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INTRODUCTION

“MECHANICAL PROPERTIES OF MATERIALS”
INTRODUCTION:

* The practical application of engineering materials in manufacturing
engineering depends upon a thorough knowledge of their particular

properties under a wide range of conditions.

e The term ” property ” is a qualitative or quantitative measure of response
of materials to externally imposed conditions like forces and

temperatures.

* However, the range of properties found in different classes of materials is

very large.
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Classification of material property:

( Materials Properties )
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Mechanical properties:

 The properties of material that determine its behavior under

applied forces are known as mechanical properties.

* They are usually related to the elastic and plastic behavior of the

material.
 These properties are expressed as functions of stress-strain, etc.

 Asound knowledge of mechanical properties of materials provides
the basis for predicting behavior of materials under different load

conditions and designing the components out of them.
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Stress and Strain Introduction

* Experience shows that any material subjected to a load may either

deform, yield or break, depending upon the
i. The Magnitude of load
ii. Nature of the material

iii. Cross sectional dime.

* STRESS : The sum total of all the elementary interatomic forces or

internal resistances which the material is called upon to exert to

counteract the applied load is called stress.

* Mathematically, the stress is expressed as force divided by cross-sectional

darea.
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Stress and Strain
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 The strength of a material is its capacity to withstand destruction
under the action of external loads.

* |t determines the ability of a material to withstand stress without
failure.

e The maximum stress that any material will withstand before
destruction is called ultimate strength.
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Before
loading

The property of material by virtue of which deformation caused by

applied load disappears upon removal of load.

Elasticity of a material is the power of coming back to its original

position after deformation when the stress or load s

removed.(Elastic means reversible).
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The plasticity of a material is its
ability to undergo some degree of
permanent deformation without

rupture  or  failure. Plastic
deformation will take only after

the elastic limit is exceeded. It
increases with increase in
temperature.(Plastic means
permanent).
Fa
lina:a_r i]:l-E-E:t'
elastic . . elastic }5
O
plastic
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Stiffness & Ductility:

STIFFNESS: DUCTILITY:

* The resistance of a material to elastic «

It is the property of a material which
deformation or deflection is called enables it to draw out into thin wires.

stiffness or rigidity. * The percent elongation and the

* A material which suffers slight reduction in area in tension is often
deformation under load has a high used as empirical measures of
degree of stiffness or rigidity. ductility.

* E.g.Steel beamis more stifferor  « [ g Mild steel is a ductile material.

more rigid than aluminium beam.
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Tungston Carbide Die
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Copper bar is pulled

Ductility
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Malleability:

 Malleability of a material is its ability to be flattened into thin

sheets without cracking by hot or cold working.

 E.g. Lead can be readily rolled and hammered into thin sheets but

can be drawn into wire.
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Comparison of Ductility and Malleability:

e Ductility and Malleability are frequently used interchangeably many
times.

* Ductility is tensile quality, while malleability is compressive quality.
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Resilience:

It is the capacity of a material to absorb energy elastically.

The maximum energy which can be stored in a body up to elastic
limit is called the proof resilience, and the proof resilience per unit
volume is called modulus of resilience.

The quantity gives capacity of the material to bear shocks and
vibrations.

P=10,000
Resilience 1 '
* Itis the property of a

material to absorb
energy and to resist
shock and impact loads. h
It is measured by the ho d
amount of energy

absorbed per unit
volume within elastic

limit. This property is
essential for spring
materials.

t

1 Resiliency (%) = 100 ( hy / ho -1)
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 Hardness is a fundamental property which is closely related to
strength.

* Hardness is usually defined in terms material to resist to scratching,
of the ability of a abrasion, cutting, indentation , or penetration.

 Methods used for determining hardness: Brinel, Rockwell ,Vickers.

Hardness tests
mineral on mineral fingernait penny

Labeling

3

@ 2012 Encyclopsedia Britannica, Inc.
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Brittleness:

* Itis the property of breaking without much permanent distortion.
* Non-Ductile material is considered to be brittle material.

 E.g., Glass, Castiron, etc.

Ductile and brittle fractures

=

Brittle Ductile

Transition

Temperature I
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The slow and progressive
deformation of a material with
time at constant stress is called
creep.

Depending on temperature,
stresses even below the elastic
limit can cause some
permanent deformation.

It is most generally defined as
time-dependent strain occurring
under stress.

Constant force
applied

Extension measured f
over gauge length

Heating
eiement

Thermeocouple

Constant force
applied
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Fatigue:

This phenomenon leads to fracture under repeated or fluctuating
stress.

Fatigue fractures are progressive beginning as minute cracks and
grow under the action of fluctuating stress.

Many components of high speed aero and turbine engines are of

this type.
Origin of fracture
Y
G
S
Granular surface Rubbed surface

Surface of a Fatigue Fracture
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Stress and Strain

1) Stress
1.1) Terminologies related to stress
1.2) Types of stress

2) Strain
2.1) Terminologies related to strain
2.2) Types of strain

3) Relation Between Stress and Strain

4) Stress and strain Diagram
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Stresses are expressed as the ratio of
the applied force divided by the
resisting area

Mathematically:

o= Force / Area

Units: N/m2 or Pascal.
1kPa = 1000Pa, 1 MPa= 10° Pa

TERMINOLOGIES RELATED TO
STRESS

Stressor:

A stressor is anything that has
the effect of causing stress.

Stress capacity:

While it is unclear precisely

how much stress a person can carry,
since each person has some stress in
their lives, we say he/she has a
capacity for stress. Similarly in case of
Rocks, how much capacity they have
to bear stress.

Stress-load:

Everyone, even children, must
carry some amount of stress in their
daily lives. When we think of stress
as having an amount, or quantity, we
refer to this as the person’s stress-
load. And here in case of rocks, we
say that how much an already
existing stress is applied on a rock.
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Types of stress

» There are two types of stress
1) Normal Stress

1.1) Tensile stress b

1.2) Compressive stress
2) Combine Stress
2.1) Shear stress

2.2) Tortional stress d.

» 1)Normal Stress:

The resisting area is perpendicular
to the applied force

1.1) Tensile Stress:

a. Itisastress induced in a body b.

when it is subjected to two
equal and opposite pulls
(Tensile force) as a result of
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which there is tendency in
increase in length.

It acts normal to the area and
pulls on the area.

» 1.2) Compressive Stress:

Stress induced in a body,
when subjected to two equal
and opposite pushes as a
result of which thereis a
tendency of decrease in
length of the body.

It acts normal to the area and
it pushes on the area.



Types of stress Continuity

2) Combined Stress:
A condition of stress that cannot be represented by a single
resultant stress.
2.1) Shear stress:
— Forces parallel to the area resisting the force cause shearing
stress.
— It differs to tensile and compressive stresses, which are caused
by forces perpendicular to the area on which they act.

— Shearing stress is also known as tangential stress

2.2) Tortional stress:

— The stresses and deformations induced in a circular shaft by a
twisting moment.
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Types of stress diagrams

tensional stress compresslnal stress
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e STRAIN:  TERMINOLOGIES RELATED
TO STRAIN:
* When a body is subjected to 1 |ongitudinal or Linear
some external force, there is Strain

— Strain that changes the
length of a line without
of the body. The ratio of changing its direction.

change in dimension of body — Can be either ,
compression or tensional.

Compression

called as strain. — Longitudinal strain that
shortens an object.

3. Tension

— Longitudinal strain that
lengthens an object.
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some change in the dimension

to its original dimension is ’)

e Strain is a dimensionless

quantity.



e Shear e Homogeneous Strain

— Strain that changes the angles of — Uniform strain.
an object. — Straight lines in the original
— Shear causes lines to rotate. object remain straight.
* Infinitesimal Strain — Parallel lines remain parallel.
— Strain that is tiny, a few percent — Circles deform to ellipses.
or less. — Note that this definition rules
— Allows a number of useful out folding, since an originally
mathematical simplifications straight layer has to remain
and approximations. straight.
e Finite Strain * Inhomogeneous Strain
— Strain larger than a few percent. — How real geology behaves.
— Requires a more complicated — Deformation varies from place
mathematical treatment than to place.
infinitesimal strain. — Lines may bend and do not

necessarily remain parallel.
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Types of strain

1.
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— Compressional Strain =

Tensile Strain Decrease in length/Original
Compression Strain Length=dL/L

Volumetric Strain 3. Volumetric Strain:

Shear Strain — Ratio of change of volume to

the original volume.
— Volumetric Strain= dV/V
4. Shear Strain

Tensile Strain:
— Ratio of increase in length to

the original length of the body — Strain due to shear stresses.
when it is subjected to a pull
force. * Sign convection for direct strain

— Tensile strain = Increase in — Tensile strains are considered
length/ Original Length=dL/L positive in case of producing

Compressive Strain: increase in length.

— Ratio of decrease in Length to — Compressive strains are
the original length of body considered negative in case of
when it is subjected to push producing decrease in length.
force.



Types of Strain Diagrams
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Beams — SFD and BMD

Shear and Moment Relationships

Slope of the shear diagram = - Value of applied loading

Slope of the moment curve = Shear Force

Both equations not applicable at the point of loading because
of discontinuity produced by the abrupt change in shear.
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Beams — SFD and BMD

w=-LVgy Degree of Vin X is one higher than that of w
dM : : :
V= . Degree of M in x is one higher than that of V

Degree of M in x is two higher than that of w

Combining the two equations

9
M :: obtained by integrating this equation twice

Method is usable only if wis a continuous function of x (other cases
not part of this course
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Beams — SFD and BMD

Shear and Moment Relationships
dV

Expressing V'in terms of w by integrating w = - = 7,

j VV dV= —LI wdx QR V="T1) * (the negative of the area under

0 0 the loading curve fromxj to x)

Vp 1s the shear force at xp and V is the shear force at x

Expressing M in terms of V' by integrating v = ‘zﬂ
X

M X
J AN = J Vidx OR M =My + (area under the shear diagram

Mn X, from x; to x)

Mo is the BM at xp and M is the BM at x
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Beams — SFD and BMD

I7=17% + (negative of area under the loading curve from x to x)

M = M + (area under the shear diagram from x; to x)

F
If there is no externally applied moment Mg at xg = |
0, total moment at any section equals the area I . . . '
under the shear diagram up to that section R I S
+F +F =-_I.F ;F +F
Y y e SFD
When V passes through zero and is a continuous
function of x with dV/dx # 0 (i.e., nonzero loading)
ar_ .
dx - -M o FLIA BMD

BM will be a maximum or minimum at this point

Critical values of BM also occur when SF crosses the zero axis |
discontinuously (e.qg., Beams under concentrated loads)
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Beams — SFD and BMD: Example (1)

Draw the SFD and BMD.

» Determine reactions
at supports.

» Cutbeam at C and
consider member AC,

V=+P2 M=+Px/2

Cutbeam at E and
consider member EB,

V=-P2 M=+P(L-x)2

"
(=
.

» Fora beam subjected to

. Maximum BM occurs concentrated loads, shear
- ——~  WhereShearchangesthe g constant between loading
__direction g .
; : ; points and moment varies
linearly
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Beams — SFD and BMD: Example (2)

Draw the SFD and BMD for the I‘:‘ i BI
beam acted upon by a clockwise ' 2 .
couple at mid point
<~ /2 e [f2 >
¢
Solution: Draw FBD of the beam and [ Y /INC

Calculate the support reactions

14

-C

Draw the SFD and the BMD 7
starting From any one end c
M 2
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Beams — SFD and BMD: Example (3)

Draw the SFD and BMD for the beam

Solution: Draw FBD of the beam and

Calculate the support reactions

ZMA=09RA=60N

ZM5=09R5=60I¢

Draw the SFD and the BMD
starting from any one end
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Beams — SFD and BMD: Example (4)

Draw the SFD and BMD for the beam w

Solution: " 1 w v l V.. 1

Draw FBD of the entire beam
and calculate support reactions !: £ |
using equilibrium equations

Reactions atsupports: R, =Rz = W—L

2

Develop the relations between loading, shear force, and bending
moment and plot the SFD and BMD
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Beams — SFD and BMD: Example (4)

wil (L
Shear Force at any section: V= — —wx=w K_ X
2 2

W
%

Alternatively, V-V 4 = —f wdx = —wx
0

R, =% Rp =% wL (L )

V="V4—wx= ——wx =w| ——x |

2 \2 )

v
: BM at any section: M= wLx—wr X =W(lx-x ,)
2 2 2
: j
0
M

L
I ox

\i Alternatively, M-M , =)Vadx
_wl

toltm pm————
~
Ea]
B
E @
=
Il
<
I
=
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Beams — SFD and BMD: Example (5)

Solution:
SFD and BMD can be plotted without
determining support reactions since it
is a cantilever beam. M

However, values of SF and BM can :
be verified at the support if support

reactions are known. — 3 woa?
wda wda ( a \ wda ) i
Re=—"T; Mo = e et - ~wga(3L - a)
i 2 3) 6 GL-9) Jhe
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Beams — SFD and BMD: Summary

+F +F +F +F
SFD =
-V
BMD
+M
o 7
L -3FLI4
A Y A B
(e =) J
U2 ° | U2 % e
C A
SFD |
I [- i—:m(l. ~a)]
C )
o T - = Woa
BMD 64
M ‘z‘l\ M

=120 Nm

N[0

—%wgc(&‘—a
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3.1 Torsion of Circular Shafts
a. Simplifying assumptions

During the deformation, the cross sections are not distorted in
any manner — they remain plane, and the radius » does not
change. In addition, the length I of the shaft remains constant.

Figure 3.1
Deformation of
a circular shaft
caused by the
torque I. The
initially straight
line A5 deforms
into a helix.
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TORSION cont..,

Based on these observations, we make the following
assumptions:

+ Circular cross sections remain plane (do not warp)
and perpendicular to the axis of the shaft.

+ Cross sections do not deform (there 1s no strain in the plane
of the cross section).

+ The distances between cross sections do not change (the
axial normal strain is zero).

Each cross section rotates as a rigid entity about the axis of
the shaft. Although this conclusion is based on the observed
deformation of a cylindrical shaft carrying a constant

internal torque, we assume that the result remains valid even

if the diameter of the shaft or the internal torque varies along
the length of the shaft.
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Compatibility:

b. Compatibility

Because the cross sections are separated by an infinitesimal
distance, the difference in their rotations, denoted by the
angle d6, 1s also infinitesimal.

As the cross sections undergo the relative rotation 6, CD
deforms into the helix CD. By observing the distortion of the
shaded element, we recognize that the helix angle yis the shear
strain of the element.
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Compatibility: cont.,,

From the geometry of Fig.3.2(a), we obtain DD = p dB=ydx
from which the shearstrain y 18

de
The quantity d6/dx is the angle of twist per unit length, where
B 1s expressed in radians. The corresponding shear stress,

illustrated in Fig. 3.2 (b), 1s determined from Hooke's law:

r=Gr=Gd¢£ﬂ (3.2)

Figure 3.2 (a) Shear
strain of a material
element caused by
twisting of the shaft;
(b) the corresponding
shear stress.
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Compatibility: cont.,,

the shear stress varies linearly with the radial distance p

from the axial of the shaft. r=Gy=G ddxﬁ o

The variation of the shear stress acting on the cross section
is illustrated in Fig. 3.3. The maximum shear stress, denoted
DY Tinax - occurs at the surface of the shaft.

Note that the above derivations assume neither a constant
internal torque nor a constant cross section along the length
of the shaft.

Figure 3.3 Distribution of
shear stress along the
radius of a circular shaft.

Tmax

|Ilullhu
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¢. Equilibrium Figure 3.4
Calculating the
Resultant of the
shear stress acting
on the cross
section. Resultant
is a couple equal
to the internal
torque T.

The shear force acting on this area is dP = Td4 = G (dB/dx) p
dA, directed perpendicular to the radius. Hence, the moment
(torque) of dP about the center 0 1s o dP = G (d6/dx) p 2 dA.
Summing the contributions and equating the result to the
internal torque yields J 4PdP=T, or

Gdcﬁa_e,[_,{psz=T

Fig. 3.4 shows a cross
section of the shaft
containing a
differential element of
area dA loaded at the
radial distance p from
the axis of the shaft.
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Equilibrium: cont..,

Recognizing that 1s the polar moment of inertia of the cross-
sectional area, we can write this equation as G (d8/dx) J=T , or

d8 T
o Tas (3.3)
The rotation of the cross section at the free end of the shaft,
called the angle of twist © , 1s obtained by integration:

L L T

6=[,d6= |, Gs (3.42)
Asin the case of a prismatic bar carrying a constant torque,
then reduces the torque-twist relationship

1L
0= —= :
G (3.4b)

Note the similarity between Eqgs. (3.4) and the corresponding

formulas for axial deformation: & = J L (Pl EA)dx and 8 = PL/(EA)
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Notes on the Computation of angle of Twist

+ 1.Inthe U.S. Customary system, the consistent units are G [ psi |,
T[lb-m],andL [m.],andJ[ in ]: in the ST system, the
consistentunitsare G[Pa].T[N-m].L[m|]. .21,].'1t:L.T[]:r_14 ].

+ 2. The unit of & 1n Egs. (3.4) 1s radians, regardless of
which system of unit i1s used in the computation.

+ 3.Represent torques as vectors using the right-hand rule, as
illustrated in Fig. 3.5. The same sign convention applies to
the angle of twist & .

\

Figure 3.5 Sign
Conventions
for Torque

~ I and angle

. > of twist T.
Positive Tor @ Negative Tor 6

formulas for axial deformation: & = JG‘T‘ ( P/ EA)dx and & = PL/(EA)

n
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Torsion formulas

G (d 6 /dx) = T/J , which substitution into Eq. (3.2),r=gy=¢ fmﬁ

p gives the shear stress T acting at the distance o from the center

of the shaft, Torsion formulas :

}r = ‘?(3.5;:1)Z

The maximum shear stress Tyjax 18 found by replacing o by the
radius r of the shaft: Tr
r . == (3.5b)

Because Hook s law was used in the derivation of Egs. (3.2)-

(3.5), these formulas are valid if the shear stresses do not exceed
the proportional limit of the material shear. Furthermore, these
formulas are applicable only to circular shafts, either solid or
hollow.
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Torsion formulas cont..,

The expressions for the polar moments of circular areas are :

Solid shaft : Mo =2T =167 (3.5¢)
.
T 2TR 167D
Hollow shaft : max “T(R*-r:) “H(D:-ds) (3.5d)
Equations (3.5c) and (3.5d) are called the forsion formulas.
Hollow shaft
Solid shaft .
/@
- \&djr/
r I
J—EE—=% _f——{i'?“—rd:l—ﬁ (D - d")

Figure 3.6 Polar moments of inertia of circular areas.
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Power Transmission

Shafts are used to transmit power. The power ¢ transmitted by a
torque T rotating at the angular speed W 1s given by { =700,
where W 1s measured in radians per unit time.

If the shaft 1s rotating with a frequency of frevolutions per unit
time, then W = 27 f, which gives {=T (27 f). Therefore, the
torque can be expressed as ¢

r= 2nf (3.6a)
In ST units, ¢ 1n usually measured in watts (1.0 W=1.0 N - m/s)
and fin hertz (1.0 Hz = 1.0 rev/s); Eq. (3.6a) then determines
the torque 7in N - m.

In U.S. Customary units with ¢ in /b + 1n./s and f1n hertz,
Eq.(3.6a) calculates the torque T1n /b - in.
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Power Transmission cont..,

Because power in U.S. Customary units 1s often expressed in
horsepower (1.0 hp =550 /b - fi/s = 396x10° b - [b = n./min), a
convenient form of Eq.(3.6a) 1s

{ (hp) 396 x10° (Ib - in./ min)

T(lb - in)=2mf (rev / min) X 1.0(hp)
which simplifies to

¢ (p)
T(Ib - in) = 63.0 x10° f(rev /min) (3.6D)
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Statically indeterminate problems

* Draw the required free-body diagrams and write
the equations of equilibrium.

* Derive the compatibility equations from the
restrictions imposed on the angles of twist.

* Use the torque- twist relationships in Egs.(3.4) to express

the angles of twist in the compatibility equations in terms
of the torques.

* Solve the equations of equilibrium and compatibility for
the torques.
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Sample Problem.1

A solid steel shaft in a rolling mill transmits 20 KW of power at 2
Hz. Determine the smallest safe diameter of the shaft if the shear

stress Ty is not to exceed 40 MPa and the angle of twist O is
limited to 6 "in a length of 3 m. Use G = 83 GPa.
Solution
Applying Eq. (3.6a) to determine the torque:
P 20x10°
T= 2nf = 2m(2) =1591 5N - m
To satisfy the strength condition, we apply the torsion formula,
Eq. (3.5¢):

r r 71 16T  16(1591 .5)
max =J_ max :Edg 4H 10 = ME

Which yields d = 58.7x10° m = 58.7 mm.
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Sample Problem.1 cont...,

Apply the torque-twist relationship, Eq. (3.4Db), to determine
the diameter necessary to satisfy the requirement of rigidity
(remembering to convert G from degrees to radians):

TL m 1591 5(3)
6= __ 6 = _

GJ (83 10 )(d /32)
From which we obtain d = 48.6){10'3 m = 48.6 mm.

To satisty both strength and rigidity requirements, we
must choose the larger diameter-namely,

d=58.7Tmm. Answer *
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Sample problem .2

The shaft in Fig. (a) Consists of a 3-in. -diameter aluminum
segment that 1s rigidly joined to a 2-in. -diameter steel segment.
The ends of the shaft are attached to rigid supports, Calculate the
maximum shear stress developed in each segment when the torque
T'=10 kip in. 1s applied. Use G = 4x10° pst for aluminum and G =

12x10° psi for steel.
Aluminum Steel
3-in. diamuter\ 2.in. diameter

"':l/‘ [\ T I{]klp in. I,n
. 441_“14 \—\

(b) FED

Solution
Equilibrinm  TM=0, (10x10°) =T =T =0  (a)

This problem is statically indeterminate.
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Sample Problem.2 cont...,

Compatibility the two segments must have the same angle of twist;
thatis, & st = & 51 From Eq. (3.4Db), this condition between.

L ) L T, (3x12) Ty (6 x12)
T T T
GJ o GJ . § I 4 6 1 4
from which (12x10 )32 (2) (4 x10)32 (3)
T =1.1852 131 (b)

Solving Egs. (a) and (b), we obtain
Ta1 = 4576 [b - . Tt = 5424 [b - 1in. the

maximum shear stresses are

T 167 16(4576)
( max ).m‘ = = =863 pSI
md- T (3) Answer
T 167 16(5424)
((mm )r = = — = 3450 psi Answer
Td m(2)
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Sample problem.3

600 b - fi
. 1000 b - ft
The four rigid gears, loaded
as shown in Fig. (a), are
attached to a 2-in.-diameter ' 500 1b - fi

steel shaft. Compute the
angle 6 of rotation of gear

A relative to gear D. Use G ~
=12x10° psi for the shaft. (@)

: 7., 10001b-ft 9001b-ft 500 Ib- fi
Solution co — |
It is convenient to represent ¢ B A
the torques as vectors Tpe f’ff_:b' it 500 Ib - fi
(using the right-hand rule) B A
on the FBDs in Fig. (b). T 500 1b - fi

D B
A
(b) FBDs
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Sample Problem.3 cont...,

Soluition

Assume that the internal torques T4p, Tgpc, and Tep are positive
according to the sign convention introduced earlier (positive torque
vectors point away from the cross section). Applying the
equilibrium condition ¥ My = 0 to each FBD, we obtain

500—900-1000—Tcp =0 T 100010t 9001b-ft 500 Ib- fi

500—900—Tpc=10 C B A
500—Tym=0 Ty 9001b-fi 500 I - fi
45 =] e
T4p=500 [b- 1i, B A
Tec=-400 [b- fi Tag 500 Ib - fi
Eanan B
Tep=0600 [b- fi A
(b) FBDs

The minus sign indicates that the sense of Tp¢ 1s opposite to that
shown on the FBD.A4 1s gear D were fixed.
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Sample Problem.3 cont...,

This rotation is obtained by summing the angles of twist of the three

segments:

g =6 +6 +6
4D AB B/C oD

Using Eq. (3.4b), we obtain (converting the lengths to inches
and torques to pound-inches)

I L +TWL +7 L

Q4/D= 4B 42 B¢ D D
GJ
= (500%12)(5%12) — (400x12)(3x12) + (600x12)(4x12)
[T (2)* / 32](12%10)°
=0.02827 rad = 1.620° Answer

The positive result indicates that the rotation vector of 4 relative
to D 1s in the positive x-direction: that is, & 4p is directed
counterclockwise when viewed from 4 toward D.

shown on the FBD.A 1s gear D were fixed.
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Sample Problem.4

Figure (a) shows a steel
shaft of length L =1.5m
and diameter d = 25 mm

that carries a distributed
toque of intensity (torque  “

per unit length) ¢ = tp(X/L),

where tg = 200 N- m/m.
Determine (1) the maximum
shear stress in the shaft; and
(2) The angle of twist. Use
G = 80 GPa for steel.

(b) FBD

Figure (a) and (b) FBD
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Sample Problem.4 cont...,

Solution

Part 1 (b) FBD
Figure (b) shows the FBD of the shaft. The total torque applied

to the shaft 1s ,[ o' tdx . The maximum torque in the shaft is
T 4, which occurs at the fixed support. From the FBD we get

ZM}I =0 L:rjE tde =Ty =0
X tgL 1
T, =L]L rdr=J{.£ tp Id:f: 2 ==(200)(1.5)=150N - m
From Eq. (3.5¢), the maximum stress in the shaft 1s

ond® Tm(0.025)
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Sample Problem.4 cont...,

Part 2

The torque T acting on a cross section located at the distance
X from the fixed end can be found from the FBD in Fig. (c):

ZMX =10 T"‘J‘DXTdI_TA =0 1/'-’:1_.,-“}{Jr

tg L x r, A T
r=1, - Jide =2 -y T ax - e
:ri (,[.E —xﬁi) - L + . "
(c) FBD

2L
From Eq. (3.4a), the angle B of twist of the shaft 1s

: i g Lo tg I’
0= It Gydx= 5167 1 € -xav= 3¢

200 (1.5)

= 3(80 x10¢ )(17/ 32)(0.025)* = 0.04897ad = 2.8° Answer
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Torsion of Thin-Walled Tubes

Simple approximate formulas
are available for thin-walled
tubes. Such members are
common 1n construction where
light weight 1s of paramount

importance.

The tube to be prismatic Middle surface

(constant cross section), but (a)

the wall thickness 7 1s allowed

to vary within the cross Figure 3.7 (a) Thin-walled
section. The surface that lies tube in torsion; (b) shear

midway between the inner and  stress in the wall of the tube.
outer boundaries of the tube 1s
called the middle surface.
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Torsion of Thin-Walled Tubes cont..

If thickness ¢ 1s small compared to the overall dimensions of the
cross section, the shear stress induced by torsion can be shown
to be almost constant through the wall thickness of the tube and
directed tangent to the middle surface, in Fig. (3.7b).

At this time, it is convenient to introduce the concept of

strear flow ¢, defined as the shear force per unit edge length

of the middle surface.

the shear flow ¢ is
q="Tt (3.7)

If the shear stress 1s not
constant through the wall

thickness, then T in Eq.
(3.7) should be viewed as Middle surface
the average shear stress. (a)
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Torsion of Thin-Walled Tubes cont..

The shear flow is constant de
throughout the tube. This q q
result can be obtained by -
considering equilibrium 5/ X
of the element shown in

dq oG dx

In labeling the shear flows, ©
we assume that g varies in ‘
the longitudinal (x) as well (c) Shear flows on wall element.

as the circumferential (s) Z Fr =0 4+ % ds dx — g = 0

directions. The force acting Os

on each side of the element Z Fo =0 dq )
1s equal to the shear flow o T ads=0
multiplied by the edge g/ &x = g/ 8s % 0, thereby proving
length, resulting in the that the shear flow is constant
equilibrium equations. throughout the tube.
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Before deformation
(a)
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After deformation
(b)

straight, yet rotate
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Stresses due to bending
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When some external force acts
on a beam, the shear force and
bending moments are set up at
all the sections of the beam

Due to shear force and bending
moment, the beam undergoes
deformation. The material of the
beam offers resistance to
deformation

Stresses introduced by bending
moment are known as bending
stresses

Bending stresses are indirect

normal stresses

ASSUMPTIONS FOR THE THEORY

SIMPLE BENDING OR PUREBENDING

OF PURE BENDING:

The material of the beam is
isotropic and homogeneous. |.e.
of same density and elastic
properties throughout

The beam is initially straight and
unstressed and all the
longitudinal filaments bend into
a circular arc with a common
centre of curvature

The elastic limit is nowhere
exceeded during the bending

Young's modulus for the material
is the same in tension and
compression
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THEORY OF SIMPLE BENDING

The layer AC is shortened to A'C.
Hence it is subjected to
compressive stress

The layer BD is elongated to B’D’.
Hence it is subjected to tensile
stresses.

Hence the amount of shortening
decrease from the top Ilayer
towards bottom and the amount of
elongation decreases from the
bottom layer towards top

Therefore there is a layer in
between which neither elongates
nor shortens. This layer is called
neutral layer .

bending moment, the stresses
generated on the neutral layer is
zero.

Neutral axis is the line of
intersection of neutral layer with
the transverse section

Consider the cross section of a
beam subjected to pure bending.
The stress at a distance y from the
neutral axis is given by o/y=E/R

* NEUTRAL AXIS:
— For a beam subjected to a pure (@ ™
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MOMENT OF RESISTANCE

Due to the tensile and
compressive stresses, forces
are exerted on the layers of a
beam subjected to simple
bending

These forces will have moment
about the neutral axis. The
total moment of these forces
about the neutral axis is known
as moment of resistance of that
section

We have seen that force on a
layer of cross sectional area dA
at a distance y from the neutral
axis,

dF=(E xy x dA)/R
Moment of force dF about the

neutral axis= dF x y= (E x y x
dA)/R x y= E/R x (y2dA)

— Hence the total moment of

force about the neutral axis=
Bending moment applied= |
E/R x (y?dA)= E/R x Ixx; Ixx is
the moment of area about the
neutral axis/centroidal axis.
Hence M=E/R x Ixx

Or M/Ixx=E/R

Hence M/Ixx=E/R = ob/y;ob
is also known as flexural stress
(Fb)

Hence M/Ixx=E/R=Fb/y

— The above equation is known

as bending equation

— This can be remembered using

the sentence “Elizabeth Rani
May | Follow You”
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CONDITION OF SIMPLE BENDING & FLEXURAL RIGIDITY

— Bending equation is applicable to a beam subjected to
pure/simple bending. |.e. the bending moment acting on the

beam is constant and the shear stress is zero

— However in practical applications, the bending moment varies

from section to section and the shear force is not zero

— But in the section where bending moment is maximum, shear

force (derivative of bending moment) is zero

— Hence the bending equation is valid for the section where

bending moment is maximum
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BENDING OF FLITCHED BEAMS

A beam made up of two or more different
materials assumed to be rigidly
connected together and behaving like
a single piece is called a flitched beam
or a composite beam.

e Consider a wooden beam reinforced
by steel plates. Let

E1= Modulus of elasticity of steel plate
E2= Modulus of elasticity of wooden beam
M1= Moment of resistance of steel plate

M2= Moment of resistance of wooden
beam

1= MOI of steel plate about neutral axis
I2= MOI of wooden beam about neutral
axis.

The bending stresses can be calculated
using two conditions.

e Strain developed on a layer at a
particular distance from the neutral
axis is the same for both the materials

* Moment of resistance of composite

beam is equal to the sum of individual
moment of resistance of the members

— Using condition-1:

0l1/El=0 2/E2;

0l=02 x (E1/E2) or 01= 02 x m;
where m=

E1/E2 is the modular ratio

between steel and
wood

— Using condition-2:

M=M1+ M2;
M1=olxI1/y
M1=02x12/y

— Hence M=0o1x11/y + 02x 12/y

M=02/yx (12 +11x 01/ 02)
M=02/yx (12 +11xm)

(12 + 11 x m)= | = equivalent
moment of inertia of the cross
section;

Hence M= 02/y x |
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Stresses due to bending

10 e
& 19 ini Y
/48 \\R Strain in layer EF = —
R
SN G )
EN —A £ Stress_in _the _layer _ EF
B - D Strain _in_the _layer_ EF
o O
B
R
G E E
S Lt Fom—
YR . R’
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Flexure Formula
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O, =—0,
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=ma,

g
M=—1
)’

(o Al
=—I +—=1,
y y

= %—[ml, A
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WORKED EXAMPLE No.l

A beam has a rectangular cross section 80 mm wide and 120 mm deep. It 15 subjected to a bending
moment of 15 kNm at a certain point along its length. It 15 made from metal with a modulus of
elasticity of 180 GPa. Calculate the maximum stress on the section.

SOLUTION

B =80 mm, D = 100 mm. It follows that the value of v that gives the maximum stress 15 50 mm.
Remember all quantities must be changed to metres in the final calculation.

< BDT _ BOXI00T o 105mm? = 6.667x 1070 m?
12 12

M .

[y

o= My _ BxI07x005 40050106 Nm?

I 6.667x107°
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WORKED EXAMPLE Mo.2

A bzam has a holloar circular cross section 4 mm owuter diameter and 20 mm inner diameter. It is made
from metal with a modulus of elasticity of 205 (GPa. The maximum tensile stress in the beam must not
exceed 350 MPa.

Calculate the following.

{1} the maximum allowable bending momenit.
{ii) the radius of curvature.

ST

D= 4 mm, d = 310
I=m404 -3 1VE4 =859 x 103 mm* o 8§59 x 10-9 md.

The maximum value of v is /2 50 v = 20 mm or 0.02 m

I'l.-{_.:'.r

T v

M= Ol 350 x 0P xBS DR 107 _\opa o a3 mNm
¥ 0.0z

a E

v R

Ey 205x10" x0.02
o 350 x10"
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WORKED EXAMPLE No3

Calculate the stress on the top and bottom of the section shown when the bending moment is 300 N m.
Draw the stress distribution.
i

B —
T
‘o
ET | 40 mm l

Figure 9

E
E
o

¥
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Mow calculate the stress using the well known formula og = Myl

Top edge y = distance from the centroid to the edge = 50— 28.08 = 21.93 mm
oy =300 x 00219241 8300 x 107 = 1572 x 10° Pa or 15.72 MPa {Tensile)
Hottom edge vy = ¥ =28.07 mm

oy = 300 x 0.0Z80%/41 8,300 x 107 =20.14 MPa (Tensile)

The stress distribution looks ke this.

Position 4 15.72 K1Pa

21,93 mm

L
Y

FROT mrm

- 20,12 MPa
Figure 10
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WORKED EXAMPLE No.4

The section solved in example 2 is subjected to a tensile force that adds a tensile stress of 10 MPa
everywhere. Sketch the stress distribution and determine the new position of the neutral axis.

SOLUTION

The stress on the top cdge will increase to 23,72 MPa and on the bottom edge 1t will decrease to -10.12
MPa. The new distribution will be as shown and the new paosition of the neutral axis may be calculated

by ratios.
2572 MPa
F
A
M & -
F
B
h
1012 KPa
Figure 11
A=-B=30mm soB=3-A
By similar triangles A3 T2=HB10.12 A=(257210.12)B=25 B
B=53-25B8 313 B=50 B=1412mm A=50-1412 =358E mmm
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WORKED EXAMPLE No.58

A rectangular section timber beam is 50 mm wide and 75 mm deep. It is clad with steel plate 10 mm
thick on the top and bottom. Calculate the maximum stress in the steel and the timber when a moment
of 4 kKNm is applied.

E for timber is 10 GGPa and for steel 200 GPa

SOLUTION Lo TL.|
The width of an equivalent steel web must be m—L — m_L
t=3xE,/E=5x10/200= 2.5 mm N -

Now calculate L, for the equivalent beam. ;
This is easy because it is symmetrical and involves = 78 -
finding | for the outer box and subtracting I for the 4 i

missing parts. P —

= S0x95/12-47.5x 7512 0! w0l

I = 1.9025x 10%m*

The stress at y = 37.5 mm o = Myl = 4000 x 0.0378/1 9025 x 10" =78.845 MPa
The stress in the timber at this level will be different because of the different E value.
o, =cE/E =392 MPa

The stress at y = 47.5 mm will be the stress at the edge of the steel.

o, = My/1 = 4000 x 0.0475/1.9025 x 10° =99.87 MPa
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SOLUTIONN

First calculate the second moment of arca using the tabular method that you should already know,
Divide the shape into three sections A, B and C. First determine the position of the centroid from the

baottom :d_g-:.

Area ? A 37
A B0 i’ 45 mm 27 000 mm’
B W0 i’ 25 mm TR0
C 400 mm’ 3 2000 mm
Totals 1200 mm? TAI000 mm

Far the whole section the centroid position 158 F=36300001300 = 2807 mm
Mow find the second moment of area about the base. Using the parallel axis theorem.

BIY/12 AT I=BD'12+AT’
A G0 1081225000 mm” B00 x 45°=1215000 1220000 mm’
B 10 x 3071 2=22500 mm® 200 x 25=187500 210000 mm’
C 4 x 10712=2323 mm® 400 x 57=10000 13233 mm’

Total = 1443333 mm*
The total second moment of area about the bottom is 1443333 mmd
Mow move this to the centroid using the parallel axis theorem.

[= 1443333 A7 =1443333 1300 x 28.08° = 418300 mm*
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Analysis of Statically Determinate Structures

* I|dealized Structure
* Principle of Superposition
* Equations of Equilibrium

 Determinacy and Stability
— Beams
— Frames
— Gable Frames

* Application of the Equations of Equilibrium

* Analysis of Simple Diaphragm and Shear Wall Systems
Problems
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Classification of Structures

* Support Connections

= =] ——q,-weld i
l @Fw' ] stiffeniers | 11 o Tgl
| - S

el \-weld lltlsad |

typical “pin-supported” typical “fixed-supported”
connection (metal) connection (metal)

typical “roller-supported™ typical “fixed-supported”
connection (concrete) connection (concrete)
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— » —

pin support pin-connected joint fixed support
fixed-connected joint S DIINg S i
J torsional spring support torsional spring joint
; P
A
B 4 B
L2 L2 L2 I/2

|"' 'J|= '| |< h-|«q >|

actual beam idealized beam
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Supports for Coplanar Structures

Type of Idealized

. Reaction Number of Unknowns
Connection Symbol
(1) % Licht One unknown. The reaction is a
N cable force that acts in the direction of

the cable or link.

i
hik| 7§

2 14 .
@ rollers One unknown. The reaction 1s a
= fﬂ force that acts perpendicular to
the surface at the point of contact.
e F
rockers
3) ( ( One unknown. The reaction is a
S e force that acts perpendicular to
F the surface at the point of contact.
4 . . < < One unknown. The reaction is a
N N N force that acts perpendicular to
Y Y N \ . PeIP

the surface at the point of contact.
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Type Of. Idealized Reaction Number of Unknowns
Connection Symbol
(5)

2 e "V

Smooth pin or hinge

Two unknowns. The reactions
are two force components.

(6)
% Eﬁ - M E

slider
fixed-connected collar

Two unknowns. The reactions
are a force and moment.

(

i3
S

fixed support

Three unknowns. The reactions
are the moment and the two force
components.
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|dealized Structure

B
F Y F l
F
4m
A
hi
actual structure idealized structure
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H H

idealized framing plan

e 5

fixed-connected beam fixed-connected overhanging beam

Tl
| o

1dealize beam Idealized beam
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idealized framing plan

idealized framing plan
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Tributary Loadings.

slab vethicle
51:111e1 = ﬁzu /. / slab |
S : e stringer
ri : 3! iy 4 gl‘l‘dE]_ ""m.._,; LT ML TCa.A EeT f__--""""'-r g
floor beam

T

floor beam 7
deck girder

a

W ) e ey
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spandrel 7

beam
-
—
S
s
=77
5://’ supported slab7

S . P
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- : 1% floor
/" foundation

wall

slab on gratiy

basement

%

“vall AN T 7 A

footing R
spread
footing

Cl

s




One-Wav Svstem.

4m
) f
p B
lm
C D 1 m
1 m
lm
E F
idealized framing plan
1 kKN 2 kN 1 kKN
1 kKN/m
C A F ¥y r v 9 A r D Fl l iB
2kN 2kN 2m 2m
4 m | |
[« 7 idealized girder
1dealized beam
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column -

|
L e
concrete slab 1s I
: : 2
reinforced in two | = >|
directions. poured 4H HZ
on plane forms _— | = I
L,/2 ¥ C D 1
L./2
' ¥ Ll
EH HF

Idealized framing plan
for one-way slab action

requires 1,/L, =2
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Two-Wav Systemn.

4 m

D

L 6m ,
= gl
< N —Z1 5 1kN/m
2 mT 450 45}/ l
4 m y il
CI__' ____________________ '_—ID > 5
m 1 m

1dealized framing plan

1 kKN/m

AI{MIB
21]1' 2m

idealized beam. all

Al'%\l\h‘lc
2m 2Zm

idealized beam
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Principle of Superposition

Two requirements must be imposed for the principle
of superposition to apply :

1. The material must behave in a linear-elastic
manner. so that Hooke’s law is valid. and therefore
the load will be proportional to displacement.

c=P/A
o= PL/AE

d
¥
2. The geometry of the structure must not
+ undergo significant change when the loads are
N applied. 1.e.. small displacement theory applies.
M Large displacements will significantly change
§ and orientation of the loads. An example would

be a cantilevered thin rod subjected to a force at
d its end.
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Equations of Equilibrium

LF =0 LF =0 LF_ =0

X ¥

M =0 M = XM =0

x v z

internal loadings
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Determinacy and Stability

* Determinacy

r = 3n. statically determinate

r > 3n. statically indeterminate

n = the total parts of structure members.
= the total number of unknown reactive force and moment components
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Example

Classify each of the beams shown below as statically determinate or statically
indeterminate. If statically indeterminate, report the number of degrees of
indeterminacy. The beams are subjected to external loadings that are assumed to
be known and can act anywhere on the beams.

hinge

"d!li;:" :\\g\m

hing

W
a]’?
Wi

RRRARY SANRRANY
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SOLUTION

r=3.n=1.3=3(1) Statically determinate

r=5.n=1,5-3(1)=2 Statically indeterminate to the second degree

W[xﬁ

r=6.n=2.6=3(2) Statically determinate
—] )
\ \
r=10,n=3.10-3(3)=1 Statically indeterminate to the first degree
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Example

Classify each of the pin-connected structures shown in figure below as statically
determinate or statically indeterminate. If statically are subjected to arbitrary
external loadings that are assumed to be known and can act anywhere on the
structures.

5
At
A ¥
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SOLUTION

I 4—%»

R
R_/
Fr=7.n=2.7-3(2)=1 Statically indeterminate to the first
degree

I S

AR

r=9.n=3.9=3(3) Statically determinate
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A

2

T { | ¥

r=10.n=2.10-6=4 Statically indeterminate to the fourth

degree

—T
s

F=9.n=3.9=3(3) Statically determinate
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Example

Classify each of the frames shown in figure below as statically determinate or
statically indeterminate. If statically indeterminate, report the number of degrees
of indeterminacy. The frames are subjected to external loadings that are assumed
to be known and can act anywhere on the frames.
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SOLUTION

F

Statically indeterminate to the third degree

r=15.n=3.15-9=6 Statically indeterminate to the sixth degree
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+ Stability

7 < 3n. unstable

7 =3n. unstable 1f member reactions are concurrent
or parallel or some of the components form
a collapsible mechanism

Partial Constrains
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Improper Constraints

@, @,
S A
i /J’ i \H\
i - i ,
: /’ i \\\\‘_
A ' B C A - B ~, C
%, =
% d ﬂ\&ﬁ & ’ d “
L & 1: F
4 C
P P Fy

A B z P C A B P C
A .«m& BN
F.~_r FB FC
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Example

Classify each of the structures in the figure below as stable or unstable. The
structures are subjected to arbitrary external loads that are assumed to be known.

Fol

B

Loy
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SOLUTION

The member is sfable since the reactions are non-concurrent and nonparallel.
It 1s also statically determinate.

N hinge %
" S L A )

C

The compound beam 1s sfable. It 1s also indeterminate to the second degree.

A S B

The compound beam is unsrable since the three reactions are all parallel.
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The member is unsrable since the three reactions are concurrent at B.

B f—i—p
The structure 1s unsfable since = 7. n = 3. so that. » < 3n. 7 < 9. Also. this can
be seen by inspection. since 4B can move horizontally without restraint.

AR
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Application of the Equations of Equilibrium

r=9.1n=39=3(3): statically determinate
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BI
CI

Py
B, '?_*_t > A
B,
PZ
C,

C
y
r=6.n=2.6=3(2): statically determinate
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Example
SOLUTION

Determine the reactions on the beam shown.

] ¢ 0.3 60
1]1

150 kN : a\‘gw B
im I1 m 2m

0.3m 60°
265 sm 60°=229.5 kN

70 kKN*m

A

H

MRS \'B
jm lm , 2m

0.3m 265 cos 60° = 135 kN
v (¢ 3m Sl L 'B}, 70 kKN*m

»YF=0:  A4.-1325=0 4 =1325kKN. >

S IM,=0:  B/4)-(229.5)(3)+(132.5)(0.3)-70=0
B,=179.69kN. T

AsE =0 4,-2295+179.69=0
4,=4981kN. T
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Example

SOLUTION
(1/2)(12)(10) = 60 kN

Determine the reactions on the beam shown. S
m (5)(12) = 60 kN

sevm kv T
sNm T T T —
[5KN/m ) I . I

\ v, AT
12m A 12m
5 kN/m [« » A« .
4m
4
6m
§ —
’ 12m
¢ {
*»IF =00  4,=0
Asr=00 4-60-60=0
A4,=120kN. T

I IM,=0: M- (60)4) - (60)6)=0
M= 600 kN*m
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Example

Determine the reactions on the beam shown. Assume 4 1s a pin and the support at
B 15 a roller (smooth surface).

3m

|< 4m >|42m|-
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SOLUTION B

3m

90°0-56.3°= 33.7°

Fr————————— === ———————————————I A\B

A, tan-1(3/2) = 56.3°
A 2
.1—m...|
’ 6 m
« g
J IM,=0: -28(2) + Ngsin 33.7(6) + Nzcos 33.7(3) =0

N,=9.61 kN
> IF =0: A_-Ng0s33.7=0:4 =9.61cos 33.7=8kN.—>

Az =0 4,-28+9.61c0s33.7=0
A4,=2267kN.T
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Example

The compound beam in figure below is fixed at 4. Determine the reactions at A.
B. and C. Assume that the connection at pin and C 1s a rooler.

6 kKN/m

g ‘ ‘ ‘ ‘ ‘ ‘ ‘E hinge 8 kKN*m
A
§ B LAY (‘*

L 6 m * Am >‘
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SOLUITION

6 KIN/m

Member BC Member 4B
) =M, = 0: C,(4)-8=0 2 =M, =0: M,-36(3)+2(6)=0
C,=2kN.T M ,=96 kN*m
> IF_=0: B_=0 “» XF =0: A -B=0;4.=B_=0
A sr = C,-B, =0 Asr =00 4 -36+2=0
B,=C,=2kN.T ‘ A4,=34kN.T
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Example

The side girder shown in the photo supports the boat and deck. An idealized
model of this girder 1s shown 1in the figure below. where it can be assumed A4 1s a
roller and B is a pin. Using a local code the anticipated deck loading transmitted
to the girder 1s 6 kKN/m. Wind exerts a resultant horizontal force of 4 kN as
shown, and the mass of the boat that 1s supported by the girder is 23 Mg. The
boat’s mass center is at G. Determine the reactions at the supports.

1.6m 1.8m 2m
< r’d T
6 kKN/m

B

4 roller pin

SRR
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SOLUTION

4 KN
03m
A e
) M =0:
6(3.8)=22.8 kN 22.8(1.9) -4,(2) +225.6(5.4)
-4(0.3)=0
4 KN 4,=6302kN. T
03m
Arr =0
1225.6+630.2-22.8+B,=0
23(9.81) KN = 225.6 kN B, =382kN.T

5.4m R
»

|
™
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Example

Determine the horizontal and vertical components of reaction at the pins 4. B.
and C of the two-member frame shown in the figure below.

8 kN 3 kKN/m
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SOLUTION

Member BC
8 kN 3 kN/m ) M, =0:
-B,(2) +6(1) =0
B=3kN.T
Member 4B

L3 I_Tl+j EMA =0:

-8(2) - 3(2) +B(1.5) =0
B=147kN .«

= 3F_=0:

A, +(3/58-147= 0
4,=987IN . >
tir =0

4,-(4/5)8-3=0
4,=94kN. T

C.-B.=0;,C,=B.=147kN . «

3-6+C,=0: C,=3kN.T
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Example

From the figure below. determine the horizontal and vertical components of
reaction at the pin connections 4. B. and C of the supporting gable arch.

im
15 kN

3m
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SOLUTION

Entire Frame
) IM,=0:  C,(6)-15(3)=0
C,=75kN.T

Arr =0 4,+75=0

4,=-T5kN .
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el

Member AB

o) EMy=0: 15(3)+ 4. (6)+7.5(3)=0

A SF,=0:

A =-1125kN . «
~11.25+15-B_=0

B,=375KN .«
~7.5+By=0

B,=75kN

-.l_‘
r‘ )
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Example

The side of the building in the figure below 1s subjected to a wind loading that
creates a uniform normal pressure of 1.5 kPa on the windward side and a suction
pressure of 0.5 kPa on the leeward side. Determine the horizontal and vertical

components of reaction at the pin connections 4. B. and C of the supporting gable
arch.
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SOLUTION

A uniform distributed load on the
windward side 1s

(1.5 kKN/m?)(4 m) = 6 kKN/m

A uniform distributed load on the
leevward side 1s

(0.5 KN/m2)(4 m) = 2 KN/m
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6 kKN/m
6 kKN/m
4
| 3m

2 kN/m

2 kKN/m
C

3m

I..I.l .
r‘ )

3m




2546 kN, | _~B. o 849KkN

4 o
25.46 COS 45 = 8.49 cos 45
18 kN ! 6 kN
AL c

AT 3m 15 G,
Entire Frame
) EM,=0: -(18+6)(1.5) - (25.46+8.49)cos 45°(4.5) - (25.46 sin 45°)(1.5)

+(8.49 sin 45°)(4.5) + C,(6) =0
C,=24.0kN. T

M SE =00 4254650450+ 849 sin 4503+ 24 =0
A4,=-120kN |
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25.46 sin 45

2546 kKN 1 .~ 8.49 sin 45
459/ ¢ Bx 15 Bx
25.46 cOS 45 mm- -
- 3
18 kKN !
: 1.5

A=12.0kN

Member A5

) My =0: (25.46 sin 45°)(1.5) + (25.46c0s 45°)(1.5) + (18)(4.5) + A, (6) + 12(3) =0
A =-285kN

i.'EFx:O: -285+18+2546¢cos45°-B.= 0

B, =T75kN.«
A zE =0 112 -25.46sin 45°+ B, =0
B,=300kN.T
Member CB
> IF, =0: 7.5+849cos45°+6-C = 0

C,=19.50 kN . «
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Analysis of Simple Diaphragm and shear Wall Systems
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roof diaphragm -

.—""\_‘_‘

SN

, =
Wind F U

second floor
diaphragm
shear walls
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Example

Assume the wind loading acting on one side of a two-story building 1s as shown
in the figure below. If shear walls are located at each of the corners as shown and
flanked by columns. determine the shear in each panel located between the floors
and the shear along the columns.

4 m

4m

¥

1.2 kPa (o

LA
/&A/ m{?‘“m
im
0.8 kPa
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SOLUTION

Fpy=0.8(10°) N/m? (20 m)(4 m) = 64 kN
Fo /2=32

Fpo=12(10°) N'm? (20 m)(4 m) =96 kN
Fp/2=48
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‘ro iﬁl m J M =0:

12 kN F(3)-124)=0
F,=16kN

— +j 2M=0:
F LESAFE
e F i i F' (3)-324)=0
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THEORY OF ELASTISITY

» INTRODUCTION:
Elasticity
Elasticity of Composites
Viscoelasticity
Elasticity of Crystals (Elastic Anisotropy)

» [ et us start with some observations...

When you pull a rubber band and release it, the band regains it original length.

<

L)

L)

AN

It is much more difficult (requires more load) to extend a metal wire as compared to a
rubber ‘string’.

It is difficult to extend a straight metal wire; however, if it is coiled in the form of a
spring, one gets considerable extensions easily.

AN

v" A rubber string becomes brittle when dipped in liquid nitrogen and breaks, when one
tries to extend the same.

v' A diver gets lift-off using the elastic energy stored in the diving board. If the diving board
is too compliant, the diver cannot get sufficient lift-off.

v' A rim of metal is heated to expand the loop and then fitted around a wooden wheel (of
say a bullock cart). On cooling of the rim it fits tightly around the wheel.
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» Elastic deformation is reversible deformation-i.e. when
load/forces/constraints are released the body returns to its
original configuration (shape and size).

» Elastic deformation can be caused by tension/compression or
shear forces.

» Usually in metals and ceramics elastic deformation is seen at low
strains (less than ~1073). However, other materials can be
stretched elastically to large strains (few 100%).

So elastic deformation should not be assumed to be small
deformation!

» The elastic behavior of metals and ceramics is usually linear.
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[inear

Elasticity

Non-linear

_______________________

E.g. Al deformed at small strains

E.g. deformation of
an elastomer like rubber
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Time dependent aspects of elastic deformation

» In normal elastic behaviour (e.g. when ‘small’ load is applied to a metal wire,
causing a strain within elastic limit) it is assumed that the strain is appears
‘instantaneously’.

» Similarly when load beyond the elastic limit is applied (in an uniaxial tension
test ), it is assumed that the plastic strain develops instantaneously. It is
further assumed that the load is applied ‘quasi-statically’ (i.e. very slowly).

» However, in some cases the elastic or plastic strain need not develop
instantaneously. Elongation may take place at constant load with time. These
effects are termed Anelasticity (for time dependent elastic deformation at
constant load) and Viscoelasticity.

» Creep is one such phenomenon, where permanent deformation takes place at
constant load (or stress). E.g. if sufficient weight is hung at the end of a lead
wire at room temperature, it will elongate and finally fail.
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Recoverable IW
‘ Time dependent  Anelasticity
Deformation
=
Plast o Viscoelasticity
Permanent
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Atomic model for elasticity

» At the atomic level elastic deformation takes place by the
deformation of bonds (change in bond length or bond angle).

» Let us consider the stretching of bonds (leading to elastic
deformation).

» Atoms in a solid feel an attractive force at larger atomic separations
and feel a repulsive force (when electron clouds ‘overlap too much’)
at shorter separations. (Of course, at very large separations there is
no force felt).

» The energy and the force (which is a gradient of the energy field)
display functional behaviour as in the equations below*. This
implies under a state of compressive stress the atoms ‘want to’ go
apart and under tensile stress they want to come closer.
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EW@E@VF

U =

-—+
N

I

—

m

I

~* Repulsive

Aftractive

A B.m.n — constants
m>n

dU

TN Foree

i nd  mB

ntl m+1
I I
A' B' The plots of these
F — | - functionsis shown
in the next slide
I,-P F"q

* This is one simple form of interatomic potentials (also called Lennard-Jones potential, wherein m=12 and n=0),
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» The plot of the inter-atomic potential and force functions show that at the equilibrium inter-atomic
separation (r,) the potential energy of the system is a minimum and force experienced is zero.

> In reality the atoms are undergoing thermal vibration about this equilibrium position. The
amplitude of vibration increases with increasing temperature. Due to the slight left-right asymmetry
about the minimum in the U-r plot, increased thermal vibration leads to an expansion of the crystal.

1 Repulsive-..___ Repulsive-.

= | A B 4 B

. r a — \ r? pt

2 3

b} — .

5 r — 8 r —
P

E 2

+—

o

1}

-+

]

a¥

Attractive

H—' Equilibrium separation between atofhs
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» Young’s modulus is the slope of the Force-Interatomic spacing curve (F-r curve), at the
equilibrium interatomic separation (r,).

> In reality the Elastic modulus is 4" rank tensor (E;;;) and the curve below captures one

aspect of it.

MNear 1, the red line (fangent to the F-r curve
atvr = rg)

coincides with the blue line (F-r) curve

Young’s modulus (Y / E)

= Young’s modulus is proportional to

the —ve slope of the F-r curve atr =r,

Force —

I'p

For displacements around r, — Force-

displacement curve is approximately linear
= THE LINEAR ELASTIC REGION
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Stress-strain curves in the elastic region

» In metals and ceramics the elastic strains (i.e. the strains beyond which plastic deformation sets in or
fracture takes place*) are very small (~1073). As these strains are very small it does not matter if we
use engineering stress-strain or true stress strain values (these concepts will be discussed later). The
stress-strain plot is linear for such materials.

» Polymers (with special reference to elastomers) shown non-linear stress-strain behaviour in the
elastic region. Rotation of the long chain molecules around a C-C bond can cause tensile elongation.
The elastic strains can be large in elastomers (some can even extend a few hundred percent), but the
modulus (slope of the stress-strain plot) is very small. Additionally, the behaviour of elastomers in
compression is different from that in tension.

Stress-strain curve for an elastomer 2 Tension
i
= e due to uncoiling
- E¢ L// of polymer chains
[?Llli to e?hment T £
filling of space i
Compression €r| 2 |&c

* Brittle ceramics may show no plastic deformation and may fracture after elastic deformation.
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Other elastic moduli

> We have noted that elastic modulus is a 4" rank tensor (with 81 components in general in 3D). In normal
materials this is a symmetric tensor (i.e. it is sufficient to consider one set of the off-diagonal terms).

» In practice many of these components may be zero and additionally, many of them may have the same
value (i.e. those surviving terms may not be independent). E.g. for a cubic crystal there are only 3
independent constants (in two index condensed notation these are E,, E;,, E,,).

» For an isotropic material the number of independent constants is only 2. Typically these are chosen as E
and v (though in principle we could chose any other two as these moduli are interrelated for a isotropic
material). More explained sooner.

> In a polycrystal (say made of grains of cubic crystal), due to average over all orientations, the material
behaves like an isotropic material. More about this discussed elsewhere. Mathematically the isotropic
material properties can be obtained from single crystal properties by Voigt or Reuss averaging.

: I In tensor notation

c=E.s : O-.g,r' — Ezjkf % = E — Young’s modulus

| = (3 — Shear modulus

i 7=0G.

[ 4 = K — Bulk modulus
l / o i = K. Svofumem'c = v — Poisson’s ratio
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» When a body is pulled (let us assume an isotropic body for now), it will elongate along the pulling direction and
will contract along the orthogonal direction. The negative ratio of the transverse strain (g,) to the longitudinal
strain (g,) is called the Poission’s ratio (v).

» In the equation below as B, < B, the term in square brackets ‘[]” in the numerator is —ve and hence, Poission’s
ratio is a positive quantity (for usual materials). l.e. usual materials shrink in the transverse direction, when they
are pulled.

» The value of E, G and v for some common materials are in the table (Table-E). Zero and even negative Possion’s
ratio have been reported in literature. The modulus of materials expected to be positive, i.e. the material resists
deformation and stores energy in the deformed condition. However, structures and ‘material-structures’ can

display negative stiffness (e.g. when a thin rod is pushed it will show negative stiffness during bulking— observed
in displacement control mode).

V= i__[(31_3{})"!30]

o & - [(Ll _I‘U)"{Lﬂ] T T Initial configuration is
represented by 0'in
B I . subscript
& 2(1+v) 3(1-2v) B
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How to determine the elastic modulus?

» The Young’s modulus (Y) of a isotropic material can be determined from the stress-strain diagram. But, this is
not a very accurate method, as the machine compliance is in series with the specimen compliance. The slope of
the stress-strain curve at any point is termed as the ‘tangent modulus’. In the initial part of the s-e curve this
measures the Young’s modulus. Other kinds of mechanical tests can also be used for the measurement of ‘Y’.

» A better method to measure ‘Y’ is using wave transmission (e.g. ultrasonic pulse echo transmission technique)
in the material. This is best used for homogeneous, isotropic, non-dispersive material (wherein, the velocity of
the wave does not change with frequency). Common polycrystalline metals, ceramics and inorganic glasses are
best suited to this method. Soft plastics and rubber cannot be characterized by this method due to high
dispersion, attenuation of sound wave and non-linear elastic properties. Porosity and other internal defects can
affect the measurement.

» The essence of the ultrasound technique is to determine the longitudinal and shear wave velocity of sound in
the material (symbols: v, v,). ‘Y* and Poisson’s ratio (v) can be determined using the formulae as below.

2
T 12 ¢
180 v,

Note again thatit is not a good idea to calculate Young's modulus for s-e plot =

2
——— v
= 22 L
; - Peak Stress | 193.0 MPa v
I
s Peakload | 5.83 kM

140

L. ]
% 120
g 100
= 2
@ &0 Specimen ID|Aluminium VI p(] + V)(l — ZV)

&0 Cross Sectional Area|30.2 mm’ Y -

40- Gauge Length|28.44 mim (1 — V)

Cross head velocity|2 mm,/min
20
Test mode|Stroke .
o} |_ * p— density
0 5 10 15 20 25
Strain, %
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Increasing the modulus of a material

» The modulus of a metal can be increased by suitable alloying.

» E is a structure (microstructure) insensitive property and this implies that grain size, dislocation
density, etc. do not play an important role in determining the elastic modulus of a material.

» One of the important strategies to increase the modulus of a material is by forming a
hyrbrid/composite with an elastically ‘harder’ (stiffer) material. E.g. TiB, is added to Fe to increase
the modulus of Fe.

» COMPOSITES

A hard second phase (termed as reinforcement) can be added to a low E material to increase the

modulus of the base material. The second phase can be in the form of particles, fibres, laminates,

etc.

» Typically the second phase though harder is brittle and the ductility is provided by the matrix. If
the reinforcement cracks the propagation of the crack is arrested by the matrix.

11
)

Laminate Aligned fiber Particulate
composite composite composite

Y

TG

ll'l Hll W% o -}

—
e
R
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Modulus of a composite

»  The modulus of the composite is between that of the matrix and the reinforcement.
»  Let us consider two extreme cases.
(A) Isostrain - the matrix and the reinforcement (say long fibres) are under identical strain.
This is known as Voigt averaging.
(B) Isostress = the matrix and fibre are under identical stress.
This is known as Reuss averaging.

»  Let the composite be loaded in uniaxial tension and the volume fraction of the fibre be V; (automatically the
volume fraction of the matrix is V,, = (1-V;)).

Matrix

isostrain
Esr " =E V. +EV,

Voi 7 '
Equivalent to|matrix and Olgt av ﬂrag]ﬂg
fibre side by side subjected

to the same strain

Long fibre
freinforcement)
Folume fraction.:

ivalent to matrix and

¢ being one below the other
being subjected
o the same stress

1 Ve ¥V

_ — 1p =L
Ir
? E;ms = E f E m |Reuss averaging
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» The modulus of a real composite will lie between these two extremes (usually closer to isostrain). The
modulus of the composite will depend on the shape of the reinforcement and the nature of the
interface (e.g. in a long aligned fibre composite having a perfectly bonded interface with no slippage will
lead to isostrain conditions.

» Purely from a modulus perspective, a larger volume fraction will give a higher modulus; however,
ductility and other considerations typically limit the volume fraction of reinforcement in a composite to

about 30%.

Voigt averaging
EF =FKF V. +FE V - Under iso-strain conditions [s,, = ;= &_]
¢ forf m’ m

= [.e. ~ resistances in series configuration

1 Vf |74 = Under iso-stress conditions [G,, = ;= &_]
— + " |+ =1le. ~ resistances in parallel configuration
/& c /2 ba /& — = Usually not found in practice Reuss averaging

For a given fiber fraction f, the modulii of
various conceivable composites lie between an
upper bound given by isostrain condition

and a lower bound given by isostress condition

Volume fraction —
A B
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1D Elasticity (axially loaded bar)

1D Elasticity (axially loaded bar)

y A(X) = cross section at X
b(x) = body force distribution
_—|F (force per unit length)
B — 7> — T X E(x)= Young’s modulus
X O T— u(x) = displacement of the bar

x=0 x=L at x

¥

1. Strong formulation: Equilibrium equation + boundary
conditions

Equilibrium equation ix—g +b=0; 0<x<lL

Boundary conditions | u=0 ar x=0

EA@:F at x=L
dx
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2. Strain-displacementrelationship: g(x) = d_u

dx

3. Stress-strain (constitutive) relation : 6(X) = E &(X)

E: Elastic (Young’s) modulus of bar
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Problem definition

Surface (S) V: Volume of body

S: Total surface of the body
The deformation at point

X =[x.y,z]"
1s given by the 3
components of its
displacement Uu=qVvy
NOTE:u=u(x.y.z), 1.€., each
/ y= displacement component 1s a function
X of position
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3D Elasticity:
EXTERNAL FORCES ACTING ON THE BODY

Two basic types of external forces act on a body
1. Body force (force per unit volume) e.g.. weight, inertia, etc
2. Surface traction (force per unit surface area) e.g., friction

INSTITUTE OF AERONAUTICAL ENGINEERING



BODY FORCE

Volume element
dv X dV L .
Body force: distributed force per unit

volume (e.g., weight, inertia, etc)

X, dV
R (X,
Surface (S) X = J Xy L

NOTE: If the body is accelerating, then the inertigo U |

R force - J i L
y pU=49p
X may be considered as part of X LOWJ
X =X -pl
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SURFACE TRACTION

Volume
element dV

P Traction: Distributed
force per unit surface

pjf arca
fpxﬁ
IS’ = p}r (
Pz
e y
X
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3D Elasticity: INTERNAL FORCES

Volume
element dV

K
]
\—h
<

}E/If I take gut a chunk of material from the body, I will see that,

due to the external forces applied to it, there are reaction

forces (e.g.. due to the loads applied to a truss structure, internal
forces develop 1n each truss member). For the cube in the figure,
the internal reaction forces per unit area(red arrows) . on each
surface, may be decomposed into three orthogonal components.
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G
I O, 0, and 6, are normal stresses.

- aﬂv The rest 6 are the shear stresses
‘ $"1 _ Convention
TXZ Ve GE .
. 1 > T, 18 the stress on the face
T perpendicular to the x-axis and points
G, in the +ve y direction
, Total of 9 stress components of which
‘X/ y only 6 are independent since 7,, =7,
fCT . ) T,, =Ty
. O-'p TZ!C - TIZ
The stress vector 1s therefore :
o
O = 4 ‘ F
S
T,
\_sz
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Strains: 6 independent strain components g

| €
I

.:V}-'z
vES

Consider the equilibrium of a differential volume element to
obtain the 3 equilibrium equations of elasticity

do. Ot 0or

=+ +—+X_ =0
ox oy oz
or, O0Jdo,6 Ot
—+—+——+ X, =0

ox oy oz
0 or,, 0O

It +X,=0
ox oy oz
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Compactly;

EQUILIBRIUM
EQUATIONS
where i 0
ox
0
0
e
oy
0
9
oz
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0'c+X=0
0 0
9
oy
0o 9
oz
9
ox
o 9
0z 0Oy
0 9
ox _




e 3D elasticity problem is completely defined
once we understand the following three
concepts

— Strong formulation (governing differential
equation + boundary conditions)

— Strain-displacement relationship

— Stress-strain relationship
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Volume
element dV

./ y
1. Strong formulation of the 3D elasticity problem: “Given the
externally applied loads (on S and in V) and the specified

displacements (on S,) we want to solve for the resultant
displacements, strains and stresses required to maintain

equilibrium of the body.”

INSTITUTE OF AERONAUTICAL ENGINEERING




(1)

19

Equilibrium equations 0'c+X=0 inV

Boundary conditions

1. Displacement boundary conditions: Displacements are specified on
portion S of the boundary

specified
u=u on S,

2. Traction (force) boundary conditions: Tractions are specified on

portion St of the boundary
Now, how do I express this mathematically?
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Volume
element dV

Pz Traction: Distributed
force per unit area

r"px'ﬁ
IS — P}r 1
P
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If the unit outward normal to St :

Then

INn =491

Traction: Distributed

p, =0n +T N, +T N,
p, =T M, +0 N +T N,

p, =T N +T N, +0.n,
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force per unit area

-~ ~

| 2
IS =9 P}r e
P,

- -




Consider the equilibrium of the wedge 1n
x-direction

Gin 92? —n pds=o dy+7 _dx
P
dy jpxzax@+rxy§
cos@=—=mn_ ds ds
s

= p, =o0o.n, +'rxyny

Similarly

py :Txyﬁx —I-Gyﬂy
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e 3D elasticity problem is completely defined
once we understand the following three
concepts

— Strong formulation (governing differential
equation + boundary conditions)

— Strain-displacement relationship

— Stress-strain relationship
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2. Strain-displacement relationships:

0z Ox
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Compactly: E=0uU (2)
E 0 0
ox
&y 0 E 0
»
c 0 0 —
E — < Z . a _ az 'L]_ =4V 5
Vxy B E E 0
Y s dy ox
Y 2 0 i E
0z Oy
o o 9
Oz ox |
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dy +[V+8—dej—v — dy
. _AC-AC _ cy _ov

Y AC dy cy
i
- =2——angle (CAB)=p,+p, =tan p, + tan p,
_@v Cu
X €x
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e 3D elasticity problem is completely defined
once we understand the following three
concepts

— Strong formulation (governing differential
equation + boundary conditions)

— Strain-displacement relationship

— Stress-strain relationship
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3. Stress-Strain relationship:

Linear elastic material (Hooke’s Law)
c=Dg¢ 3)

Linear elastic isotropic material

1—v % % 0 0 0
Vv 1—v Vv 0 0 0
Vv % 1—v 0 0 0
n-_ E o o o =2 o 0
— (Q+v)(1-2v) B
0O 0 0 -2
2
0O 0 0 0 1-2v
] 2

INSTITUTE OF AERONAUTICAL ENGINEERING



Special cases:

1. 1D elastic bar (only 1 component of the stress (stress) 1s
nonzero. All other stress (strain) components are zero)
Recall the (1) equilibrium, (2) strain-displacement and (3) stress-
strain laws
2. 2D elastic problems: 2 situations

PLANE STRESS

PLANE STRAIN

3. 3D elastic problem: special case-axisymmetric body with
axisymmetric loading (we will skip this)
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PLANE STRESS: Only the in-plane stress components are nonzero

Area
element dA

Nonzero stress components 0.0 ,.7,,

Assumptions:

1. h=<D
2. Top and bottom surfaces are free from

, traction
x 3.X =0 and p,=0
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PLANE STRESS Examples:
1. Thin plate with a hole

PR

I

2. Thin cantilever plate
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Nonzero stresses: 7..0,.7,,
Nonzero strains: €,.€,.8,.7,

Isotropic linear elastic stress-strain law |c=D ¢
fcrxﬁ . 1 v 0 | g,
v
10, 1= st1v 1. 0 Ke ¢ g, =— (£x+£v)
] I-v 1—v || —V ]
> 0 O - V)

Hence, the D matrix for the plane stress case 1s

Q:

2

l o o

1—v

o m
o = =
p—

|
M ‘

INSTITUTE OF AERONAUTICAL ENGINEERING



PLANE STRAIN: Only the in-plane strain components are nonzero

onzero strain components ©x>%y:/x

Area
element dA Vi 15
4‘-? g
Ex
Assumptions:
1. Displacement components u,v functions
of (x.y) only and w=0
2. Top and bottom surfaces are fixed
< 3.X=0
/ 4. p, and p, do not vary with z
z
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PLANE STRAIN Examples:

1. Dam Slice of unit

thickness
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PLANE STRAIN

Nonzero stress: o,.0,,0,,7,

Nonzero strain components: €..€,.7,

[sotropic linear elastic stress-strain law (o =D ¢
HD'I ﬁ . I-v v 0 g,
10, ¢ = Vv 1—v 0 1€, ¢ JZZV(D'X-FD'},)
| (v )i-2v) =2 |
\.Tl}l 0 0 2 x':yj'::” p

. 1-v v 0
D= 1— 0
— (1+v)i-2v) ; OV 1— 2y
} 2
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. 1 Example problem

The square block 1s 1n plane strain

I - and 1s subjected to the following
strains
: g, =2xy
iﬁe : g = 3.1:1;2

Vi = X0 4

Compute the displacement field (i.e., displacement components
u(x,y) and v(x,y)) within the block
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Solution

Recall from definition

e =0

ox
=L 3yt ()
ar
mza—”+@=f+y3 (3)
o0y ox

Arbitrary function of ‘x’

Integrating (1) and (2)/

u(x,y)=xy+C,(»" 4

v(x,3)=xp" +C, (x) '(5)\

Arbitrary function of ‘y’
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Plug expressions in (4) and (5) into equation (3)

ou ov 3

a+§—Jﬁ: +y° (3)

j@[x y+C(y)] 6[xy +C (x)]_x +y
oy ox

:>x2+acl(y)+y3+acz(x):x1+y3

ox

D@
N

Functionof °y’ Functionof ‘x’
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Hence

oC,(y) _ 0C, (x)
ay ox
Integrate to obtain

= C (a constant)

C(»=Cy+D D, and D, are two constants of
C,(x)—Cx+D, integration

Plug these back into equations (4) and (5)

4 u(x,y)=x"y+Cy+D,
y y+Ly 1
) v(x,y)=xy’ —Cx+D,

How to find C, D, and D,?
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Use the 3 boundary conditions

1(0,0)= 0 '

v(0,0) = 0 )

v(2,0)=0 2 L

To obtain 2
C=0 3 4 >
D,=0 x
D,=0

Hence the solution 1s

u(x,y) :xzy
v(x, y) = xy°
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Principle of Minimum Potential Energy

Definition: For a linear elastic body subjected to body forces
X=[X,.X,,.X,]" and surface tractions Ts=|p,.p,.p,|". causing
displacements u=[u,v,w|! and strains ¢ and stresses o, the potential

energy 11 1s defined as the strain energy minus the potential energy
of the loads involving X and T¢

[1=U-W
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Volume
element dV
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Strain energy of the elastic body

Using the stress-strain law (¢ =D &

U-1 crrf:dV:lI "Dedyv
2= = 2

In 1D

:lj oc dV:lI E&? a’V:l - Ec* Adx
2 2V D Jx=0

U
In 2D plane stress and plane strain

U= %L,({TIEI +0,&, + r@yly)dV
Why?
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Principle of minimum potential energy:

 Among all admissible displacement fields the one that satisfies the
equilibrium equations also render the potential energy P a
minimum.

* “admissible displacement field”:

1. first derivative of the displacement components exist

2. satisfies the boundary conditionson S
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