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INTRODUCTION

“MECHANICAL PROPERTIES OF MATERIALS” 

INTRODUCTION:

• The practical application of engineering materials in manufacturing

engineering depends upon a thorough knowledge of their particular

properties under a wide range of conditions.

• The term ” property ” is a qualitative or quantitative measure of response

of materials to externally imposed conditions like forces and

temperatures.

• However, the range of properties found in different classes of materials is

very large.



Classification of material property:



Mechanical properties:

• The properties of material that determine its behavior under 

applied forces are known as mechanical properties.

• They are usually related to the elastic and plastic behavior of the 

material.

• These properties are expressed as functions of stress-strain, etc.

• A sound knowledge of mechanical properties of materials provides 

the basis for predicting behavior of materials under different load 

conditions and designing the components out of them.



Stress and Strain Introduction 

• Experience shows that any material subjected to a load may either 

deform, yield or break, depending upon the

i. The Magnitude of load

ii. Nature of the material

iii. Cross sectional dime.

• STRESS : The sum total of all the elementary interatomic forces or 

internal resistances which the material is called upon to exert to 

counteract the applied load is called stress.

• Mathematically, the stress is expressed as force divided by cross-sectional 

area.



Stress and Strain

•STRAIN : Strain is the dimensional response given by material against

mechanical loading/Deformation produced per unit length.
•Mathematically Strain is change in length divided by original length.



Strength:

• The strength of a material is its capacity to withstand destruction
under the action of external loads.

• It determines the ability of a material to withstand stress without
failure.

• The maximum stress that any material will withstand before
destruction is called ultimate strength.



Elasticity:

• The property of material by virtue of which deformation caused by

applied load disappears upon removal of load.

• Elasticity of a material is the power of coming back to its original

position after deformation when the stress or load is

removed.(Elastic means reversible).



Plasticity:

• The plasticity of a material is its
ability to undergo some degree of
permanent deformation without
rupture or failure. Plastic
deformation will take only after
the elastic limit is exceeded. It
increases with increase in
temperature.(Plastic means
permanent).

• STRESS STRAIN CURVE SHOWS
ELASTICITY AND PLASTICITY FOR
MATERIALS:



Stiffness & Ductility: 

STIFFNESS:

• The resistance of a material to elastic 

deformation or deflection is called 

stiffness or rigidity.

• A material which suffers slight 

deformation under load has a high 

degree of stiffness or rigidity.

• E.g. Steel beam is more stiffer or 

more rigid than aluminium beam.

DUCTILITY:

• It is the property of a material which 

enables it to draw out into thin wires.

• The percent elongation and the 

reduction in area in tension is often 

used as empirical measures of 

ductility. 

• E.g., Mild steel is a ductile material.



Ductility:



Malleability:

• Malleability of a material is its ability to be flattened into thin

sheets without cracking by hot or cold working.

• E.g. Lead can be readily rolled and hammered into thin sheets but

can be drawn into wire.



Comparison of Ductility and Malleability: 

• Ductility and Malleability are frequently used interchangeably many
times.

• Ductility is tensile quality, while malleability is compressive quality.



Resilience:

• It is the capacity of a material to absorb energy elastically.

• The maximum energy which can be stored in a body up to elastic
limit is called the proof resilience, and the proof resilience per unit
volume is called modulus of resilience.

• The quantity gives capacity of the material to bear shocks and
vibrations.



Hardness:

• Hardness is a fundamental property which is closely related to
strength.

• Hardness is usually defined in terms material to resist to scratching,
of the ability of a abrasion, cutting, indentation , or penetration.

• Methods used for determining hardness: Brinel, Rockwell ,Vickers.



Brittleness:

• It is the property of breaking without much permanent distortion.

• Non-Ductile material is considered to be brittle material.

• E.g., Glass, Cast iron, etc.



Creep:

• The slow and progressive
deformation of a material with
time at constant stress is called
creep.

• Depending on temperature,
stresses even below the elastic
limit can cause some
permanent deformation.

• It is most generally defined as
time-dependent strain occurring
under stress.



Fatigue:

• This phenomenon leads to fracture under repeated or fluctuating
stress.

• Fatigue fractures are progressive beginning as minute cracks and
grow under the action of fluctuating stress.

• Many components of high speed aero and turbine engines are of
this type.



Stress and Strain

1) Stress

1.1) Terminologies related to stress

1.2) Types of stress

2) Strain

2.1) Terminologies related to strain

2.2) Types of strain

3) Relation Between Stress and Strain

4) Stress and strain Diagram



Stress :

• Stresses are expressed as the ratio of 
the applied force divided by the 
resisting area

• Mathematically: 

𝛔= Force / Area
• Units: N/m2 or Pascal.

• 1kPa = 1000Pa, 1 MPa= 106 Pa

• TERMINOLOGIES RELATED TO 
STRESS

• Stressor:

A stressor is anything that has 
the effect of causing stress.

• Stress capacity:

While it is unclear precisely 

how much stress a person can carry, 
since each person has some stress in 
their lives, we say he/she has a 
capacity for stress. Similarly in case of 
Rocks, how much capacity they have 
to bear stress.

• Stress-load:

Everyone, even children, must 
carry some amount of stress in their 
daily lives. When we think of stress 
as having an amount, or quantity, we 
refer to this as the person’s stress-
load. And here in case of rocks, we 
say that how much an already 
existing stress is applied on a rock.



Types of stress
 There are two types of stress

1) Normal Stress
1.1) Tensile stress
1.2) Compressive stress

2) Combine Stress
2.1) Shear stress
2.2) Tortional stress

 1)Normal Stress:

The resisting area is perpendicular 
to the applied force

1.1) Tensile Stress:

a. It is a stress induced in a body 
when it is subjected to two 
equal and opposite pulls 
(Tensile force) as a result of 

which there is tendency in 
increase in length.

b. It acts normal to the area and 
pulls on the area.

 1.2) Compressive Stress:

a. Stress induced in a body, 
when subjected to two equal 
and opposite pushes as a 
result of which there is a 
tendency of decrease in 
length of the body.

b. It acts normal to the area and 
it pushes on the area.



Types of stress Continuity 

2) Combined Stress:

A condition of stress that cannot be represented by a single 
resultant stress.

2.1) Shear stress:

– Forces parallel to the area resisting the force cause shearing 
stress.

– It differs to tensile and compressive stresses, which are caused 
by forces perpendicular to the area on which they act.

– Shearing stress is also known as tangential stress

2.2) Tortional stress:

– The stresses and deformations induced in a circular shaft by a 
twisting moment.



Types of stress diagrams



Strain:

• STRAIN:

• When a body is subjected to

some external force, there is

some change in the dimension

of the body. The ratio of

change in dimension of body

to its original dimension is

called as strain.

• Strain is a dimensionless

quantity.

• TERMINOLOGIES RELATED 
TO STRAIN:

1. Longitudinal or Linear 
Strain

– Strain that changes the 
length of a line without 
changing its direction.

– Can be either 
compression or tensional.

2. Compression
– Longitudinal strain that 

shortens an object.

3. Tension
– Longitudinal strain that 

lengthens an object.



• Shear

– Strain that changes the angles of 
an object.

– Shear causes lines to rotate.

• Infinitesimal Strain

– Strain that is tiny, a few percent 
or less.

– Allows a number of useful 
mathematical simplifications 
and approximations.

• Finite Strain

– Strain larger than a few percent.

– Requires a more complicated 
mathematical treatment than 
infinitesimal strain.

• Homogeneous Strain

– Uniform strain.

– Straight lines in the original 
object remain straight.

– Parallel lines remain parallel.

– Circles deform to ellipses.

– Note that this definition rules 
out folding, since an originally 
straight layer has to remain 
straight.

• Inhomogeneous Strain

– How real geology behaves.

– Deformation varies from place 
to place.

– Lines may bend and do not 
necessarily remain parallel.

Strain: cont..,



Types of strain

1. Tensile Strain
2. Compression Strain
3. Volumetric Strain
4. Shear Strain

1. Tensile Strain:
– Ratio of increase in length to 

the original length of the body 
when it is subjected to a pull 
force.

– Tensile strain = Increase in 
length/ Original Length=dL/L

2. Compressive Strain:
– Ratio of decrease in Length to 

the original length of body 
when it is subjected to push 
force.

– Compressional Strain = 
Decrease in length/Original 
Length= dL/L

3. Volumetric Strain:
– Ratio of change of volume to 

the original volume.
– Volumetric Strain= dV/V

4. Shear Strain
– Strain due to shear stresses.

• Sign convection for direct strain
– Tensile strains are considered

positive in case of producing
increase in length.

– Compressive strains are
considered negative in case of
producing decrease in length.



Types of Strain Diagrams



Beams – SFD and BMD



Beams – SFD and BMD



Beams – SFD and BMD



Beams – SFD and BMD



Beams – SFD and BMD: Example (1)



Beams – SFD and BMD: Example (2)



Beams – SFD and BMD: Example (3)



Beams – SFD and BMD: Example (4)



Beams – SFD and BMD: Example (4)



Beams – SFD and BMD: Example (5)



Beams – SFD and BMD: Summary



TORSION



TORSION cont..,



Compatibility:



Compatibility: cont.., 



Compatibility: cont.., 



Equilibrium:



Equilibrium: cont..,



Notes on the Computation of angle of Twist



Torsion formulas



Torsion formulas cont..,



Power Transmission



Power Transmission cont.., 



Statically indeterminate problems



Sample Problem.1



Sample Problem.1 cont…,



Sample problem .2



Sample Problem.2 cont…,



Sample problem.3



Sample Problem.3 cont…,



Sample Problem.3 cont…,



Sample Problem.4



Sample Problem.4 cont…,



Sample Problem.4 cont…,



Torsion of Thin-Walled Tubes



Torsion of Thin-Walled Tubes cont..



Torsion of Thin-Walled Tubes cont..



STRESSES IN BEAMS 

• Bending Stresses in beams:
• Bending in beams: 



Stresses due to bending



SIMPLE BENDING OR PUREBENDING

– When some external force acts
on a beam, the shear force and
bending moments are set up at
all the sections of the beam

– Due to shear force and bending
moment, the beam undergoes
deformation. The material of the
beam offers resistance to
deformation

– Stresses introduced by bending
moment are known as bending
stresses

– Bending stresses are indirect
normal stresses

• ASSUMPTIONS FOR THE THEORY

OF PURE BENDING:

– The material of the beam is
isotropic and homogeneous. I.e.
of same density and elastic
properties throughout

– The beam is initially straight and
unstressed and all the
longitudinal filaments bend into
a circular arc with a common
centre of curvature

– The elastic limit is nowhere
exceeded during the bending

– Young's modulus for the material
is the same in tension and
compression



THEORY OF SIMPLE BENDING
– The layer AC is shortened to A’C’.

Hence it is subjected to
compressive stress

– The layer BD is elongated to B’D’.
Hence it is subjected to tensile
stresses.

– Hence the amount of shortening
decrease from the top layer
towards bottom and the amount of
elongation decreases from the
bottom layer towards top

– Therefore there is a layer in
between which neither elongates
nor shortens. This layer is called
neutral layer .

• NEUTRAL AXIS:

– For a beam subjected to a pure

bending moment, the stresses
generated on the neutral layer is
zero.

– Neutral axis is the line of
intersection of neutral layer with
the transverse section

– Consider the cross section of a
beam subjected to pure bending.
The stress at a distance y from the
neutral axis is given by σ/y=E/R



MOMENT OF RESISTANCE
– Due to the tensile and

compressive stresses, forces
are exerted on the layers of a
beam subjected to simple
bending

– These forces will have moment
about the neutral axis. The
total moment of these forces
about the neutral axis is known
as moment of resistance of that
section

– We have seen that force on a
layer of cross sectional area dA
at a distance y from the neutral
axis,

dF= (E x y x dA)/R
– Moment of force dF about the

neutral axis= dF x y= (E x y x
dA)/R x y= E/R x (y²dA)

– Hence the total moment of
force about the neutral axis=
Bending moment applied= ∫
E/R x (y²dA)= E/R x Ixx; Ixx is
the moment of area about the
neutral axis/centroidal axis.
Hence M=E/R x Ixx
Or M/Ixx=E/R
Hence M/Ixx=E/R = σb/y;σb
is also known as flexural stress
(Fb)
Hence M/Ixx=E/R=Fb/y

– The above equation is known
as bending equation

– This can be remembered using
the sentence “Elizabeth Rani
May I Follow You”



CONDITION OF SIMPLE BENDING & FLEXURAL RIGIDITY

– Bending equation is applicable to a beam subjected to 

pure/simple bending. I.e. the bending moment acting on the 

beam is constant and the shear stress is zero

– However in practical applications, the bending moment varies 

from section to section and the shear force is not zero

– But in the section where bending moment is maximum, shear 

force (derivative of bending moment) is zero

– Hence the bending equation is valid for the section where 

bending moment is maximum



BENDING OF FLITCHED BEAMS
A beam made up of two or more different

materials assumed to be rigidly
connected together and behaving like
a single piece is called a flitched beam
or a composite beam.

• Consider a wooden beam reinforced
by steel plates. Let

E1= Modulus of elasticity of steel plate
E2= Modulus of elasticity of wooden beam
M1= Moment of resistance of steel plate
M2= Moment of resistance of wooden
beam
I1= MOI of steel plate about neutral axis
I2= MOI of wooden beam about neutral
axis.

The bending stresses can be calculated
using two conditions.
• Strain developed on a layer at a

particular distance from the neutral
axis is the same for both the materials

• Moment of resistance of composite

beam is equal to the sum of individual
moment of resistance of the members

– Using condition-1:
σ1/E1= σ 2/E2;
σ1= σ 2 x (E1/E2) or σ1= σ2 x m;
where m=
E1/E2 is the modular ratio
between steel and
wood

– Using condition-2:
M=M1 + M2;
M1= σ1x I1/y
M1= σ2x I2/y

– Hence M= σ1x I1/y + σ2x I2/y

M= σ2/ y x (I2 + I1x σ1/ σ2)
M= σ2/y x ( I2 + I1 x m)
(I2 + I1 x m)= I = equivalent
moment of inertia of the cross
section;
Hence M= σ2/y x I























Analysis of Statically Determinate Structures

• Idealized Structure

• Principle of Superposition

• Equations of Equilibrium

• Determinacy and Stability
– Beams

– Frames

– Gable Frames

• Application of the Equations of Equilibrium

• Analysis of Simple Diaphragm and Shear Wall Systems 
Problems



Classification of Structures





Supports for Coplanar Structures





Idealized Structure







Tributary Loadings.











Principle of Superposition



Equations of Equilibrium



Determinacy and Stability



























Application of the Equations of Equilibrium







































Analysis of Simple Diaphragm and shear Wall Systems











THEORY OF ELASTISITY 
 INTRODUCTION: 

Elasticity

Elasticity of Composites

Viscoelasticity

Elasticity of Crystals (Elastic Anisotropy)

 Let us start with some observations…

 When you pull a rubber band and release it, the band regains it original length.

 It is much more difficult (requires more load) to extend a metal wire as compared to a
rubber ‘string’.

 It is difficult to extend a straight metal wire; however, if it is coiled in the form of a
spring, one gets considerable extensions easily.

 A rubber string becomes brittle when dipped in liquid nitrogen and breaks, when one
tries to extend the same.

 A diver gets lift-off using the elastic energy stored in the diving board. If the diving board
is too compliant, the diver cannot get sufficient lift-off.

 A rim of metal is heated to expand the loop and then fitted around a wooden wheel (of
say a bullock cart). On cooling of the rim it fits tightly around the wheel.



 Elastic deformation is reversible deformation- i.e. when 
load/forces/constraints are released the body returns to its 
original configuration (shape and size).

 Elastic deformation can be caused by tension/compression or 
shear forces.

 Usually in metals and ceramics elastic deformation is seen at low 
strains (less than ~10–3). However, other materials can be 
stretched elastically to large strains (few 100%).
So elastic deformation should not be assumed to be small 
deformation!

 The elastic behavior of metals and ceramics is usually linear.

Elasticity





Time dependent aspects of elastic deformation

 In normal elastic behaviour (e.g. when ‘small’ load is applied to a metal wire,
causing a strain within elastic limit) it is assumed that the strain is appears
‘instantaneously’.

 Similarly when load beyond the elastic limit is applied (in an uniaxial tension
test ), it is assumed that the plastic strain develops instantaneously. It is
further assumed that the load is applied ‘quasi-statically’ (i.e. very slowly).

 However, in some cases the elastic or plastic strain need not develop
instantaneously. Elongation may take place at constant load with time. These
effects are termed Anelasticity (for time dependent elastic deformation at
constant load) and Viscoelasticity.

 Creep is one such phenomenon, where permanent deformation takes place at
constant load (or stress). E.g. if sufficient weight is hung at the end of a lead
wire at room temperature, it will elongate and finally fail.





Atomic model for elasticity

 At the atomic level elastic deformation takes place by the
deformation of bonds (change in bond length or bond angle).

 Let us consider the stretching of bonds (leading to elastic
deformation).

 Atoms in a solid feel an attractive force at larger atomic separations
and feel a repulsive force (when electron clouds ‘overlap too much’)
at shorter separations. (Of course, at very large separations there is
no force felt).

 The energy and the force (which is a gradient of the energy field)
display functional behaviour as in the equations below*. This
implies under a state of compressive stress the atoms ‘want to’ go
apart and under tensile stress they want to come closer.





 The plot of the inter-atomic potential and force functions show that at the equilibrium inter-atomic 

separation (r0) the potential energy of the system is a minimum and force experienced is zero.

 In reality the atoms are undergoing thermal vibration about this equilibrium position. The 

amplitude of vibration increases with increasing temperature. Due to the slight left-right asymmetry 

about the minimum in the U-r plot, increased thermal vibration leads to an expansion of the crystal.



 Young’s modulus is the slope of the Force-Interatomic spacing curve (F-r curve), at the 

equilibrium interatomic separation (r0).

 In reality the Elastic modulus is 4th rank tensor (Eijkl) and the curve below captures one 

aspect of it.



Stress-strain curves in the elastic region

 In metals and ceramics the elastic strains (i.e. the strains beyond which plastic deformation sets in or
fracture takes place*) are very small (~103). As these strains are very small it does not matter if we
use engineering stress-strain or true stress strain values (these concepts will be discussed later). The
stress-strain plot is linear for such materials.

 Polymers (with special reference to elastomers) shown non-linear stress-strain behaviour in the
elastic region. Rotation of the long chain molecules around a C-C bond can cause tensile elongation.
The elastic strains can be large in elastomers (some can even extend a few hundred percent), but the
modulus (slope of the stress-strain plot) is very small. Additionally, the behaviour of elastomers in
compression is different from that in tension.

Chapter_9b_Plasticity.ppt
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Other elastic moduli
 We have noted that elastic modulus is a 4th rank tensor (with 81 components in general in 3D). In normal

materials this is a symmetric tensor (i.e. it is sufficient to consider one set of the off-diagonal terms).

 In practice many of these components may be zero and additionally, many of them may have the same

value (i.e. those surviving terms may not be independent). E.g. for a cubic crystal there are only 3

independent constants (in two index condensed notation these are E11, E12, E44).

 For an isotropic material the number of independent constants is only 2. Typically these are chosen as E

and  (though in principle we could chose any other two as these moduli are interrelated for a isotropic

material). More explained sooner.

 In a polycrystal (say made of grains of cubic crystal), due to average over all orientations, the material

behaves like an isotropic material. More about this discussed elsewhere. Mathematically the isotropic

material properties can be obtained from single crystal properties by Voigt or Reuss averaging.



 When a body is pulled (let us assume an isotropic body for now), it will elongate along the pulling direction and

will contract along the orthogonal direction. The negative ratio of the transverse strain (t) to the longitudinal

strain (t) is called the Poission’s ratio ().

 In the equation below as B1 < B0, the term in square brackets ‘[]’ in the numerator is –ve and hence, Poission’s

ratio is a positive quantity (for usual materials). I.e. usual materials shrink in the transverse direction, when they

are pulled.

 The value of E, G and  for some common materials are in the table (Table-E). Zero and even negative Possion’s

ratio have been reported in literature. The modulus of materials expected to be positive, i.e. the material resists

deformation and stores energy in the deformed condition. However, structures and ‘material-structures’ can

display negative stiffness (e.g. when a thin rod is pushed it will show negative stiffness during bulking observed

in displacement control mode).



How to determine the elastic modulus?
 The Young’s modulus (Y) of a isotropic material can be determined from the stress-strain diagram. But, this is

not a very accurate method, as the machine compliance is in series with the specimen compliance. The slope of

the stress-strain curve at any point is termed as the ‘tangent modulus’. In the initial part of the s-e curve this

measures the Young’s modulus. Other kinds of mechanical tests can also be used for the measurement of ‘Y’.

 A better method to measure ‘Y’ is using wave transmission (e.g. ultrasonic pulse echo transmission technique)

in the material. This is best used for homogeneous, isotropic, non-dispersive material (wherein, the velocity of

the wave does not change with frequency). Common polycrystalline metals, ceramics and inorganic glasses are

best suited to this method. Soft plastics and rubber cannot be characterized by this method due to high

dispersion, attenuation of sound wave and non-linear elastic properties. Porosity and other internal defects can

affect the measurement.

 The essence of the ultrasound technique is to determine the longitudinal and shear wave velocity of sound in

the material (symbols: vl vs). ‘Y’ and Poisson’s ratio () can be determined using the formulae as below.



Increasing the modulus of a material
 The modulus of a metal can be increased by suitable alloying.

 E is a structure (microstructure) insensitive property and this implies that grain size, dislocation

density, etc. do not play an important role in determining the elastic modulus of a material.

 One of the important strategies to increase the modulus of a material is by forming a

hyrbrid/composite with an elastically ‘harder’ (stiffer) material. E.g. TiB2 is added to Fe to increase

the modulus of Fe.

 COMPOSITES

 A hard second phase (termed as reinforcement) can be added to a low E material to increase the

modulus of the base material. The second phase can be in the form of particles, fibres, laminates,

etc.

 Typically the second phase though harder is brittle and the ductility is provided by the matrix. If

the reinforcement cracks the propagation of the crack is arrested by the matrix.



Modulus of a composite
 The modulus of the composite is between that of the matrix and the reinforcement.

 Let us consider two extreme cases.

(A) Isostrain → the matrix and the reinforcement (say long fibres) are under identical strain.

This is known as Voigt averaging. 

(B) Isostress → the matrix and fibre are under identical stress.

This is known as Reuss averaging. 

 Let the composite be loaded in uniaxial tension and the volume fraction of the fibre be Vf (automatically the 

volume fraction of the matrix is Vm = (1 Vf)).



 The modulus of a real composite will lie between these two extremes (usually closer to isostrain). The
modulus of the composite will depend on the shape of the reinforcement and the nature of the
interface (e.g. in a long aligned fibre composite having a perfectly bonded interface with no slippage will
lead to isostrain conditions.

 Purely from a modulus perspective, a larger volume fraction will give a higher modulus; however,
ductility and other considerations typically limit the volume fraction of reinforcement in a composite to
about 30%.



1D Elasticity (axially loaded bar)





3D Elasticity



3D Elasticity: 

EXTERNAL FORCES ACTING ON THE BODY



BODY FORCE
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SURFACE TRACTION



3D Elasticity: INTERNAL FORCES



3D Elasticity







• 3D elasticity problem is completely defined 
once we understand the following three 
concepts

– Strong formulation (governing differential 
equation + boundary conditions)

– Strain-displacement relationship

– Stress-strain relationship
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PLANE STRESS







PLANE STRAIN













Principle of Minimum Potential Energy







Principle of minimum potential energy: 

• Among all admissible displacement fields the one that satisfies the 
equilibrium equations also render the potential energy P a 
minimum.

• “admissible displacement field”: 

• 1. first derivative of the displacement components exist

• 2. satisfies the boundary conditions on Su


