
SWITCHING THEORY AND
LOGIC DESIGN

Prepared by:
V.SESHAGIRI RAO, Professor

S.RAMBABU(Asst.Prof)
LINJU T T(Asst.Prof)

Unit 1

NUMBER SYSTEMS

Any number in one base system can be
converted into another base system
Types
1) decimal to any base
2) Any base to decimal
3) Any base to Any base

Base Conversions

Conversions of fractional numbers

Decimal to Binary

Octal to Binary Conversion

Complements

 Complements arc used in digital
computers to simplify the subtraction
operation and for log- ical manipulation

 They are two types of complements

1) Diminished radix complement

(rn - 1)-N {r is the base of num
system}

2) Radix Complement

(rn - 1)-N+1

(r-1)’s complement

 If the base = 10

 The 9's complement of 546700 is

999999 - 546700 = 453299.

 If the base = 2

 The 1's complemcnt of 1011000 is
0100111.

r’s complement

 the 10's complement of 012398 is 987602

 the 1's complement of 1101100 is
0010100

Subtraction using complements

 Discard end carry for r‟s complement
Using 10's complement subtract 72532 -

3250.
M = 72532

10's complement of N = + 96750
Sum = 169282

Discard end carry for 10‟s complement
Answer =

69282

Subtraction using (r-1)’s
complement

 X - Y = 1010100 - 1000011

X = 1010100

1's comp of Y =+ 0111100

Sum = 1 0010000

Add End-around carry = + 1

X - Y = 0010001 1

Binary Codes

Non Weighted Codes

Gray Code(Unit distance Code)

Binary to Gray Conversion

Mirror Image Representation in
Gray Code

Error Detection and Correction

 No communication channel or storage
device is completely error-free

 As the number of bits per area or the
transmission rate increases, more errors
occur.

 Impossible to detect or correct 100% of
the errors

Types of Error Detection

- 3 Types of Error Detection/Correction
Methods

- Cyclic Redundancy Check (CRC)
- Hamming Codes
- Reed-Solomon (RS)

10011001011 = 1001100 + 1011
^ ^ ^
Code word information error-checking bits/

bits parity bits/
syndrome/
redundant bits

Hamming Codes
 One of the most effective codes for error-

recovery
 Used in situations where random errors are

likely to occur
 Error detection and correction increases in

proportion to the number of parity bits
(error-checking bits) added to the end of
the information bits
code word = information bits + parity bits
Hamming distance: the number of bit
positions in which two code words differ.

10001001
10110001

* * *
 Minimum Hamming distance or D(min) :

determines its error detecting and correcting
capability.
Hamming codes can always detect D(min) –
1 errors, but can only correct half of those
errors.

Hamming Codes

EX.Data Parity Code

Bits Bit Word
00 0 000
01 1 011
10 1 101
11 0 110

000* 100
001 101*
010 110*
011* 111

- Single parity bit can only detect error,
not correct it

- Error-correcting codes require more
than a single parity bit

EX. 0 0 0 0 0
0 1 0 1 1
1 0 1 1 0
1 1 1 0 1

Minimum Hamming distance = 3

Can detect up to 2 errors and correct 1
error

Cyclic Redundancy Check

1. Let the information byte F = 1001011
2. The sender and receiver agree on an

arbitrary binary pattern P. Let P = 1011.
3. Shift F to the left by 1 less than the

number of bits in P. Now, F = 1001011000.
4. Let F be the dividend and P be the divisor.

Perform “modulo 2 division”.
5. After performing the division, we ignore the

quotient. We got 100 for the remainder,
which becomes the actual CRC checksum.

6. Add the remainder to F, giving the message
M:
1001011 + 100 = 1001011100 = M

Calculating and Using CRCs

7. M is decoded and checked by the message
receiver using the reverse process.

____1010100

1011 | 1001011100
1011
001001

1001
0010
001011

1011
0000  Remainder

Canonical and Standard Forms

 We need to consider formal techniques for
the simplification of Boolean functions.
◦ Identical functions will have exactly the same
canonical form.

◦ Minterms and Maxterms
◦ Sum-of-Minterms and Product-of- Maxterms
◦ Product and Sum terms
◦ Sum-of-Products (SOP) and Product-of-Sums
(POS)

Definitions

 Literal: A variable or its complement

 Product term: literals connected by •

 Sum term: literals connected by +

 Minterm: a product term in which all the
variables appear exactly once, either
complemented or uncomplemented

 Maxterm: a sum term in which all the
variables appear exactly once, either
complemented or uncomplemented

Truth Table notation for Minterms
and Maxterms

Canonical Forms (Unique)

 Any Boolean function F() can be
expressed as a unique sum of minterms
and a unique product of maxterms
(under a fixed variable ordering).

 In other words, every function F() has two
canonical forms:
◦ Canonical Sum-Of-Products (sum of minterms)
◦ Canonical Product-Of-Sums (product of
maxterms)

Canonical Forms (cont.)

 Canonical Sum-Of-Products:
The minterms included are those mj such
that F() = 1 in row j of the truth table for
F().

 Canonical Product-Of-Sums:
The maxterms included are those Mj such
that F() = 0 in row j of the truth table for
F().

Example

Conversion Between Canonical
Forms

 Replace ∑ with ∏ (or vice versa) and
replace those j’s that appeared in the
original form with those that do not.

 Example:
f1(a,b,c) = a‟b‟c + a‟bc‟ + ab‟c‟ + abc‟

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)
= ∏(0,3,5,7)

=
(a+b+c)•(a+b‟+c‟)•(a‟+b+c‟)•(a‟+b‟+c‟)

Conversion of SOP from standard
to canonical form

 Expand non-canonical terms by inserting
equivalent of 1 in each missing variable x:
(x + x‟) = 1

 Remove duplicate minterms

 f1(a,b,c) = a‟b‟c + bc‟ + ac‟
= a‟b‟c + (a+a‟)bc‟ + a(b+b‟)c‟
= a‟b‟c + abc‟ + a‟bc‟ + abc‟ +

ab‟c‟
= a‟b‟c + abc‟ + a‟bc + ab‟c‟

Conversion of POS from standard
to canonical form

 Expand noncanonical terms by adding 0 in
terms of missing variables (e.g., xx‟ = 0) and
using the distributive law

 Remove duplicate maxterms

 f1(a,b,c) = (a+b+c)•(b‟+c‟)•(a‟+c‟)
= (a+b+c)•(aa‟+b‟+c‟)•(a‟+bb‟+c‟)
= (a+b+c)•(a+b‟+c‟)•(a‟+b‟+c‟)•

(a‟+b+c‟)•(a‟+b‟+c‟)
=

(a+b+c)•(a+b‟+c‟)•(a‟+b‟+c‟)•(a‟+b+c‟)

Boolean Algebra and
Basic Gates

Formal logic: In formal logic, a statement
(proposition) is a declarative sentence that is
either

true(1) or false (0).
It is easier to communicate with computers using

formal logic.

• Boolean variable: Takes only two values –
either

true (1) or false (0).
They are used as basic units of formal logic.

LOGIC GATES

• Boolean function: Mapping from
Boolean variables to a Boolean value.

• Truth table:
◦ Represents relationship between a Boolean
function and its binary variables.

◦ It enumerates all possible combinations of
arguments and the corresponding function
values.

Boolean function and logic
diagram

• Boolean algebra: Deals with binary
variables and logic operations operating
on those variables.

• Logic diagram: Composed of graphic
symbols for logic gates. A simple circuit
sketch that represents inputs and outputs
of Boolean functions.

Boolean function and logic
diagram

 Refer to the hardware to implement Boolean
operators.

 The most basic gates are

Gates

Boolean function and truth table

• Postulate 1 (Definition): A Boolean
algebra is a closed algebraic system
containing a set K of two or more
elements and the two operators · and +
which refer to logical AND and logical OR

BASIC IDENTITIES OF BOOLEAN
ALGEBRA

(1) x + 0 = x

(2) x · 0 = 0

(3) x + 1 = 1

(4) x · 1 = 1

(5) x + x = x

(6) x · x = x

(7) x + x’ = x

(8) x · x’ = 0

Basic Identities of Boolean Algebra
(Existence of 1 and 0 element)

(9) x + y = y + x
(10) xy = yx
(11) x + (y + z) = (x + y) + z
(12) x (yz) = (xy) z
(13) x (y + z) = xy + xz
(14) x + yz = (x + y)(x + z)
(15) (x + y)’ = x’ y’
(16) (xy)’ = x’ + y’
(17) (x’)’ = x

Basic Identities of Boolean
Algebra (Commutatively):

Function Minimization using
Boolean Algebra
 Examples:

(a) a + ab = a(1+b)=a

(b) a(a + b) = a.a
+ab=a+ab=a(1+b)=a.

(c) a + a'b = (a + a')(a + b)=1(a + b)
=a+b

(d) a(a' + b) = a. a' +ab=0+ab=ab

(a) (a + b)' = a'b'

(b) (ab)' = a' + b'

Generalized DeMorgan's Theorem

(a) (a + b + … z)' = a'b' … z'

(b) (a.b … z)' = a' + b' + … z„

DeMorgan's Theorem

 F = ab + c‟d‟

 F‟ = ??

 F = ab + c‟d‟ + b‟d

 F‟ = ??

DeMorgan's Theorem

More DeMorgan's example

Show that: (a(b + z(x + a')))' =a' + b' (z' + x')

(a(b + z(x + a')))' = a' + (b + z(x + a'))'

= a' + b' (z(x + a'))'

= a' + b' (z' + (x + a')')

= a' + b' (z' + x'(a')')

= a' + b' (z' + x'a)

=a‘+b' z' + b'x'a

=(a‘+ b'x'a) + b' z'

=(a‘+ b'x‘)(a +a‘) + b' z'

= a‘+ b'x‘+ b' z‘

= a' + b' (z' + x')

 NAND-AND

 AND-NOR

 NOR-OR

 OR-NAND

Two Level implantation

NAND-AND

It can also be implemented using AND-NOR
circuit as it is equivalent to NAND- AND circuit

It can also be implemented using OR-NAND
circuit as it is equivalent to NOR-OR circuit

 The objectives of this lesson are to learn
about:

1. Universal gates - NAND and NOR.

2. How to implement NOT, AND, and OR
gate using NAND gates only.

3. How to implement NOT, AND, and OR
gate using NOR gates only.

4. Equivalent gates.

Universal Gates

NAND GATE

NOR GATE

NAND AS A UNIVERSAL GATE

NOR AS A UNIVERSAL GATE

Minimization and design
of Combinational circuits

UNIT 2

62

Karnaugh Maps for
Simplification

63

Karnaugh Maps

 Boolean algebra helps us simplify expressions and circuits

 Karnaugh Map: A graphical technique for simplifying a Boolean
expression into either form:

◦ minimal sum of products (MSP)

◦ minimal product of sums (MPS)

 Goal of the simplification.

◦ There are a minimal number of product/sum terms

◦ Each term has a minimal number of literals

 Circuit-wise, this leads to a minimal two-level implementation

64

Re-arranging the Truth Table

 A two-variable function has four possible minterms. We can
re-arrange
these minterms into a Karnaugh map

 Now we can easily see which minterms contain common
literals
◦ Minterms on the left and right sides contain y‟ and y respectively
◦ Minterms in the top and bottom rows contain x‟ and x respectively

x y minterm

0 0 x’y’

0 1 x’y

1 0 xy’

1 1 xy

 Y

 0 1

X
0 x’y’ x’y

1 xy’ xy

Y

0 1

0 x’y’ x’y
X

1 xy’ xy

Y’ Y

X’ x’y’ x’y

X xy’ xy

65

Karnaugh Map Simplifications

 Imagine a two-variable sum of minterms:

x‟y‟ + x‟y

 Both of these Minterms appear in the top row
of a Karnaugh map, which
means that they both contain the literal x‟

 What happens if you simplify this expression
using Boolean algebra?

x‟y‟ + x‟y = x‟(y‟ + y) [Distributive]
= x‟  1 [y + y‟ = 1]
= x‟ [x  1 = x]

Y

x’y’ x’y

X xy’ xy

66

More Two-Variable Examples

 Another example expression is x‟y + xy
◦ Both minterms appear in the right side, where y is

uncomplemented

◦ Thus, we can reduce x‟y + xy to just y

 How about x‟y‟ + x‟y + xy?
◦ We have x‟y‟ + x‟y in the top row, corresponding to x‟

◦ There‟s also x‟y + xy in the right side, corresponding to
y

◦ This whole expression can be reduced to x‟ + y

Y

x’y’ x’y

X xy’ xy

Y

x’y’ x’y

X xy’ xy

67

A Three-Variable Karnaugh Map
 For a three-variable expression with inputs x,

y, z, the arrangement of
minterms is more tricky:

 Another way to label the K-map (use
whichever you like):

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

YZ

00 01 11 10

0 x’y’z’ x’y’z x’yz x’yz’
X

1 xy’z’ xy’z xyz xyz’

YZ

00 01 11 10

0 m0 m1 m3 m2
X

1 m4 m5 m7 m6

68

Why the funny ordering?
 With this ordering, any group of 2, 4 or 8 adjacent

squares on the map
contains common literals that can be factored out

 “Adjacency” includes wrapping around the left and right
sides:

 We‟ll use this property of adjacent squares
to do our simplifications.

x‟y‟z + x‟yz
= x‟z(y‟ + y)
= x‟z  1

= x‟z

x‟y‟z‟ + xy‟z‟ + x‟yz‟ + xyz‟
= z‟(x‟y‟ + xy‟ + x‟y + xy)
= z‟(y‟(x‟ + x) + y(x‟ + x))
= z‟(y‟+y)
= z‟

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

 Y

 x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

 Z

69

K-maps From Truth Tables

 We can fill in the K-map directly from a truth table

◦ The output in row i of the table goes into square mi of the K-map

◦ Remember that the rightmost columns of the K-map are “switched”

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

x y z f(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Y

0 1 0 0

X 0 1 1 1

Z

70

Reading the MSP from the K-map

 You can find the minimal SoP expression

◦ Each rectangle corresponds to one product term

◦ The product is determined by finding the common literals in that

rectangle Y

 x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

 Z

Y

0 1 0 0

X 0 1 1 1

Z

xyy‟z

F(x,y,z)= y‟z + xy

71

Grouping the Minterms Together

 The most difficult step is grouping together
all the 1s in the K-map

◦ Make rectangles around groups of one,
two, four or eight 1s

◦ All of the 1s in the map should be
included in at least one rectangle

◦ Do not include any of the 0s

◦ Each group corresponds to one product
term Y

0 1 0 0

X 0 1 1 1

Z

72

For the Simplest Result

 Make as few rectangles as possible, to
minimize the number of products in the
final expression.

 Make each rectangle as large as possible,
to minimize the number of literals in each
term.

 Rectangles can be overlapped, if that
makes them larger.

73

K-map Simplification of SoP
Expressions

 Let‟s consider simplifying f(x,y,z) = xy + y‟z + xz

 You should convert the expression into a sum of minterms form,

◦ The easiest way to do this is to make a truth table for the function, and then read
off the minterms

◦ You can either write out the literals or use the minterm shorthand

 Here is the truth table and sum of minterms for our example:

x y z f(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

f(x,y,z) = x‟y‟z + xy‟z +
xyz‟ + xyz

= m1 + m5 + m6+ m7

74

Unsimplifying Expressions

 You can also convert the expression to a sum of
minterms with Boolean
algebra
◦ Apply the distributive law in reverse to add in missing

variables.
◦ Very few people actually do this, but it‟s occasionally useful.

 In both cases, we‟re actually “unsimplifying” our
example expression
◦ The resulting expression is larger than the original one!
◦ But having all the individual minterms makes it easy to

combine them
together with the K-map

xy + y‟z + xz = (xy  1) + (y‟z  1) + (xz  1)
= (xy  (z‟ + z)) + (y‟z  (x‟ + x)) + (xz  (y‟ + y))
= (xyz‟ + xyz) + (x‟y‟z + xy‟z) + (xy‟z + xyz)
= xyz‟ + xyz + x‟y‟z + xy‟z
= m1 + m5 + m6 + m7

75

Making the Example K-map

 In our example, we can write f(x,y,z) in
two equivalent ways

 In either case, the resulting K-map is
shown below

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

f(x,y,z) = x‟y‟z + xy‟z + xyz‟
+ xyz Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

f(x,y,z) = m1 + m5 + m6 + m7

 Y

 0 1 0 0

X 0 1 1 1

 Z

76

Practice K-map 1

 Simplify the sum of minterms m1 + m3 +
m5 + m6 Y

X

Z

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

77

Solutions for Practice K-map 1

 Here is the filled in K-map, with all groups
shown
◦ The magenta and green groups overlap, which
makes each of them as

large as possible

◦ Minterm m6 is in a group all by its lonesome

 The final MSP here is x‟z + y‟z + xyz‟

Y

0 1 1 0

X 0 1 0 1

Z

78

K-maps can be tricky!

 There may not necessarily be a unique MSP. The K-map
below yields two

valid and equivalent MSPs, because there are two possible
ways to

include minterm m7

 Remember that overlapping groups is possible, as shown above

Y

0 1 0 1

X 0 1 1 1

Z

y‟z + yz‟ + xy y‟z + yz‟ + xz

Y

0 1 0 1

X 0 1 1 1

Z

Y

0 1 0 1

X 0 1 1 1

Z

79

Four-variable K-maps – f(W,X,Y,Z)

 We can do four-variable expressions too!

◦ The minterms in the third and fourth columns, and in the third and

fourth rows, are switched around.

◦ Again, this ensures that adjacent squares have common literals

 Grouping minterms is similar to the three-variable case, but:

◦ You can have rectangular groups of 1, 2, 4, 8 or 16 minterms

◦ You can wrap around all four sides

80

Four-variable K-maps

Y

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y

w’x’y’z’ w’x’y’z w’x’yz w’x’yz’

w’xy’z’ w’xy’z w’xyz w’xyz’

wxy’z’ wxy’z wxyz wxyz’
X

W
wx’y’z’ wx’y’z wx’yz wx’yz’

Z

81

Example: Simplify
m0+m2+m5+m8+m10+m13

 The expression is already a sum of minterms, so here‟s the K-map:

 We can make the following groups, resulting in the MSP x‟z‟ + xy‟z

Y

1 0 0 1

0 1 0 0

0 1 0 0
X

W
1 0 0 1

Z

Y

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y

1 0 0 1

0 1 0 0

0 1 0 0
X

W
1 0 0 1

Z

Y

w’x’y’z’ w’x’y’z w’x’yz w’x’yz’

w’xy’z’ w’xy’z w’xyz w’xyz’

wxy’z’ wxy’z wxyz wxyz’
X

W
wx’y’z’ wx’y’z wx’yz wx’yz’

Z

82

Five-variable K-maps –
f(V,W,X,Y,Z)

V= 0 V= 1
 Y

 m0 m1 m3 m2

 m4 m5 m7 m6
X

W
m12 m13 m15 m14

m8 m9 m11 m10

 Z

Y

m16 m17 m19 m8

m20 m21 m23 m22

m28 m29 m31 m30

X

W
m24 m25 m27 m26

Z

83

Simplify f(V,W,X,Y,Z)=Σm(0,1,4,5,6,11,12,14,16,20,22,28,30,31)

V= 0 V= 1

1 1

1 1 1

1

1 1

1

1 1

1 11

f = XZ‟
Σm(4,6,12,14,20,22,28,30)

+ V‟W‟Y‟ Σm(0,1,4,5)
+ W‟Y‟Z‟ Σm(0,4,16,20)
+ VWXY Σm(30,31)
+ V‟WX‟YZ m11

84

PoS Optimization

 Maxterms are grouped to find minimal PoS
expression

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z

00 01 11 10

0

1

x

yz

85

PoS Optimization

 F(W,X,Y,Z)= ∏ M(0,1,2,4,5)

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z00 01 11
10

0

1

x yz

0 0 1 0

0 0 1 1
00 01 11

10

0

1

x
yz

F(W,X,Y,Z)= Y . (X + Z)

86

PoS Optimization from SoP
F(W,X,Y,Z)= Σm(0,1,2,5,8,9,10)

= ∏ M(3,4,6,7,11,12,13,14,15)

0

0 00

0

0 0 0 0

F(W,X,Y,Z)= (W‟ + X‟)(Y‟ + Z‟)(X‟
+ Z)

Or,

F(W,X,Y,Z)= X‟Y‟ + X‟Z‟ + W‟Y‟Z

Which one is the minimal one?

87

SoP Optimization from PoS
F(W,X,Y,Z)= ∏ M(0,2,3,4,5,6)

= Σm(1,7,8,9,10,11,12,13,14,15)

1

1

1 1 1 1

1 1 1 1

F(W,X,Y,Z)= W + XYZ + X‟Y‟Z

88

I don’t care!

 You don‟t always need all 2n input combinations in an n-variable function

◦ If you can guarantee that certain input combinations never occur

◦ If some outputs aren‟t used in the rest of the circuit

 We mark don‟t-care outputs in truth tables and K-maps with Xs.

 Within a K-map, each X can be considered as either 0 or 1. You should pick

the interpretation that allows for the most simplification.

x y z f(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 X

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 X

1 1 1 1

89

 Y

 1 0 0 1

 1 1 x 0

0 x 1 1
X

W
1 0 0 x

 Z

Practice K-map

 Find a MSP for

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z)
= m(7,10,13)

This notation means that input combinations wxyz = 0111, 1010 and 1101

(corresponding to minterms m7, m10 and m13) are unused.

90

Solutions for Practice K-map
 Find a MSP for:

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) = m(7,10,13)

Y

1 1

1 1 x

x 1 1
X

W
1 x

Z

f(w,x,y,z)= x‟z‟ + w‟xy‟ + wxy

91

K-map Summary

 K-maps are an alternative to algebra for simplifying
expressions

◦ The result is a MSP/MPS, which leads to a minimal two-level
circuit

◦ It‟s easy to handle don‟t-care conditions
◦ K-maps are really only good for manual simplification of

small expressions...

 Things to keep in mind:

◦ Remember the correct order of minterms/maxterms on the
K-map

◦ When grouping, you can wrap around all sides of the K-
map, and your groups can overlap

◦ Make as few rectangles as possible, but make each of them
as large as possible. This leads to fewer, but simpler,
product terms

◦ There may be more than one valid solution

 Consider Support Set of f: S={x1, x2, …,
xn}

 xi
ci denotes:

xi if ci = ‘1’
xi if ci = ‘0’
1 if ci = ‘-’

 If NO ci = -, then we have a minterm

◦ Can be Represented by Decimal Equivalent of ci

EXAMPLE (S={x1, x2, x3, x4})

x1
1x

0
2x

0
3x

1
4 = m9, a minterm  c1 c2 c3 c4 = 1001 =

9
x0

1x
-
2x

-
3x

0
4 = a 4-cube  0--0

Tabular method notation

 Basic Operation in Tabulation Method

 2 Cubes that Differ in a SINGLE ci can be
Merged into a Single Cube
EXAMPLE

 = 1-01
 = 0-01

Merge  and  into 

 = --01

Merging is also called

star operator and is a

special case of

Cube merging

Tabulation Method
Input: f on as a set of minterms

Output: f on as a set of

1. All Essential Prime Implicants

2. As Few Prime Implicants as Possible

Finding as few Prime Implicants as Possible is
an NP-Hard Problem!!!!!

 Reduces to the “Set Covering” Problem for Unate Functions

Unate function – a constant or is represented by a SOP using
either uncomplemented or complemented literals for each variable

 Reduces to the “Minimum Cost Assignment” Problem for Binate
Functions (ex. EXOR)

This is 2-Level (SOP) Optimization (Minimization)

Tabulation Method
 STEP 1:

◦ Convert Minterm List (specifying f on) to Prime Implicant
List

 STEP 2:

◦ Choose All Essential Prime Implicants

◦ If all minterms are covered
HALT

Else
GO To STEP 3

 STEP 3:

◦ Formulate the Reduced Cover Table Omitting the rows/cols
of EPI

◦ If Cover Table can be Reduced using Dominance Properties,
Go To Step 2

◦ Else Must Solve the “Cyclic Cover”
Problem

1) Use Exact Method
(exponentially complex)

2) Use Heuristic Method (possibly
non-optimal result)

NOTE: “Quine-McCluskey” Refers to Using a
“Branch and Bound” Heuristic

NOTE: “Petrick‟s Method” is Exact
Technique – Generates all Solutions
Allowing the Best to be Used

1. Partition Prime Implicants (or minterms)
According to Number of 1‟s

2. Check Adjacent Classes for Cube Merging
Building a New List

3. If Entry in New List Covers Entry in Current List
– Disregard Current List Entry

4. If Current List = New List
HALT

Else
Current List  New List
New List  NULL
Go To Step 1

Tabular method –step 1

STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11,
m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11,
13, 15)

Minterm Cube

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

8 1 0 0 0

3 0 0 1 1

5 0 1 0 1

10 1 0 1 0

11 1 0 1 1

13 1 1 0 1

15 1 1 1 1

STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11,
m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11,
13, 15)

Minterm Cube

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

8 1 0 0 0 

3 0 0 1 1 

5 0 1 0 1 

10 1 0 1 0 

11 1 0 1 1 

13 1 1 0 1 

15 1 1 1 1 

Minterm Cube

0,1 0 0 0 -

0,2 0 0 - 0

0,8 - 0 0 0

1,3 0 0 - 1

1,5 0 - 0 1

2,3 0 0 1 -

2,10 - 0 1 0

8,10 1 0 - 0

3,11 - 0 1 1

5,13 - 1 0 1

10,11 1 0 1 -

11,15 1 - 1 1

13,15 1 1 - 1

STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10,
m11, m13, m15} =  (0, 1, 2, 3, 5, 8,
10, 11, 13, 15)

Minterm Cube

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

8 1 0 0 0 

3 0 0 1 1 

5 0 1 0 1 

10 1 0 1 0 

11 1 0 1 1 

13 1 1 0 1 

15 1 1 1 1 

Minterm Cube

0,1 0 0 0 - 

0,2 0 0 - 0 

0,8 - 0 0 0 

1,3 0 0 - 1 

1,5 0 - 0 1

2,3 0 0 1 - 

2,10 - 0 1 0 

8,10 1 0 - 0 

3,11 - 0 1 1 

5,13 - 1 0 1

10,11 1 0 1 - 

11,15 1 - 1 1

13,15 1 1 - 1

Minterm Cube

0,1,2,3 0 0 - -

0,8,2,10 - 0 - 0

2,3,10,11 - 0 1 -

STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11, m13, m15} =
 (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)

Minterm Cube

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

8 1 0 0 0 

3 0 0 1 1 

5 0 1 0 1 

10 1 0 1 0 

11 1 0 1 1 

13 1 1 0 1 

15 1 1 1 1 

Minterm Cube

0,1 0 0 0 - 
0,2 0 0 - 0 
0,8 - 0 0 0 

1,3 0 0 - 1 
1,5 0 - 0 1 PI=D

2,3 0 0 1 - 
2,10 - 0 1 0 
8,10 1 0 - 0 

3,11 - 0 1 1 
5,13 - 1 0 1 PI=E

10,11 1 0 1 - 

11,15 1 - 1 1 PI=F

13,15 1 1 - 1 PI=G

Minterm Cube

0,1,2,3 0 0 - - PI=A

0,8,2,10 - 0 - 0 PI=C

2,3,10,11 - 0 1 - PI=B

f on = {A,B,C,D,E,F,G} = {00--, -01-, -0-0, 0-01, -101, 1-11, 11-

1}

STEP 2 – Construct Cover Table

 PIs Along Vertical Axis (in order of # of literals)

 Minterms Along Horizontal Axis

 0 1 2 3 5 8 10 11 13 15

A x x x x

B x x x x

C x x x x

D x x

E x x

F x x

G x x

STEP 2 – Finding the Minimum
Cover
 Extract All Essential Prime Implicants, EPI

 EPIs are the PI for which a Single x Appears in a Column

 0 1 2 3 5 8 10 11 13 15

A x x x x

B x x x x

C x x x x

D x x

E x x

F x x

G x x

• C is an EPI so: f on={C, ...}

• Row C and Columns 0, 2, 8, and 10 can be Eliminated Giving
Reduced Cover Table

• Examine Reduced Table for New EPIs

STEP 2 – Reduced Table

 0 1 2 3 5 8 10 11 13 15

A x x x x

B x x x x

C x x x x

D x x

E x x

F x x

G x x

 1 3 5 11 13 15

A x x

B x x

D x x

E x x

F x x

G x x

Essential row

Distinguished Column

•The Row of an EPI is an Essential row

•The Column of the Single x in the

Essential Row is a Distinguished Column

Row and Column Dominance
 If Row P has x‟s Everywhere Row Q Does

Then Q Dominates P if P has fewer x‟s

 If Column i has x‟s Everywhere j Does

Then j Dominates i if i has fewer x‟s

 If Row P is equal to Row Q and Row Q does not cost more

than Row P, eliminate Row P, or if Row P is dominated by

Row Q and Row Q Does not cost more than Row P, eliminate

Row P

 If Column i is equal to Column j, eliminate Column i or if

Column i dominates Column j, eliminate Column i

STEP 3 – The Reduced Cover Table
 Initially, Columns 0, 2, 8 and 10 Removed

 1 3 5 11 13 15

A x x

B x x

D x x

E x x

F x x

G x x

• No EPIs are Present

• No Row Dominance Exists

• No Column Dominance Exists

• This is Cyclic Cover Table

• Must Solve Exactly OR Use a Heuristic

Combinational Logic

 Logic circuits for digital systems may be
combinational or sequential.

 A combinational circuit consists of input
variables, logic gates, and output variables.

107

Analysis procedure

 To obtain the output Boolean functions
from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input
variables with arbitrary symbols. Determine the
Boolean functions for each gate output.

2. Label the gates that are a function of input
variables and previously labeled gates with other
arbitrary symbols. Find the Boolean functions for
these gates.

108

Analysis procedure…

3. Repeat the process outlined in step 2 until the
outputs of the circuit are obtained.

4. By repeated substitution of previously defined
functions, obtain the output Boolean functions in
terms of input variables.

109

Example

F2 = AB + AC + BC; T1 = A + B + C; T2 = ABC; T3 =
F2’T1;

F1 = T3 + T2

F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC

110

Derive truth table from logic
diagram

 We can derive the truth table in below Table
by using the circuit of above Fig.

111

Design procedure

1. Table4-2 is a Code-Conversion example,
first, we can list the relation of the BCD and
Excess-3 codes in the truth table.

112

Karnaugh map

2. For each symbol of the Excess-3 code, we use
1’s to draw the map for simplifying Boolean
function.

113

Circuit implementation

z = D’; y = CD + C’D’ = CD + (C + D)’

x = B’C + B’D + BC’D’ = B’(C + D) + B(C + D)’

w = A + BC + BD = A + B(C + D)

114

Binary Adder-Subtractor
 A combinational circuit that performs the addition of

two bits is called a half adder.

 The truth table for the half adder is listed below:

S = x’y + xy’

C = xy

115

S: Sum
C: Carry

Implementation of Half-Adder

116

Full-Adder
 One that performs the addition of three bits(two

significant bits and a previous carry) is a full
adder.

117

Simplified Expressions

S = x’y’z + x’yz’ + xy’z’ + xyz

C = xy + xz + yz

118

C

Full adder implemented in SOP

119

Another implementation

 Full-adder can also implemented with two
half adders and one OR gate (Carry Look-
Ahead adder).

S = z ⊕ (x ⊕ y)
= z’(xy’ + x’y) + z(xy’ + x’y)’
= xy’z’ + x’yz’ + xyz + x’y’z

C = z(xy’ + x’y) + xy = xy’z + x’yz + xy

120

Binary adder

 This is also called
Ripple Carry
Adder ,because of
the construction
with full adders
are connected in
cascade.

121

Carry Propagation

 Fig.4-9 causes a unstable factor on carry bit, and

produces a longest propagation delay.

 The signal from Ci to the output carry Ci+1,

propagates through an AND and OR gates, so, for an

n-bit RCA, there are 2n gate levels for the carry to

propagate from input to output.

122

Carry Propagation

 Because the propagation delay will affect the output

signals on different time, so the signals are given enough

time to get the precise and stable outputs.

 The most widely used technique employs the principle of

carry look-ahead to improve the speed of the algorithm.

123

Boolean functions

Pi = Ai ⊕ Bi steady state value

Gi = AiBi steady state value

Output sum and carry

Si = Pi ⊕ Ci

Ci+1 = Gi + PiCi

Gi : carry generate Pi : carry propagate

C0 = input carry

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

 C3 does not have to wait for C2 and C1 to
propagate.

124

Logic diagram of carry look-ahead
generator

 C3 is propagated at the same time as C2 and C1.

125

4-bit adder with carry lookahead

 Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

126

Binary subtractor
M = 1subtractor ; M = 0adder

127

Overflow

 It is worth noting in above figure that binary

numbers in the signed-complement system are

added and subtracted by the same basic addition

and subtraction rules as unsigned numbers.

 Overflow is a problem in digital computers

because the number of bits that hold the number

is finite and a result that contains n+1 bits cannot

be accommodated.

128

Overflow on signed and unsigned
 When two unsigned numbers are added, an

overflow is detected from the end carry out of the

MSB position.

 When two signed numbers are added, the sign bit

is treated as part of the number and the end

carry does not indicate an overflow.

 An overflow can't occur after an addition if one

number is positive and the other is negative.

 An overflow may occur if the two numbers added

are both positive or both negative.

129

4-5 Decimal adder
BCD adder can’t exceed 9 on each input digit. K is the carry.

130

Rules of BCD adder

 When the binary sum is greater than 1001, we

obtain a non-valid BCD representation.

 The addition of binary 6(0110) to the binary sum

converts it to the correct BCD representation and

also produces an output carry as required.

 To distinguish them from binary 1000 and 1001,

which also have a 1 in position Z8, we specify further

that either Z4 or Z2 must have a 1.

C = K + Z8Z4 + Z8Z2

131

Implementation of BCD adder

 A decimal parallel

adder that adds n

decimal digits

needs n BCD

adder stages.

 The output carry

from one stage

must be

connected to the

input carry of the

next higher-order

stage.
132

If =1

0110

4-6. Binary multiplier
 Usually there are more bits in the partial products and it is necessary to

use full adders to produce the sum of the partial products.

133

4-bit by 3-bit binary multiplier
 For J multiplier bits

and K multiplicand

bits we need (J X K)

AND gates and (J − 1)

K-bit adders to

produce a product of

J+K bits.

 K=4 and J=3, we

need 12 AND gates

and two 4-bit adders.

134

7. Magnitude comparator

 The equality relation of
each pair of bits can be
expressed logically with an
exclusive-NOR function as:

A = A3A2A1A0 ; B =
B3B2B1B0

xi=AiBi+Ai‟Bi‟ for i =
0, 1, 2, 3

(A = B) = x3x2x1x0

135

Magnitude comparator

 We inspect the relative

magnitudes of pairs of MSB. If

equal, we compare the next

lower significant pair of digits

until a pair of unequal digits is

reached.

 If the corresponding digit of A

is 1 and that of B is 0, we

conclude that A>B.

(A>B)=

A3B’3+x3A2B’2+x3x2A1B’1+x3x2x1

A0B’0
(A<B)=

A’3B3+x3A’2B2+x3x2A’1B1+x3x2x1

A’0B0

136

Decoders

 The decoder is called n-to-m-line decoder,
where m≤2n .

 the decoder is also used in conjunction
with other code converters such as a
BCD-to-seven segment decoder.

 3-to-8 line decoder: For each possible
input combination, there are seven
outputs that are equal to 0 and only one
that is equal to 1.

137

Implementation and truth table

138

Decoder with enable input
 Some decoders are constructed with NAND gates, it

becomes more economical to generate the decoder
minterms in their complemented form.

 As indicated by the truth table , only one output can be
equal to 0 at any given time, all other outputs are
equal to 1.

139

Demultiplexer

 A decoder with an enable input is referred to
as a decoder/demultiplexer.

 The truth table of demultiplexer is the same
with decoder.

140

Demultiplexer

D0

D1

D2

D3

E

A B

3-to-8 decoder with enable
implement the 4-to-16 decoder

141

Implementation of a Full Adder
with a Decoder

 From table 4-4, we obtain the functions for the combinational
circuit in sum of minterms:

S(x, y, z) = ∑(1, 2, 4, 7)

C(x, y, z) = ∑(3, 5, 6, 7)

142

Encoders
 An encoder is the inverse operation of a decoder.

 We can derive the Boolean functions by table 4-7
z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7

143

Priority encoder

 If two inputs are active simultaneously, the output
produces an undefined combination. We can establish
an input priority to ensure that only one input is
encoded.

 Another ambiguity in the octal-to-binary encoder is
that an output with all 0’s is generated when all the

inputs are 0; the output is the same as when D0 is
equal to 1.

 The discrepancy tables on Table 4-7 and Table 4-8
can resolve aforesaid condition by providing one more
output to indicate that at least one input is equal to 1.

144

Priority encoder

V=0no valid inputs

V=1valid inputs

X’s in output columns

represent

don’t-care conditions

X’s in the input columns are

useful for representing a
truth

table in condensed form.

Instead of listing all 16

minterms of four variables.

145

4-input priority encoder

 Implementation
of table 4-8

x = D2 + D3

y = D3 + D1D’2
V = D0 + D1 + D2 + D3

146

Multiplexers
S = 0, Y = I0 Truth Table S Y Y = S’I0 + SI1

S = 1, Y = I1 0 I0

1 I1

147

4-to-1 Line Multiplexer

148

Quadruple 2-to-1 Line Multiplexer

 Multiplexer circuits can be combined with common selection inputs
to provide multiple-bit selection logic. Compare with Fig4-24.

149

I0

I1

Y

Boolean function implementation
 A more efficient method for implementing a Boolean

function of n variables with a multiplexer that has n-
1 selection inputs.

F(x, y, z) = (1,2,6,7)

150

4-input function with a multiplexer

F(A, B, C, D) = (1, 3, 4, 11, 12, 13, 14, 15)

151

Combinational Logic Design

 A process with 5 steps

◦ Specification

◦ Formulation

◦ Optimization

◦ Technology mapping

◦ Verification

 1st three steps and last best illustrated by
example

Functional Blocks

• Fundamental circuits that are the base
building blocks of most larger digital
circuits

• They are reusable and are common to
many systems.

• Examples of functional logic circuits

–Decoders

–Encoders

–Code converters

–Multiplexers

Where they are used

• Multiplexers
–Selectors for routing data to the processor,
memory, I/O

–Multiplexers route the data to the correct bus
or port.

• Decoders
–are used for selecting things like a bank of
memory and then the address within the bank.
This is also the function needed to „decode‟ the
instruction to determine the operation to
perform.

• Encoders
–are used in various components such as
keyboards.

BCD-to-Excess-3 Code converter

 BCD is a code for the decimal digits 0-9

 Excess-3 is also a code for the decimal
digits

Specification of BCD-to-Excess3

 Inputs: a BCD input, A,B,C,D with A as
the most significant bit and D as the least
significant bit.

 Outputs: an Excess-3 output W,X,Y,Z that
corresponds to the BCD input.

 Internal operation – circuit to do the
conversion in combinational logic.

Formulation of BCD-to-Excess-3

 Excess-3 code is easily formed by adding
a binary 3 to the binary or BCD for the
digit.

 There are 16 possible inputs for both BCD
and Excess-3.

 It can be assumed that only valid BCD
inputs will appear so the six combinations
not used can be treated as don‟t cares.

Optimization – BCD-to-Excess-3

 Lay out K-maps for each output, W X Y Z

 A step in the digital circuit design process.

Placing 1 on K-maps

 Where are the Minterms located on a K-
Map?

Expressions for W X Y Z

 W(A,B,C,D) = Σm(5,6,7,8,9)
+d(10,11,12,13,14,15)

 X(A,B,C,D) = Σm(1,2,3,4,9)
+d(10,11,12,13,14,15)

 Y(A,B,C,D) = Σm(0,3,4,7,8)
+d(10,11,12,13,14,15)

 Z(A,B,C,D) = Σm(0,2,4,6,8)
+d(10,11,12,13,14,15)

Minimize K-Maps

 W minimization

 Find W = A + BC + BD

Minimize K-Maps

 X minimization

 Find X = BC‟D‟+B‟C+B‟D

Minimize K-Maps

 Y minimization

 Find Y = CD + C‟D‟

Minimize K-Maps

 Z minimization

 Find Z = D‟

BCD-to-Seven-Segment Decoder

 Specification
◦ Digital readouts on many digital products often
use LED seven-segment displays.

◦ Each digit is created by lighting the appropriate
segments. The segments are labeled
a,b,c,d,e,f,g

◦ The decoder takes a BCD input and outputs the
correct code for the seven-segment display.

Specification

 Input: A 4-bit binary value that is a BCD
coded input.

 Outputs: 7 bits, a through g for each of
the segments of the display.

 Operation: Decode the input to activate
the correct segments.

Formulation

 Construct a truth table

Optimization

 Create a K-map for each output and get
◦ A = A‟C+A‟BD+B‟C‟D‟+AB‟C‟

◦ B = A‟B‟+A‟C‟D‟+A‟CD+AB‟C‟

◦ C = A‟B+A‟D+B‟C‟D‟+AB‟C‟

◦ D = A‟CD‟+A‟B‟C+B‟C‟D‟+AB‟C‟+A‟BC‟D

◦ E = A‟CD‟+B‟C‟D‟

◦ F = A‟BC‟+A‟C‟D‟+A‟BD‟+AB‟C‟

◦ G = A‟CD‟+A‟B‟C+A‟BC‟+AB‟C‟

Three-State Gates
 A multiplexer can be constructed with three-state gates.

169

Three state gates
Gates statement: gate name(output, input, control)

>> bufif1(OUT, A, control);

A = OUT when control = 1, OUT = z when control = 0;

>> notif0(Y, B, enable);

Y = B’ when enable = 0, Y = z when enable = 1;

170

Timing Hazards

Timing Hazards

 In a real logic circuit there is a delay in an input
change to the corresponding output change.

 Because of circuit delays, the transient behavior
of a logic circuit may differ from what is
predicted by a steady-state analysis.

 In particular, a circuit‟s output may produce a
short pulse, often called a glitch.

 A hazard is said to exist when a circuit has the
possibility of producing such a glitch.

Timing Hazards

 Whether or not the glitch actually occurs
depends on the exact delays and other
electrical characteristics of the circuit.

 Since such parameters are difficult to
control in production circuits, a logic
designer must be prepared to eliminate
hazards.

 Two kinds of hazards:

◦ Static, and

◦ Dynamic

Static -1 Hazard

 A static -1 hazard is the possibility of a
circuit‟s output producing a 0 glitch when
we would expect the output to remain at
a nice steady 1 based on a static analysis.

 A static -1 hazard is a pair of input
combinations that:
a) differ in only one input variable and
b) both give a 1 output;
such that it is possible for a momentary 0
output to occur during a transition in the
differing input variable.

A static -1 Hazard

Static -0 Hazard

 A static -0 hazard is the possibility of a
circuit‟s output producing a 1 glitch when
we would expect the output to remain at
a nice steady 0 based on a static analysis.

 A static -0 hazard is a pair of input
combinations that:
a) differ in only one input variable and
b) both give a 0 output;
such that it is possible for a momentary 1
output to occur during a transition in the
differing input variable.

A static - 0 hazard

A static - 1 hazard elimination

A static - 1 hazard elimination
using Karnaugh map

Elimination of Static Hazards

 The extra product term is the
consensus of the two original terms.

 In general, we must add consensus
terms to eliminate hazards.

A static - 1 hazard elimination using
Karnaugh map

A Dynamic hazard

 A dynamic hazard is the possibility of an
output changing more than once as the
result of a single input transition.

 Multiple output transitions can occur if
there are multiple paths with different
delays from the changing input to the
changing output.

Designing hazard-free circuits

 Only a few situations, such as the design of
feedback sequential circuits, require hazard-free
combinational circuits.

 If cost is not a problem, then a to obtain a
hazard-free realization is to use the complete
sum - the sum of all prime implicants.

 In a synchronous system, all of the inputs to a
combinational circuit are changed at a particular
time, and the outputs are not “looked at” until
they have had time to settle to a steady-state
value.

UNIT 3
Sequential machines

fundamentals

Objectives

 In this chapter you will learn about:
◦ Logic circuits that can store information

◦ Flip-flops, which store a single bit

◦ Registers, which store multiple bits

◦ Shift registers, which shift the contents of a
register

◦ Counters of various types

Memory

element
Alarm

Sensor

Reset

Set

On Off 

Motivation: Control of an Alarm
System

 Alarm turned on when On/Off = 1

 Alarm turned off when On/Off = 0

 Once triggered, alarm stays on until manually reset

 The circuit requires a memory element

The Basic Latch

 Basic latch is a feedback connection of
two NOR gates or two NAND gates

 It can store one bit of information

 It can be set to 1 using the S input and
reset to 0 using the R input.

A B

A Simple Memory Element

 A feedback loop with even number of
inverters

 If A = 0, B = 1 or when A = 1, B = 0

 This circuit is not useful due to the lack of
a mechanism for changing its state

Reset

Set Q

A Memory Element with NOR
Gates

The Gated Latch

 Gated latch is a basic latch that includes input
gating and a control signal

 The latch retains its existing state when the
control input is equal to 0

 Its state may be changed when the control signal
is equal to 1. In our discussion we referred to
the control input as the clock

 We consider two types of gated latches:
◦ Gated SR latch uses the S and R inputs to set the latch

to 1 or reset it to 0, respectively.

◦ Gated D latch uses the D input to force the latch into a
state that has the same logic value as the D input.

Gated S/R Latch

Gated D Latch

t su

t h

Clk

D

Q

Setup and Hold Times

 Setup Time tsu

◦ The minimum time that the input signal must be stable
prior to the edge of the clock signal.

 Hold Time th

◦ The minimum time that the input signal must be stable
after the edge of the clock signal.

Flip-Flops

 A flip-flop is a storage element based on
the gated latch principle

 It can have its output state changed only
on the edge of the controlling clock signal

Flip-Flops

 We consider two types:
◦ Edge-triggered flip-flop is affected only by
the input values present when the active edge
of the clock occurs

◦ Master-slave flip-flop is built with two gated
latches

 The master stage is active during half of the clock
cycle, and the slave stage is active during the
other half.

 The output value of the flip-flop changes on the
edge of the clock that activates the transfer into
the slave stage.

D Q

Q

Master Slave

D

Clock

Q

Q

D Q

Q

Q m Q s

D

Clock

Q m

Q Q s =

D Q

Q

(a) Circuit

(b) Timing diagram

(c) Graphical symbol

Clk Clk

Master-Slave D Flip-Flop

D Q

Q

Graphical symbol

Clock

A Positive-Edge-Triggered D Flip-
Flop

Comparison of Level-Sensitive and
Edge-Triggered D Storage

Elements

Comparison of Level-Sensitive and
Edge-Triggered D Storage Elements

Master-Slave D Flip-Flop with
Clear and Preset

T Flip-Flop

JK Flip-Flop

Flip-flop excitation
tables

Types of Flip-flops

 SR flip-flop (Set,
Reset)

 T flip-flop (Toggle)

 D flip-flop (Delay)

 JK flip-flop

Excitation Tables
Previous State -> Present

State
S R

0 -> 0 0 X

0 -> 1 1 0

1 -> 0 0 1

1 -> 1 X 0

Previous State -> Present State T

0 -> 0 0

0 -> 1 1

1 -> 0 1

1 -> 1 0

Excitation Tables

Previous State -> Present
State

J K

0 -> 0 0 X

0 -> 1 1 X

1 -> 0 X 1

1 -> 1 X 0

Previous State -> Present State D

0 -> 0 0

0 -> 1 1

1 -> 0 0

1 -> 1 1

Timing Diagrams

CLK

T

Q

CLK

S

R

Q

S R

0->0 0 X

0->1 1 0

1->0 0 1

1->1 X 0

T

0->0 0

0->1 1

1->0 1

1->1 0

Timing Diagrams

J K

0->0 0 X

0->1 1 X

1->0 X 1

1->1 X 0

D

0->0 0

0->1 1

1->0 0

1->1 1

CLK

J

K

Q

CLK

D

Q

Conversions of flipflops
Procedure uses excitation tables

Method: to realize a type A flipflop using a type B flipflop:

1. Start with the K-map or state-table for the A-flipflop.
2. Express B-flipflop inputs as a function of the inputs and present state of

A-flipflop such that the required state transitions of A-flipflop are reallized.

x

y

Q

Type B

x

y

Q
g

h

CL

CL

Type A

1. Find Q+ = f(g,h,Q) for type A (using type A state-table)

2. Compute x = f1(g,h,Q) and y=f2(g,h,Q) to realize Q+.

Example: Use JK-FF to realize D-FF

1) Start transition table for D-FF

2) Create K-maps to express J and K as functions of inputs (D, Q)

3) Fill in K-maps with appropriate values for J and K

to cause the same state transition as in the D-FF transition table

D
0
1
0
1

T
0
1
1
0

Q +
0
1
0
1

Q
0
0
1
1

S
0
1
0
X

R
X
0
1
0

K
X
X
1
0

J
0
1
X
X

D

X X

1 0

K = D

0 1

0

1

Q
D

0 1

X X

J = D

0 1

0

1

Q State-Table

D Q Q+ J K

0 0 0 0 X

0 1 0 X 1
1 0 1 1 X
1 1 1 X 0

e.g.
when D=Q=0, then Q+= 0
the same transition Q-->Q+

is realize with J=0, K=X

Example: Implement JK-FF using a D-FF

J K Q Q+ D T

0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 1

0 0 1 1

0 1 1 0

00 01 11 10

J

K

JK
Q

0

1

t= jQ + kq

0 0 1 1

1 0 0 1

00 01 11 10

J

K

JK
Q

0

1

d= jQ + Kq

J

K

D

C

Q

Clk

DFF

J

K

T

C

Q

Clk

T-FF

Asynchronous inputs
PRESET and CLEAR:
asynchronous, level-sensitive inputs
used to initialize a flipflop.

D

C

S

R

Q

Q

0
1

0
1

0
1 Q

Clk

SET

CLR

T

Q

T

SET

CLR

Clk

200 400

Clk

T Q

CLEAR

PRESET

PRESET, CLEAR: active low inputs

PRESET = 0 --> Q = 1
CLEAR = 0 --> Q = 0

LogicWorks Simulation

Counters
 Counters are a specific type of

sequential circuit.

 Like registers, the state, or the
flip-flop values themselves,
serves as the “output.”

 The output value increases by
one on each clock cycle.

 After the largest value, the output
“wraps around” back to 0.

 Using two bits, we‟d get
something like this:

Present State Next State

A B A B

0 0 0 1

0 1 1 0

1 0 1 1

1 1 0 0

00 01

1011

1

11

1

Benefits of counters

 Counters can act as simple clocks to keep track of “time.”
 You may need to record how many times something has

happened.
◦ How many bits have been sent or received?
◦ How many steps have been performed in some computation?

 All processors contain a program counter, or PC.
◦ Programs consist of a list of instructions that are to be executed

one after another (for the most part).
◦ The PC keeps track of the instruction currently being executed.
◦ The PC increments once on each clock cycle, and the next

program instruction is then executed.

A slightly fancier counter

 Let‟s try to design a slightly different two-bit counter:

◦ Again, the counter outputs will be 00, 01, 10 and 11.

◦ Now, there is a single input, X. When X=0, the counter value should
increment on each clock cycle. But when X=1, the value should
decrement on successive cycles.

 We‟ll need two flip-flops again. Here are the four possible states:

00 01

1011

The complete state diagram and
table

00 01

1011

0

0

0

10 1

1

1

Present State Inputs Next State

Q1 Q0 X Q1 Q0

0 0 0 0 1

0 0 1 1 1

0 1 0 1 0

0 1 1 0 0

1 0 0 1 1

1 0 1 0 1

1 1 0 0 0

1 1 1 1 0

• Here‟s the complete state diagram and state table for this circuit.

D flip-flop inputs

 If we use D flip-flops, then the D inputs will just be the same as the
desired next states.

 Equations for the D flip-flop inputs are shown at the right.

 Why does D0 = Q0‟ make sense?

Present State Inputs Next State

Q1 Q0 X Q1 Q0

0 0 0 0 1

0 0 1 1 1

0 1 0 1 0

0 1 1 0 0

1 0 0 1 1

1 0 1 0 1

1 1 0 0 0

1 1 1 1 0

Q0

0 1 0 1

Q1 1 0 1 0

X

Q0

1 1 0 0

Q1 1 1 0 0

X

D1 = Q1  Q0  X

D0 = Q0‟

The counter in Logic Works

 Here are some D Flip Flop
devices from LogicWorks.

 They have both normal and
complemented outputs, so we
can access Q0‟ directly without
using an inverter. (Q1‟ is not
needed in this example.)

 This circuit counts normally
when Reset = 1. But when
Reset is 0, the flip-flop outputs
are cleared to 00 immediately.

 There is no three-input XOR
gate in LogicWorks so we‟ve
used a four-input version
instead, with one of the inputs
connected to 0.

JK flip-flop inputs

 If we use JK flip-flops instead, then we have to
compute the JK inputs for each flip-flop.

 Look at the present and desired next state, and
use the excitation table on the right.

Present State Inputs Next State Flip flop inputs

Q1 Q0 X Q1 Q0 J1 K1 J0 K0

0 0 0 0 1 0 x 1 x

0 0 1 1 1 1 x 1 x

0 1 0 1 0 1 x x 1

0 1 1 0 0 0 x x 1

1 0 0 1 1 x 0 1 x

1 0 1 0 1 x 1 1 x

1 1 0 0 0 x 1 x 1

1 1 1 1 0 x 0 x 1

Q(t) Q(t+1) J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

JK flip-flop input equations

 We can then find equations for all four flip-flop inputs, in terms of the present state
and inputs. Here, it turns out J1 = K1 and J0 = K0.

J1 = K1 = Q0‟ X + Q0 X‟
J0 = K0 = 1

Present State Inputs Next State Flip flop inputs

Q1 Q0 X Q1 Q0 J1 K1 J0 K0

0 0 0 0 1 0 x 1 x

0 0 1 1 1 1 x 1 x

0 1 0 1 0 1 x x 1

0 1 1 0 0 0 x x 1

1 0 0 1 1 x 0 1 x

1 0 1 0 1 x 1 1 x

1 1 0 0 0 x 1 x 1

1 1 1 1 0 x 0 x 1

The counter in Logic Works again

 Here is the counter again, but
using JK Flip Flop n.i. RS devices
instead.

 The direct inputs R and S are
non-inverted, or active-high.

 So this version of the circuit
counts normally when Reset = 0,
but initializes to 00 when Reset is
1.

Asynchronous Counters

• This counter is called

asynchronous because not
all flip flops are hooked to
the same clock.
• Look at the waveform of
the output, Q, in the timing
diagram. It resembles a
clock as well. If the period of
the clock is T, then what is
the period of Q, the output
of the flip flop? It's 2T!
• We have a way to create a
clock that runs twice as slow.
We feed the clock into a T
flip flop, where T is
hardwired to 1. The output
will be a clock who's period
is twice as long.

Asynchronous counters

If the clock has period T. Q0 has
period 2T. Q1 period is 4T
With n flip flops the period is 2n.

Registers,Counters,State Reduction

UNIT 4

3 bit asynchronous “ripple”
counter using T flip flops

• This is called as a ripple

counter due to the way the FFs
respond one after another in a

kind of rippling effect.

Synchronous Counters
 To eliminate the "ripple" effects, use a common clock for

each flip-flop and a combinational circuit to generate
the next state.

 For an up-counter,
use an incrementer =>

D3 Q3

D2 Q2

D1 Q1

D0 Q0

Clock

Incre-

menter
A3

A2

A1

A0

S3

S2

S1

S0

 Internal details =>

 Internal Logic

◦ XOR complements each bit

◦ AND chain causes complement
of a bit if all bits toward LSB
from it equal 1

 Count Enable

◦ Forces all outputs of AND
chain to 0 to “hold” the state

 Carry Out

◦ Added as part of incrementer

◦ Connect to Count Enable of
additional 4-bit counters to
form larger counters

Synchronous Counters (continued)

Incrementer

Design Example: Synchronous
BCD

 Use the sequential logic model to design a synchronous
BCD counter with D flip-flops

 State Table =>
 Input combinations

1010 through 1111
are don‟t cares

Current State
Q8 Q4 Q2 Q1

Next State
Q8 Q4 Q2 Q1

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0

Synchronous BCD (continued)

 Use K-Maps to two-level optimize the next state equations and manipulate
into forms containing XOR gates:

D1 = Q1‟

 D2 = Q2 + Q1Q8‟
D4 = Q4 + Q1Q2
D8 = Q8 + (Q1Q8 + Q1Q2Q4)

 Y = Q1Q8

 The logic diagram can be drawn from these equations

◦ An asynchronous or synchronous reset should be added

 What happens if the counter is perturbed by a power disturbance or other
interference and it enters a state other than 0000 through 1001?

 Find the actual values of the six next states for the don‟t care combinations
from the equations

 Find the overall state diagram to assess behavior for the don‟t care states
(states in decimal)

Synchronous BCD (continued)

Present State Next State

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1

1 0 1 0 1 0 1 1

1 0 1 1 0 1 1 0

1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 0

1 1 1 0 1 1 1 1

1 1 1 1 0 0 1 0

0
1

8

7

6
5

4

3

2

9

10

11

14

15 12
13

 For the BCD counter design, if an
invalid state is entered, return to a valid
state occurs within two clock cycles

 Is this adequate?!

Synchronous BCD (continued)

Counting an arbitrary sequence

Unused states

 The examples shown so far have all had 2
n

states, and used n flip-flops.
But sometimes you may have unused, leftover states.

 For example, here is a state table and diagram for a counter that
repeatedly counts from 0 (000) to 5 (101).

 What should we put in the table for the two unused states?

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 0 0 0

1 1 0 ? ? ?

1 1 1 ? ? ?

001

010

011

100

101

000

Unused states can be don’t cares…

 To get the simplest possible circuit, you can fill in don‟t cares for the next
states. This will also result in don‟t cares for the flip-flop inputs, which can
simplify the hardware.

 If the circuit somehow ends up in one of the unused states (110 or 111),
its behavior will depend on exactly what the don‟t cares were filled in
with.

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 0 0 0

1 1 0 x x x

1 1 1 x x x

001

010

011

100

101

000

…or maybe you do care

 To get the safest possible circuit, you can explicitly fill in next states for
the unused states 110 and 111.

 This guarantees that even if the circuit somehow enters an unused state,
it will eventually end up in a valid state.

 This is called a self-starting counter.

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

001

010

011

100

101

000

111110

Logic Works counters

 There are a couple of different counters
available in LogicWorks.

 The simplest one, the Counter-4 Min, just
increments once on each clock cycle.
◦ This is a four-bit counter, with values ranging
from 0000 to 1111.

◦ The only “input” is the clock signal.

More complex counters

 More complex counters are also possible. The full-featured LogicWorks
Counter-4 device below has several functions.

◦ It can increment or decrement, by setting the UP input to 1 or 0.

◦ You can immediately (asynchronously) clear the counter to 0000 by
setting CLR = 1.

◦ You can specify the counter‟s next output by setting D3-D0 to any four-
bit value and clearing LD.

◦ The active-low EN input enables or disables the counter.

 When the counter is disabled, it continues to output the same value
without incrementing, decrementing, loading, or clearing.

◦ The “counter out” CO is normally 1, but becomes 0

when the counter reaches its maximum value, 1111.

An 8-bit counter

 As you might expect by now, we
can use these general counters
to build other counters.

 Here is an 8-bit counter made
from two 4-bit counters.
◦ The bottom device represents the

least significant four bits, while the
top counter represents the most
significant four bits.

◦ When the bottom counter reaches
1111 (i.e., when CO = 0), it enables
the top counter for one cycle.

 Other implementation notes:
◦ The counters share clock and clear

signals.

A restricted 4-bit counter

 We can also make a counter that “starts” at some value besides 0000.

 In the diagram below, when CO=0 the LD signal forces the next state to
be loaded from D3-D0.

 The result is this counter wraps from 1111 to 0110 (instead of 0000).

Another restricted counter

 We can also make a circuit that counts up to only 1100, instead of 1111.

 Here, when the counter value reaches 1100, the NAND gate forces the
counter to load, so the next state becomes 0000.

Summary of Counters

 Counters serve many purposes in sequential
logic design.

 There are lots of variations on the basic
counter.
◦ Some can increment or decrement.
◦ An enable signal can be added.
◦ The counter‟s value may be explicitly set.

 There are also several ways to make
counters.
◦ You can follow the sequential design principles to

build counters from scratch.
◦ You could also modify or combine existing counter

devices.

Sequential Circuit
Design

Creating a sequential circuit to address a design need.

Sequential Circuit Design

 Steps in the design process for sequential
circuits

 State Diagrams and State Tables

 Examples

Sequential Circuit Design Process

 Steps in Design of a Sequential Circuit
◦ 1. Specification – A description of the sequential

circuit. Should include a detailing of the inputs, the
outputs, and the operation. Possibly assumes that
you have knowledge of digital system basics.

◦ 2. Formulation: Generate a state diagram and/or a
state table from the statement of the problem.

◦ 3. State Assignment: From a state table assign
binary codes to the states.

◦ 4. Flip-flop Input Equation Generation: Select the
type of flip-flop for the circuit and generate the
needed input for the required state transitions

Sequential Circuit Design Process
2

◦ 5. Output Equation Generation: Derive output
logic equations for generation of the output
from the inputs and current state.

◦ 6. Optimization: Optimize the input and output
equations. Today, CAD systems are typically
used for this in real systems.

◦ 7. Technology Mapping: Generate a logic
diagram of the circuit using ANDs, ORs,
Inverters, and F/Fs.

◦ 8. Verification: Use a HDL to verify the design.

Mealy and Moore

 Sequential machines are typically
classified as either a Mealy machine or a
Moore machine implementation.

 Moore machine: The outputs of the circuit
depend only upon the current state of the
circuit.

 Mealy machine: The outputs of the circuit
depend upon both the current state of the
circuit and the inputs.

An example to go through the
steps

 The specification: The circuit will have
one input, X, and one output, Z. The
output Z will be 0 except when the input
sequence 1101 are the last 4 inputs
received on X. In that case it will be a 1.

Generation of a state diagram

 Create states and meaning for them.
◦ State A – the last input was a 0 and previous
inputs unknown. Can also be the reset state.

◦ State B – the last input was a 1 and the
previous input was a 0. The start of a new
sequence possibly.

 Capture this in a state diagram



Notes on State diagrams

 Capture this in a state diagram
◦ Circles represent the states
◦ Lines and arcs represent the transition between

state.

◦ The notation Input/Output on the line or arc
specifies the input that causes this transition and
the output for this change of state.



Continue to build up the diagram

 Add a state C
◦ State C – Have detected the input sequence 11
which is the start of the sequence.

Continue…..

 Add a state D
◦ State D – have detected the 3rd input in the
start of a sequence, a 0, now having 110.
From State D, if the next input is a 1 the
sequence has been detected and a 1 is output.

Add remaining transitions

 The previous diagram was incomplete.

 In each state the next input could be a 0
or a 1. This must be included.

Now generate a state table

 The state table

 This can be done directly from the state
diagram.

• Now need to do a state assignment

Select a state assignment

 Will select a gray encoding

 For this state A will be encoded 00,
state B 01, state C 11 and state D 10

Flip-flop input equations

 Generate the equations for the flip-flop
inputs

 Generate the D0 equation

 Generate the D1 equation

The output equation

 The next step is to generate the equation
for the output Z and what is needed to
generate it.

 Create a K-map from the truth table.

Now map to a circuit

 The circuit has 2 D type F/Fs

State Minimization for
Completely Specified Machines and

Incomplete FSM

UNIT 5

258

STGs may contain redundant states, i.e. states
whose function can be accomplished by other
states.

State minimization is the transformation of a
given machine into an equivalent machine

with no redundant states.

259

State Minimization:
Completely Specified Machines

Two states, si and sj of machine M are
distinguishable if and only if there exists a finite
input sequence which when applied to M causes
different output sequences depending on whether
M started in si or sj.

Such a sequence is called a distinguishing sequence
for (si, sj).

If there exists a distinguishing sequence of length k
for (si, sj), they are said to be k-distinguishable.

260

PS NS, z
x=0 x=1

A E, 0 D, 1
B F, 0 D, 0
C E, 0 B, 1
D F, 0 B, 0
E C, 0 F, 1
F B, 0 C, 0

State Minimization:
Completely Specified Machines

Example:
 states A and B are 1-distinguishable, since a 1 input applied to A

yields an output 1, versus an output 0 from B.

• states A and E are 3-distinguishable, since input sequence 111 applied to A
yields output 100, versus an output 101 from E.

261

Completely Specified Machines

If si ~ sj and sj ~ sk, then si ~ sk. So state equivalence is an
equivalence relation (i.e. it is a reflexive, symmetric and transitive
relation).

An equivalence relation partitions the elements of a set into
equivalence classes.

Property: If si ~sj, their corresponding X-successors, for all inputs X,
are also equivalent.

Procedure: Group states of M so that two states are in the same

group iff they are equivalent (forms a partition of the states).

States si and sj (si ~ sj) are said to be
equivalent iff no distinguishing sequence
exists for (si, sj).

262

Completely Specified Machines

Pi : partition using distinguishing sequences of length i.

Partition: Distinguishing Sequence:
P0 = (A B C D E F)
P1 = (A C E)(B D F) x =1
P2 = (A C E)(B D)(F) x =1; x =1
P3 = (A C)(E)(B D)(F) x =1; x =1; x =1
P4 = (A C)(E)(B D)(F)

Algorithm terminates when Pk = PK+1

PS NS, z
x=0 x=1

A E, 0 D, 1
B F, 0 D, 0
C E, 0 B, 1
D F, 0 B, 0
E C, 0 F, 1
F B, 0 C, 0

263

Completely Specified Machines

Outline of state minimization procedure:
 All states equivalent to each other form an

equivalence class. These may be combined into
one state in the reduced (quotient) machine.

 Start an initial partition of a single block.
Iteratively refine this partition by separating the
1-distinguishable states, 2-distinguishable states
and so on.

 To obtain Pk+1, for each block Bi of Pk, create
one block of states that not 1-distinguishable
within Bi , and create different blocks states that
are 1-distinguishable within Bi .

264

Completely Specified Machines

Theorem: If two states, si and sj, of machine M
are distinguishable, then they are (n-1)-
distinguishable, where n is the number of
states in M.

Definition: Two machines, M1 and M2, are
equivalent (M1 ~ M2) iff, for every state in M1
there is a corresponding equivalent state in M2
and vice versa.

Theorem. For every machine M there is a
minimum machine Mred ~ M.
Mred is unique up to isomorphism.

Theorem: The equivalence partition is unique.

265

Completely Specified Machines

Reduced machine obtained from previous
example:

PS NS, z
x=0
x=1

 , 0 , 1
 , 0 , 1
 , 0 , 0
 , 0 ,

0

P4 = (A C)(E)(B
D)(F)

=    

PS NS, z
x=0
x=1

A E, 0 D,
1
B F, 0 D,
0
C E, 0 B,
1
D F, 0 B,
0
E C, 0 F, 1
F B, 0 C,
0

266

State Minimization of CSMs:
Complexity

Algorithm DFA ~ DFAmin

Input: A finite automaton M = (Q, , , q 0, F)
with no unreachable states.

Output: A minimum finite automaton M‟ = (Q’,
, ‟, q ‟0, F’).

Method:
1. t :=2; Q0:= { undefined }; Q1:=F; Q2:= Q\F.
2. while there is 0 < i  t, a   with (Qi,a) 

Qj, for all j  t
do (a) Choose such an i, a , and j  t with  (Qi,a)  Qj
 .
(b) Qt +1 := {q  Qi |  (q,a)  Qj };

Qi := Qi \ Qt +1;
t := t +1.

end.

267

State Minimization of CSMs:
Complexity

3. (* Denote
[q] the equivalence class of state q ,

and {Qi } the set of all
equivalence classes.

*)
Q’ := {Q1, Q2, ..., Qt }.
q ‟0 := [q0].
F’ := { [q]  Q’ | q  F }.
 ’ ([q], a) := [(q,a)] for all q  Q, a  .

268

State Minimization of CSMs:
Complexity

Modification of the body of the while loop:

1. Choose such an i, a  , and choose j1,j2  t with j1  j2, 
(Qi,a)  Qj1

 , and  (Qi,a)  Qj2
 .

2. If |{q  Qi | (q,a)  Qj1
}|  |{q  Qi | (q,a)  Qj2

}|

then Qt +1 := {q  Qi | (q,a)  Qj1
}

else Qt +1 := {q  Qi | (q,a)  Qj2
} fI;

Qi := Qi \ Qt+1;

t := t +1.

(i.e. put smallest set in t +1)

Standard implementation: O (kn 2), where n
=|Q| and k = ||

269

State Minimization of CSMs:
Complexity

Goal: Develop an implementation such
that all computations can be assigned
to transitions containing a state for
which the name of the corresponding
class is changed.

Note: |Qt +1|  1/2|Qi|. Therefore, for all q  Q,
the name of the class which contains a given
state q changes at most log(n) times.

270

State Minimization of CSMs:
BDD Implementation

X and Y are spaces of all states:
|S|

E0(x,y) =  (xi ~ yi) (initially all states are equivalent)
i=1

Ej +1(x,y) =
Ej (x,y)  i (o,z,w)

[T (x,i,z,o) T (y,i,w,o) Ej (z,w)]
(i.e. states x,y continue to be equivalent if they are

j - equivalent and for all inputs the next states are
j - equivalent)

271

State Minimization:
Incompletely Specified Machines

Statement of the problem: given an
incompletely specified machine M, find
a machine M’ such that:
◦ on any input sequence, M’ produces
the same outputs as M, whenever M is
specified.

◦ there does not exist a machine M’’
with fewer states than M’ which has
the same property.

272

Machine M:

State Minimization:
Incompletely Specified Machines

Attempt to reduce this case to usual state minimization of completely
specified machines.

• Brute Force Method: Force the don‟t cares to all their possible values
and choose the smallest of the completely specified machines so
obtained.

In this example, it means to state minimize two completely specified
machines obtained from M, by setting the don‟t care to either 0 and 1.

PS NS, z
x=0 x=1

s1 s3, 0 s2, 0
s2 s2, - s3, 0
s3 s3, 1 s2, 0

273

Suppose that the - is set to be a 0.
Machine M’:

State Minimization:
Incompletely Specified Machines

States s1 and s2 are equivalent if s3 and s2 are equivalent, but s3 and s2
assert different outputs under input 0, so s1 and s2 are not
equivalent.

States s1 and s3 are not equivalent either.

So this completely specified machine cannot be reduced further (3 states
is the minimum).

PS NS, z
x=0 x=1

s1 s3, 0 s2, 0
s2 s2, 0 s3, 0
s3 s3, 1 s2, 0

274

Suppose that the - is set to be a 1.
Machine M’’:

States s1 is incompatible with both s2 and s3.
States s3 and s2 are equivalent.
So number of states is reduced from 3 to 2.
Machine M’’red :

PS NS, z
x=0 x=1

A A, 1 A, 0
B B, 0 A, 0

Incompletely Specified Machines

PS NS, z
x=0 x=1

s1 s3, 0 s2, 0
s2 s2, 1 s3, 0
s3 s3, 1 s2, 0

275

Can this always be done?

Machine M:

PS NS, z
x=0 x=1

s1 s3, 0 s2, 0
s2 s2, - s1, 0
s3 s1, 1 s2, 0

State Minimization:
Incompletely Specified Machines

276

Machine M2:

Machine M3:

PS NS, z
x=0 x=1

s1 s3, 0 s2, 0
s2 s2, 0 s1, 0
s3 s1, 1 s2, 0

PS NS, z
x=0 x=1

s1 s3, 0 s2, 0
s2 s2, 1 s1, 0
s3 s1, 1 s2, 0

Machine M2 and M3 are formed by filling in the
unspecified entry in M with 0 and 1, respectively.

Both machines M2 and M3 cannot be reduced.
Conclusion?: M cannot be minimized further!

But is it a correct conclusion?

State Minimization:
Incompletely Specified Machines

277

Note: that we want to „merge‟ two states when, for any
input sequence, they generate the same output
sequence, but only where both outputs are specified.

Definition: A set of states is compatible if they agree on
the outputs where they are all specified.

Machine M’’ :

In this case we have two compatible sets: A = (s1, s2) and
B = (s3, s2). A reduced machine Mred can be built as
follows.

Machine Mred :

PS NS, z
x=0 x=1

s1 s3, 0 s2, 0
s2 s2, - s1, 0
s3 s1, 1 s2, 0

PS NS, z
x=0 x=1

A B, 0 A, 0
B A, 1 A, 0

State Minimization:
Incompletely Specified Machines

278

Incompletely Specified Machines

Can we simply look for a set of compatibles
of minimum cardinality, such that every
original state is in at least one
compatible?

No. To build a reduced machine we must
be able to send compatibles into
compatibles. So choosing a given
compatible may imply that some other
compatibles must be chosen too.

279

Incompletely Specified Machines

A set of compatibles that cover all states is: (s3s6), (s4s6),
(s1s6), (s4s5), (s2s5).

But (s3s6) requires (s4s6),

(s4s6) requires(s4s5), (s4s5) requires (s1s5),

(s1s6) requires (s1s2), (s1s2) requires (s3s6),

(s2s5) requires (s1s2).

So, this selection of compatibles requires too many other

compatibles...

PS NS, z
I1 I2 I3 I4

s1 s3,0 s1,- - -
s2 s6,- s2,0 s1,- -
s3 -,1 -,- s4,0 -
s4 s1,0 -,- - s5,1
s5 -,- s5,- s2,1 s1,1
s6 -,- s2,1 s6,- s4,1

280

Incompletely Specified Machines

Another set of compatibles that covers all states is (s1s2s5), (s3s6), (s4s5).
But

(s1s2s5) requires (s3s6) (s3s6) requires (s4s6) (s4s6) requires
(s4s5) (s4s5) requires (s1s5).

So must select also (s4s6) and (s1s5).

Selection of minimum set is a binate covering problem !!!

PS NS, z
I1 I2 I3 I4

s1 s3,0 s1,- - -
s2 s6,- s2,0 s1,- -
s3 -,1 -,- s4,0 -
s4 s1,0 -,- - s5,1
s5 -,- s5,- s2,1 s1,1
s6 -,- s2,1 s6,- s4,1

281

Incompletely Specified Machines

Definition. An input sequence is admissible, for a starting
state of a machine if no unspecified next state is
encountered, except possibly at the final step.

Definition. State si of machine M1 is said to cover, or
contain, state sj of M2 provided
1. every input sequence admissible to sj is also admissible to si ,

and
2. its application to both M1 and M2 (initially is si and sj,

respectively) results in identical output sequences whenever
the outputs of M2 are specified.

More formally:

When a next state is unspecified, the future behavior of
the machine is unpredictable. This suggests the
definition of admissible input sequence.

282

State Minimization:
Incompletely Specified Machines

Definition. Machine M1 is said to cover machine
M2 iff
for every state sj in M2, there is a
corresponding state si in M1 such that si covers
sj.

The problem of state minimization for an
incompletely specified machine M is:
find a machine M’ which covers M such that
for any other machine M’’ covering M, the
number of states of M’ does not exceed the
number of states of M’’.

283

Short summary of rest of section

 Definition of compatible states
 Method to compute when two states are

incompatible
 Definition of maximal compatible sets

◦ A set is compatible if all pairs in the set are
compatible

 Definition of prime compatibles
 Solve Quine-McCluskey type problem

◦ Generate all prime compatibles
◦ Solve binate covering problem

Algorithmic State Machines
 ASM chart

 Salient features of the ASM

 Examples of system design

Binary multiplier

Weighing Machine

Introduction
 The binary information stored in the digital system can be

classified as either data or control information

 The data information is manipulated by performing
arithmetic, logic, shift and other data processing tasks

 The control information provides the command signals that
controls the various operations on the data in order to
accomplish the desired data processing task

 Design a digital system we have to design two subsystems
data path subsystem and control subsystem

ASM CHART

 A special flow chart that has been developed specifically to
define digital hardware algorithms is called ASM chart.

 A hardware algorithm is a step by step procedure to
implement the desire task

What is the Difference b/n conventional flow chart
and ASM chart

 conventional flow chart describes the sequence of
procedural steps and decision paths for an algorithm with
out concern for their time relationship

 An ASM chart describes the sequence of events as well as
the timing relationship b/n the states of sequential
controller and the events that occur while going from one
state to the next

ASM consists of
1. State box

2. Decision box

3. Conditional box

State box

Decision box

BINARY MULTIPLIER

Data path subsystem for binary
multiplier

Thank you

