

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER -I

B.Tech III Semester End Examinations November -2019 Regulations: IARER18

ANALOG AND DIGITAL ELECTRONICS

(CSE)

Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Module All Questions Carry Equal Marks All parts of the question must be answered in one place only

MODULE – I

1.	a)	Explain about characteristics of PN Diode and Derive the expression for diode equation with neat sketches.	[7M]
	b)	Find the value of D.C. resistance and A.C resistance of a Germanium junction diode at 2500 with reverse saturation current, $Io = 25\mu A$ and at an applied voltage of 0.2V across the diode?	[7M]
2.	a)	Explain breakdown Mechanisms of P-N Junction diode with neat diagrams.	[7M]
	b) Find the factor by which the reverse saturation current of a silicon diode will get multiplied when the temperature is increased from 270° C to 820° C?.		[7M]
		MODULE – II	
3.	a)	Define Early-effect; Explain why it is called as base-width modulation? Discuss its consequences in transistors in detail?	[7M]
	b)	A common collector circuit has the following components $R1=27k\Omega$, $R2=27k\Omega$, $Re=5.6k\Omega$, $RL=47k\Omega$, $Rs=600\Omega$. The transistor parameters are hie=1k\Omega, hfe=85 and hoe=2 μ A/V. Determine Ai, Ri, Av, Ro.	[7M]
4.	a) b)	Draw the input and output characteristic of a transistor in common collector configurations? Draw small signal equivalent circuit of Emitter Follower using accurate hparameter model. For	[7M] [7M]
		the emitter follower circuit with RS= 0.5K and RL =5K, calculate Ri, AV and RO. Assume, hfe = 50, hie =1K, hoe = 25μ A/V.	
		MODULE – III	
5.	a)	Add the following binary numbers.	[7M]
		i) 11011+1101 ii) 10111.101 + 110111.01 iii) 1010.11 + 1101.10	
	b)	Convert the following numbers from the given base to the other bases indicated. i) Decimal 225 to binary, octal ii) Octal 623 to decimal, binary	[7M]

6.	a)	The state of a 12-bit register is 010110010111. What is its content if it represents:	
		i) three decimal digits in BCD	
		ii) three decimal digits in Excess-3 code	
	b)	Add the following BCD numbers	[7M]
		i)1001 and 0100	
		ii) 00010110 and 00010101	

MODULE – IV

7.	a)	Implement full subtractor using NAND gates.	[7M]
	b)	Simplify the following Boolean function using, four-variable K-map $F(A, B, C, D) = \Sigma m (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$	[7M]
8.	a)	Design a combinational circuit that adds 4-bit number. The circuit can be designed using four full- adders.	[7M]
	b)	Design a combinational circuit with four inputs that represent a decimal digit in BCD and four outputs that produce the 9's complement of the input digit.	[7M]
		MODULE – V	
9.	a)	Explain the Ripple counter design. Also the decade counters design?	[7M]
	b)	Define JK – Flip-flop with the help of a logic diagram and characteristic table?	[7M]
10.	a)	Define Latch. Explain about Different types of Latches in detail?	[7M]
	b)	Design a MOD-5 synchronous counter using flip flops and Implement it? Also draw the timing diagram?	[7M]

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

Ι	Introduce components such as diodes, BJTs and FETs.			
II	Know the applications of components.			
III	II Understand common forms of number representation in logic circuits			
IV	Learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.			
V	Understand the concepts of combinational logic circuits and sequential circuits.			

COURSE OUTCOMES (COs):

CO 1	Acquire knowledge of electrical characteristics of ideal and practical diodes under forward and reverse bias to analyze and design diode application circuits such as rectifiers.		
CO 2	Utilize operational principles of bipolar to derive appropriate small-signal models and use them for the analysis of basic circuits.		
CO 3	Understand the basic concept of number systems, Boolean algebra principles and minimization techniques for Boolean algebra		
CO 4	Analyze Combination logic circuit such as multiplexers, adders, decoders.		
CO 5	Understand about synchronous and asynchronous sequential logic circuits.		

COURSE LEARNING OUTCOMES (CLOs):

AECB05.01	Understand and analyze diodes operation and their characteristics in order to design basic form Circuits		
AECB05.02	Explain half wave rectifier for the given specifications.		
AECB05.03	Design full wave rectifier for the given specifications		
AECB05.04	Design rectifier with capacitive filter for the given specifications		
AECB05.05	Understand the different parameters of transistors such as depletion width and channel width for understanding the functioning and design of this component.		
AECB05.06	Estimate the performance of BJT on the basis of their operation and working.		
AECB05.07	Explain the operation of Operating Point and Load Line Analysis		
AECB05.08	Explain the operation of CB,CE,CC I/O Characteristics		
AECB05.09	Understand the importance of h-parameter model		
AECB05.10	Understand the basic concept of number systems, Binary addition and subtraction for digital systems.		
AECB05.11	Explain the complements of Binary & Weighted codes & Non-weighted codes.		
AECB05.12	Discuss about digital logic gates, error detecting and Correcting codes for digital systems.		
AECB05.13	Illustrate the switching algebra theorems and apply them for reduction of Boolean function.		
AECB05.14	Identify the importance of SOP and POS canonical forms in the minimization or other optimization of Boolean formulas in general and digital circuits.		
AECB05.15	Evaluate functions using various types of minimizing algorithms like Karnaugh map or tabulation method.		
AECB05.16	Design Gate level minimization using K-Maps and realize the Boolean function using logic gates.		
AECB05.17	Analyze the design procedures of Combinational logic circuits like adder, binary adder, carry look ahead adder.		

AECB05.18	Analyze the design of decoder, demultiplexer, and comparator using combinational logic circuit.
AECB05.19	Understand bi-stable elements like latches flip-flop and Illustrate the excitation tables of different flip flops
AECB05.20	Understand the concept of Shift Registers and implement the bidirectional and universal shift registers.
AECB05.21	Implement the synchronous& asynchronous counters using design procedure of sequential circuit.

MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES

SEE Question No			Course Learning Outcomes	Course Outcomes	Blooms Taxonomy Level
1	a	AECB05.01	Explain about characteristics of PN Diode and Derive the expression for diode equation with neat sketches.	CO 1	Understand
	b	AECB05.01	Find the value of D.C. resistance and A.C resistance of a Germanium junction diode at 2500 with reverse saturation current, $Io = 25\mu A$ and at an applied voltage of 0.2V across the diode?	CO 1	Understand
2	a	AECB05.07	Explain breakdown Mechanisms of P-N Junction diode with neat diagrams.	CO 1	Understand
2	b	AECB05.07	Find the factor by which the reverse saturation current of a silicon diode will get multiplied when the temperature is increased from 2700 C to 8200 C?.	CO 1	Understand
3	a	AECB05.05	Define Early-effect; Explain why it is called as base- width modulation? Discuss its consequences in transistors in detail?	CO 2	Understand
	b	AECB05.09	A common collector circuit has the following components R1=27k Ω ,R2=27k Ω , Re=5.6k Ω , RL=47k Ω , Rs=600 Ω . The transistor parameters are hie=1k Ω , hfe=85 and hoe=2 μ A/V. Determine Ai, Ri, Av, Ro.	CO 2	Remember
4	а	AECB05.08	Draw the input and output characteristic of a transistor in common collector configurations?	CO 2	Understand
	b	AECB05.08	Draw small signal equivalent circuit of Emitter Follower using accurate hparameter model. For the emitter follower circuit with RS= 0.5K and RL =5K, calculate Ri, AV and RO. Assume, hfe = 50, hie =1K, hoe = $25 \mu A/V$.	CO 2	Understand
_	a	AECB05.10	Add the following binary numbers.	CO 3	Understand
5	b	AECB05.11	i) 11011+1101 ii) 10111.101 + 110111.01 iii) 1010.11 + 1101.10	CO 3	Understand
6	a	AECB05.11	Convert the following numbers from the given base to the other bases indicated. iii) Decimal 225 to binary, octal iv) Octal 623 to decimal, binary	CO 3	Understand
	b	AECB05.11	Add the following BCD numbers i)1001 and 0100 ii) 00010110 and 00010101	CO 3	Understand
	a	AECB05.17	Implement full subtractor using NAND gates.	CO 4	Understand
7	b	AECB05.13	Simplify the following Boolean function using, four- variable K-map F (A, B, C, D) = Σm (0, 2, 4, 5, 6, 7, 8, 10, 13,15)	CO 4	Understand
0	а	AECB05.17	Design a combinational circuit that adds 4-bit number. The circuit can be designed using four full-adders.	CO 4	Understand
0	b	AECB05.18	Design a combinational circuit with four inputs that represent a decimal digit in BCD and four outputs that produce the 9's complement of the input digit.	CO 4	Understand
	a	AECB05.20	Explain the Ripple counter design. Also the decade counters design?	CO 5	Understand

9	b	AECB05.19	Define JK – Flip-flop with the help of a logic diagram	CO 5	Understand
			and characteristic table?		
	а	AECB05.19	Define Latch. Explain about Different types of Latches	CO 5	Understand
10			in detail?		
10	b	AECB05.20	Design a MOD-5 synchronous counter using flip flops	CO 5	Understand
			and		
			Implement it? Also draw the timing diagram?		

Signature of course coordinator

HOD,CSE