

Question Paper Code: AEC015



**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER-I

B.Tech VII Semester End Examinations, November - 2019

Regulation: IARE-R16 MICROWAVE ENGINEERING

# (Electronics and Communication Engineering)

Time: 3 Hours

Max Marks: 70

Answer any ONE question from each Unit All questions carry equal marks All parts of the question must be answered in one place only

## UNIT – I

| 1         | a) | Describe the microwave frequency spectrum and list the advantages microwave communication.                                                                                                                                                                                                              |      |  |  |
|-----------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
|           | b) | When the dominant mode is propagated in an air-filled standard rectangular waveguide, the guide wavelength at a frequency of 9 GHz is 4 cm. Calculate width of the guide.                                                                                                                               | [7M] |  |  |
| 2         | a) | Derive the expression for phase velocity, group velocity and guide wavelength in rectangular waveguide.                                                                                                                                                                                                 | [7M] |  |  |
|           | b) | An air-filled rectangular waveguide has dimensions of a = 6 cm and b = 4 cm. The signal frequency is 3 GHz. Compute the following for the TE10 and TM11 modes:<br>(a)Cut-off frequency<br>(b)Wavelength in the waveguide<br>(c)Phase constant and phase velocity<br>(d)Group velocity in the waveguide. | [7M] |  |  |
| UNIT – II |    |                                                                                                                                                                                                                                                                                                         |      |  |  |
| 3         | a) | Discuss in detail about the working principle of an E-plane Tee junction with neat schematics?                                                                                                                                                                                                          | [7M] |  |  |

- b) The collinear ports (1) and (2) of magic tee are terminated by impedances oreflection [7M] coefficients  $\rho 1 = 0.5$  and  $\rho 2 = 0.6$ . The difference port (4) is terminated by an impedance with reflection coefficient of 0.8. If 1 watt power is fed at sum port (3), calculate the power reflected at port (3) and power divisions at the other ports.
- 4 a) Discuss about E-H plane Tee junction. Why a hybrid E-H plane Tee referred to as Magic [7M] Tee. Derive the scattering matrix for E-H plane Tee junction.
  - b) An isolator has an insertion loss of 0.5 dB and an isolation of 30 dB. Determine the [7M] scattering matrix of the isolator if the isolated ports are perfectly matched to junction

#### UNIT – III

- 5 a) Explain in detail bunching process & obtain expression for bunching parameter in a two [7M] cavity klystron amplifier?
  - b) The operating frequency of reflex klystron is 2 GHz. Calculate the change in frequency for a 2% change in the repeller voltage given that; Repeller voltage = 2000 V Accelerating voltage= 500 V Space between exit of the gap and repeller electrode = 2 cm (Assume that the operation is for n = 1). [7M]
- 6 a) With the aid of a schematic diagram, describe the travelling wave tube amplifier and How [7M] is continuous interaction between the electron beam and RF field ensured in the TWT?
  - b) An X-band pulsed cylindrical magnetron has V0 = 30 kV, I0 = 80 A, B0 = 0.01 wb/m2, [7M] a =4 cm, b = 8 cm. Calculate: (i) Cyclotron angular frequency (ii) Cut-off voltage (iii) Cut-off magnetic flux density

#### UNIT – IV

- 7 a) Derive the criterion for classifying the modes of operation for Gunn effect diodes.. [7M]
  - b) The drift velocity of electron is 2 \* 107 cm/s, through the active region of length 10 \*10–4 [7M] cm. Calculate the natural frequency of the Gunn diode and the critical voltage.
- 8 a) What is meant by Avalanche Transit Time Devices? Explain the operation, construction [7M] and Applications of IMPATT.
  - b) An IMPATT DIODE has the following parameters: Carrier drift velocity = 105 m/s, [7M] Length of the drift space =  $5 \mu \text{m}$ . Calculate the frequency of oscillation produced.

#### $\mathbf{UNIT} - \mathbf{V}$

.

- 9 a) Draw a neat diagram of microwave test bench and explain about each block along with its [7M] features.
  - b) The input power given to an attenuator is 1000 W. The output power produced by the [7M] attenuator is 1W. Calculate the value of the attenuator
- 10 a) Explain the measurement of attenuation using power ratio method with neat block [7M] diagram.
  - b) A slotted line is used to measure VSWR of the load at 8 GHz by double minima method. [7M]
    If the distance between the positions of twice minimum power is 0.5 cm. Find the value of VSWR on the line and magnitude of the voltage reflection coefficient



**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad - 500 043

### I COURSE OBJECTIVES

The course should enable the students to:

| S.No | Description                                                                    |  |  |  |
|------|--------------------------------------------------------------------------------|--|--|--|
| Ι    | Develop the knowledge on transmission lines for microwaves, cavity resonators  |  |  |  |
|      | and Wave guide components and applications.                                    |  |  |  |
| II   | Enable the students to understand and analyze the operation of microwave tubes |  |  |  |
|      | like klystron, magnetron, travelling wave tube, etc.,                          |  |  |  |
| III  | Familiarize with microwave solid state devices.                                |  |  |  |
| IV   | Introduce the student the microwave test bench for measure different           |  |  |  |
|      | parameters like attenuation, VSWR, impedance etc.                              |  |  |  |

## II COURSE OUTCOMES (COs):

| CO 1 | Describe the types of waveguides, rectangular waveguides and field equations.    |  |  |
|------|----------------------------------------------------------------------------------|--|--|
| CO 2 | Understand the coupling mechanisms in waveguides and analyze the waveguide       |  |  |
|      | multiport junctions.                                                             |  |  |
| CO 3 | Explore the microwave linear tubes and analyze with microwave cross field tubes. |  |  |
| CO 4 | Understand the microwave solid state devices and avalanche transit time devices. |  |  |
| CO 5 | Demonstrate the microwave bench set up and conducting measurements of            |  |  |
|      | different parameters.                                                            |  |  |
|      |                                                                                  |  |  |

## **III COURSE LEARNING OUTCOMES**

Students who complete the course will have demonstrated the ability to do the following.

| AEC015.01 | Understand the microwave spectrum and applications of microwaves                                                                                                                          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AEC015.02 | Analyze the types of waveguides, rectangular waveguides and field equations in rectangular waveguide.                                                                                     |
| AEC015.03 | Determine the wave impedance for a TM and TE wave in rectangular waveguide                                                                                                                |
| AEC015.04 | Understand the types of cavity resonators and determine the dominant mode.                                                                                                                |
| AEC015.05 | Explore the coupling mechanisms for a cavity resonator.                                                                                                                                   |
| AEC015.06 | Understand the waveguide discontinuities: waveguide irises, tuning screws, posts and matched loads                                                                                        |
| AEC015.07 | Understand the operation of multiport junctions and its applications                                                                                                                      |
| AEC015.08 | Understand the Faraday rotation principle and analyze the different ferrite devices.                                                                                                      |
| AEC015.09 | Understand the limitations of conventional vacuum tubes at microwave frequencies and<br>Understand the velocity modulation process and bunching process in microwave linear<br>beam tubes |
| AEC015.10 | Determine the beam current density in Multi cavity Klystron amplifiers                                                                                                                    |
| AEC015.11 | Understand the velocity modulation process and power output in Reflex Klystron                                                                                                            |

| AEC015.12 | Determine the amplification process in helix Traveling wave tube (TWT)                                |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------|--|--|--|
| AEC015.13 | Describe the 8-cavity cylindrical travelling wave Magnetron                                           |  |  |  |
| AEC015.14 | Analyze the Hull cut-off and Hartree conditions in Magnetron.                                         |  |  |  |
| AEC015.15 | Illustrate the microwave solid-state devices: microwave tunnel diode and transferred electron devices |  |  |  |
| AEC015.16 | Determine the RWH theory and modes of operations in Gunn diodes                                       |  |  |  |
| AEC015.17 | Understand the Avalanche transit time devices: IMPATT diode, TRAPATT diode and BARITT diode           |  |  |  |
| AEC015.18 | Describe the microwave bench set-up with different blocks and their features                          |  |  |  |
| AEC015.19 | Determine the measurements of microwave power, attenuation, frequency, VSWR and impedance             |  |  |  |

## IV MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES:

| SEE      |   |                          |                                                                                                                                                                                                     | Correct  | Blooms     |
|----------|---|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Question |   | Course Learning Outcomes |                                                                                                                                                                                                     | Outcomes | Taxonomy   |
| No.      |   |                          |                                                                                                                                                                                                     |          | Level      |
| 1        | a | AEC015.01                | Understand the microwave spectrum and applications of microwaves                                                                                                                                    | CO 1     | Understand |
|          | b | AEC015.02                | Analyze the types of waveguides,<br>rectangular waveguides and field<br>equations in rectangular waveguide.                                                                                         | CO 1     | Understand |
| 2        | a | AEC015.03                | Determine the wave impedance for a<br>TM and TE wave inrectangular<br>waveguide                                                                                                                     | CO 1     | Understand |
|          | b | AEC015.03                | Determine the wave impedance for a<br>TM and TE wave inrectangular<br>waveguide                                                                                                                     | CO 1     | Understand |
| 3        | a | AEC015.07                | Understand the operation of multiport junctions and itsapplications                                                                                                                                 | CO 2     | Understand |
|          | b | AEC015.07                | Understand the operation of multiport junctions and its applications                                                                                                                                | CO 2     | Understand |
| 4        | a | AEC015.07                | Understand the Faraday rotation<br>principle and analyze the different ferrite<br>devices.                                                                                                          | CO 2     | Understand |
|          | b | AEC015.08                | Understand the Faraday rotation<br>principle and analyze the different ferrite<br>devices.                                                                                                          | CO 2     | Remember   |
| 5        | a | AEC015.08                | Understand the limitations of<br>conventional vacuum tubes at micro<br>wave frequencies and Understand the<br>velocity modulation process and bunc<br>hing process in microwavelinear beam<br>tubes | CO 3     | Understand |
|          | b | AEC015.11                | Understand the velocity modulation<br>process and power outputin Reflex<br>Klystron                                                                                                                 | CO 3     | Remember   |

|          | а | AEC015.11 | Understand the velocity modulation      | CO 3 | Understand |
|----------|---|-----------|-----------------------------------------|------|------------|
| <i>.</i> |   |           | process and power outputin Reflex       |      |            |
| 6        |   |           | Klystron                                |      |            |
|          | b | AEC015.12 | Determine the amplification process in  | CO 3 | Understand |
|          |   |           | helix Traveling wave                    |      |            |
|          |   |           | tube (TWT)                              |      |            |
|          | а | AEC015.17 | Understand the Avalanche transit time   | CO 4 | Understand |
| _        |   |           | devices: IMPATTdiode, TRAPATT           |      |            |
| 7        |   |           | diode and BARITT diode                  |      |            |
|          | b | AEC015.17 | Understand the Avalanche transit time   | CO 4 | Understand |
|          |   |           | devices: IMPATTdiode, TRAPATT           |      |            |
|          |   |           | diode and BARITT diode                  |      |            |
|          | а | AEC015.16 | Determine the RWH theory and modes      | CO 4 | Understand |
|          |   |           | of operations in Gunn diodes            |      |            |
| 8        | b | AEC015.16 | Determine the RWH theory and modes      | CO 4 | Understand |
|          |   |           | of operations in Gunn diodes            |      |            |
|          | а | AEC015.18 | Describe the microwave bench set-up     | CO5  | Understand |
| 0        |   |           | with different blocksand their features |      |            |
| 9        |   |           | attenuation, frequency, VSWR and        |      |            |
|          |   |           | impedance                               |      |            |
|          | b | AEC015.18 | Describe the microwave bench set-up     | CO5  | Remember   |
|          |   |           | with different blocksand their features |      |            |
|          |   |           | attenuation, frequency, VSWR and        |      |            |
|          |   |           | impedance                               |      |            |
| 10       | а | AEC015.19 | Determine the measurements of           | CO5  | Understand |
|          |   |           | microwave power, attenuation,           |      |            |
|          |   |           | frequency, VSWR and impedance           |      |            |
|          | b | AEC015.19 | Determine the measurements of           | CO5  | Remember   |
|          |   |           | microwave power, attenuation,           |      |            |
|          |   |           | frequency, VSWR and impedance           |      |            |

Signature of Course Coordinator

HOD, ECE