CHING THEORY
LOGIC DES

Prepared by:

V.SESHAGIRI RAO, Professor
S.RAMBABU(Asst.Prof)
LINJU T T(Asst.Prof)

Un
NUMBER SYSTEMS

Any number in one base system can be
converted into another base system

Types

1) decimal to any base
2) Any base to decimal
3) Any base to Any base

Number Systems

Decimal number: 123.45=110¢+2 101+ 310+ 4 101+5 102 .

Base b number: N=a_,b*" + tah’+ +a b
b>1, O<=a,<=b1
Integer part:a,a., @
Fractionalpart: a,0, @3-
Most significant digit: @, ; « « «
Least significant digit: a ,

Binary number {b=2): 1101.01=123+1224+021+12°4+021+1 22
Representing number ¥ in base b: (N}, - . . .

Complementof digit a: @' =({b-1)-a
Decimal system: 9°s complementof3=93=6
Binary system: 1's complementof1=1-1=0

Representation of Integers

Base

2 4 8|10 12
0000 0 0 0 0
0001 | | |
0010 | 2| 2| 2| 2
0011 | 3| 3| 3| 3
0100 | 10 4 4 4
0101 | 11 0 D

D
0110 {12 6| 6| 6
0.0 10 I O it I) G
1000 | 20 (10| 8| 8
1001 (20 (11| 9| 9
1010 [22 |12 [10 | a
1011 |23 |13 |11 | B
1100 { 30 { 14 | 12 | 10
1101 | 31 | 15| 13 | 11
1110 | 32 [16 | 14 | 12
1111 |33 |17 | 15 | 13

Base Conversions

Example: Base 8 to base 10
{432.2);, =482 +381+28%+281=(282.25),,

Example: Base 2 to base 10
{1101.01), =123+ 122+02'"+12°4+021+122=({13.25)4,

Base b, to b,, where b, > b;:

(N)s, = aq—lbg_l == aq—2bg_2 + -+ a1bl + aobg

(N)bx
ba

. . a
= G 105 2y aq—obd L T +_b0
. g 2

Qo

= == (e2
(%) = aq_1b37° +ag_2b37" + - - +El
bl - N -
Q1

S

Conversion of Bases (Contd.)

Example: Convert (548),, to base 8

Q; r';
o8 " — 1y
S 4 = aq

| 0= a2

l — gy

Thus, (548),, = (1044),
Example: Convert (345),, to base 6
(») : I';

. —

D 3 = ap

9 3:(11

1 3 =as

1 = aj

Thus, (345),, = (1333),

Conversions of fractional numbers

Fractional number:

()b, = a_1by' +a_gby® + - +a_pby?

b - (N)p, = acy +agby! 4+ +a_pby P

Example: Convert {0.3125),, to base 8
0.3125 8=2.5000 hence a =2
0.5000 8=4.0000 hence a,=4

Thus, {0.3125),, = (0.24),

—‘

Q;

r;

216
108

0= ag
O=a1
0=(12
O=(13
1=a4
1 ='ak
O=a6
1l =a7
1 =ag

Example: Convert {432.354),, to binary

0.354 2=0.708
0.708 2=1.416
0.416 2=0.832
0.832 2=1.664
0.664 2=1.328
0.328 2=0.656

Thus, {432.354),, = {110110000.0101101...),

Decimal to Binary

—

Octal to Binary Conversion

Example: Convert (123.4); to binary
(123.4), =(001 010 011.100),

Example: Convert {1010110.0101), to octal
(1010110.0101), = (001 010 110.010 100}, =(126.24),

| -~ ™ Y ~ m ™ ﬁ‘ﬂ‘wpc
A A AR RN AR R R R L

Complements arc used in digital
computers to simplify the subtraction
operation and for log- ical manipulation

They are two types of complements
1) Diminished radix complement
(r"- 1)-N {r is the base of num
system }
2) Radix Complement
(rm-1)-N+1

(o N

(r-1)'s complement
If the base = 10

- The 9's complement of 546700 is
999999 - 546700 = 453299.
- If the base = 2

- The 1's complemcnt of 1011000 is
0100111.

I's complement

- the 10's complement of 012398 is 987602

- the 1's complement of 1101100 is
0010100

L '[H (]

™ — N r' m A - ™ a o
K - | 1ILS

Subtraction using compieme

Discard end carry for r’s complement

Using 10's complement subtract 72532 -
3250.

M= 72532
10's complement of N = + 96750
Sum = 169282
Discard end carry for 10’s complement
Answer =

69282

Subtraction using (r-1)’s

complement
« X-Y =1010100 - 1000011
X = 1010100
1's comp of Y=+0111100
Sum = 1 0010000
Add End-around carry = + 1

(1) X -Y =0010001

O 0 0 0

0O 0 O

Q G ' O

1

1

0O 0 O

0O 1 O

o O 9
0O O

1

1

1

™M
_
o
-
No)
ON _
0 BN
© ER
O B
O E
N
>
-
(v
n —
H ™
4
xL
Mt
mm,
@ |
_

Self-complementing Codes

BCD

Code word of 9's complement of & obtained by

ingcode
interchanging 1's and O’s in the code word of M

Selfcomplement

)
)
@
O
O
@
)
)
e
)
2
=
O
2

3
~
>
O

Frcess-3

Decimal

digit

10

Successive code words

Add 3 to

differ in only one digit

BCD

Gray Code(Unit distance Code)

SO-HOHOHOHOHOHOHO
PoiooHAOORAEEHHD WM
N
8
pidlocoomMmMmMHOOO O M

JooocoocoooHHHHHHHH

SCHHOOHHOOHHOOHHC
HHOOHHHHOOOOHHHHOO
3
Gw0000111111110000

QO000000O0 ™ mmmm m
T &

s 8
SRorMamYnOoNOa SO0 YD
O 3
o

Blnary to Gray Conversion

Gray-to-binary:
= bh. = g, if no. of 1's preceding g; is even
= b. = g; if no. of 1's preceding g, is odd

—————————————

Mirror Image Representation in

Gray Code

00 O 00 0 000
01 0O 01 0 001
11 g 11 0 011
10 0O 10 0 010
1 110 0O 110

g 14 Q' 111

1 01 0O 101

1 00 0O 100

1 100

1 16

1 911

1 118

1 010

1 0717

1 001

1 000

— -
el ol = &Y = r ' K ‘:ﬂp

BY-%~ ,.,,‘ '@ a
=il 1 Wi M WG\ WhiliWVi Gl Wi

No communication channel or storage
device is completely error-free

As the number of bits per area or the
transmission rate increases, more errors
OCCuUr.

Impossible to detect or correct 100% of
the errors

Types of Error Detection

- 3 Types of Error Detection/Correction
Methods

- Cyclic Redundancy Check (CRC)
- Hamming Codes
- Reed-Solomon (RS)

10011001011 = 1001100 + 1011
N\ VAN

/\

Code word information error-checking bits/
bits parity bits/
syndrome/

redundant bits

| 2 M I Y @ ‘/\ f a = @
rialininiin Y GWULUCO

One of the most effec_five codes for error-

recovery

}Jsed in situations where random errors are
Ikely to occur

Error detection and correction increei:s_%s in
roBortloR to, the rIJu_m erdo panteFl Its

er .oF-c ecklng_ its) added to the end of
he information bits ~ _ _ _
code word = information bits + parity bits

Ham_mlnﬂqdiﬂl;ali?ce: the numbgg glFfPeich:

positions Th which two code wor

1000100

10110001

X X 3k

Minimum Hamming distance or D(min) :
Elael’:c)%rbrpl:i;r%/esl-llts error %Ietect?ng anc[co‘recti?ﬁg
Hamming codes can always detect in) —
1 errors,gbut can only cor}‘/ect aI? ol?glawnos

errors.

X. Data
Bits
00
01

10
11

Hamming Codes
Code

Parity

Ol—tl—to‘w
—

Word
000
011
101
110

000> 100
001 101*
010 110%*
011*111

Single parity bit can only detect error,
not correct it
Error-correcting codes require more
than a single parity bit
EX. 00000
01011
10110
11101

Minimum Hamming distance = 3

Can detect up to 2 errors and correct 1
error

7~

-

adancVv Check
---l\._d-\.::---b /,"l b.—-_’_—-\.

Let the information byte F = 1001011

The sender and receiver agree on an
arbitrary binary pattern P. Let P = 1011.
Shift F to the left by 1 less than the
number of bits in P. Now, F = 1001011000.
Let F be the dividend and P be the divisor.
Perform "modulo 2 division”.

After performing the division, we ignore the
quotient. We got 100 for the remainder,
which becomes the actual CRC checksum.
Add the remainder to F, giving the message
M:

1001011 + 100 = 1001011100 = M

/.

Calculating and Using CRCs

M is decoded and checked by the message
receiver using the reverse process.

1010100

1011 | 1001011100
1011
001001
1001
0010
001011
1011
0000 < Remainder

J

- -~ M

‘/\‘ w) ‘ ‘ P P -l
\ s e N
- H W E EERBEWwW

~— |
\ —— m ™ 1N — -~ a \TF‘.\ - —
«aAdAlluvUlliCdl allll Duldadlildadl

We need to consider formal techniques for
the simplification of Boolean functions.

Identical functions will have exactly the same
canonical form.

Minterms and Maxterms
Sum-of-Minterms and Product-of- Maxterms
Product and Sum terms

Sum-of-Products (SOP) and Product-of-Sums
(POS)

Yafinitionc
WCIITIILIOUIINS

Literal: A variable or its complement
Product term: literals connected by e
Sum term: literals connected by +

Minterm: a product term in which all the
variables appear exactly once, either
complemented or uncomplemented

Maxterm: a sum term in which all the
variables appear exactly once, either
complemented or uncomplemented

Truth Table notation for Minterms

and Maxterms

* Minterms and [[y [z | [Minterm | Maxterm
Maxterms are easy|o [0 [0 | |xyz =mg |xsv+z = Mg
todenote usinga [0 [0 [1 | [xyz=m |xwy+z =M,
truth table. 0110 [xyZ=m |xwysz=M,

* Example: 01 |1 |xXyz=mg [xsy*z= My
Assume 3 variableg: [o [o | [xyz =ms |x*y+z= M,
X.V.Z 1 (01| |xyz=ms |X+y+Z =Ms
(order is fixed) 1[1[0] [xyzame |xXoysz= Mg

11 |1 [|xyz=my |[X+y+eZ' =My

o 1#\'1-) ﬂﬁ"\f/ ﬂ-r" "\

-lGi il IWIIEIWSGEE B Wi EREw ‘__/____4 _,-__,_/

1|

Any Boolean function F() can be
expressed as a unigue sum of minterms
and a unique product of maxterms
(under a fixed variable ordering).

In other words, every function F() has two
canonical forms:
Canonical Sum-Of-Products (sum of minterms)

Canonical Product-Of-Sums (product of
maxterms)

Canonical Forms (cont.)
Canonical Sum-0Of-Products:

The minterms included are those m; such
that F() = 1 in row j of the truth table for
F().

Canonical Product-Of-Sums:

The maxterms included are those M; such
that F() = 0 in row j of the truth table for

B).

Truth table for f;(a.b,c) at right

The canonical sum-of-products form for f,
IS
fi(a,b,c)=my+my,+ my+mg
=ab’c +a’bc’ +ab’c’ + abc’
The canonical product-of-sums form for f; is
fi(a.h,c)=My e M; ® M » M,
= (atb+c)e(atb+c’)e

(a’+b+c’)e(al+b’+c’).

Observe that: m; = M

OO0 OO0
= =0 0O (== 00U
=10 ™= O~ O~ On

(@
C
<
@
(o
'_)
C
I)
3 S
=
(T
'_)
(@
())
C
(@
a

Replace > with TT (or vice versa) and
replace those j’s that appeared in the
original form with those that do not.

Example:

f;(a,b,c) = a’b’c + a’bc’ + ab’c’ + abc’
=m; +m, + my, + Mg
= 2(1,2,4,6)
- H(OI315I7)

(a+b+c)0(E;+b’+C’)0(a’+b+C’)0(a’+b’+C’)

Conversion of SOP from standard

to canonical form

- Expand non-canonical terms by inserting
equivalent of 1 in each missing variable x:
(X +x') =1
- Remove duplicate minterms
- f;(a,b,c) = a'b’c + bc’ + ac’
= a'b’'c + (a+a’)bc’ + a(b+b")c
= a’b’c + abc’ + a’bc’ + abc” +
ab’c’

a’b’c + abc’ + a’'bc + ab’c’

- | |

a1 . = I)AVYG Taeg b sl d ga
version or POS trom standard
o)

{0 n
- ' E B

-

canonical form

Expand noncanonical terms by adding 0 in
terms of missing variables (e.g., xx’ = 0) and
using the distributive law
Remove duplicate maxterms
f,(a,b,c) = (a+b+c)e(b’+c’)e(a’+c’)
= (a+b+c)e(aa’+b’'+c’)e(a’+bb'+c’)
= (a+b+c)e(a+b'+c’)e .
(@a'+b+c')e

(a+b+c)e(a+b’+c’)e(a’+b’'+c’)e(a’+b+c’)

ean Algebra an
ic Gates

~—

Formal logic: In formal logic, a statement
(proposition) is a declarative sentence that is

either

true(1) or false (0).

It is easier to communicate with computers using
formal logic.

e Boolean variable: Takes only two values -
either

true (1) or false (0).

They are used as basic units of formal logic.

e Boolean function: Mapping from
Boolean variables to a Boolean value.

e Truth table:

Represents relationship between a Boolean
function and its binary variables.

It enumerates all possible combinations of
arguments and the corresponding function
values.

e Boolean algebra: Deals with binary
variables and logic operations operating
on those variables.

e Logic diagram: Composed of graphic
symbols for logic gates. A simple circuit
sketch that represents inputs and outputs
of Boolean functions.

gates are

OR AD x
B

Hame Graphic Algebraic Truth
aymbol function table
Alx
Inverter A E}C x x = A' FIT
1|0
A— A Blx
AND x x = AB Q0|0
BE— 0 1|0
1 0f0
111
x=A+ B

O
HoR

o
e OfM

True if both are true.

True if either one 1s true.

+ Other common gates include:

Name Graphic Algebraic Truth
symbol function table

Exclusive-0R & ABlx
tKDRJ X Xx=4@E 4 oo
B =48 +2p 011

101

1 110

A— ABlx

NAND X x = (AB)' 001
BE— 011

101

1 110

A ABJx

HOR X Xx=A+BE 00l
B 010

1 a0

1 110

Parity check: True if only one
Is true.

[nversion of AND.

[nversion of OR.

e Postulate 1 (Definition): A Boolean
algebra is a closed algebraic system
containing a set K of two or more
elements and the two operators - and +
which refer to logical AND and logical OR

T e v -

(9)x+y=y+x

(10) xy = yx

(11)) x+(y+z)=(x+y)+z
(12) x (yz) = (xy) z
(13)x(y +2) =Xy + Xz

(14d) x +yz=(x+y)(x+2)
(15) (x+y) =x"y’

(16) (xy)" =x"+y’

(17) (X') = x

Examples:
(@) a +ab =a(l+b)=a

(b) a(a + b) = a.a
+ab=a+ab=a(1+b)=a.

(c)a+ab=(a+a)(a+b)=1(a + b)
=a+b

(d) a(a' + b) = a. a' +ab=0+ab=ab

(a) (@ + b)'=a'b
(b) (ab)' = a' + b’

Generalized DeMorgan's Theorem
(@) (@a+b+..2))=ab..Z7
(b) (a.b..z2))=a" +b' +..2

ab + c'd” + b’d

NA LN
m A 4

— -t~ — — - —_— ~ \ /) = -~ ™ ~ ~

— L e — —
St | N = — aaesseges .
— —

~
~ ~ / ~
N w8 T e

Show that: (a(b + z(x + a')))' =a' + b' (z' + X')

(a(b+z(x+a’))) =a+(b+z(xx+a))
=a +b' (z(x+a))
=a'+b' (z'+ (x+a))
=a' +b' (' +x(a))
=a' +Db'(z +x4a)
=a‘+b'z' + b'x'a
=(a‘+ b'xa) +b'z'
=(a‘+ b'x‘)(a+a‘) +b'z'
=a‘“+tbXx‘+b'z
=a' +b' (2 +X)

AND-NOR functions:
Example 3: Implement the following function

F=XZ+YZ+XYZ or

F=XZ+YZ+XYZ

mince F7 1z 1n SOP form, i1t can be implemented bv using NAND-NAND circuit.
By complementing the output we can get F, or bv using NAND-AND circuit as

shown in the figure.
X

1D

k]

x
Y
Fd

n also be implemented using AND-N
it as it is equivalent to NAND- AND ci

OR-NAND functions:
Example 4: Implement the following function

F=(X+Z)(T+Z)(X+Y+Z) or
F=(X+Z)YF¥+Z)X+Y+2Z)

Since F7 15 1n POS form, 1t can be implemented by using NOE-NOE. circuit.
By complementing the output we can get F, or bv using NOR-0OR circuit as shown 1n

the figure.

) D
) =) >
=

> >

It can also be implemented using OR-NAND
circuit as it is equivalent to NOR-OR circuit

— — ——

The objectives of this lesson are to learn

about:
1. Universal gates - NAND and NOR.

2. How to implement NOT, AND, and OR
gate using NAND gates only.

3. How to implement NOT, AND, and OR
gate using NOR gates only.

4. Equivalent gates.

1. All NAND mput pins connect to the input signal A gives an output A",

@ul A

2. One NAND wnput pin 1s connected to the input signal A while all other input pins

are connected to logic 1. The output will be A°.

A

1

1)=A’
}u —

Implementing AND Using onlvy NAND Gates

An AND gate can be replaced by NAND gates as shown in the figure (The AND 1s
replaced by a NAND gate with 1ts output complemented by a NAND gate inverter).

h—

[—

A

h—

ll

‘l

'-—l

— e

Implementing OR Using only NAND Gates

An OR gate can be replaced by NAND gates as shown in the figure (The OR gate 15
replaced by a NAND gate with all its mputs complemented by NAND gate inverters).

D2
’ (A'B)'=A+B

Y
-. A A
f— —p)
._,f' +
——
E{ '}Jﬂ'
I

Thus, the NAND gate is a universal gate since it can implement the AND, OR
and NOT functions.

1. All NOR. input pins connect to the input signal A gives an output A°.

2. One NOE input pin 1s connected to the input signal A while all other input pins are
connected to logic 0. The output will be A°.

A L] L]
i —_— A ‘ :}o A’
(1]

Implementing OR Using only NOR Gates

An OR gate can be replaced by NOE gates as shown in the figure (The OF is
replaced by a NOR. gate with 1ts output complemented by a NOR. gate inverter)

A (A=B)’ A+B A 3’5
—_—
B B

Implementing AND Using only NOR Gates

An AND gate can be replaced by NOR. gates as shown in the figure (The AND gate 15
replaced by a NOR gate with all 1ts inputs complemented by NOR gate mnverters)

e

| 'AI"l"Hr]r:A.E A _—_—-.,_ '.IIAE
| Jﬂ'h_

L B— ;

Thus, the NOR gate 1s a umversal gate since it can implement the AND, OR and
NOT functions.

Minimization and design
of Combinational circuits

Simplificatio

Boolean algebra helps us simplify expressions and circuits

Karnaugh Map: A graphical technique for simplifying a Boolean
expression into either form:

minimal sum of products (MSP)
minimal product of sums (MPS)
Goal of the simplification.
There are a minimal nhumber of product/sum terms
Each term has a minimal number of literals
Circuit-wise, this leads to a minimal two-level implementation

s
D

— — — —
J A — =2 o= — — P — T - ~

—— — —

= —— — = e - —t

A two-variable function has four possible minterms. We can
re-arrange

these minterms into a Karnaugh map

X y | minterm Y

0] 0] X'y' ‘ o) 1 A
0 1! xy mp | o[y =

1 O Xy’ 1| xy Xy

1 1 Xy

Now we can easily see which minterms contain common
literals

Minterms on the left and right sides contain y’ and y respectively

Minterms in the top and bottom rows contain x’ and x respectively

LA y |y
- X | xy | xy
X O | Xy [Xy '

{ 1| xy' | xy XXy [xy

—) — —~ N v —_— — . N o £ = —~ = § = ~ PN —
A\ — — - — — — \\
= - = F B U e » u — = T — 4 A B B 44 B A BB A L B 1 A A B 1

—

Imagine a two-variable sum of minterms:

4

lel + le = X'y,' x'y

o/ XY

Both of these Minterms appear in the top row
of a Karnaugh map, which

means that they both contain the literal x’

Xy + X'y = X'(y" +vy) [Distributive]
=X'e1 [y +y =1]
= X’ [X el =x]

What happens if you simplify this expression
using Boolean algebra?

— -
N ~ — ~ — — -~ - -

- ~ —_—
—_—
- S s

~
- P e W - - = = - = -

(3)
l(\)

—~
_— b

Another example expression is x'y + xy

Both minterms appear in the right side, where y is
uncomplemented y

Thus, we can reduce x'y + xy to justy

Xy | xy
X | Xy =9

How about x'y" + x'y + xy?
We have x'y’ + x'y in the top row, corresponding to x’
There's also x'y + xy in the right side, corresponding to
y Y

This whole expression can be reduced to x" + y| Xy | Xy
X | xy | xy

)
)
)
)
I(x)

—_— =
— — ~ — — —

— | p— — — — N — —

» - = P D O e - 2 =

—

) F S

For a three- varlable expressmn with mputs X,

y, z, the arrangement of
YZ

minterms is more tricky:
vz OO0 01 11 10
00 01 11 10 5 O Mol m | ms| m
v 0 | xXy'z | xy'z | xyz | xyz 1 [ms] ms | my | me
1 xyz | xy'z | xyz | xyz y
Y Mo | M1 | M3 | Mp
Xyz | Xyz | Xyz | xyz X|mg|ms| my | mg
X | xyz | xy'z | xyz | xyz Z

Z

Another way to label the K-map (use
whichever you like):

-_— =

- ~

—_—

-

~

——

_— ~ —
- ~ p

e S —) —

With this ordering, any group of 2, 4 or 8 adjacent

squares on the map

contains common literals that can be factored out

X'y'z + xX'yz
X'z(y" +Y)
X'zel

X'z

“Adjacency” includes wrapping around the left and right

Y
Xyz [Xyz | Xyz]|| xyz
X | xyz | xy'z | xyz | xyz
Z
sides:
Y
Xyz | Xy'z | xyz | XyzZ |
XTXYZ]| xyz | xyz || xyz
Z

Iy , 77

X'y'z' + xy'z' + x'yz' + xyz'

= Z'(X'y" + xy’' + X'y + xy)

Z'(y'(x" + x) + y(x’' + x))
z:(y’+y)
Z

We'll use this property of adjacent squares
to do our simplifications.

— - ~
_ — — - - —
- - W - — = = _— = - — - e = - e B B e

We can fill in the K-map directly from a truth table
The output in row i of the table goes into square m; of the K-map
Remember that the rightmost columns of the K-map are “switched”

Y
X z | f(xy.z
oéo (OY)_ Mo [M1 [M3 [M2
0O 0 1 1
. . X | mg | ms | mz | mg
0o 1 1 0 Z
by
0 0 0

X 0 1 1

| Z
1 0 O 0
o 1 1
1 o 1
1 1 1

— - —~ ™ - /
o T T - 1T~ A A N s I P R B S T = AN 4 P T e)

4 a
— - _— _ \‘-\ —_— _— _— ~
_'__/_/_\,/____\-/ - v U » T . » P e e . - P ¥ — - o B S
—’

You can find the minimal SoP expression
Each rectangle corresponds to one product term

The product is determined by finding the common literals in that
rectangle 4 4

1 X'y'z

X 1 1 1 X xyz [Lxyz | xyZ
Z Z

yZ Xy

F(X,y,2)= Yz + Xy

A~

o £ ™ -) ~ T - - ~ — ~ ~ ™ S| . ~ |

= o — ~— —
-_— s = N —— F . 2 B § . A A A 1 B A

The most difficult step is grouping together
all the 1s in the K-map

Make rectangles around groups of one,
two, four or eight 1s

All of the 1s in the map should be
included in at least one rectangle

Do not include any of the Os

Each group corresponds to one product

term y
1
X 1 1 1
7

Make as few rectangles as possible, to
minimize the number of products in the

final expression.

Make each rectangle as large as possible,
to minimize the number of literals in each
term.

Rectangles can be overlapped, if that
makes them larger.

Let’s consider simplifying f(x,y,z) = xy + y'z + xz

You should convert the expression into a sum of minterms form,

The easiest way to do this is to make a truth table for the function, and then read
off the minterms

You can either write out the literals or use the minterm shorthand

Here is the truth table and sum of minterms for our example:

X y 4 f(x,y.z)

- © 2 f(x,y,z) = Xy'z + +

O 1 O o Xyz' + Xyz

(@) 1 1 (@) — ml + + m6+ m7
1 0 O o)

1 o0 1 1

1 1 O 1

3 1

You can also convert the expression to a sum of
minterms with Boolean

algebra

Apply the distributive law in reverse to add in missing
variables.

Very few people actually do this, but it's occasionally useful.
XY +yz+xz=(xyel)+ (yzel)+ (Xze1)
(xy e (2 +2)) + (yze (X' + X))+ (XZe(y +Y))
(xyz" + xyz) + (X'y'z + xy'z) + (xy'z + xyz)
xyz' + xyz + X'y'z + xy'z
m, + + Mg + My

In both cases, we're actually “"unsimplifying” our
example expression
The resulting expression is larger than the original one!

But having all the individual minterms makes it easy to
combine them

together with the K-map

= e =

o

-

~

(

S - -~ - -

~
— A —_

- [- e _ _

» T O O

In our example, we can write f(X,Y,z) in

two equivalent ways

f(x,y,z) = x'y'z + + Xyz’
+ Xyz y
X'y'z
X xy'z | xyz | xyz
Z

f(x,y,z) = m; + + mg + M,
Y
mi
X ms my Me
Z

In either case, the resulting K-map is
shown below

Y

Simplify the sum of minterms m; + m5 +

ms + mg v

~—~
—~ ~ P —_

— .- -
—_— e o e e W S » e =

~ —

Here is the filled in K-map, with all groups

shown

The magenta and green groups overlap, which

— — Lk —=

—

~ ™

A A 1 B A

makes each of them as

large as possible

Minterm mg is in a group aIbey its lonesome

0

X1 0

1

[[1]

0

0

L

The final MSP here is x'z +

+ Xxyz’

There may not necessarily be a unique MSP. The K-map
below yields two

valid and equivalent MSPs, because there are two possible
ways to

include minterm m,

Y
(0) 1 (0] 1
X 0) 1 1 1
V' ‘ N
Y Y
0) 1 @) 1 0] 1 0] 1
X o) i | 1 X 0 1 1 1
y Z
y'z + yz' + xy vz +yz' +

Remember that overlapping groups is possible, as shown above

== - e = = e P DU ey 0 .- » - - P P N e S = \ - __ — —

We can do four-variable expressions too!
The minterms in the third and fourth columns, and in the third and
fourth rows, are switched around.
Again, this ensures that adjacent squares have common literals

YZ . Y
WV X 0O ©O1 11 10

oo

o1

11
W
10

d

Grouping minterms is similar to the three-variable case, but:
You can have rectangular groups of 1, 2, 4, 8 or 16 minterms
You can wrap around all four sides

YZ

WX 00 01 11 10

00

01

11

W

10

Y
wlxlylzl wlxlylz Wlxlyz Wlxlyzl
wxyz | wxy'z | wxyz | wxyz
wxy'z | wxy'z | wxyz | wxyz
wxy'z' | wxy'z | wx'yz | wxyz

Mo mi ms mo
My | M5 | M7 | Mg
Mz | M3 [M5 | Mg
Mg | Mo | Mu | Mg

The expression

is already a sum of minterms, so here’s the K-map:

1 1 Mo mp
Ms X
m
W W —
1 1 ms Mi1o
Z
We can make the following groups, resulting in the MSP +
Y Y
n 1 wx'yz
1
v 1 1
wx'yz'

YZ Y
WX 00 01 11 10
[a]e]
o1
X
11
wW
10
mo mi ms mp
ma ms my Me
Miz | M3 | Mi5 | My4
\".%
ms Mo mii mio

YZ Y
VX o0 o1 11 10
w 11
z
V= 1Y
Mig| Mhz7] Mho| MB
Mbo| Mbi| Mb3| Mbho|
w ke f Mho | My | Mo
Mba| NMbs| Mby | NMbe
Z

Y Y7 Y
11 10 W an o 01 11 10
100 1
1] 1 il a1 1 = of1
M .\.\1_}‘/;(’1Z 1T | [©
W — — w
10 1 10
f=XZ'
>m(4,6,12,14,20,22,28,30)
+ VW'Y’ >m(0,1,4,5)
+ W'Y'Z' >m(0,4,16,20)
+ VWXY >m(30,31)

+ V'WX'YZ m1l1l

Maxterms are grouped to find minimal PoS

expression yz
00 01 11 10
0)
X X +y+Z x+y+z' x+y'+z' x+y'+z
1 X' +y+Z x'+y+z' x'+y'+z' x'+y'+z

F(W,X,Y,Z)= TI M(0,1,2,4,5)

0 X +y+Z x+y+z' x+y'+z' x+y'+z

S X 0072 | X+YA [X+y+Z 1 Xy *Z
1 Usn
TO

F(W,X’W+ Z)

0 0] 0 1 0
X 00 01/F 1L

1 |/100 0 1 1

= | = -

— ~ -~ o~ -
- SR — F 1 _ s e
Ao » Y &= B e "W | S~ 8 —

' _./__/ .. 4 A 122 L B 1A 4B 5 0 s es _/_./_

F(W,X,Y,Z2)= =m(0,1,2,5,8,9,10)
=TT M(3,4,6,7,11,12,13,14,15)

YZ | Y | F(W,X,Y,Z2)= (W + XY + Z") (X’
WX 00 01 10 + 2)

00 0

Or,

o1 O Ofl0

[}{ - AV =77 + AV

1l ollo ollo F(W,X,Y,Z2)= XY + X'Z W'Y'Z
W]

10 0 Which one is the minimal one?

You don’t always need all 2" input combinations in an n-variable function

If you can guarantee that certain input combinations never occur
If some outputs aren’t used in the rest of the circuit

We mark don‘t-care outputs in truth tables and K-maps with Xs.

x vy z | f(x,y.z)
(@) (@) O O
O (@) 1 1
O 1 O X
(@) 1 1 O
1 (@] O (@)
1 (@) 1 1
1 1 O X
1 1 1 1

Within a K-map, each X can be considered as either 0 or 1. You should pick
the interpretation that allows for the most simplification.

1\)
(
(
y

I
gx
(

A B A 1

f(WIXIYIZ) > Zm(012141518114115)l d(WIXIYIZ)
=>m(7,10,13)

This notation means that input combinations wxyz = 0111, 1010 and 1101

(corresponding to minterms m;, m,;, and m,3) are unused.y
110|10(1
1] 1
x| O X
W O|lx|1]1
1[{0]0]x
Z

m(012141518114115)l d(wlxlyl

Y

f(w,Xx,y,z)= x'z' + w'xy’ + wxy

K-maps are an alternative to algebra for simplifying
expressions

The rtgsult is @ MSP/MPS, which leads to a minimal two-level
circui

It's easy to handle don’t-care conditions

K-maps are really only good for manual simplification of
small expressions...

Things to keep in mind:

&emember the correct order of minterms/maxterms on the
-map

When grouping, you can wrap around all sides of the K-
map, and your groups can overlap

Make as few rectangles as possible, but make each of them
as large as possible” This leads to fewer, but simpler,
product terms

There may be more than one valid solution

— — — - ~hy = A -~ P PN . S &= —~ —
— -
—— Nt el Nt — — N — — A 1 A 4 B

Consider Support Set of f: S={x,, X5, ...,

Xny

x denotes: al
x;ifc,="1"
x;if ¢; = '0’
1 ifcg ="

If NO ¢; = -, then we have a minterm
Can be Represented by Decimal Equivalent of ¢;
EXAMPLE (S={Xx;, X5, X3, X4})

x1,x%,x%.x1, = my, @ minterm — ¢, ¢, ¢c;¢, = 1001 =
9
x9,x,x 3x%, = a 4-cube — 0--0

Basic Operation in Tabulation Method
2 Cubes that Differ in a SINGLE ¢; can be

Merged into a Single Cube -

00 o1 11 10

T

EXAMPLE i
a= 1-01 01
£ = 0-01 1
Merge « and ginto y :
7/ 4 __01 2 cd

00

00 o1 11 10
T

Merging is also called o1

star operator and is a .

special case of .

1
1

Input: fo7 as a set of minterms

Output: f o7 as a set of
All Essential Prime Implicants
As Few Prime Implicants as Possible

Finding as few Prime Implicants as Possible is

Reduces to the “"Set Covering” Problem for

Unate function — a constant or is represented by a SOP using
either uncomplemented or complemented literals for each variable

Reduces to the "Minimum Cost Assignment” Problem for Binate
Functions (ex. EXOR)

This is 2-Level (SOP) Optimization (Minimization)

Convert Minterm List (specifying f °") to Prime Implicant
List

STEP 2:
Choose All Essential Prime Implicants

If all minterms are covered
HALT

Else
GO To STEP 3

BahEP 3:

Formulate the Reduced Cover Table Omitting the rows/cols
of EPI

If Cover Table can be Reduced using Dominance Properties,
Go To Step 2

Else Must Solve the “"Cyclic Cover”
Problem

1) Use Exact Method
(exponentially complex)

2) Use Heuristic Method (possibly
non-optimal result)

NOTE: “"Quine-McCluskey” Refers to Using a
“"Branch and Bound” Heuristic

NOTE: “Petrick’s Method” is Exact
Technique — Generates all Solutions
Allowing the Best to be Used

(\)

Partltlon Prlme Impllcants (or minterms)
According to Number of 1's

Check Adjacent Classes for Cube Merging
Building a New List

If Entry in New List Covers Entry in Current List
— Disregard Current List Entry

If Current List = New List
HALT

Else
Current List « New List
New List « NULL
Go To Step 1

for ={my, m; m, m; Ms, Mg, My, My;,
m,s, m;=y => (0,1, 2,3,5,8, 10, 11,
13, 15)

Minterm Cube
0 0O 0 0 O
1 0O 0 0 1
2 0O 0 1 O
8 1 0 0 O
3 0 0 1 1
5 0 1 0 1
10 1 0 1 0
11 1 0 1 1
13 1 1 0 1
15 1 1 1 1

for ={my m; m, m; Ms, Mg, My, My;,
m,;, m,sy =2>(0,1,2,3,5, 8, 10, 11,

13 / 1 5) Minterm Cube
0,1 O 0 O -
Minterm Cube 0,2 0 0 - 0
0 0 00 0fV 0,8 -0 0 O
1 0O 0 0 1|V 1,3 0 0 - 1
2 0 01 0|V 1,5 0 - 0 1
8 1 0 0 0|V 2.3 0 0 e
3 001 1|V 210 |- 0 1 O
5 0101V 810 |1 0 - O
10 1 0 1 0|V 311 -0 1 1
11 1 0 1 1|V 5.13 -1 0 1
3 110 1v 1011 |1 0 1 -
15 1 11 1}V 10,15 |1 i
13,15 1 1 - 1

fon={m, m;, m, ms; Mz, Mg, Mjyy,
m11/ m13/ m15} — Z (OI 1/ 2/ 3/ 5/ 8/
10, 11, 13, 15)

Minterfm Cube
0,1 0 0 0 v :

Minterm Cube 0.2 00 - 0l|v Minterm Cube
0 0 0 0 0V 0.8 - 0 0 0|V 0123 {0 0 - -
1 0 0 0 1(V 1,3 0 0 1| v 08210 |- 0 - 0
2 0 01 0|V 1,5 0O - 0 1 231011|- 0 1 -
8 1 0 0 0|V 2.3 0 0 1 v .

3 B 1) 210 |- 0 1 0|V
5 0 1 0 1|V 810 |1 0 - 0|V
10 1 01 0|V 311 |- 0 1 1|v
11 1 01 1|V 513 |- 1 0 1
13 o 1| v 1011 |1 0 1 - |V
H (1 11 1] 11,05 [1 - 1 1
1315 |1 1 - 1

fon={my m;, my msz Ms, Mg, Mo, Myz;, My3 Mys)y =
>(0,1,2,3,5,8,10, 11, 13, 15)

Minterm Cube Minterm Cube
0 0 0 0 OV 0,1 O 0 0 - ‘\;
1 0 0 0 1|V 8§ 0 8 O 8 v Minterm Cube
2 0 01 0|V 13 10 0 . 1| « | 0123 |0 OSSN
= s 0| 15 |0 - 0 1]|pi=p| 98210 |- 0 - 0PI=C
3 B 1| ’ 231011]- 0 1 -|PI=B
23 |0 o 1 -| v L2310
50 |0 1 0 1|v | 299 |- 01 0| v
10 |1 0 1 0|v | 810 |1 0 - 0] v
R 311 |- 0 1 1| v
13 110 1V 513 |- 1 0 1|PI=E
15 e 1 1|V 1041 |1 0 1 -| V¥
1115 |1 - 1 1| PI=F
1345 |1 1 - 1|PI=G

fon = fA B,C,D,E,F.G} = {00--, -01-, -0-0, 0-01, -101, 1-11, 11-
1}

PIs Along Vertical Axis (in order of # of literals)
Minterms Along Horizontal Axis

0 1 2 3 5 8 10 11 13 15
Al X[X]|X]|X
B X | X X | X
C | X X X | X
D X X
E X X
F X X
G X | X

L

STEP 2 = Finding the Minimum

cover
Extract All Essential Prime Implicants, EPI

EPIs are the PI for which a Single x Appears in a Column

Ql___

O 1 2 3 5 10 11 13 15
A | X | X | X | X :
B x | x 1 x X
T cix] I x| 1T Ixl x1 [[] B
D X X i
E X I X
F ! X X
G i X X
|
|

. Cis an EPI so: for={_C, ...}

o Row C and Columns 0, 2, 8, and 10 can be Eliminated Giving
Reduced Cover Table

o Examine Reduced Table for New EPIs

4
0O 1 2 3 5 8 10 11 13 15
Al x| x| x]|x !
B X | X 'l x| x
e b3 ||t | ki-x4-——F——+-——— F— ——
D X X | |
E X l X
F l X X
G i X X
. = |
*The Row of an EPI is an
1 3 5 11 13 15
’;‘ . - *The Column of the Single x in the
D | x X s a
E X X
F
©

If Row P has x’s Everywhere Row Q Does
Then Q Dominates P if P has fewer x’s

If Column / has x’s Everywhere j Does
Then j Dominates / if i has fewer x’s

If Row P is equal to Row Q and Row Q does not cost more
than Row P, eliminate Row P, or if Row P is dominated by
Row Q and Row Q Does not cost more than Row P, eliminate
Row P

If Column j is equal to Column j, eliminate Column i or if
Column / dominates Column j, eliminate Column /

(/)

™
4 — ~
/ — S -
—

‘Il

(,

Imtlally, Columns 0, 2, 8 and 10 Removed

1 S5

11 13

15

X

X X |W

X

X

X

OMmMOm >

No EPIs are Present
No Row Dominance

EXists

No Column Dominance Exists

This is

Table

Must Solve Exactly OR Use a Heuristic

Logic circuits for digital systems may be
combinational or sequential.

A combinational circuit consists of input
variables, logic gates, and output variables.

S >
. Combinational ;
: ombinationa
1 nputs . moutputs
' cireuit :
—_— >

Block Diagram of Combinational Circuit

— — pr— — — —~ — .

~ —

- S’ = — e’ — - —_— —_ N\

To obtain the output Boolean functions
from a logic diagram, proceed as follows:

Label all gate outputs that are a function of input
variables with arbitrary symbols. Determine the
Boolean functions for each gate output.

Label the gates that are a function of input
variables and previously labeled gates with other
arbitrary symbols. Find the Boolean functions for
these gates.

Repeat the process outlined in step 2 until the
outputs of the circuit are obtained.

By repeated substitution of previously defined
functions, obtain the output Boolean functions in

terms of input variables.

S

Logic [Diagram for Analysis Example

- — —

—~ = NONDON N N D N
I

Table4-2 is a Code-Conversion example,
first, we can list the relation of the BCD and
Excess-3 codes in the truth table.

Table 42

mpaat BCD Outpest Excess- 3 Code

= B8 - D [

For each symbol of the Excess-3 code, we use
1’s to draw the map for simplifying Boolean
function.

[y o) (= o [
A I O O O 1 11 10 A I3 O O O 1 11 10
00 1 1 00 1 1
01 1 1 01 1 1
= =
11 X X X X 11 X X X X7
~A
10 1 X7 X 10 1 X 'y
F o] Vo)
= o o I+ CCT
< I fars) [
A F2 O O O 1 11 10 A L3 O O O 1 11 10
(818 1 1 1 (8]18]
01 1 01 ‘ 1 1 ‘ 1 s
-
11 X X X X 11 X ‘ X X ‘ X7
A
10 1 X X7 10 1 1 X X7
o o
X = B C + B+~ BCTID " A - BC +~ B

Fig. 4-3 Maps for BCID to Excess-3 Code Converter

Fig. 4-4 L.ogic Diagram for BCID to Excess-3 Code Converter

— .
- e — — ~ — < ™ N | e P T i | —

—_— — ~

™
~
— —
e o o N - = e e N o _— e Y = —_— e RN o

A combinational circuit that performs the addition of
two bits is called a
The truth table for the half adder is listed below:

Table 4-3
Half Adder
X C h)
4 S: Sum
0 0 0 0 C: Carry

() I 0]
| 0 0 I

S =Xy + Xy
C = xy

Implementation of Half-Adder

116

0C=m00 ==

Z Z

S=x"yz+x'yz'+xy'z" +xyz §= xy+xz+yz
= xy+xy'z+x'yz

Maps for Full Adder

XYz + XyzZ + Xyz + X
Xy + Xz + yz

Implementation of Full Adder in Sum of Products

Full-adder can also implemented with two
half adders and one OR gate (Carry Look-
Ahe ad adder).
S=z0(xDYy)
= zZ(xy’ + xXy) + z(xy’ + Xy)
= Xy'Z + XyzZ' + Xyz + XYz
C=z(xy + XYy) + Xy = xXy'z + xXyz + xy
> >
D B P

Implementation of Full Adder with Two Half Adders and an OR Gate

Flhary adader
This is also called
Ripple Carry
Adder ,because of
the construction
with full adders
are connected in
cascade.

Subscript it 3 21 0

[nput carry 0O I 1 0 C

Augend UL | I T A

Addend 1 A SR B,

Sum I 1 1 0 S,

Output carry 0 0 1 1 Ci.

By A B, A B A By Ay
I— YR PR I DU YR PN B PR

P
N = - - - — — Nt — e — = —

Fig.4-9 causes a factor on , and
produces a

The signal from C; to the output carry C,, 4,

, So, for an
n-bit RCA, there are gate levels for the carry to
propagate from input to output.

-~ —_ — — -y ~ -

~
- — =
\ ~ \ p— — —
M Mt - — - S — Nt et —_— S h S 9 s
= —

Because the propagation delay will affect the output
sighals on different time, so the signals are given enough
time to get the precise and stable outputs.

The most widely used technique employs the principle of
carry look-ahead to improve the speed of the algorithm.

A; ‘]\}_“\ P;
e

B . 5

Full Adder with P and G Shown

3\
)

JU

P, = A @ B, steady state value
G, = AB, steady state value
Output sum and carry
S;=P & C
Ci1 = G + PG
G, : carry generate P, : carry propagate
Co = input carry
C, = Gy + PG
C, =Gy + P,Cy =Gy + P;Gy + P{P,Cy
C =G, +P,C, =G, + P,G; + P,P,Gy + P,P{P,Cy

C5 does not have to wait for C, and C; to
propagate.

e
D T >

Logic Diagram of Carry Lookahead Generator

L2

Carry
ook ahead
moeneratonr

Aodder with Carry Lookahead

| |

S> 5y

4-Bit Adder Subtractor

I

— —~

\ ~ A
N N U UN OO

It is worth noting in above figure that binary
numbers in the signed-complement system are
added and subtracted by the same basic addition
and subtraction rules as unsigned numbers.

Overflow is a problem in digital computers
because the number of bits that hold the number
Is finite and a result that contains n+1 bits cannot
be accommodated.

~

—~ S — — — P — — ~ — — — — - — -~ — —~ ~
— — — - ~— —
N — L | - = S 2 —_— OO _—) N a N e e O O N e o O Qe) N — D Mt

When two unsignéd numbers are added, an
overflow is detected from the end carry out of the
MSB position.

When two signed numbers are added, the sign bit
Is treated as part of the number and the end
carry does not indicate an overflow.

An overflow can't occur after an addition if one
number is positive and the other is negative.

An overflow may occur if the two numbers added
are both positive or both negative.

Derivation of BCD Adder

BCD Sum

Binary Sum

Zs

S2

Sa

Z

Z2

Za

C=AMmtnenNnXQ

OQ=QO=QO=O=Q0m=

CO=mQO==00

CO00==m=0CO

COCOCOCO ==

cCoCcCCCCOo

-l

CO==QO==0Q0

CCCO ====0C0

CCCOCCOC ==

CCCQOCOCCCCC

CC==CC==CPOC

COO00=m=mmm=QQO

CCCOCCOCC ==

C=Q0=QOmQO=QOm=

CO====0CCPO

CO0C0O0CO0 === m

— P —
~ - —~ 4 = p — o~ P

— N — —

S R R S S S S SR

When the binary sum is greater than 1001, we
obtain a non-valid BCD representation.

The addition of binary 6(0110) to the binary sum
converts it to the correct BCD representation and
also produces an output carry as required.

To distinguish them from binary 1000 and 1001,
which also have a 1 in position Zg, we specify further
that either Z, or Z, must have a 1.

C — K + 2824 + ZSZZ

lhnplemencacion or 5C0D aadaer
Addend Augend
A decimal parallel ANRENNEE
adder that adds n (“ll'I:" - K 4- bit binary adder - (‘ii':-y
decimal digits
needs n BCD -
Oulput /”“7 FC

adder stages. carry] L

The output carry

from one stage . I” |
must be T
connected to the T
input carry of the
next higher-order Block Diagram of BCD Adder

stage.

—

HA

y

Cy Co

2-Bit by 2-Bit Binary Multiplier

- — - -
/ ,-\ -~ - —_ ‘\ / < ~ " - -~ — -— e ~ ™ T~ ~ —_
) |\ - — \

—

—~
g e el N —-./l\“," — o o O 4 A B A B) S L S T SO) S I S S

For J multiplier bits

a!qd K multiplicand UUUU
bits we need (J X K)
AND gates and (J — 1) UL{J L’ S
K-bit adders to
produce a product of

J+K bits.
JUUU
K=4 and J=3, we Kadend Augend

4-hit adder

need 12 AND gates
and two 4-bit adders.

4-Bit by 3-Bit Binary Multiplier

for i

(A = B) = X3X2X1Xg

4-Bit Magnitude Comparator

We =1, PN
1If A G
equal, we compare the next T)—
lower significant pair of digits '\/@ D s
until a pair of unequal digits is < —U) 1
reached. =Y w<
: - "**“—DLD) =
If the corresponding digit of A Lo ‘
is 1 and that of B is 0, we =D
conclude that A>B. . H -
\\{;’? D{ { :DM - 1)
(A> B)= B ./_/DQ:D »—D —
A3B’3+X3A28’2+X3X2A1B’1+X3X2X1
AyB’g =) e

(A<B)=
A’3Bs+X3A5B5+X3X,A B +X3X5X4
A'oBg

4-Bit Ma

gnitude Comparator

The decoder is called n-to-m-line decoder,
where m<2".

the decoder is also used in conjunction
with other code converters such as a
BCD-to-seven segment decoder.

3-to-8 line decoder: For each possible
input combination, there are seven

outputs that are equal to 0 and only one
that is equal to 1.

_— s = e = = = —

S S S ES S S —

o e T A e e— e a—
EE T S S e— s
T S S e— S S e

_-— — D S D S e =

— TR S S S e e 0

I bl of o 0+ Lie Do

3to-8-Line Decoder

138

— ~ " -

~
_/‘\._4_‘_/\,/_'p_ ______ -_— B O Y O = B = Y e

Some decoders are constructed with NAND gates, it
becomes more economical to generate the decoder
minterms in their complemented form.

As indicated by the truth table , only one output can be
equal to 0O at any given time, all other outputs are
equal to 1.

Jo— Dy,
I 1 H Dy Iy e 4
T i)
+ : [XX [| 1 [
A D(, 0 0o 0 o1 1 [
T - 0 0 1 I 0 1 I
- + k-l Il Ll 1 (A] 1 1 (A} 1
I ‘[[:>_:_] T 0 1 1 I I 1 {1
- }..l' £z

(a) Logic diagram {by Truth table

2-to-d-Line Decoder with Enahle |I:'l-|"il1

™ -
./.,__-_/_____ NS

A decoder with an enable input is referred to
as a decoder/demultiplexer.

The truth table of demultiplexer is the same

with decoder. 5 T
DO
E > - D1
Demultiplexer [p>
D3

3 = 8
decoder

-

3 =< 8
decoder

yo

4 > 16 Decoder Constructed with Two 3 < 8 Decoders

141

—

=S U kR W N = QO

Implementation of a Full Adder with a Decoder

P
LT all a T ==

\ je— S
e U NN/ O\ O O/

An encoder is the inverse operation of a decoder.

We can derive the Boolean functions by table 4-7
z=D;+ D3+ Ds+ Dy
y = D, + D5+ Dg + Dy
X = Dy + Ds + Dg + D5

Truth Table of Octal-to-Binary Encoder

Inputs Outputs

D, D, D, D, D, D. D, D, X y :
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 | 1 0 |
0 0 0 0 0 0 1 0 1 | 0
0 0 0 0 0 0 0 | 1 1 1

If two inputs are active simultaneously, the output
produces an undefined combination. We can establish
an input priority to ensure that only one input is
encoded.

Another ambiguity in the octal-to-binary encoder is
that an output with all 0’s is generated when all the
inputs are 0; the output is the same as when Dy is
equal to 1.

The discrepancy tables on Table 4-7 and Table 4-8
can resolve aforesaid condition by providing one more
output to indicate that at least one input is equal to 1.

V=0->no valid inputs

V=1->valid inputs

X’s in output columns
represent

don’t-care conditions

X’s in the input columns are

useful for representing a
truth

table in condensed form.
Instead of listing all 16
minterms of four variables.

Truth Tobl of a Pronty Encoder

LR

Inputs

—— D — —

Dy
y=D3+ DD

Maps for a Priority Encoder

1

4-Input Priority Encoder

O
D

’_[:>°_ s

(a) Logic diagram (b) Block diagram

2-to-1-Line Multiplexer

() Function table

PaN

(n) Logic dingram

d-tor-1-Line Multiplexer

148

Function table

=

&

Cutput ¥

1
4]
]

AT
b
1

all O '=s
serleot A
sclect /2

T e

(=clect)

Fin
fcmable)

oo

Ouadruple 2-to-1-Line Multiplexer

z) = %(1,2,6,7)

el R =l = = R =]
- o ol= =|c o«
HQ-IQ-QHQN
- =o ole =~ oy

(a) Truth table (b)) Multiplexer implementation

Implementing a Boolean Function with a Multiplexer

#
-]
b
—
X
o0
= |
o D = o N D
[
U &< o) = —
QlQ|ale|le|l Q]]|~
Il] Il I Il I I I
C R Lz, C L LS L =
L OO OO0 OO OO |
O o-oc—~oc—~oS—=0—~2~2—
O oo~ —-ogc~—~loco—~—~oo
0 (OO0 OO0 =m0 OO0 O|—= —
< |colocloolo o= = ==~

Implementing a 4-Input Function with a Multiplexer

A process with 5 steps
Specification
Formulation
Optimization
Technology mapping
Verification

1st three steps and last best illustrated by
example

o~ ~ - < — ~ -

Fundamental circuits that are the base
building blocks of most larger digital

circuits
They are reusable and are common to

many systems.
Examples of functional logic circuits
Decoders
Encoders
Code converters

Multiplexers

- —

~

— ~
— bt b b D _— e = S M S

Multiplexers
Selectors for routing data to the processor,
memory, I/0

Multiplexers route the data to the correct bus
or port.

Decoders

are used for selecting things like a bank of
memory and then the address within the bank.
This is also the function needed to ‘decode’ the
instruction to determine the operation to
perform.

Encoders

are used in various components such as
keyboards.

BCD is a code for the decimal digits 0-9

Excess-3 is also a code for the decimal
d I g ItS Decimal Input QOutput

Digit BCD Excess-3

W <] N b Wk O
| o R e Y e N e R B o R Y
oo FHER KB OO Qo
copMHEPRPrROoODOoOHKEOO
HokrOoORKRoODHoOKHEO
= EEEEO O OO D
Ho oo oKk HEHKHEHKBEODO
L= = = = =
o OoORFRPOoORLROoOKHEHOoOK

Inputs: a BCD input, A,B,C,D with A as
the most significant bit and D as the least
significant bit.

Outputs: an Excess-3 output W,X,Y,Z that
corresponds to the BCD input.

Internal operation — circuit to do the
conversion in combinational logic.

Excess-3 code is easily formed by adding
a binary 3 to the binary or BCD for the
digit.

There are 16 possible inputs for both BCD
and Excess-3.

It can be assumed that only valid BCD
inputs will appear so the six combinations
not used can be treated as don’t cares.

~ — — - ™ ~ ™ p— e
UM ZarIon = |& =rO=FPWEREE=5"
EEI I R O T R Y Ny N N R IACNTIN D S

Lay out K-maps for each output, W XY Z

K-map for W K-map for X K-map for Y K-map for Z
C C C C C C
A\D | C A\D , C
00 01 11 10 A\ D l— N w o 1 10 A\ D
B s\ W o 1 10 B g\ 0o 110
00 oof ! '
00 [B 0o] ! 1

01 NI B 01 1 I
B 01] 1 B 01] ! 1
I x | X | X |X " B 1} x | X X | X y B
AL 0 XXX A[x| x| x |x
10 x| x 101 1 X | x

A step in the digital circuit design process.

- ™ -— ~ -~

A = - e

- ~ - ~ - ~ -
-

St -_— = = = = S S T P e
—

Where are the Minterms located on a K-
Map?

CD | |
AH\ 00 01 11 10
00 My my m; msy

01 my s my mg —

11 M3 M3 mys M4

J.llt
Mg My My My
10

W(A,B,C,D) = 3m(5,6,7,8,9)
+d(10,11,12,13,14,15)
X(A,B,C,D) = 5m(1,2,3,4,9)
+d(10,11,12,13,14,15)
Y(A,B,C,D) = 3m(0,3,4,7,8)
+d(10,11,12,13,14,15)
Z(A,B,C,D) = 5m(0,2,4,6,8)
+d(10,11,12,13,14,15)

K-map for W
C C

g\ﬂ 00 01 11 13

00

01

ll}/
e

10

A

d W=A+ BC +

X minimization

Find X =BC'D'+B'C+B’D

K-map for X

A D [
AN 00 Jor ki 10,
) II 'I
00 a | W] J_Lf)

o1 Ay
|

A
|7 10 I'f ;':b"“: [
|

\\ A - - - _ / ~ \\ 4 —
\ e —_ - —
= R DD = \ - — Nt ~

Y minimization
Find Y =CD + C'D’

K-map for W

« -
- LB I
;\ o0 01 11 Lo
oo /3 /2
[1 ' I'
01) | I b | |
| " | -,

11
| J |
1|7 1o 4 “-.{_/a" ~

Z minimization

Find Z =D’

K —muapy for A

P
. | |
“ATN— 0O o1 11
=

“)

01 "R

11 ~ ~ -~
e
190 1 ™~

— P — —~
4 T~ M
) = S — — — e — — — R

e e e — N — — —_— e = — N et -2 B A 1 B B e NN IN/N N

Specification
Digital readouts on many digital products often
use LED seven-segment displays.
Each digit is created by lighting the appropriate
segments. The segments are labeled
a,b,c,d,e,f,g
The decoder takes a BCD input and outputs the
correct code for the seven-segment display.

Input: A 4-bit binary value that is a BCD
coded input.
Outputs: 7 bits, a through g for each of
the segments of the display.
Operation: Decode the input to activate
the correct segments. ‘

f[|]h

bt |
—
—
—
d

Decoder Outputs

abedeflg

Seven-Segment

Input

BCD

Decimal

Digit

1111110
0110000
1101101
1111001

0000
0001
0010

0011

(=
oo
oo

1011111
1110000
1111111
1111011
0o000DO0DO0CQO

0110
0111
1000
1001

9

All other inputs

Create a K-map for each output and get
A = A'C+A'BD+B'C’'D'+AB’C’
B = AB+A'C'D'+A'CD+AB'C’
C = AB+AD+B'C'D'+AB'C’
D = ACD'+A'B'C+B'C'D'+AB'C'+A'BC'D
E = ACD’+B'C'D’
F = ABC'+A'C'D'+A’'BD’+AB'C’
G = ACD’+A'B'C+A'BC’+AB'C’

Ciraphic Symbal for a Three-State Buffer

Y
v Ly

(o) 2-to-1- iR s

Output ¥ = Aif € = |
High-impedance if C =

fa

Iy

2 x4

—
—
§ g

£
:
WOk o= D

by - ne - 1 line mux

Multiplexers with Threc-S5tate Cinles

—

- -~ ~ L N e N el —~ - —

— -~
—d — ~— — — — p—
- o S _— e N BN — — — S

Gates statement: gate name(output, input, control)

> >

A = OUT when control = 1, OUT = z when control = 0;
> >

Y = B’ when enable = 0, Y = z when enable = 1;

in r];““‘*‘- ot in h‘l,.r
control control

bufirl bufircy

in %C ot in %‘C
control control

1atifl o tifcy

Timing Hazards

— — -~ — L — . —
— / ~ —

_______ St — = Nt — N’ - —

In a real logic circuit there is a delay in an input
change to the corresponding output change.

Because of circuit delays, the transient behavior
of a logic circuit may differ from what is
predicted by a steady-state analysis.

In particular, a circuit’s output may produce a
short pulse, often called a glitch.

A hazard is said to exist when a circuit has the
possibility of producing such a glitch.

—~ o ey — SUE —
/ ~
—] - — D — N S e

——

Whether or not the glitch actually occurs
depends on the exact delays and other
electrical characteristics of the circuit.

Since such parameters are difficult to
control in production circuits, a logic
designher must be prepared to eliminate
hazards.
Two kinds of hazards:

Static, and

Dynamic

L S —
-y —_~ —

\\‘-r‘ _ ™

RS L I B] — = = e e e =

/) —

A static -1 hazard is the possibility of a

circuit’s output producing a 0 glitch when
we would expect the output to remain at
a nice steady 1 based on a static analysis.

A static -1 hazard is a pair of input
combinations that:

a) differ in only one input variable and

b) both give a 1 output;

such that it is possible for a momentary O
output to occur during a transition in the
differing input variable.

r0r-r0rQ0r-r0rQ

P

e LT — —
\\ — _ ™ -
S—

— —
L VR W) S N’ — = S ' N’ ' Mt

A static -0 hazard is the possibility of a

circuit’s output producing a 1 glitch when
we would expect the output to remain at
a hice steady 0 based on a static analysis.

A static -0 hazard is a pair of input
combinations that:

a) differ in only one input variable and

b) both give a 0 output;

such that it is possible for a momentary 1
output to occur during a transition in the
differing input variable.

ji

Copyright ©2000 by Prenti

Ninital Nacian Prinainlas and |

) X
XY —
Z\ 00 01 11 10
0 1
1 /.l1 :|Z

Y.z/ITI

(a

F=XZ +YZ F=XZ +Y:Z+ XY

The extra product term is the
consensus of the two original terms.

In general, we must add consensus
terms to eliminate hazards.

F=XY"Z+W'Z+ WY

F=XY'Z+W-Z+WY
+ W XY +Y'Z+WXZ

A dynamic hazard is the possibility of an
output changing more than once as the
result of a single input transition.

Multiple output transitions can occur if
there are multiple paths with different
delays from the changing input to the
changing output.

O« <0

I« O« T

O« I
==

X 2

Only a few situations, such as the design of
feedback sequential circuits, require hazard-free
combinational circuits.

If cost is not a problem, then a to obtain a
hazard-free realization is to use the complete
sum - the sum of all prime implicants.

In a synchronous system, all of the inputs to a
combinational circuit are changed at a particular
time, and the outputs are not “looked at” until
they have had time to settle to a steady-state
value.

D —
—

—

Sequential machines—
fundamentals

In this chapter you will learn about:
Logic circuits that can store information
Flip-flops, which store a single bit
Registers, which store multiple bits
Shift registers, which shift the contents of a
register
Counters of various types

Sensor

Set

Reset

Memory
element

Alarm turned on when On/Off = 1
Alarm turned off when On/Off = 0

Once triggered, alarm stays on until manually reset
The circuit requires a memory element

. Alarm

Basic latch is a feedback connection of
two NOR gates or two NAND gates

It can store one bit of information

It can be set to 1 using the S input and
reset to 0 using the R input.

A feedback loop with even number of
Inverters

IfA=0, B=1orwhenA=1,B=0
This circuit is not useful due to the lack of
a mechanism for changing its state

Gated latch is a basic latch that includes input
gating and a control signal

The latch retains its existing state when the
control input is equal to O

Its state may be changed when the control signal
Is equal to 1. In our discussion we referred to
the control input as the clock

We consider two types of gated latches:

Gated SR latch uses the S and R inputs to set the latch
to 1 or reset it to O, respectively.

Gated D latch uses the D input to force the latch into a
state that has the same logic value as the D input.

= 7_\\ =" 1k = = 0r + 1%
—J =2] = = 20y {ino changs)
1 O e el ino change)
—lk I 1 o 1 o
. 1 1 o 1
™y =2 1 1 1 =
2 — S =
{a)y Circuit {2y Characteristic tabla
1
[y N
]
1
=~ ! | | 1 | L
1
<! | ! L1
1 - — -
o >
O -_——
_ 1 - — -
2 7
D ——

{c)y Timiing diagrarmm

= -
Tk
R 2

() Sraphical syirmbaol

—

=
(IDatad) 2
Clk
Q
R
(=) Circuit
Clk I QCr+ 1 o Q
O = Q)
1 L] O i Y
1 1 1 <L
(b)) Characteristic table (c) Graphical symbol
r, £ g £
Clis 1 1 |1 I
D | | | | 1 I I
Q | I

—_— e Time
() Timing diagram

Setup Time tg,

The minimum time that the input signal must be stable
prior to the edge of the clock signal.

Hold Time t,

The minimum time that the input signal must be stable
after the edge of the clock signal.

g T lsu

Clk

A flip-flop is a storage element based on
the gated latch principle

It can have its output state changed only
on the edge of the controlling clock signal

— ~ = —
— — —

We consider two types:

Edge-triggered flip-flop is affected only by
the input values present when the active edge
of the clock occurs

Master-slave flip-flop is built with two gated
latches

The master stage is active during half of the clock
cycle, and the slave stage is active during the
other half.

The output value of the flip-flop changes on the
edge of the clock that activates the transfer into
the slave stage.

—Qlava

O
D Q < b Q
Clock—|> Clk O Ck O

o

(a) Circuit

(b) Timing diagram

(c) Graphical symbol

Graphical symbol

D
-

D

—

(a) Circuit

L | I
I

(b) Timing diagram

Comparison of Level-Sensitive and
Edge-Triggered D Storage Elements

—

-
Vv

9]

3

Clock
(a) Circuit
T a1 —17 alb—
0 Q) —
1 Qi 1) — ¥ Ql—

(b) Characteristic table (c) Graphical symbol

Clock

r I T [I | | -

Q

(d) Timing diagram /

e D - °
Clock
(a) Circuit
J K|1Q((t+1)
0 0 Q (1) —17 Ql—
0O 1 0
1 O 1 - —
— 1K I
1 1| Qo =2

(b) Characteristic table (c) Graphical symbol

Ql

SR flip-flop (Set,
Reset)

T flip-flop (Toggle)
D flip-flop (Delay)

JK flip-flop

0->0
0->1
1->0
1->1

Previous State -> Present
State

Previous State -> Present State

0->0
0->1
1->0
1->1

X O = O
O ~r O X

0
1
1
0

__ Previous State -> PresentState | D
0->0
0->1
1->0
1->1

Previous State -> Present
State

0->0
0->1
1->0
1->1

0->0

0->1

1->0

1->1

X|lo|l—~|O]|] O

O|lmr|O|X]| &~

0->0

0->1

1->0

1->1

o|lr|~|]lO]| H

Timing Diagrams

CLK

CLK

-_— e e .

D
0->0 0
0->1 1
1->0 0
1->1 1

] K
0->0 0 X
0->1 1 X
1->0 X 1
1->1 X 0

CLK

~

—~ -

|2
)
)
)
)
)
)
)
)
)

Method: to realize a type A flipflop using a type B flipflop:

1. Start with the K-map or state-table for the A-flipflop.
2. Express B-flipflop inputs as a function of the inputs and present state of
A-flipflop such that the required state transitions of A-flipflop are reallized.

| L g N
X Q t Ev=1. -
y O— H —CL,)—1y O—
Type B Type A

1. Find Q* = f(g,h,Q) for type A (using type A state-table)

2. Compute x = f1(g,h,Q) and y=f2(g,h,Q) to realize Q%.

Example: Use JK-FF to realize D-FF
1) Start transition table for D-FF
2) Create K-maps to express J and K as functions of inputs (D, Q)

3) Fill in K-maps with appropriate values for J and K -
to cause the same state transition as in the D-FF transition table

D of 31 k Qo |RsS|Jk|T|D
o ST
N
1 1! X 0

State-Table QD 0o 1 QD 1
sv.r?énD=Q=0, then Q+=0 ol o [[T]| O of[X]| x

the same transition Q-->Q*
is realize with J=0, K=X 11 X [|X 111

Example: Implement JK-FF using a D-FF

s | O Q+ D T
0 0|0 0 0 9
0 1 1 0 0 1
I |1 0 0 ;
J
JK] JK
ON00 01731 10" QN\QQ 01 i1 10
olo| O |11 00| O _ 1] 1
1o |o]|L of1]1fo
K K
BSIE + Ka t=jQ + kg

K—O

W

DFF

Clk

Clk

T-FF

~ =t V/ OO0 00 0 O\ o & ____~/’~¢___/ -
PRESET and CLEAR: i 2 o
asynchronous, level-sensitive inputs
used to initialize a flipflop. P
CLEAR
PRESET, CLEAR: active low inputs
PRESET =0-->Q =1 o
CLEAR=0 -->Q=0 %_“
~) Ok o
LogicWorks Simulation H Cr
-—Gl[N
o CLR
: B

Counters are a specific type of

sequential circuit. — ﬁ

Like registers, the state, or the
flip-flop values themselves,
serves as the “output.”

The output value increases by
one on each clock cycle.

After the largest value, the output
“wraps around” back to 0.

Using two bits, we’d get
something like this:

Present State | Next State
A B A B

— = O O
— O - O
O~ ¥~ 0
O~ O -

—_— N —_— = = N e =

(4

Counters can act as simple clocks to keep track of “time.’
You may need to record how many times something has

happened.

How many bits have been sent or received?
How many steps have been performed in some computation?

All processors contain a program counter, or PC.
Programs consist of a list of instructions that are to be executed

one after another (for the most part).
The PC keeps track of the instruction currently being executed.

The PC increments once on each clock cycle, and the next
program instruction is then executed.

Let’s try to design a slightly different two-bit counter:
Again, the counter outputs will be 00, 01, 10 and 11.

Now, there is a single input, X. When X=0, the counter value should
increment on each clock cycle. But when X=1, the value should
decrement on successive cycles.

We'll need two flip-flops aiain. Here are the four possible states:

©
(W

® Here's the complete state diagram and state table for this circuit.

0 Present State | Inputs | Next State
o) @ Q@ @ | x |a &
1 N\ 0 0 1

= == =0 00
_ = 0O O0O|—w OO0
_ OO\~ O|—~ O
_ OO —» O |~
OO —O O

If we use D flip-flops, then the D inputs will just be the same as the
desired next states.

Equations for the D flip-flop inputs are shown at the right.

Why does make sense?
Qo

Present State | Inputs | Next State O|1[O0|1

Q1 Qo X Qi Qo Q| 1|Oo0|1]O0

0) 0 o) o) 1 X

0) 0 1 1 1

o) 1 0) 1 0) D;=Q;® Qy ® X

0) 1 1 0] 0) Qo

1 0] o) 1 1 111]101l0

1 0 1 0 1 Q| 1 11olo0

1 1 0 0 o) X

1 1 1 1 o)

Here are some D Flip Flop
devices from LogicWorks.

They have both normal and
complemented outputs, so we
can access QO’ directly without
using an inverter. (Q1’is not
needed in this example.)

This circuit counts normally
when Reset = 1. But when
Reset is 0, the flip-flop outputs
are cleared to 00 immediately.

There is no three-input XOR
gate in LogicWorks so we've
used a four-input version
instead, with one of the inputs
connected to 0.

D_

— N Nt | D N

+5\/
AN
X] J)
Q1 : ;
QU? D S 'CI!—C:!1 0
0- ——|Cp Q&—
[
|
+5\/
1
—|CR Qe—Q0"
]
* Reset

— - — ~ P - -

. o e

~—

S — — — - = — — — ~ — — — —

Q) Q)| J K

If we use JK flip-flops instead, then we have to 0 0 0 x

compute the JK inputs for each flip-flop. 0 1 1 x

Look at the present and desired next state, and 1 0 x

use the excitation table on the right. 1 1 x 0

Present State | Inputs | Next State Flip flop inputs

Q; Qo X Q Qo J1 Ki Jo Ko
o) o) o) o) 1 0 X 1 X
0 0 1 1 1 1 X 1 X
o) 1 0) 1 0 1 X X 1
o) 1 1 o) 0 o) X X 1
1 0 0] 1 1 X 0 1 X
1 0 1 0 1 X 1 1 X
1 1 o) 0 0] X 1 X 1
1 1 1 1 0 X 0 X 1

Present State | Inputs | Next State Flip flop inputs
Q1 Qo X Q Qo J1 K Jo Ko
0) o) o) 0) 1 o) X 1 X
o) o) 1 1 1 1 X 1 X
0) 1 o) 1 0) 1 X X 1
0) 1 1 0) o) o) X X 1
1 0 0 1 1 X 0 1 X
1 0) 1 0) 1 X 1 1 X
1 1 0 0] 0 X 1 X 1
1 1 1 1 0) X o) X 1

We can then find equations for all four flip-flop inputs, in terms of the present state
and inputs. Here, it turns out J; = K; and J; = K,.

Jl - Kl - Q0’X+ Qoxl

JO - KO - 1

o

-
— ~ e
I NE COUNEEr i LO0IC WOrKs a@albm

- ~ ~ o~ P N - - ~ —~ —~ \ A ~ ‘__‘ —

- X
Here is the counter again, but 0~ anj } I

using JK Flip Flop n.i. RS devices
instead. 'ﬁ
The direct inputs R and S are
non-inverted, or active-high.

So this version of the circuit +5V
counts normally when Reset = 0,

D_

RO

—

P>
o[—I

but initializes to 00 when Reset is —
1.

O
QO

|9

0 - * Reset

e This counter is called
asynchronous because not
all flip flops are hooked to
the same clock.

e Look at the waveform of
the output, Q, in the timing
diagram. It resembles a
clock as well. If the period of
the clock is T, then what is
the period of Q, the output
of the flip flop? It's 2T!

e We have a way to create a
clock that runs twice as slow.
We feed the clock intoa T
flip flop, where T is
hardwired to 1. The output Q’
will be a clock who's period

is twice as long.

CLK

i

Q == Q0 = Q =

has period T. QO has
. Q1 period is 4T
ip flops the period is 2".

egisters,Counters,State Redu

- - — — —, ~ - =~ - — —
- - S \
— b’ N D S - e e —_— = = N N =
- R - -
~ o~ - -~ . — P — —
~—
T S’ W o o N S = i S ! el et - - - = P
— -

e This is called as a ripple
counter due to the way the FFs
respond one after another in a

kind of rippling effect.

1
CLK |

DI;Illl'l‘l
1—— T

Xp 00 @ P o0 to |4
O
1——— — T

X, oy 6 f 1 8 | 61 0 | A

B e e e S

1|| IEIII

Xo ol 1 | o | n | 0| 1] ¢
0 ;

-~ - ~
- o’ g S S
P
- — - —

1 —=T Q—= X>»
— - Q’

1 —T © X 1
— - Q’

1 —T ©Q X,
CLK | —»={>

~ — —~ - ~ — 1 =

L]

—

To eliminate the "ripple" effects, use a common clock for
each flip-flop and a combinational circuit to generate

the next state.
For an up-counter,
use an incrementer =>
Incre-
A3mente§3 D3 Q3[
A2 S2 D2 Q2
Al S1 D1 Q1
AO S0 DO QO }——

Clock >

Internal details =>

Internal Logic Incrementer —,

XOR complements each ®itnt enable EN

AND chain causes complement
of a bit if all bits toward LSB
from it equal 1

Count Enable

Forces all outputs of AND

chain to 0 to “hold” the state
Carry Out

Added as part of incrementer

Connect to Count Enable of

additional 4-bit counters to

form larger counters
Clock

S o
ol
Y > 15
O -
> 15
i ~°
________ e >

{(a) Logic Diagram-Serial Gating

Qg

Q3

Carry
output CO

(/)
(S

Use the sequential logic model to design a synchronous
BCD counter with D flip-flops

State Table => Current State Next State
Input combinations | Q8Q40Q20Q1 | Q830Q4Q2Q1
1010 through 1111 00020 00 01
are don't cares 0 Q0 Q] 0 010
0010 001 1
0011 010020
01 020 01 01
0101 01 10
01 1 Q 0. 1
01 1 1 1 0020
1 0020 1 001
1 0 0 1 00 0Q

~ - o Y \
~— — — . o - 7 - - \

- ~
— 2 A 1 B B - P P N —— — —-_— = -_— e A A 12 B A B L

Use K-Maps tentwo-level optimize the next state equations and manipulate
into forms cgriaining XOR gates:
D1 = Q'

D2 = Q2 + Q1Q8’
D4 = Q4 + Q1Q2
D8 = Q8 + (Q1Q8 + Q1Q2Q4)

Y = Q1QS8
The logic diagram can be drawn from these equations
An asynchronous or synchronous reset should be added

What happens if the counter is perturbed by a power disturbance or other
interference and it enters a state other than 0000 through 10017

. - ~ | ~ . - [\
- ~ — —_ L~ - ~ —_— “ =l N Y ~ 7~

\‘\ y ey - E T |

— -2 A 41 B B -— T W N e e’ e - e ¥ y S99 S N N o

Find the éctual values of the six next states for the d‘on’t care combinations -
from the equations

Find the overall state diagram to assess behavior for the don't care states
(states in decimal)

Present State Next State
Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1
1 010 1 0 11
1 0 1 1 O 110
11 00 1 1 0 1
a0 1 01 0O
1 110 1 111
e 1 1 O 010

- ~ — - -
D ~— —

For the BCD counter design, if an
invalid state is entered, return to a valid
state occurs within two clock cycles

Is this adequate?!

0 TABLE 7-10
State Table and Flip-Flop Inputs for Counter

Present
State Next State

DA = DB = DC=
A(t+1)B(t+1)C(t+1)

~
S— — —

The examples shown so far have all had 2" states, and used n flip-flops.
But sometimes you may have unused, leftover states.

For example, here is a state table and diagram for a counter that
repeatedly counts from 0 (000) to 5 (101).

What should we put in the table for the two unused states?

Present State Next State @
Q: Q Q| QR Q Qo

0] 0 0) 0) 0) 1

0 0 1 0) 1 0) @ @
0] 1 0) 0) 1 1

0 1 1 1 0) 0)

1 0 0) 1 0 1

1 0 1 0) 0) 0] @ @
1 1 0] ? ? ?

1 1 1 ? ? ? @

To get the simplest possible circuit, you can fill in don’t cares for the next
states. This will also result in don’t cares for the flip-flop inputs, which can

R e [le o lo o

Present State Next State
Q QU Q|QRQR QU Qo
Wth. 0 0 [0 o 1

0) 0) 1 0 1 0

0) 1 0) 0 1 1

0) 1 1 1 0 0

1 0 0) 1 0 1

1 0 1 0 0 0

1 1 0 X X X

1 1 1 X X X

n one of the unused states (110 or 111),
tly what the don’t care filled in

~ — -~ ™ -

-_ —
- —
—t

~ —
et N — o S N N’ Nt S

) e b S’

To get the safest possible circuit, you can explicitly fill in next states for
the unused states 110 and 111.

This guarantees that even if the circuit somehow enters an unused state,

it will eventually end up in a valid state.
This is called a self-starting counter. @ @
0 (100 (00p

Present State Next State @
Q QU Q| Q Q Qo

0 0

—_ === O 0 OO0
O OO~~~ 0O OO

0 1
1 0
1 1
0 0
0 1
1 0
1 1

O OO OO0 — I,
O OO+~ O~ O

—~ —~ — I\ —~ - — — —~ a O —

— S e = N — — —_— = » NS N e A B B A 1 S

e

There are a couple of different counters
available in LogicWorks.
The simplest one, the Counter-4 Min, just

increments once on each clock cycle.

This is a four-bit counter, with values ranging
from 0000 to 1111.

The only “input” is the clock signal.

Q3
Q2
Q1
— CLK QO

More complex counters are also possible. The full-featured LogicWorks

Counter-4 device below has several functions.

It can increment or decrement, by setting the UP input to 1 or O.
You can immediately (asynchronously) clear the counter to 0000 by

setting CLR = 1.

You can specify the counter’s next output by setting D;-D, to any four-

bit value and clearing LD.
The active-low EN input enables or disables the counter.

- When the counter is disabled, it continues to output the same value

without incrementing, decrementing, loading, or clearing.
The “counter out” CO is normally 1, but becomes 0
when the counter reaches its maximum value, 1111.

b4

CLK
UP
CLR

D3
D2
D1
DO

LD
EN

CQ

Q3
Q2
1
Q0

I

P - - —~ ~

As you might expect by now, we
can use these general counters
to build other counters.

Here is an 8-bit counter made
from two 4-bit counters.

The bottom device represents the
least significant four bits, while the
top counter represents the most
significant four bits.

When the bottom counter reaches

1111 (i.e., when CO = 0), it enables

the top counter for one cycle.
Other implementation notes:

The counters share clock and clear
signals.

~
~
= == O N — = N e D DN

IIIII T

Lk
P Oy
CLR

03 03

02 o

o1 m

oo Qo
LD

=

i-—

I:I_

II}—JMLIIII I

CLKk
P COf
CLR

03 3

o2 o2

o1 m

oo Qo

LD
EN

We can also make a counter that “starts” at some value besides 0000.

In the diagram below, when CO=0 the LD signal forces the next state to
be loaded from D5-D,.

The result is this counter wraps from 1111 to 0110 (instead of 0000).

L
CLK

-
o UP CQ
CLR
0— D3 Q3
1— D2 Q2 6
1— D1 Qf
0O— Do QO *
—a| LD
—C EN

We can also make a circuit that counts up to only 1100, instead of 1111.

Here, when the counter value reaches 1100, the NAND gate forces the
counter to load, so the next state becomes 0000.

I
- _LCLI(
OJ———-UP CcO—
CLR
0— D3 Q3—*
0— D2 Q2 +
0— D1 Qf *
0— D0 QO
—o[LD i
+——CEN

Counters serve many purposes in sequential

logic design.
There are lots of variations on the basic
counter. . 1

7

CH

Some can increment or decrement.
An enable signal can be added.
The counter’s value may be explicitly set.

There are also several ways to make ;

counters.

You can follow the sequential design principles to
build counters from scratch.

You could also modify or combine existing counter
devices.

Sequential Ci
De

Creating a sequential circuit to address a design need.

o
\\ ~ — ~ _— —_— —~ = — p—

—
e e N | N’ e’ = 2 N = N o

Steps in the design process for sequential
circuits

State Diagrams and State Tables
Examples

L - ~ = - - - - -~
S — — o

— e Nt —_—l e o BT NC - _— = =

~ — ~ PO — P W ~ - —~

— — — S Sy

Steps in Design of a Sequential Circuit

1. Specification — A description of the sequential
circuit. Should include a detailing of the inputs, the
outputs, and the operation. Possibly assumes that
you have knowledge of digital system basics.

2. Formulation: Generate a state diagram and/or a
state table from the statement of the problem.

3. State Assighment: From a state table assign
binary codes to the states.

4. Flip-flop Input Equation Generation: Select the
type of flip-flop for the circuit and generate the
needed input for the required state transitions

P U — — - —
- P ’ -~ ~ ™ - -

o s N
Y B Nl B & - N AN N v v

5. Output Equation Generation: Derive output
logic equations for generation of the output
from the inputs and current state.

6. Optimization: Optimize the input and output
equations. Today, CAD systems are typically
used for this in real systems.

/. Technology Mapping: Generate a logic
diagram of the circuit using ANDs, ORs,
Inverters, and F/Fs.

8. Verification: Use a HDL to verify the design.

~

Sequential machines are typically
classified as either a Mealy machine or a
Moore machine implementation.

Moore machine: The outputs of the circuit

depend only upon the current state of the
circuit.

Mealy machine: The outputs of the circuit
depend upon both the current state of the
circuit and the inputs.

The specification: The circuit will have
one input, X, and one output, Z. The
output Z will be 0 except when the input
sequence 1101 are the last 4 inputs
received on X. In that case it will be a 1.

- ~ —

.
~
NN U DN O

I(x)

Create states and meaning for them.

State A - the last input was a 0 and previous
inputs unknown. Can also be the reset state.

State B - the last input was a 1 and the
previous input was a 0. The start of a new
sequence possibly.

Capture this in a state diagram

0/0

Capture this in a state diagram
Circles represent the states
Lines and arcs represent the transition between
state.

The notation Input/Output on the line or arc
specifies the input that causes this transition and
the output for this change of state.

0/0

Add a state C

State C - Have detected the input sequence 11
which is the start of the sequence.

Add a state D

State D - have detected the 3™ input in the
start of a sequence, a 0, now having 110.
From State D, if the next input is a 1 the
sequence has been detected and a 1 is output.

The previous diagram was incomplete.

In each state the next input could be a 0
ora l. This must be included.

—~ \ o~ ~ — o~ e = — ey e =
—_— —_— — —_— — Sy ~ —_—

The state table
This can be done directly from the state
diagram.

Now need to do a state assignment

Next State Output
Prresent State | X =0 | X=1 X=0 | X=1
A A B 0 0
B A C () (0
C D C 0 0
D A B 0 1

—

(22 =0
e N e N N N

Will select a gray encoding

For this state A will be encoded 00,
state B 01, state C 11 and state D 10

Next State Output
Prresent State | X =0 | X=1 X=0 | X=1
00 00 01 0 0
0l 00 11 0 ()
11 10 11 0 0
10 00 01 0 l

Generate the equations for the flip-flop
Inputs

Generate the D, equation

QuQ
X N_00 01 11 10

0 M,
:I- I: I]:: = {):: Q| L X {)
II-._

1 | \ab

| =

I

Generate the D, equation
{QIJQI
X 0o 01 11 10

0
T D,
Lja 11| D

The next step is to generate the equation

for the output Z and what is needed to
generate it.

Create a K-map from the truth table.

{;}IJQI
X ON00__ 01 11 10
0

Z =XQ,Q

| 1

Clk

i >_DH..
> ()

e

State Minimization for
Completely Specified Machines and
Incomplete FSM

STGs may contain states, i.e. states
whose function can be accomplished by other
states.

State minimization is the transformation of a
given machine into an machine

with no redundant states.

Two states, s; and s; of machine M are
if and only if there exists a finite
input which when applied to M causes
different output sequences depending on whether
M started in s; or s;.

Such a sequence is called a
for (s;, s;).

If there exists a distinguishing sequence of length k
for (s;, s;), they are said to be :

[)

State Minimization:
mpletely Specified Machin

Example:

- states A and B are , since a 1 input applied to A
yields an output 1, versus an output 0 from B.

e states A and E are 3-distinguishable, since input sequence 111 applied to A
yields output 100, versus an output 101 from E. ‘

260
v

States s;and s; (5, ~ 5;) are said to be
equivalent iff no distinguishing sequence
exists for (s;, s;).

Ifs;~s;and s; ~ s, then s; ~ s5,. So state equivalence is an
equivalence relation

An equivalence relation partitions the elements of a set into
equivalence classes.

Property: If s; ~s;, their corresponding X-successors, for all inputs X,
are also equivalent.

Procedure: Group states of M so that two states are in the same

group iff they are equivalent

1)
O
2,
=
(P
()

Completely Specified M

P; : partition using distinguishing sequences of length /.

Partition: Distinguishing Sequence:
P,=(ABCDEF)

P, =(ACE)(BDF) x =1

P, = (A CE)(B D)(F) x=1; x =1

P; = (A C)(E)(B D)(F) x=1;,x=1; x=1

P, = (A C)(E)(B D)(F)
Algorithm terminates when P, = P,

All states equivalent to each other form an
equivalence class. These may be combined into
one state in the reduced machine.

Start an initial partition of a block.
Iteratively refine this partition by separating the
1-distinguishable states, 2-distinguishable states
and so on.

To obtain P,,, for each block B, of P,, create
one block of states that not 1-distinguishable
within B;, and create different blocks states that
are 1-distinguishable within B; .

Theorerm: The equivalence partition is uriicjue,

. If two states, s; and s;, of machine M
are distln%wshable then they dre (n-1)-
distinguishable, where is the number of
states in M.
: Two machines, M, and M,, are
|ff for every state in M

there is a correspondlng equivalent state in MZ
and vice versa.

. For every machine M there is a
minimum machine ~ M,

M. .4 1S up to isomorphism.

mpletely Specified Machin

Reduced machine obtained from previous
example:

P, = (A C)(E)(B PS NS,z
D)(F) .
=apyo

Algorlthm DFA ~ DFA
. A finite automaton M = (Q, >, 6, G o, F)
with
; A minimum finite automaton M’ = (Q’,
Z 5' q OI F,)

1. t:=2; Qy:= { undefined }; Q::=F; Q,:= Q\F.
2. whlle there is0 < /<t ae with 5(Q,,a) =
forall j<t
dJo (a) Choose such anj, a,andj<t with §(Q;,a) n Q;

(b) Qt+1 . {q € Q/ | §(qla) € QJ }I
Ql _t(_{ll\ Qt +1l

end.

3. (* Denote
[g] the equivalence class of state g,

and {Q; } the set of all
equivalence classes.
)
Ql .= {Q_ZI QZI BRRNELY, Qt}
g o := [qql.

F':={[gqleQ’|qeF}.
o0’(I[ql, a):=[dq,a)] forallgeQ, ac?.

/)

.(\)

Standard implementation: O (kn %), where n
=|Q| and k = |Z]

while

1. Choose such an /, a € 2, and choose j,,j, <t with J1 =
(Qua) N Q;, =@, and 5(Q,,a) N Q;, * @.

2. |[1geQ;|d&qga)eQrl<|{qeQl dq,a)e Q;}
Qr+1:={9 € Q; | &q,a) le}
Qr+1:={9 € Q| &q,a) sz} ’
Qi = Qi \ Q17
t:=1t+1.

Note: |Q; 1| £1/2|Q;|. Therefore, for all q € Q,
the narme of the class which contains a given
state g changes at most log(n) times.

Develop an implementation such
that all computations can be assigned
to transitions containing a state for
which the name of the corresponding
class is changed.

N et — S’

X and Y are spaces of all states:
Eo(x,y) = H.(x;~y) (initially all states are equivalent)
Ei 11(X,y) = _
E; (x,y) n Vi 3(0,z,w)
[T (x,i,z,0) AT (y,i,w,0) nE;(Z,w)]
(i.e. states x,y continue to be equivalent if they are

Jj - equivalent and for all inputs the next states are
J - equivalent)

given an

incompletely specified machine M, find
a machine M’ such that:

on any input sequence, M’ produces

the same outputs as M, whenever M is

specified.

there does not exist a machine M”

with fewer states than M’ which has

the same property.

PS NS, 2

x=0 x=1
sl s3,0 s2,0
s2 s2,- 83,0
s3 s3,1 s2,0

Attempt to r=cuce this case to usual state minimization of cornoletely
spacified machines.

> Brute Force Method: Force the don't cares to z /| their possible values
and choose the smallest of the completely specified machines so
obtained.

In this example, it means to state minimize two completely specified
machines obtained from M, by setting the don't care to either 0 and 1.

Suppose that the - is set to be a 0.

PS NS, 2

x=0 x=1
sl s3,0 s2,0
s2 s2,0 s3,0
s3 s3,1 s2,0

States sl and s2 are equivalent if s3 and s2 are equivalent, but s3 and s2
assert different outputs under input 0, so sl and s2 are not
equivalent.

States s1 and s3 are not equivalent either.

So this completely specified machine cannot be reduced further (= states
is the rinirnurn).

I e -~ ™ ~ 8 - A~

~ o
—_— —_— S— - — N
! ! el N N o o — = SN BN O — e e W B - - e S O O B N

Suppose that the - is set to be a 1.

Macnine M”:
PS NS, 2
x=0 x=1
sl s3,0 s2,0
s2 s2,1 s3,0
s3 s3,1 s2,0

States sl is incompatible with both s2 and s3.
States s3 and s2 are equivalent.
So number of states is reduced from 3 to 2.

/

A = L 2 P \/] 7 ®
Macnine M” .., :

PS NS, 2

> > |x
O O

x=0
A A1
B B, 0

ways be done?
M:

PS NS, z

x=0 x=1
sl s3,0 s2,0
s2 s2,- 81,0
s3 sl,1 s2,0

275

Macnine M,:PS NS;-2

Machine My: [PS x-h(')s' 2

sl s3,0 s2,0
s2 s2,1 1,0
s3 sl,1 s2,0

Machine M, and M, are formed by filling in the
unspeciﬁed entry in M with 0 and 1, respectively.

Both machines M, and M; cannot be reduced.
Conclusion?: M cannot be rminirnized further!
But is it a correct conclusion?

: that we want to ‘merge’ two states when, for any
input sequence, they generate the same output
sequence, but only where both outputs are specified.

A set of states is compatible if they agree on
the outputs where they are all

PS NS, z

x=0 x=1
sl s3,0 s2,0
s2 s2, - s1,0
s3 sl,1 s2,0

In this case we have two compatible sets: A = (s1, s2) and
B = (s3, s2). A reduced machine M,., can be built as

follows.
PS NS, z
x=0 X=1
A B, 0 A0
B A1l A0

~ o~

Ok
l
/

— _— o - - - P - e S—

Can we simply look for a set of compatibles
of minimum cardinality, such that every
original state is in at least one
compatible?

No. To build a reduced machine we must
be able to send compatibles into
compatibles. So choosing a given
compatible may imply that some other
compatibles must be chosen too.

PS NS, z
I1 I2 I3 14

sl s3,0 sl,- - -

s2 s6,- s2,0 sl,- -

s3 -1 -,- s4,0 -

s4 s1,0 -, - s5,1
s5 -, s5,- s2,1 s1,1
s6 - s2,1 s6,- s4,1

A set of compatibles that cover all states is: (s3s6), (s4s6),

(s1s6), (s4s5), (s2s5).

But (s3s6) requires (s4s6),
(s4s6) requires(s4s5), (s4s5) requires (s1s5),
(s1s6) requires (s1s2), (s1s2) requires (s3s6),
(s2s5) requires (sl1s2).

So, this selection of compatibles requires too many other
compatibles...

PS NS, z
I1 12 I3 14

sl s3,0 sl,- - -

s2 s6,- s2,0 sl,- -

s3 -1 -, s4,0 -

s4 s1,0 -, - s5,1
s5 - s5,- s2,1 sl,1
s6 -,- s2,1 s6,- s4,1

Another set of compatibles that covers all states is (s1s2s5), (s3s6), (s4s5).

But
(s1s2s5) requires (s3s6) (s3s6) requires (s4s6) (s4s6) requires
(s4s5) (s4s5) requires (s1s5).

So must select also (s4s6) and (s1s5).

Selection of minimum set is a binate covering problem 1]

More formally:

When a next state is unspecified, the future behavior of
the machine is unpredictable. This suggests the
definition of admissible input sequence.

An input sequence is admissible, for a starting
state of a machine if no unspecified next 'state is

encountered, except possibly at the final step.

Definition. State s; of machine M, is said to cover, or
contain, state s; "of M, prowded1

evelry input sequence admissible to s; is also admissible to s; ,
an
its application to both M, and M, (initially is s; and s;,

respectively) results in |dent|cal output sequences Whenever
the outputs of M, are specified.

Machine M, is said to cover machine
M, iff
for every state s; in M,, there is a

corresponding state s; In M; such that s; covers

S;

The problem of state minimization for an
incompletely specified machine M is:

Definition of compatible states
Method to compute when two states are
incompatible

Definition of maximal compatible sets

A set is compatible if all pairs in the set are
compatible

Definition of prime compatibles

Solve Quine-McCluskey type problem
Generate all prime compatibles
Solve binate covering problem

ASM chart

Salient features of the ASM

Examples of system design
Binary multiplier
Weighing Machine

- —
™ iTr - M ~ ~ ~

el b el N e N Nt N e N o N D

—

The binary information stored in the digital system can be
classified as either data or control information

The data information is manipulated by performing
arithmetic, logic, shift and other data processing tasks
The control information provides the command signals that

controls the various operations on the data in order to
accomplish the desired data processing task

Design a digital system we have to design two subsystems
data path subsystem and control subsystem

External ———»
inputs Control
logic

Input data ——

Commands

Datapath

——» Output data

Status conditions

Interaction between control logic and datapath.

A special flow chart that has been developed specifically to
define digital hardware algorithms is called ASM chart.

A hardware algorithm is a step by step procedure to
implement the desire task

What is the Difference b/n conventional flow chart
and ASM chart

conventional flow chart describes the sequence of
procedural steps and decision paths for an algorithm with
out concern for their time relationship

An ASM chart describes the sequence of events as well as
the timing relationship b/n the states of sequential
controller and the events that occur while going from one
state to the next

1. State box: A state of a clocked sequential circuit is represented by a rectangle called state
box. It 1s equivalent to a node in the state diagram or a row in the state table. The name of the state
is written to the left of the box. The binary code assigned to the state is indicated outside on the top
right-side of the box. A list of unconditional outputs if any associated with the state are written
within the box.

2. Decision box: The decision box or condition box is represented by a diamond-shaped symbol
with one input and two or more output paths. The output branches are true and false branches, The
decision box describes the effect of an input on the control subsystem. A Boolean variable or input

or expression written inside the diamond indicates a condition which is evaluated to determine
which branch to take.

State exit
(b) Specific example

(False) 0

Entry

condion

1 (True)

3. Conditional output box: ~ The conditional output box is represented by a rectangle with rounded
corners or by an oval with one input lin and one output line. The outputs that depend on both the
state of the system and the inputs are indicated inside the box.

Entry

|

List of
conditional outputs
Exit
Conditional output box.

SALIENT FEATURES OF ASM CHARTS

. An ASM chart describes the sequence of events as well as the timing relationship between

the states of a sequential controller and the events that occur while going from one state
to the next.

. An ASM chart contains one or more interconnected ASM blocks.
. Each ASM block contains exactly one state box together with the decision boxes and

conditional output boxes associated with that state.

. Every block in an ASM chart specifies the operations that are to be performed during one

common clock pulse.

. An ASM block has exactly one entrance path and one or more exit paths represented by

the structure of the decision boxes.

. A path through an ASM block from entrance to exit is referred to as a link path.
. The operations specified within the state and conditional output boxes in the block are

performed in the datapath subsystem.

. Internal feedback within an ASM block is not permitted. Even so, following a decision

box or conditional output boxes, the machine may reenter the same state.

. Each block in the ASM chart describes the state of the system during one clock pulse

interval. When a digital system enters the state associated with a given ASM block, the
outputs indicated within the state box become true. The conditions associated with the
decision boxes are evaluated to determine which path or paths to be followed to enter the
next ASM block.

el

S
=

o
101
S

i{b) ASM charr
State diagram and ASM chan for mod-6 countar.

1101
1010

0000
1101

0000
1101

LO0000T10

3, ... Multiplicand
10, .. Multiplier

Partial product 1

Partial product 2
Partial product 3
Partial product 4

13[]]{] ... Product

system for

Multiplicand
B, |-------- B, | B
|_1/11bilmm
n
Add
n-bit adder - ———————— -
i
n i
i
i
Shift right i
'.#f __________________ :J', ___________________________ _j
k F =
[c] [A Az]--————] A | A Qs [Qpp [-------- Q | q
1-bit Multiplier
register

Datapath subsystem for binary multiplier.

Multiplication Operation Steps
1. Bit 0 of multiplier operand (Qg of Q register) is checked

2. If bit 0 (Qg) is one then multiplicand and partial product are added and all bits
of C, A and Q registers are shifted to the right one bit, so that the C bit goes
into Ay.1, Ag goes into Qy.q, and Qgis lost. If bit 0 (Qy) is 0, then no
addition is performed, only shift operation s carried out,

3. Steps 1 and 2 are repeated n times to get the desired result in the A and Q
registers.

PAwltiplicarnd
PrAltiplier

IG.A-—.#..—-—E-I

T

Shift right . A and O

s B G A Q Components CountP\
1101 0 0000 1010 B « Multiplicand
Q « Multiplier 100 (4)
A—0,C«0,Pen
1101 0 0000 1010 Pe—P-1
Q,=0 011 (3)
0 0000 0101 C A Q shifted right
1101 0 1101 0101 Pe—P-1
Q=1,A«<A+B 010 (2)
0 0110 1010 C A Q shifted right
1101 0 0110 1010 P—P-1
Q,=0, 001 (1)
0 0011 0101 C A Q shifted right
1101 1 0000 0101 Pe—P-1
Q,=1LA«<A+B 000 (0)
0 1000 0010 C A Q shifted right

Flow chart for multiplication in a computer.

—

v + OO State O

Initial state |

v

A= A+B C=- C__,
]

11 State 3

ASM chart for a binary multiplier.

ASM FOR WEIGHING MACHINE

In the algorithm for tabular minimization of Boolean expressions, we have to arrange the minterms
in the ascending order of their weights. This 1s only one of the many situations when we have to
examine the 1s of a given binary word. The weight of a binary number is defined as the number of
Is present in its binary representation.

ll

!

Count
Datapath subsystem for weighing machine.

v » OO

s-.,l Initial State

o

s
1

R =— Input
W =-— all 1s

3 4 o1
S.I VW a— W + 1 I

1
.4

o

- 10

s,l Shift right into F I

11
ss| |

o

F
1
ASM chart for weighing machine.

State S, Initially the weighing machine is in state 5. The weighing process starts when start (S)
signal becomes 1. While in state S, if § is 1, the clock pulse causes three jobs o be done
simultancously:

|. Binary number is loaded into register R.
2. W register is set to all 1s,
3. The machine is transferred to state 5.

State 5;: While in state 5, the clock pulse causes two jobs to be done simultaneously:

1. Counter W is incremented by 1(in the first round, all 1s become all 0s).
2. 1f Z is 0, the machine goes to the state 5, if Z is 1, the machine goes o state S,

State 5,0 In this state, register R is shifted night by | bit so that LSB goes into F and MSB is
loaded with 0,

State 8y In this state, the value of F is checked, If it is 0, the machine is transferred to the
state 3, otherwise the machine is transferred to state 8,. Thus, when F = 1, W is incremented.

All the operations occur in coincidence with the clock pulse while in the corresponding state.,
Also notice that the register R should eventually contain all Os when the last 1 is shifted into it.

o (%) (T D

0/0
(a) State diagram

PS NS, O/P
Input D

D=0 D=1

A A0 B, 1
B A0 B, 1

(b) State table

(c) ASM chart

101 111

01/0 11/0

(a) State diagram

NS, O/P
Input J-K

o 10

11

A0 B, 1
A0 B, 1

B, 1
A0

(b) State table

(c) ASM chart

Thank you

