \alpha) \\
& \mathrm{ROC}=|\alpha| \mathrm{ROC}_{\mathrm{G}}
\end{aligned}
$$

z-Transform Properties

Time Reversal

$$
\begin{aligned}
& \mathrm{g}[-n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{G}\left(z^{-1}\right) \\
& \mathrm{ROC}=1 / \operatorname{ROC}_{\mathrm{G}}
\end{aligned}
$$

Time Expansion

$$
\begin{aligned}
& \begin{cases}\left\{\begin{array}{l}
\mathrm{g}[n / k]
\end{array}\right. & \left.\begin{array}{l}
n / k \text { and integer } \\
0
\end{array}\right\} \stackrel{\text { otherwise }}{ } \mathrm{z} \mathrm{G}\left(z^{k}\right) \\
\mathrm{ROC}=\left(\mathrm{ROC}_{\mathrm{G}}\right)^{1 / k}\end{cases} \\
&
\end{aligned}
$$

Conjugation

$$
\begin{aligned}
& \mathrm{g}^{*}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{G}^{*}\left(z^{*}\right) \\
& \mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}}
\end{aligned}
$$

z-Domain Differentiation $-n \mathrm{~g}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} z \frac{d}{d z} \mathrm{G}(z)$

$$
\mathrm{ROC}=\mathrm{ROC}_{\mathrm{G}}
$$

z-Transform Properties

Convolution

$$
\mathrm{g}[n] * \mathrm{~h}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{H}(z) \mathrm{G}(z)
$$

First Backward Difference

$$
\begin{aligned}
& \mathrm{g}[n]-\mathrm{g}[n-1] \stackrel{\mathrm{z}}{\longleftrightarrow}\left(1-z^{-1}\right) \mathrm{G}(z) \\
& \operatorname{ROC} \operatorname{ROC}_{\mathrm{G}} \cap|z|>0
\end{aligned}
$$

Accumulation

$$
\begin{aligned}
& \sum_{m=-\infty}^{n} \mathrm{~g}[m] \stackrel{\mathrm{z}}{\longleftrightarrow} \frac{z}{z-1} \mathrm{G}(z) \\
& \operatorname{ROC} \supseteq \operatorname{ROC}_{\mathrm{G}} \cap|z|>1
\end{aligned}
$$

Initial Value Theorem
Final Value Theorem

If $\mathrm{g}[n]=0, n<0$ then $\mathrm{g}[0]=\lim _{z \rightarrow \infty} \mathrm{G}(z)$
If $\mathrm{g}[n]=0, n<0, \lim _{n \rightarrow \infty} \mathrm{~g}[n]=\lim _{z \rightarrow 1}(z-1) \mathrm{G}(z)$
if $\lim _{n \rightarrow \infty} \mathrm{~g}[n]$ exists.

z-Transform Properties

For the final-value theorem to apply to a function $\mathrm{G}(z)$ all the finite poles of the function $(z-1) \mathrm{G}(z)$ must lie in the open interior of the unit circle of the z plane. Notice this does not say that all the poles of $\mathrm{G}(z)$ must lie in the open interior of the unit circle. $\mathrm{G}(z)$ could have a single pole at $z=1$ and the final-value theorem could still apply.

The Inverse z Transform

Synthetic Division

For rational z transforms of the form

$$
\mathrm{H}(z)=\frac{b_{M} z_{M}+b_{M-1} Z_{M-1}+\cdot+b_{1 z}+b_{0}}{a_{N Z_{N}}+a_{N-1 Z_{N-1}}+\cdot+a_{1 z}+a_{0}}
$$

we can always find the inverse z transform by synthetic division. For example,

$$
\begin{aligned}
& \mathrm{H}(z)=\frac{(z-1.2)(z+0.7)(z+0.4)}{(z-0.2)(z-0.8)(z+0.5)}, \mid z \gg 0.8 \\
& \mathrm{H}(z)=\frac{z_{3}-0.1 z_{2}-1.04 z-0.336}{z_{3}-0.5 z_{2}-0.34 z+0.08}, \mid z \gg 0.8
\end{aligned}
$$

The Inverse z Transform

Synthetic Division

$$
\begin{array}{r}
z ^ { 3 } - 0 . 5 z ^ { 2 } - 0 . 3 4 z + 0 . 0 8 \longdiv { z ^ { 3 } - 0 . 1 z ^ { 2 } - 1 . 0 4 z - 0 . 4 z ^ { - 1 } + 0 . 5 z ^ { - 2 } \cdots } \\
\frac{z^{3}-0.5 z^{2}-0.34 z+0.08}{0.4 z^{2}-0.7 z-0.256} \\
\frac{0.4 z^{2}-0.2 z-0.136-0.032 z^{-1}}{0.5 z-0.12+0.032 z^{-1}}
\end{array}
$$

The inverse z transform is

$$
\delta[n]+0.4 \delta[n-1]+0.5 \delta[n-2] \cdots \stackrel{z}{\longleftrightarrow} 1+0.4 z^{-1}+0.5 z^{-2} \cdots
$$

The Inverse z Transform

Synthetic Division

We could have done the synthetic division this way.

$$
\begin{array}{r}
-4.2-30.85 z-158.613 z^{2} \cdots \\
\frac{-0.336+1.428 z+2.1 z^{2}-4.2 z^{3}}{-2.468 z-2.2 z^{2}+5.2 z^{3}} \\
\frac{-2.468 z+10.489 z^{2}+15.425 z^{3}-30.85 z^{4}}{-12.689 z^{2}-10.225 z^{3}+30.85 z^{4}}
\end{array}
$$

$$
-4.2 \delta[n]-30.85 \delta[n+1]-158.613 \delta[n+2] \cdots \stackrel{z}{\longleftrightarrow}-4.2-30.85 z-158.613 z^{2} \cdots
$$

but with the restriction $|z|>0.8$ this second form does not converge and is therefore not the inverse z transform.

The Inverse z Transform

Synthetic Division

We can always find the inverse z transform of a rational function with synthetic division but the result is not in closed form. In most practical cases a closed-form solution is preferred.

Partial Fraction Expansion

Partial-fraction expansion works for inverse z transforms the same way it does for inverse Laplace transforms. But there is a situation that is quite common in inverse z transforms which deserves mention. It is very common to have z-domain functions in which the number of finite zeros equals the number of finite poles (making the expression improper in z) with at least one zero at $z=0$.

$$
\mathrm{H}(z)=\frac{z^{N-M}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)}
$$

Partial Fraction Expansion

Dividing both sides by z we get

$$
\frac{\mathrm{H}(z)}{z}=\frac{z^{N-M-1}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)}
$$

and the fraction on the right is now proper in z and can be expanded in partial fractions.

$$
\frac{\mathrm{H}(z)}{z}=\frac{K_{1}}{z-p_{1}}+\frac{K_{2}}{z-p_{2}}+\cdots+\frac{K_{N}}{z-p_{N}}
$$

Then both sides can be multiplied by z and the inverse transform can be found.

$$
\begin{gathered}
\mathrm{H}(z)=\frac{z K_{1}}{z-p_{1}}+\frac{z K_{2}}{z-p_{2}}+\cdots+\frac{z K_{N}}{z-p_{N}} \\
\mathrm{~h}[n]=K_{1} p_{1}^{n} \mathrm{u}[n]+K_{2} p_{2}^{n} \mathrm{u}[n]+\cdots+K_{N} p_{N}^{n} \mathrm{u}[n]
\end{gathered}
$$

z-Transform Properties

An LTI system has a transfer function

$$
\mathrm{H}(z)=\frac{\mathrm{Y}(z)}{\mathrm{X}(z)} \frac{-1 / 2}{z_{2}} \frac{z-z+2 / 9}{}, \mid z \gg 2 / 3
$$

Using the time-shifting property of the z transform draw a block diagram realization of the system.

$$
\begin{gathered}
\mathrm{Y}(z)\left(z_{2}-z+2 / 9\right)=\mathrm{X}(z)(z-1 / 2) \\
z_{2} \mathrm{Y}(z)=z \mathrm{X}(z)-(1 / 2) \mathrm{X}(z)+z \mathrm{Y}(z)-(2 / 9) \mathrm{Y}(z) \\
\mathrm{Y}(z)=z-1 \mathrm{X}(z)-(1 / 2) z-2 \mathrm{X}(z)+z-1 \mathrm{Y}(z)-(2 / 9) z-2 \mathrm{Y}(z)
\end{gathered}
$$

z-Transform Properties

$$
\mathrm{Y}(z)=z-1 \mathrm{X}(z)-(1 / 2) z-2 \mathrm{X}(z)+z-1 \mathrm{Y}(z)-(2 / 9) z-2 \mathrm{Y}(z)
$$

Using the time-shifting property

$$
\mathrm{y}[n]=\mathrm{x}[n-1]-(1 / 2) \mathrm{x}[n-2]+\mathrm{y}[n-1]-(2 / 9) \mathrm{y}[n-2]
$$

z-Transform Properties

Let $\mathrm{g}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{G}(z)=\frac{z-1}{\left(z-0.8 e^{-j \pi / 4}\right)\left(z-0.8 e^{+j \pi / 4}\right)}$. Draw a
pole-zero diagram for $\mathrm{G}(z)$ and for the z transform of $e^{j \pi n / 8} \mathrm{~g}[n]$. The poles of $\mathrm{G}(z)$ are at $z=0.8 e^{ \pm j \pi / 4}$ and its single finite zero is at $z=1$. Using the change of scale property

$$
\begin{aligned}
& e^{j \pi n / 8} \mathrm{~g}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{G}\left(z e^{-j \pi / 8}\right)=\frac{z e^{-j \pi / 8}-1}{\left(z e^{-j \pi / 8}-0.8 e^{-j \pi / 4}\right)\left(z e^{-j \pi / 8}-0.8 e^{+j \pi / 4}\right)} \\
& \mathrm{G}\left(z e^{-j \pi / 8}\right)=\frac{e^{-j \pi / 8}\left(z-e^{j \pi / 8}\right)}{e^{-j \pi / 8}\left(z-0.8 e^{-j \pi / 8}\right) e^{-j \pi / 8}\left(z-0.8 e^{+j 3 \pi / 8}\right)} \\
& \mathrm{G}\left(z e^{-j \pi / 8}\right)=e^{j \pi / 8} \frac{z-e^{j \pi / 8}}{\left(z-0.8 e^{-j \pi / 8}\right)\left(z-0.8 e^{+j 3 \pi / 8}\right)}
\end{aligned}
$$

z-Transform Properties

$\mathrm{G}\left(z e_{-j \mathrm{j} / 8}\right)$ has poles at $z=0.8 e_{-j \mathrm{j} / 8}$ and $0.8 e_{+j 3 \mathrm{p} / 8}$ and a zero at $z=e_{j p / 8}$. All the finite zero and pole locations have been rotated in the z plane by $\mathrm{p} / 8$ radians.

z-Transform Properties

Using the accumulation property and $\mathrm{u}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \frac{z}{z-1},|z|>1$ show that the z transform of $n \mathrm{u}[n]$ is $\frac{z}{(z-1)^{2}},|z|>1$.

$$
\begin{gathered}
n \mathrm{u}[n]=\sum_{m=0}^{n} \mathrm{u}[m-1] \\
\mathrm{u}[n-1] \stackrel{z}{\longleftrightarrow} z^{-1} \frac{z}{z-1}=\frac{1}{z-1},|z|>1 \\
n \mathrm{u}[n]=\sum_{m=0}^{n} \mathrm{u}[m-1] \stackrel{z}{\longleftrightarrow}\left(\frac{z}{z-1}\right) \frac{1}{z-1}=\frac{z}{(z-1)^{2}},|z|>1
\end{gathered}
$$

Inverse z Transform Example

Find the inverse z transform of

$$
X(z)=\frac{z}{z-0.5}-\frac{z}{z+2}, 0.5<|z|<2
$$

Right-sided signals have ROC's that are outside a circle and left-sided signals have ROC's that are inside a circle. Using

$$
\begin{gathered}
\alpha^{n} \mathrm{u}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|>|\alpha| \\
-\alpha^{n} \mathrm{u}[-n-1] \stackrel{z}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|<|\alpha|
\end{gathered}
$$

We get
$(0.5)^{n} \mathrm{u}[n]+(-2)^{n} \mathrm{u}[-n-1] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{X}(z)=\frac{z}{z-0.5}-\frac{z}{z+2}, 0.5<|z|<2$

Inverse z Transform Example

Find the inverse z transform of

$$
X(z)=\frac{z}{z-0.5}-\frac{z}{z+2},|z|>2
$$

In this case, both signals are right sided. Then using

$$
\alpha^{n} \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|>|\alpha|
$$

We get

$$
\left[(0.5)^{n}-(-2)^{n}\right] \mathrm{u}[n] \stackrel{z}{\longleftrightarrow} \mathrm{X}(z)=\frac{z}{z-0.5}-\frac{z}{z+2},|z|>2
$$

Inverse z Transform Example

Find the inverse z transform of

$$
X(z)=\frac{z}{z-0.5}-\frac{z}{z+2},|z|<0.5
$$

In this case, both signals are left sided. Then using

$$
-\alpha^{n} \mathrm{u}[-n-1] \stackrel{\mathrm{z}}{\longleftrightarrow} \frac{z}{z-\alpha}=\frac{1}{1-\alpha z^{-1}},|z|<|\alpha|
$$

We get
$-\left[(0.5)^{n}-(-2)^{n}\right] \mathrm{u}[-n-1] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{X}(z)=\frac{z}{z-0.5}-\frac{z}{z+2},|z|<0.5$

The Unilateral z Transform

Just as it was convenient to define a unilateral Laplace transform it is convenient for analogous reasons to define a unilateral z transform

$$
\mathrm{X}(z)=\stackrel{\stackrel{\rightharpoonup}{\mathrm{a}}}{\stackrel{*}{\mathrm{x}} \mathrm{x}[n] z-n}
$$

Properties of the Unilateral z Transform

If two causal discrete-time signals form these transform pairs, $\mathrm{g}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{G}(z)$ and $\mathrm{h}[n] \stackrel{\mathrm{z}}{\longleftrightarrow} \mathrm{H}(z)$ then the following properties hold for the unilateral z transform.
Time Shifting
Delay: $\quad \mathrm{g}\left[n-n_{0}\right] \stackrel{\mathrm{z}}{\longleftrightarrow} z^{-n_{0}} \mathrm{G}(z), n_{0} \geq 0$
Advance: $\mathrm{g}\left[n+n_{0}\right] \stackrel{\mathrm{z}}{\longleftrightarrow} z^{n_{0}}\left(\mathrm{G}(z)-\sum_{m=0}^{n_{0}-1} \mathrm{~g}[m] z^{-m}\right), n_{0}>0$
Accumulation:

$$
\sum_{m=0}^{n} \mathrm{~g}[m] \stackrel{\mathrm{z}}{\longleftrightarrow} \frac{z}{z-1} \mathrm{G}(z)
$$

Solving Difference Equations

The unilateral z transform is well suited to solving difference equations with initial conditions. For example,

$$
\begin{gathered}
\mathrm{y}[n+2]-\quad \frac{3}{2} \mathrm{y}[n+1]+\frac{1}{2} \mathrm{y}[n]=(1 / 4)_{n} \quad, \text { for } n^{3} 0 \\
\mathrm{y}[0]=10 \quad \text { and } \mathrm{y}[1]=4
\end{gathered}
$$

z transforming both sides,

$$
z_{2} \underset{\text { é }}{\text { é } Y(z)-y[0]-z-1 y[1] u ̀-~} \quad \text { ù } \quad \frac{3}{2} z \text { ë } \quad \hat{u}+\frac{1}{2} Y(z)=\frac{z}{z-1 / 4}
$$

the initial conditions are called for systematically.

Solving Difference Equations

Applying initial conditions and solving,

$$
\mathrm{Y}(z)=z \quad \underset{\mathrm{Çz-1/4}}{æ 16 / 3}+\frac{4}{z-1 / 2}+\frac{2 / 30 ̈}{z-1 \div}
$$

and

This solution satisfies the difference equation and the initial conditions.

Pole-Zero Diagrams and Frequency Response

For a stable system, the response to a sinusoid applied at time $t=0$ approaches the response to a true sinusoid (applied for all time).

Response to a Suddenly-Applied Sinusoid

Pole-Zero Diagrams and Frequency Response

Let the transfer function of a system be

$$
\begin{aligned}
& \mathrm{H}(z)=\frac{z}{z_{2}-z / 2+5 / 16}=\frac{z}{\left(z-p_{1}\right)\left(z-p_{2}\right)} \\
& p_{1}=\frac{1+j 2}{4}, p_{2}=\frac{1-j 2}{4} \\
& \left\lvert\, \mathrm{H}\left(e_{j \mathrm{w}}\right)=\frac{\left|e_{j \mathrm{w}}\right|}{\left|e_{j \mathrm{~W}}-p_{1}\right|\left|e_{j \mathrm{w}}-p_{2}\right|} \longrightarrow\right.
\end{aligned}
$$

Pole-Zero Diagrams and Frequency Response

Transform Method Comparison

A system with transfer function $\mathrm{H}(z)=\frac{z}{(z-0.3)(z+0.8)}, \quad \mid z \gg 0.8$
is excited by a unit sequence. Find the total response.
Using z-transform methods,

$$
\begin{gathered}
\mathrm{Y}(z)=\mathrm{H}(z) \mathrm{X}(z)=\frac{z}{(z-0.3)(z+0.8)^{\prime} z-1}, \mid z \gg 1 \\
\mathrm{Y}(z)=\frac{z^{2}}{} \frac{.1169}{z-0.3}+\frac{0.3232}{z+0.8}+\frac{0.7937}{z-1}, \mid z \ngtr 1 \\
\mathrm{y}[n]=\text { éé-0.1169 }_{\text {é }} \quad(0.3)_{n-1}+0.3232(-0.8)_{n-1}+0.7937 \mathrm{u} \text { un ûu }[n-1]
\end{gathered}
$$

Transform Method Comparison

Using the DTFT,

$$
\begin{gathered}
\mathrm{H}\left(e^{j \Omega}\right)=\frac{e^{j \Omega}}{\left(e^{j \Omega}-0.3\right)\left(e^{j \Omega}+0.8\right)} \\
\mathrm{Y}\left(e^{j \Omega}\right)=\mathrm{H}\left(e^{j \Omega}\right) \mathrm{X}\left(e^{j \Omega}\right)=\frac{e^{j \Omega}}{\left(e^{j \Omega}-0.3\right)\left(e^{j \Omega}+0.8\right)} \times \underbrace{\left(\frac{1}{1-e^{-j \Omega}}+\pi \delta_{2 \pi}(\Omega)\right.}_{\text {DTFT of a Unit Sequence }}) \\
\mathrm{Y}\left(e^{j \Omega}\right)=\frac{e^{j \Omega}}{\left(e^{j \Omega}-0.3\right)\left(e^{j \Omega}+0.8\right)\left(e^{j \Omega}-1\right)}+\pi \frac{e^{j \Omega}}{\left(e^{j \Omega}-0.3\right)\left(e^{j \Omega}+0.8\right)} \delta_{2 \pi}(\Omega) \\
\mathrm{Y}\left(e^{j \Omega}\right)=\frac{-0.1169}{e^{j \Omega}-0.3}+\frac{0.3232}{e^{j \Omega}+0.8}+\frac{0.7937}{e^{j \Omega}-1}+\frac{\pi}{(1-0.3)(1+0.8)} \delta_{2 \pi}(\Omega)
\end{gathered}
$$

Transform Method Comparison

Using the equivalence property of the impulse and the periodicity of both $\delta_{2 \pi}(\Omega)$ and $e^{j \Omega}$

$$
\mathrm{Y}\left(e^{j \Omega}\right)=\frac{-0.1169 e^{-j \Omega}}{1-0.3 e^{-j \Omega}}+\frac{0.3232 e^{-j \Omega}}{1+0.8 e^{-j \Omega}}+\frac{0.7937 e^{-j \Omega}}{1-e^{-j \Omega}}+2.4933 \delta_{2 \pi}(\Omega)
$$

Then, manipulating this expression into a form for which the inverse DTFT is direct

$$
\begin{aligned}
\mathrm{Y}\left(e^{j \Omega}\right)= & =\underbrace{\frac{-0.1169 e^{-j \Omega}}{1-0.3 e^{-j \Omega}}+\frac{0.3232 e^{-j \Omega}}{1+0.8 e^{-j \Omega}}+0.7937\left(\frac{e^{-j \Omega}}{1-e^{-j \Omega}}+\pi \delta_{2 \pi}(\Omega)\right)}_{=0} \\
& \underbrace{-0.7937 \pi \delta_{2 \pi}(\Omega)+2.4933 \delta_{2 \pi}(\Omega)}
\end{aligned}
$$

Transform Method Comparison

Finding the inverse DTFT,
$y[n]=$ ée $_{e}-0.1169$
$(0.3)_{n-1}+0.3232(-0.8)_{n-1}+0.7937$ ù
ûu ${ }^{[n-1]}$

The result is the same as the result using the z transform, but the effort and the probability of error are considerably greater.

System Response to a Sinusoid

A s tem with transfer function

$$
\mathrm{H}(z)=\frac{z}{z-0.9}, \mid z \gg 0.9
$$

is excited by the sinusoid $\mathrm{x}[n]=\cos (2 \mathrm{p} n / 12)$. Find the response.

The z transform of a true sinusoid does not appear in the table of z transforms. The z transform of a causal sinusoid of the form $\mathrm{x}[n]=\cos (2 \mathrm{p} n / 12) \mathrm{u}[n]$ does appear. We can use the DTFT to find the response to the true sinusoid and the result is $\mathrm{y}[n]=1.995 \cos (2 \mathrm{p} n / 12-1.115)$.

System Response to a Sinusoid

Using the z transform we can find the response of the system to a causal sinusoid $\mathrm{x}[n]=\cos (2 \mathrm{p} n / 12) \mathrm{u}[n]$ and the response is $\mathrm{y}[n]=0.1217(0.9)_{n} \mathrm{u}[n]+1.995 \cos (2 \mathrm{p} n / 12-1.115) \mathrm{u}[n]$
Notice that the response consists of two parts, a transient response $0.1217(0.9)_{n} \mathrm{u}[n]$ and a forced response $1.995 \cos (2 \mathrm{p} n / 12-1.115) \mathrm{u}[n]$ that, except for the unit sequence factor, is exactly the same as the forced response we found using the DTFT.

System Response to a Sinusoid

This type of analysis is very common. We can generalize it to say that if a system has a transfer function $H(z)=\frac{N(z)}{D(z)}$ that the response to a causal cosine excitation $\cos \left(\Omega_{0} n\right) \mathrm{u}[n]$ is

$$
\mathrm{y}[n]=\underbrace{\mathrm{Z}^{-1}\left(z \frac{\mathrm{~N}_{1}(z)}{\mathrm{D}(z)}\right)}_{\text {Natural or Transient Response }}+\underbrace{\mathrm{H}\left(p_{1}\right) \mid}-\underbrace{\cos \left(\Omega_{0} n+\measuredangle \mathrm{H}\right.}_{\text {Foreed R Rsponse }}\left(p_{1}\right)) \mathrm{u}[n]
$$

where $p_{1}=e^{j \Omega_{0}}$. This consists of a natural or transient response and a forced response. If the system is stable the transient response dies away with time leaving only the forced response which, except for the $\mathbf{u}[n]$ factor is the same as the forced response to a true cosine. So we can use the z transform to find the response to a true sinusoid.

