
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal , Hyderabad -500 043

DATABASE MANAGEMENT SYSTEMS

2018 -2019

Subject Code: ACS005

Regulations : R16

Class: II B.Tech

Branch: IT

Prepared By

Ms. K Laxmi Narayanamma
Mr.N Bhaswanth

1

2

DATABASE MANAGEMENT SYSTEMS

UNIT-I

Introduction-Database System Applications

• DBMS contains information about a particular enterprise

– Collection of interrelated data

– Set of programs to access the data

– An environment that is both convenient and efficient to use

• Database Applications:

– Banking: all transactions

– Airlines: reservations, schedules

– Universities: registration, grades

– Sales: customers, products, purchases

– Online retailers: order tracking, customized recommendations

– Manufacturing: production, inventory, orders, supply chain

– Human resources: employee records, salaries, tax deductions

3

Purpose of Database Systems

• In the early days, database applications were built directly on top of
file systems

• Drawbacks of using file systems to store data:

– Data redundancy and inconsistency

– Difficulty in accessing data

– Data isolation — multiple files and formats

– Integrity problems

– Atomicity of updates

• Example: Transfer of funds from one account to another
should either complete or not happen at all

– Concurrent access by multiple users

– Example: Two people reading a balance and updating it
at the same time

– Security problems

4

Files vs. DBMS

DISADVANTAGES OF FILE SYSTEMS ADVANTAGES OF DBMS

1 Data v/s program problem:
Different programs access different files

One set of programs
access all data

2 Data inconsistency problem
As same data resides in many different
files across the programs data
inconsistency increases

Related data resides in
same storage location
minimizing data
inconsistency

3 Data isolation problem
As data is scattered in various files and
in different formats it is difficult to write
new programs to retrieve appropriate
data

As data resides in same
storage location it is easy
to write new programs to
retrieve appropriate data

4 Security problem:Every user can acces
all data

Every user can access
only needed data

5

5 Integrity problem:Develop new consistent
range in exixting systems appropriate code
must be added in various application
program

Integrity
Solution:appropriate code
must be added in one
application program that
access all data at one time

6 Problem in accessing data:new appropriate
program has to be written each time

DBMS consists of one or
more programs to extract
needed information

7 Atomicity problem:If system fails it must
ensure data are restored to consistent state

It ensures atomicity

8 Data Redundancy:same information is
dupliacated in several files ,so higher
storage and access cost

One copy of data resides so
minimium storage and access
cost

9 Concurrency problem:Due to redundant
data if many users access same copy leads
to concurrency problem

Avoids concurrency problem
since data last changed
remains permanent

6

Levels of Abstraction

• Physical level: describes how a record (e.g., customer) is stored.

• Logical level: describes data stored in database, and the relationships
among the data.

type customer = record

customer_id : string;
customer_name : string;
customer_street : string;
customer_city : string;

end;

• View level: application programs hide details of data types. Views can
also hide information (such as an employee’s salary) for security
purposes.

7

View of Data

8

An architecture for a database system

Instances and Schemas

• Instance – the actual content of the database at a particular point in time

– Analogous to the value of a variable

• Similar to types and variables in programming languages

• Schema – the logical structure of the database

– Example: The database consists of information about a set of
customers and accounts and the relationship between them)

– Physical schema: database design at the physical level

– Logical schema: database design at the logical level

9

Example: University Database

• Conceptual schema:

– Students(sid: string, name: string, login: string,age: integer,
gpa:real)

– Courses(cid: string, cname:string, credits:integer)

– Enrolled(sid:string, cid:string, grade:string)

• Physical schema:

– Relations stored as unordered files.

– Index on first column of Students.

• External Schema (View):

– Course_info(cid:string,enrollment:integer)

10

Data Independence

• The ability to modify the schema in one level without affecting the schema
in next higher level is called data independence.

• Logical data independence: The ability to modify the logical schema
without affecting the schema in next higher level (external schema.)

• Physical Data Independence – the ability to modify the physical schema
without changing the logical schema

11

Data Models

• Underlying the structure of database is data model.

• It is a collection of tools for describing
– Data ,Data relationships,Data semantics & consistency

constraints
Data model types

• Relational model

• Entity-Relationship data model (mainly for database design)

• Object-based data models (Object-oriented and Object-relational)

• Semi structured data model (XML)

• Other older models:
– Network model
– Hierarchical model

12

Relational Model

Example of tabular data in the relational model

13

Attributes

A Sample Relational Database

14

Entity-Relationship Model

An entity is a thing or object in the real world that is distinguishable from
other objects.

 Rectangles represent entities

 Diamonds represent relationship among entities.

 Ellipse represent attributes

 Lines represent link of attributes to entities to relationships.

Example of schema in the entity-relationship model

Object based data models

• It is based on object oriented programming language paradigm.

• Inheritance,object identity and encapsulations

• It can be seen as extending the E-R model with opps concepts.

• Semi structured data models

• Semi structured data models permit the specification of data where
individual data items of same type may have different set of attributes.

• XML language is widely used to represent semi structured data

16

Database languages

2 types:

• Data definition language- to define the data in the database

• Data Manipulation language- to manipulate the data in the

database

17

Data Definition Language (DDL)

• Specification notation for defining the database schema

• DDL is used to create the database, alter database and delete
database.

Example: create table account (
account_number char(10),

branch_name char(10),

balance integer)

• DDL compiler generates a set of tables stored in a data dictionary

• Data dictionary contains metadata (i.e., data about data)

– DDL is used by conceptual schema

– The internal DDL or also known as Data storage and definition
language specifies the storage structure and access methods used

• DDl commands are Create, Alter and Drop only.

18

• Data values that are stored in database must satisfy certain consistency
constraints

• Domain constraints(DC):A domain of possible values must be associated
with every attribute

• Referential Integrity

• Assertions:conditions that database must always satisfy

• Authorization

19

Data Manipulation Language (DML)

• Language for accessing and manipulating the data organized by the
appropriate data model

– DML also known as query language

– DML is used to retrieve data from database, insertions of new data
into database ,deletion or modification of existing data.

• Two classes of languages

– Procedural – user specifies what data is required and how to get those
data

– Declarative (nonprocedural) – user specifies what data is required
without specifying how to get those data

• SQL is the most widely used query language

20

Database access from application programs

• To access db, DML stmts need to be executed from host lang.

• 2 ways- a)by providing appn prgm interface that can b used to send DML
and DDL stmts to database and retrieve results. Ex:ODBC & JDBC

• B)By extending host language syntax to embed DML calls within the host
lang prgm.

21

Overall System Structure

22

Data storage and Querying

• Storage management

• Query processing

• Transaction processing

23

Storage Management

• Storage manager is a program module that provides the interface
between the low-level data stored in the database and the application
programs and queries submitted to the system.

• The storage manager is responsible to the following tasks:

– Interaction with the file manager

– Efficient storing, retrieving and updating of data

• Storage mngr implements several data structures

– Data files

– Data dictionary

– Indices

24

• Authorization and integrity mngr tests for satisfaction of integrity
constraints and checks the authority of users to access the data

• Transaction mngr ensures databse remains in consistent state despite
system failures and concurrent transaction executions proceed without
conflicting

• File mngr manages allocation of space on disk storage and the data
structures used to represent data on disk

• Buffer mngr which is responsible for fetching data from disk storage into
main memory and deciding what data to cache in main memory

25

Query Processing

1.Parsing and
translation

2.Optimization

3.Evaluation

26

DML compiler

DDL interpreter interprets DDL stmts and records the definitions in data
dictionary

Transaction Management

 A transaction is a collection of operations that performs a single
logical function in a database application

 Transaction-management component ensures that the database
remains in a consistent (correct) state despite system failures (e.g.,
power failures and operating system crashes) and transaction
failures.

 Concurrency-control manager controls the interaction among the
concurrent transactions, to ensure the consistency of the database.

27

Database Users

Users are differentiated by the way they expect to interact with

the system

• Application programmers –are computer professionals who write appn
prgms. They use RAD tools to construct forms and reports with minimum
programming effect.

• Sophisticated users – interact with the system without writing programs,
instead they form their requests in a database query language

• Specialized users – write specialized database applications that do not fit
into the traditional data processing framework

• Ex:Computer aided design systems, knowledgebase expert systems.

• Naïve users – invoke one of the permanent application programs that have
been written previously

– Examples, people accessing database over the web, bank tellers,
clerical staff

28

Database Administrator

 Has central control of both data and programs to access that data.

 Coordinates all the activities of the database system

◦ has a good understanding of the enterprise’s information
resources and needs.

 Database administrator's duties include:

◦ Storage structure and access method definition

◦ Schema and physical organization modification

◦ Granting users authority to access the database

◦ Backing up data

◦ Monitoring performance and responding to changes

◦ Periodically backing up the database,either on tapes or onto
remote servers.

29

History of Database Systems

• 1950s and early 1960s:

• First general purpose DBMS was designed by charles bachman at general
electric was called Integrated data store. He is first to receive ACM’S turing
award(1973).

– Data processing using magnetic tapes for storage

• Tapes provide only sequential access

– Punched cards for input

• Late 1960s and 1970s:

• In late 1960’s IBM developed information mangmt system(IMS) DBMS
used even today in major installations.

– Hard disks allow direct access to data

– Network and hierarchical data models in widespread use

– In 1970 Edgar Codd defined new data representation framework -
relational data model.

– ACM’S turing award(1981).

30

• 1980s:

– Research relational prototypes evolve into commercial systems

• SQL becomes industry standard

– Parallel and distributed database systems

– Object-oriented database systems

• 1990s:

– Large decision support and data-mining applications

– Large multi-terabyte data warehouses

– Emergence of Web commerce

• 2000s:

– XML and XQuery standards

– Automated database administration

– Increasing use of highly parallel database systems

– Web-scale distributed data storage systems

31

Introduction to Database design and ER diagrams

• The database design can be divided into 6 steps.ER model is relevent to
first 3 steps

1.Requirement analysis

2.Conceptual database design

3.Logical database design

4.Schema refinement

5.Physical database design:.Ex:Indexes

6.Application and security design

32

Database Design

• Conceptual design: (ER Model is used at this stage.)

– What are the entities and relationships in the enterprise?

– What information about these entities and relationships should we
store in the database?

– What are the integrity constraints or business rules that hold?

– A database `schema’ in the ER Model can be represented pictorially
(ER diagrams).

– Can map an ER diagram into a relational schema.

33

ER Model Basics

• Entity: Real-world object distinguishable from other objects. An entity is
described (in DB) using a set of attributes.

• Entity Set: A collection of similar entities. E.g., all employees.

– All entities in an entity set have the same set of attributes.

– Each entity set has a key.(minimal set of attributes whose values
uniquely identify entity in set)

– Each attribute has a domain.

34

Employees

ssn
name

lot

Attributes

• An entity is represented by a set of attributes, that is descriptive
properties possessed by all members of an entity set.

• Domain – the set of permitted values for each attribute

• Attribute types:

– Simple and composite attributes.

– Single-valued and multi-valued attributes

• Example: multivalued attribute: phone_numbers

– Derived attributes

• Example: age, given date_of_birth

35

Example:

customer = (customer_id, customer_name,
customer_street, customer_city)

loan = (loan_number, amount)

Composite Attributes

36

ER Model Basics (Contd.)

• Relationship: Association among two or more entities. E.g., Attishoo works in
Pharmacy department.

• Relationship Set: Collection of similar relationships.

• {(e1,…e2)|e1ЄE1, e2ЄE2….. enЄEn}

37

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subord

inate

super-

visor

ssn

Relationship Sets

• A relationship is an association among several entities

Example:
Hayes depositor A-102

customer entity relationshipset account entity

• A relationship set is a mathematical relation among n  2 entities, each
taken from entity sets

{(e1, e2, … en) | e1  E1, e2  E2, …, en  En}

where (e1, e2, …, en) is a relationship

– Example:

(Hayes, A-102)  depositor

38

Relationship Set borrower

39

Relationship Sets (Cont.)

• An attribute can also be property of a relationship set.

• For instance, the depositor relationship set between entity
sets customer and account may have the attribute access-
date

40

Degree of a Relationship Set

• Refers to number of entity sets that participate in a relationship set.

• Relationship sets that involve two entity sets are binary (or degree
two).

• Relationship sets may involve more than two entity sets.

41

Mapping Cardinalities

42

One to one One to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

Mapping Cardinalities

43

Many to one Many to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

Participation Constraints

• Does every department have a manager?

– If so, this is a participation constraint: the participation of
Departments in Manages is said to be total (vs. partial).

• Every Departments entity must appear in an instance of the
Manages relationship.

44

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Weak Entities
• A weak entity can be identified uniquely only by considering the primary key

of another (owner) entity.

• Restrictions

– Owner entity set and weak entity set must participate in a one-to-many
relationship set (one owner, many weak entities).

– Weak entity set must have total participation in this identifying
relationship set.

45

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Weak Entity Sets

• An entity set that does not have a primary key is referred to as a weak
entity set.

• The existence of a weak entity set depends on the existence of a
identifying entity set

– it must relate to the identifying entity set via a total, one-to-many
relationship set from the identifying to the weak entity set

– Identifying relationship depicted using a double diamond

• The discriminator (or partial key) of a weak entity set is the set of
attributes that distinguishes among all the entities of a weak entity
set.

46

Weak Entity Sets (Cont.)

• We depict a weak entity set by double rectangles.

• We underline the discriminator of a weak entity set with a dashed line.

• payment_number – discriminator of the payment entity set

• Primary key for payment – (loan_number, payment_number)

47

ISA (`is a’) Hierarchies

• Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps
entity? (Allowed/disallowed)

• Covering constraints: Does every Employees entity also have to be an
Hourly_Emps or a Contract_Emps entity? (Yes/no)

• Reasons for using ISA:

– To add descriptive attributes specific to a subclass.

– To identify entities that participate in a relationship.

48

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

Aggregation

• Used when we have to
model a relationship
involving (entity sets
and) a relationship set.

– Aggregation
allows us to treat a
relationship set as
an entity set for
purposes of
participation in
(other)
relationships.

49

Monitors is a distinct relationship, with a descriptive attribute.

 Also, can say that each sponsorship is monitored by at most one employee.

budget
didpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Aggregation

50

 Consider the ternary relationship works_on, which we saw earlier

 Suppose we want to record managers for tasks performed by an
employee at a branch

Aggregation (Cont.)

• Relationship sets works_on and manages represent overlapping
information

– Every manages relationship corresponds to a works_on relationship

– However, some works_on relationships may not correspond to any
manages relationships

• So we can’t discard the works_on relationship

• Eliminate this redundancy via aggregation

– Treat relationship as an abstract entity

– Allows relationships between relationships

– Abstraction of relationship into new entity

51

E-R Diagram With Aggregation

52

Conceptual Design Using the ER Model

• Design choices:

– Should a concept be modeled as an entity or an attribute?

– Should a concept be modeled as an entity or a relationship?

– Identifying relationships: Binary or ternary? Aggregation?

• Constraints in the ER Model:

– A lot of data semantics can (and should) be captured.

– But some constraints cannot be captured in ER diagrams.

53

Entity vs. Attribute

• Should address be an attribute of Employees or an entity (connected to
Employees by a relationship)?

• Depends upon the use we want to make of address information, and the
semantics of the data:

• If we have several addresses per employee, address must be an entity
(since attributes cannot be set-valued).

• If the structure (city, street, etc.) is important, e.g., we want to retrieve
employees in a given city, address must be modeled as an entity (since
attribute values are atomic).

54

Entity vs. Attribute (Contd.)
• Works_In4 does not

allow an employee to
work in a department
for two or more
periods.

• Similar to the
problem of wanting
to record several
addresses for an
employee: We want
to record several
values of the
descriptive attributes
for each instance of
this relationship.
Accomplished by
introducing new
entity set, Duration.

55

name

Employees

ssn lot

Works_In4

from to

dname

budgetdid

Departments

dname

budgetdid
name

Departments

ssn lot

Employees Works_In4

Durationfrom to

Entity vs. Relationship

• First ER diagram OK if a
manager gets a
separate discretionary
budget for each dept.

• What if a manager gets
a discretionary budget
that covers all
managed depts?

– Redundancy:
dbudget stored for
each dept managed
by manager.

– Misleading:
Suggests dbudget
associated with
department-mgr
combination.

56

Manages2

name dname

budgetdid

Employees Departments

ssn lot

dbudgetsince

dname

budgetdid

DepartmentsManages2

Employees

name
ssn lot

since

Managers dbudget

ISA

Binary vs. Ternary Relationships

• If each policy is owned
by just 1 employee,
and each dependent is
tied to the covering
policy, first diagram is
inaccurate.

• What are the
additional constraints
in the 2nd diagram?

57

agepname

DependentsCovers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design

Binary vs. Ternary Relationships (Contd.)

• Previous example illustrated a case when two binary relationships were
better than one ternary relationship.

• An example in the other direction: a ternary relation Contracts relates entity
sets Parts, Departments and Suppliers, and has descriptive attribute qty.

– S “can-supply” P, D “needs” P, and D “deals-with” S does not imply that
D has agreed to buy P from S.

– How do we record qty?

58

Aggregation v/s ternary relationship

• The choice
between using
aggregation or
ternary relationship
is mainly
determined by
existence of a
relationship that
relates relationship
set to entity set.

59

budget
didpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

The choice may also be guided by certain integrity constraints that we want
to express.

Aggregation v/s ternary relationship

• Using ternary relationship instead of aggregation

60

budget
didpid

started_on

pbudget

dname

DepartmentsProjects Sponsors

Employees

lot
name

ssn

Conceptual design for large enterprises

• For large enterprise the design may require efforts of more than one
designer and span data and application code used by number of user
groups.

• ER diagrams for Conceptual design offers additional advantage that high
level design can be diagramatically represented and easily understood by
many people.

2 approaches:

• Usual approach: requirements of various user groups are considered,any
conflicting requirements are somehow resolved and single set of global
requirements is generated at the end of requirements phase

• Alternative approach: is to develop separate conceptual schemas for
different user groups and then integrate these conceptual schemas

61

Relational Database: Definitions

• Relational database: a set of relations

• Relation: made up of 2 parts:

• Relation schema and relational instance.

– Instance : a table, with rows and columns.

– Set of tuples also called as records

– #Rows = cardinality, #fields = degree / arity.

– A domain is referred by domain name consisting of set of associated
values.

– Schema : specifies name of relation, plus name and type of each
column.

• E.G. Students (sid: string, name: string, login: string, age: integer,
gpa: real).

• Can think of a relation as a set of rows or tuples (i.e., all rows are distinct).

62

Example Instance of Students Relation

63

s id n a m e lo g in a g e g p a

5 3 6 6 6 Jo n e s jo n e s @ c s 1 8 3 .4

5 3 6 8 8 S m ith s m ith @ e e c s 1 8 3 .2

5 3 6 5 0 S m ith s m ith @ m a th 1 9 3 .8

 Cardinality = 3, degree = 5, all rows distinct

 Do all columns in a relation instance have to be distinct?

Creating Relations in SQL

• Creates the Students relation. Observe that the type of each field is
specified, and enforced by the DBMS whenever tuples are added or
modified.

• As another example, the Enrolled table holds information about courses
that students take.

64

CREATE TABLE Students

(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),

age: INTEGER,
gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
cid: CHAR(20),
grade: CHAR(2))

Destroying and Altering Relations

• Destroys the relation Students. The schema information and the
tuples are deleted.

65

DROP TABLE Students

 The schema of Students is altered by adding a new field; every tuple
in the current instance is extended with a null value in the new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Adding and Deleting Tuples

• Can insert a single tuple using:

66

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

 Can delete all tuples satisfying some condition (e.g., name = Smith):

DELETE

FROM Students S
WHERE S.name = ‘Smith’

Integrity Constraints (ICs)

• IC: condition that must be true for any instance of the database; e.g.,
domain constraints.

– ICs are specified when schema is defined.

– ICs are checked when relations are modified.

• A legal instance of a relation is one that satisfies all specified ICs.

– DBMS should not allow illegal instances.

• If the DBMS checks ICs, stored data is more faithful to real-world
meaning.

– Avoids data entry errors, too!

67

Primary Key Constraints

• A set of fields is a key for a relation if :

1. No two distinct tuples can have same values in all key fields, and

2. This is not true for any subset of the key.

– Part 2 false? A superkey.

– If there’s >1 key for a relation, one of the keys is chosen (by DBA) to be
the primary key.

• E.g., sid is a key for Students. (What about name?) The set {sid, gpa} is a
superkey.

68

Primary and Candidate Keys in SQL

• Possibly many candidate keys (specified using UNIQUE), one of
which is chosen as the primary key.

69

CREATE TABLE Enrolled
(studid CHAR(20)

cid CHAR(20),
grade CHAR(2),

PRIMARY KEY (sid,cid))

 “For a given student and course, there is a single grade.” vs. “Students can
take only one course, and receive a single grade for that course; further, no
two students in a course receive the same grade.”

 Used carelessly, an IC can prevent the storage of database instances that arise
in practice!

CREATE TABLE Enrolled
(studidid CHAR(20)

cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

Foreign Keys, Referential Integrity

• Foreign key : Set of fields in one relation that is used to `refer’ to a tuple in
another relation. (Must correspond to primary key of the second relation.)
Like a `logical pointer’.

• CREATE TABLE Students(sid: CHAR(20), name: CHAR(20),login:CHAR(10), age:
INTEGER, gpa: REAL)

• E.g. studid is a foreign key referring to Students:

– Enrolled(studid: string, cid: string, grade: string)

– If all foreign key constraints are enforced, referential integrity is
achieved, i.e., no dangling references.

70

Foreign Keys in SQL

• Only students listed in the Students relation should be allowed to enroll for
courses.

71

CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),

PRIMARY KEY (sid,cid),
FOREIGN KEY (stuid) REFERENCES Students(sid)

s id n a m e lo g in a g e g p a

5 3 6 6 6 Jo n e s jo n e s @ c s 1 8 3 .4

5 3 6 8 8 S m ith s m ith @ e e c s 1 8 3 .2

5 3 6 5 0 S m ith s m ith @ m a th 1 9 3 .8

s id c id g ra d e

5 3 6 6 6 C a rn a tic1 0 1 C

5 3 6 6 6 R e g g a e 2 0 3 B

5 3 6 5 0 T o p o lo g y 1 1 2 A

5 3 6 6 6 H is to ry 1 0 5 B

Enrolled Students

General constraints
• Current relational database systems support such general constraints in 2

forms

• Constraint table: It is associated with single table and checked whenever that
single table is modified

• Assertions: include several tables and are checked whenever any of these
tables is modified.

• Domain constraints: domains can have some constraints called Domain
constraints

• Column constraints: the value in any column of any table should be
controlled by column constraints

• User defined IC: it allows business rules to be specified centrally to database,
so that when certain action is performed on a set of data, other actions are
automatically performed

72

Enforcing Referential Integrity

• Consider Students and Enrolled; sid in Enrolled is a foreign key that references
Students.

• What should be done if an Enrolled tuple with a non-existent student id is
inserted? (Reject it!)

• What should be done if a Students tuple is deleted?

– Also delete all Enrolled tuples that refer to it.

– Disallow deletion of a Students tuple that is referred to.

– Set sid in Enrolled tuples that refer to it to a default sid.

– (In SQL, also: Set sid in Enrolled tuples that refer to it to a special value null,
denoting `unknown’ or `inapplicable’.)

• Similar if primary key of Students tuple is updated.

73

Referential Integrity in SQL

• SQL/92 and SQL:1999 support all 4 options on deletes and updates.

– Default is NO ACTION (delete/update is rejected)

– CASCADE (also delete all tuples that refer to deleted tuple)

– SET NULL / SET DEFAULT (sets foreign key value of referencing tuple)

74

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)

REFERENCES Students
ON DELETE CASCADE

ON UPDATE SET

DEFAULT)

Transactions and constraints

• In SQL a constraint is checked at the end of every SQL statement that
could lead to viloation and if there is a violation,the statement is
rejected,this approach is inflexible

• SQL allows a constraint to be in deferred or immediate mode

• Syntax: set constraint constraintname Immediate/Deffered

75

The SQL Query Language

76

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

s id n a m e lo g in a g e g p a

5 3 6 6 6 Jo n e s jo n e s @ c s 1 8 3 .4

5 3 6 8 8 S m ith s m ith @ e e 1 8 3 .2

Logical DB Design: ER to Relational

• Entity sets to tables:

77

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))

Employees

ssn
name

lot

Relationship Sets to Tables

Create table reportsTo(supervisor_ssn char(10), subordinate_ssn char(10),

primary key(supervisor_ssn, subordinate_ssn),

foreign key(supervisor_ssn) references employees(ssn)

foreign key(subordinate_ssn) references employees(ssn))

78

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subord

inate

super-

visor

ssn

Relationship Sets to Tables
• In translating a relationship set to a relation, attributes of the

relation must include:

– Keys for each participating entity set (as foreign keys).

• This set of attributes forms a superkey for the relation.

– All descriptive attributes.

79

CREATE TABLE Works_In(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

Review: Key Constraints

• Each dept has at most one
manager, according to the
key constraint on
Manages.

80

Translation to
relational model?

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Translating ER Diagrams with Key Constraints

• Map relationship to a table:

– Note that did is the key
now!

– Separate tables for
Employees and
Departments.

• Since each department has
a unique manager, we could
instead combine Manages
and Departments.

81

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Review: Participation Constraints

• Does every department have a manager?

– If so, this is a participation constraint: the participation of Departments in
Manages is said to be total (vs. partial).

• Every did value in Departments table must appear in a row of the
Manages table (with a non-null ssn value!)

82

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Participation Constraints in SQL

• We can capture participation constraints involving one entity set in a binary
relationship, but little else (without resorting to CHECK constraints).

83

CREATE TABLE Dept_Mgr(
did INTEGER,

dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

Review: Weak Entities
• A weak entity can be identified uniquely only by considering the primary key of

another (owner) entity.

– Owner entity set and weak entity set must participate in a one-to-many
relationship set (1 owner, many weak entities).

– Weak entity set must have total participation in this identifying relationship
set.

84

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Translating Weak Entity Sets
• Weak entity set and identifying relationship set are translated into a

single table.

– When the owner entity is deleted, all owned weak entities must
also be deleted.

85

CREATE TABLE Dep_Policy (
pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

Review: ISA Hierarchies

• Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps
entity? (Allowed/disallowed)

• Covering constraints: Does every Employees entity also have to be an
Hourly_Emps or a Contract_Emps entity? (Yes/no)

86

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

 As in C++, or other PLs,
attributes are inherited.

 If we declare A ISA B, every A
entity is also considered to be a B
entity.

Translating ISA Hierarchies to Relations
• General approach:

– 3 relations: Employees, Hourly_Emps and Contract_Emps.

• Hourly_Emps: Every employee is recorded in Employees. For hourly
emps, extra info recorded in Hourly_Emps (hourly_wages, hours_worked,
ssn); must delete Hourly_Emps tuple if referenced Employees tuple is
deleted).

• Queries involving all employees easy, those involving just Hourly_Emps
require a join to get some attributes.

• Alternative: Just Hourly_Emps and Contract_Emps.

– Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked.

– Each employee must be in one of these two subclasses.

87

Review: Binary vs. Ternary Relationships

• What are the
additional constraints
in the 2nd diagram?

88

agepname

Dependents

Covers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design

Binary vs. Ternary Relationships (Contd.)

• The key constraints allow
us to combine Purchaser
with Policies and
Beneficiary with
Dependents.

• Participation constraints
lead to NOT NULL
constraints.

• What if Policies is a weak
entity set?

89

CREATE TABLE Policies (
policyid INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid).
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

CREATE TABLE Dependents (
pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid).
FOREIGN KEY (policyid) REFERENCES Policies,

ON DELETE CASCADE)

View Definition
• A relation that is not of the conceptual model but is made visible to a user as

a “virtual relation” is called a view.

• A view is defined using the create view statement which has the form

create view v as < query expression >

View is stored only as definition .When a reference is made to a view its
definition is scanned, base table is opened and view is created on top of
table.

• If a view is used to only look at table data and nothing else and view is called
Read only view

• If a view is used to only look at table data as well as insert,update and
delete table data is called Updatable view

90

Views and Security
• Views can be used to present necessary information (or a summary),

while hiding details in underlying relation(s).

• When data redundancy is to be kept minimum while maintaining
security.

– Given YoungStudents, but not Students or Enrolled, we can find
students s who have are enrolled, but not the cid’s of the courses
they are enrolled in.

91

CREATE VIEW YoungActiveStudents (name, grade)
AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

Example Queries
• A view consisting of branches and their customers

92

 Find all customers of the Perryridge branch

create view all_customer as
(select branch_name, customer_name
from depositor, account
where depositor.account_number =

account.account_number)
union
(select branch_name, customer_name
from borrower, loan

select customer_name
from all_customer
where branch_name = 'Perryridge'

Processing of Views

• When a view is created

– the query expression is stored in the database along with the view
name

– the expression is substituted into any query using the view

• Views definitions containing views

– One view may be used in the expression defining another view

– A view relation v1 is said to depend directly on a view relation v2 if v2 is
used in the expression defining v1

– A view relation v is said to be recursive if it depends on itself.

93

Updatable views
A view is updatable if the following conditions are satisfied:

• From clause has only one database relation

• Select clause contains only attribute name of relation and does not have any
expressions, aggregates or distinct specification

• Any attribute not listed in select clause can be set to null

• Query does not have a groupby or having clause.

• If user wants to insert records with help of a view then primary key column
and all the not null columns must be included in view

• User can update, delete records with help of view even if primary key
column and not null columns are excluded from view definition.

94

Update of a View
• Create a view of all loan data in the loan relation, hiding the amount

attribute

create view loan_branch as
select loan_number, branch_name
from loan

• Add a new tuple to loan_branch

insert into loan_branch
values ('L-37‘, 'Perryridge‘)

This insertion must be represented by the insertion of the tuple

('L-37', 'Perryridge', null)

into the loan relation

95

Views defined from multiple tables

• If a view is created from multiple tables which were not created using
referencing clause

• Insert,update or delete operation is not allowed

• If a view is created from multiple tables which were created using
referencing clause

• Insert operation is not allowed

• Delete or modify operations do not affect master table

• View can be used to modify columns of detail table included in view

• Destroying a view

• Syntax: Drop view view_name

• Ex:drop view v1;

96

DATABASE MANAGEMENT SYSTEMS

UNIT-II

97

Formal Relational Query Languages

 Two mathematical Query Languages form the basis for “real”
languages (e.g. SQL), and for implementation:

◦ Relational Algebra: More operational, very useful for representing
execution plans.

◦ Relational Calculus: Lets users describe what they want, rather
than how to compute it. (Non-operational, declarative.)

98

Example Instances

• “Sailors” and “Reserves” relations
for our examples.

• We’ll use positional or named field
notation, assume that names of
fields in query results are `inherited’
from names of fields in query input
relations.

99

s id s n a m e ra t in g a g e

2 2 d u s t in 7 4 5 .0

3 1 lu b b e r 8 5 5 .5

5 8 ru s ty 1 0 3 5 .0

s id s n a m e ra t in g a g e

2 8 y u p p y 9 3 5 .0

3 1 lu b b e r 8 5 5 .5

4 4 g u p p y 5 3 5 .0

5 8 ru s ty 1 0 3 5 .0

s id b id d a y

2 2 1 0 1 1 0 /1 0 /9 6

5 8 1 0 3 1 1 /1 2 /9 6

R1

S1

S2

Relational Algebra

• Basic operations:

– Selection () Selects a subset of rows from
relation.

– Projection () Deletes unwanted columns from
relation.

– Cross-product () Allows us to combine two
relations.

– Set-difference (-) Tuples in reln. 1, but not in
reln. 2.

– Union (U) Tuples in reln. 1 and in reln. 2.
• Additional operations:

– Intersection, join, division, renaming
100







Projection

• Schema of result contains exactly the fields
in the projection list, with the same names
that they had in the (only) input relation.

• Projection operator has to eliminate
duplicates! (Why??)

– Note: real systems typically don’t do
duplicate elimination unless the user
explicitly asks for it.

101

s n a m e ra t in g

y u p p y 9

lu b b e r 8

g u p p y 5

ru s ty 1 0


sn a m e ra tin g

S
,

()2

a g e

3 5 .0

5 5 .5


a g e

S()2

Selection

• Selects rows that satisfy
selection condition.

• No duplicates in result! (Why?)

• Schema of result identical to
schema of (only) input relation.

• Result relation can be the input
for another relational algebra
operation! (Operator
composition.)

102


ra tin g

S
 8

2()

s id s n a m e ra t in g a g e

2 8 y u p p y 9 3 5 .0

5 8 r u s ty 1 0 3 5 .0

s n a m e ra t in g

y u p p y 9

r u s ty 1 0

 
sn a m e ra tin g ra t in g

S
,

(())
 8

2

Union, Intersection, Set-Difference

• All of these operations take two
input relations, which must be
union-compatible:

– Same number of fields.

– `Corresponding’ fields have the
same type.

• What is the schema of result?

103

s id s n a m e ra t in g a g e

2 2 d u s t in 7 4 5 .0

3 1 lu b b e r 8 5 5 .5

5 8 r u s ty 1 0 3 5 .0

4 4 g u p p y 5 3 5 .0

2 8 y u p p y 9 3 5 .0

s id s n a m e ra t in g a g e

3 1 lu b b e r 8 5 5 .5

5 8 r u s ty 1 0 3 5 .0

S S1 2

S S1 2

s id s n a m e ra t in g a g e

2 2 d u s t in 7 4 5 .0

S S1 2

Cross-Product
 Each row of S1 is paired with each row of R1.

 Result schema has one field per field of S1 and R1, with field names
`inherited’ if possible.

Conflict: Both S1 and R1 have a field called sid.

S1 X R1

104

 ((,) ,)C s id s id S R1 1 5 2 1 1  

(s id) s n a m e r a t in g a g e (s id) b id d a y

2 2 d u s t in 7 4 5 .0 2 2 1 0 1 1 0 / 1 0 / 9 6

2 2 d u s t in 7 4 5 .0 5 8 1 0 3 1 1 / 1 2 / 9 6

3 1 lu b b e r 8 5 5 .5 2 2 1 0 1 1 0 / 1 0 / 9 6

3 1 lu b b e r 8 5 5 .5 5 8 1 0 3 1 1 / 1 2 / 9 6

5 8 r u s ty 1 0 3 5 .0 2 2 1 0 1 1 0 / 1 0 / 9 6

5 8 r u s ty 1 0 3 5 .0 5 8 1 0 3 1 1 / 1 2 / 9 6

Renaming operator(ρ):
ρ (old name -> new name) or

ρ (position -> new name)

Joins

• Condition Join:

• Result schema same as that of cross-product.

• Fewer tuples than cross-product, might be able to compute more
efficiently

• Sometimes called a theta-join.

105

R
c

S
c

R S   ()

(s id) s n a m e r a t in g a g e (s id) b id d a y

2 2 d u s t in 7 4 5 .0 5 8 1 0 3 1 1 / 1 2 / 9 6

3 1 lu b b e r 8 5 5 .5 5 8 1 0 3 1 1 / 1 2 / 9 6

S R
S s id R s id

1 1
1 1


. .

Joins

• Equi-Join: A special case of condition join where the condition c contains only
equalities.

• Result schema similar to cross-product, but only one copy of fields for which
equality is specified.

• Natural Join: Equijoin on all common fields.

• If two relations have no attributes in common,natural join is simply cross
product.

106

s id s n a m e r a t in g a g e b id d a y

2 2 d u s t in 7 4 5 .0 1 0 1 1 0 / 1 0 / 9 6

5 8 r u s ty 1 0 3 5 .0 1 0 3 1 1 / 1 2 / 9 6

S R
s id

1 1

Division

• Not supported as a primitive operator, but useful for expressing
queries like:

Find sailors who have reserved all boats.

• Let A have 2 fields, x and y; B have only field y:

– A/B =

– i.e., A/B contains all x tuples (sailors) such that for every y tuple
(boat) in B, there is an xy tuple in A.

– Or: If the set of y values (boats) associated with an x value
(sailor) in A contains all y values in B, the x value is in A/B.

• In general, x and y can be any lists of fields; y is the list of fields in B,
and x y is the list of fields of A.

107

 x x y A y B| ,   



Examples of Division A/B

108

s n o p n o

s 1 p 1

s 1 p 2

s 1 p 3

s 1 p 4

s 2 p 1

s 2 p 2

s 3 p 2

s 4 p 2

s 4 p 4

p n o

p 2

p n o

p 2

p 4

p n o

p 1

p 2

p 4

s n o

s 1

s 2

s 3

s 4

s n o

s 1

s 4

s n o

s 1

A

B1
B2

B3

A/B1 A/B2 A/B3

Relational Calculus

• Comes in two flavors: Tuple relational calculus (TRC) and Domain relational
calculus (DRC).

• Calculus has variables, constants, comparison ops, logical connectives and
quantifiers.

– TRC: Variables range over (i.e., get bound to) tuples.

– DRC: Variables range over domain elements (= field values).

– Both TRC and DRC are simple subsets of first-order logic.

• Expressions in the calculus are called formulas. An answer tuple is essentially an
assignment of constants to variables that make the formula evaluate to true.

109

Tuple relational calculus
 A tuple rc query has the form {T|P(T)} where T is a tuple variable and P(T)

denotes a formula that describes T.

 Find all sailors with rating above 7

 {S|S € Sailors Л s.rating>7}

 Let Rel be a relation name, R & S be tuple variables,’a’ be an attribute of R
and ‘b’ be attribute of S. Let op denote operator.

 An atomic formula is one of the following

 R € Rel, R.a € S.b, R.a op constant or constant op R.a

110

Tuple relational calculus

 A formula is recursively defined to be one of the following

-- any atomic formula

-- ┐P,PЛQ,P V Q or P=>Q

-- эR(P(R)) where R is tuple variable

-- forall R(P(R)) where R is tuple variable

 A variable is said to be free in formula if it does not contain an occurence
of quantifiers that bind it.

 Find the names and ages of sailors with rating above 7

 {P| эS є Sailors(S.Rating >7 Л P.name=S.Sname Л P.age=S.age)

111

Queries
 Find the sailor name,boat id and reservation date for each reservation

 {P|эR є Reserves эS є Sailors (R.Sid=S.sid Л P.bid=R.bid Л P.day=R.day Л
P.sname=S.sname)

 Find the names of sailors who have reserved boat 103

 {P|эR є Reserves эS є Sailors (R.Sid=S.sid Л R.bid=103 Л
P.sname=S.sname)

 Find the names of sailors who have reserved boat 103

 {P|эR є Reserves эS є Sailors (R.Sid=S.sid Л P.sname=S.sname Л эB є
Boats(B.bid=R.bid Л B.color=‘red’))}

112

Free and Bound Variables

• The use of quantifiers and in a formula is said to bind X.

– A variable that is not bound is free.

• Let us revisit the definition of a query:

113

 X
 X

x x x n p x x x n1 2 1 2, ,..., | , ,...,


































 There is an important restriction: the variables x1, ..., xn that appear to
the left of `|’ must be the only free variables in the formula p(...).

Find sailors rated > 7 who’ve reserved a red boat

• Observe how the parentheses control the scope of each quantifier’s binding.

• Find names of sailors who’ve reserved a red boat

114

I N T A I N T A S a ilo r s T, , , | , , ,    








7

    







I r B r D Ir B r D se r v e s Ir I, , , , R e

     



































B B N C B B N C B o a ts B B r C re d, , , , ' '









 SailorsATNIATIN ,,,,,|










 BoatsredBNBrservesDBrI '',,Re,,


є

Find sailors who’ve reserved all boats

115

I N T A I N T A S a ilo r s, , , | , , ,  








   




























B B N C B B N C B o a ts, , , ,

     


















































I r B r D Ir B r D se r v e s I Ir B r B, , , , R e

•Find sailors who’ve reserved all boats (again!)

• To find sailors who’ve reserved all red boats:

116

I N T A I N T A S a ilo r s, , , | , , ,  








 B B N C B o a ts, ,

    








































Ir B r D se r v e s I I r B r B, , R e

C re d Ir B r D se r v e s I Ir B r B      








































' ' , , R e....
.

Unsafe Queries, Expressive Power

• It is possible to write syntactically correct calculus queries that have an
infinite number of answers! Such queries are called unsafe.

– e.g.,

• It is known that every query that can be expressed in relational algebra can
be expressed as a safe query in DRC / TRC; the converse is also true.

• Relational Completeness: Query language (e.g., SQL) can express every
query that is expressible in relational algebra/calculus.

117

S S S a i lo r s|  
































Data Definition Language

 The schema for each relation, including attribute types.

 Integrity constraints

 Authorization information for each relation.

 Non-standard SQL extensions also allow specification of

◦ The set of indices to be maintained for each relations.

◦ The physical storage structure of each relation on disk.

118

Allows the specification of:

Create Table Construct

 An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

◦ r is the name of the relation
◦ each Ai is an attribute name in the schema of relation r
◦ Di is the data type of attribute Ai

Example:

create table branch
(branch_name char(15),
branch_city char(30),
assets integer)

119

Domain Types in SQL

• char(n). Fixed length character string, with user-specified length n.

• varchar(n). Variable length character strings, with user-specified
maximum length n.

• int. Integer (a finite subset of the integers that is machine-dependent).

• smallint. Small integer (a machine-dependent subset of the integer
domain type).

• numeric(p,d). Fixed point number, with user-specified precision of p
digits, with n digits to the right of decimal point.

• float(n). Floating point number, with user-specified precision of at least n
digits.

120

Integrity Constraints on Tables

• not null

• primary key (A1, ..., An)

121

Example: Declare branch_name as the primary key for branch
.

create table branch
(branch_name char(15),
branch_citychar(30) not null,
assets integer,
primary key (branch_name))

primary key declaration on an attribute automatically ensures not
null in SQL-92 onwards, needs to be explicitly stated in SQL-89

Basic Insertion and Deletion of Tuples

• Newly created table is empty

• Add a new tuple to account

insert into account
values ('A-9732', 'Perryridge', 1200)

– Insertion fails if any integrity constraint is violated

• Delete all tuples from account

delete from account

122

Drop and Alter Table Constructs
 The drop table command deletes all information about the dropped

relation from the database.

 The alter table command is used to add attributes to an existing
relation:

alter table r add A D

where A is the name of the attribute to be added to relation r and D
is the domain of A.

◦ All tuples in the relation are assigned null as the value for the new
attribute.

 The alter table command can also be used to drop attributes of a

relation:

alter table r drop A

where A is the name of an attribute of relation r

◦ Dropping of attributes not supported by many databases

123

Basic Query Structure
 A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

◦ Ai represents an attribute

◦ Ri represents a relation

◦ P is a predicate.

 This query is equivalent to the relational algebra expression.

 The result of an SQL query is a relation.

124

))((
21,,, 21 mPAAA

rrr
n

 




The select Clause
• The select clause list the attributes desired in the result of a query

– corresponds to the projection operation of the relational algebra

• Example: find the names of all branches in the loan relation:

select branch_name

from loan

• In the relational algebra, the query would be:

branch_name (loan)

• NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)

– E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

– Some people use upper case wherever we use bold font.

125

The select Clause (Cont.)

• SQL allows duplicates in relations as well as in query results.

• To force the elimination of duplicates, insert the keyword distinct after
select.

• Find the names of all branches in the loan relations, and remove
duplicates

select distinct branch_name
from loan

• The keyword all specifies that duplicates not be removed.
select all branch_name

from loan

126

The where Clause
 The where clause specifies conditions that the result must satisfy

◦ Corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge branch with
loan amounts greater than $1200.

select loan_number
from loan
where branch_name = 'Perryridge' and amount > 1200

 Comparison results can be combined using the logical connectives
and, or, and not.

127

The from Clause
 The from clause lists the relations involved in the query

◦ Corresponds to the Cartesian product operation of the relational
algebra.

 Find the Cartesian product borrower X loan

select *
from borrower, loan

128

 Find the name, loan number and loan amount of all customers having a
loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount
from borrower, loan
where borrower.loan_number = loan.loan_number and

branch_name = 'Perryridge'

The Rename Operation

 SQL allows renaming relations and attributes using the as clause:

old-name as new-name

 E.g. Find the name, loan number and loan amount of all customers;

rename the column name loan_number as loan_id.

129

select customer_name, borrower.loan_number as loan_id, amount
from borrower, loan
where borrower.loan_number = loan.loan_number

Tuple Variables
 Tuple variables are defined in the from clause via the use of the as clause.

 Find the customer names and their loan numbers and amount for all
customers having a loan at some branch.

130

 Find the names of all branches that have greater assets than some
branch located in Brooklyn.

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = 'Brooklyn'

Keyword as is optional and may be omitted
borrower as T ≡ borrower T

 Some database such as Oracle require as to be omitted

select customer_name, T.loan_number, S.amount
from borrower as T, loan as S
where T.loan_number = S.loan_number

Example Instances

• We will use these
instances of the Sailors
and Reserves relations in
our examples.

• If the key for the Reserves
relation contained only
the attributes sid and bid,
how would the semantics
differ?

131

s id s n a m e ra t in g a g e

2 2 d u s tin 7 4 5 .0

3 1 lu b b e r 8 5 5 .5

5 8 ru s ty 1 0 3 5 .0

s id s n a m e ra t in g a g e

2 8 y u p p y 9 3 5 .0

3 1 lu b b e r 8 5 5 .5

4 4 g u p p y 5 3 5 .0

5 8 ru s ty 1 0 3 5 .0

s id b id d a y

2 2 1 0 1 1 0 /1 0 /9 6

5 8 1 0 3 1 1 /1 2 /9 6

R1

S1

S2

Find sailors who’ve reserved at least one boat

• Would adding DISTINCT to this query make a
difference?

• What is the effect of replacing S.sid by
S.sname in the SELECT clause? Would adding
DISTINCT to this variant of the query make a
difference?

132

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Expressions and Strings

 Illustrates use of arithmetic expressions and string pattern matching: Find triples
(of ages of sailors and two fields defined by expressions) for sailors whose
names begin and end with B and contain at least three characters.

 AS and = are two ways to name fields in result.

 LIKE is used for string matching. `_’ stands for any one character and `%’ stands
for 0 or more arbitrary characters.

133

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

String Operations

 SQL includes a string-matching operator for comparisons on character
strings. The operator “like” uses patterns that are described using two
special characters:

◦ percent (%). The % character matches any substring.

◦ underscore (_). The _ character matches any character.

 Find the names of all customers whose street includes the substring
“Main”.

select customer_name
from customer
where customer_street like '% Main%'

 Match the name “Main%”

like 'Main\%' escape '\'

 SQL supports a variety of string operations such as

◦ concatenation (using “||”)

◦ converting from upper to lower case (and vice versa)

◦ finding string length, extracting substrings, etc.

134

Ordering the Display of Tuples

 List in alphabetic order the names of all customers having a loan in
Perryridge branch

select distinct customer_name
from borrower, loan
where borrower loan_number = loan.loan_number and

branch_name = 'Perryridge'
order by customer_name

 We may specify desc for descending order or asc for ascending order, for
each attribute; ascending order is the default.

◦ Example: order by customer_name desc

135

Duplicates
• In relations with duplicates, SQL can define how many copies of tuples

appear in the result.

• Multiset versions of some of the relational algebra operators – given
multiset relations r1 and r2:

1.  (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies selections
,, then there are c1 copies of t1 in  (r1).

2. A (r): For each copy of tuple t1 in r1, there is a copy of tuple A (t1)
in A (r1) where A (t1) denotes the projection of the single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in
r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

136

Duplicates (Cont.)
 Example: Suppose multiset relations r1 (A, B) and r2 (C) are as

follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

 Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

 SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm

where P

is equivalent to the multiset version of the expression:

137

))((
21,,, 21 mPAAA

rrr
n

 




Set Operations
 The set operations union, intersect, and except operate on relations and

correspond to the relational algebra operations 

 Each of the above operations automatically eliminates duplicates; to
retain all duplicates use the corresponding multiset versions union all,
intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

◦ m + n times in r union all s

◦ min(m,n) times in r intersect all s

◦ max(0, m – n) times in r except all s

138

Nested Queries

 A very powerful feature of SQL: a WHERE clause can itself contain an SQL query!
(Actually, so can FROM and HAVING clauses.)

 To find sailors who’ve not reserved #103, use NOT IN.

 To understand semantics of nested queries, think of a nested loops evaluation: For
each Sailors tuple, check the qualification by computing the subquery.

139

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Nested Queries with Correlation

 EXISTS is another set comparison operator, like IN.

 If UNIQUE is used, and * is replaced by R.bid, finds sailors with at most one
reservation for boat #103. (UNIQUE checks for duplicate tuples; * denotes all
attributes. Why do we have to replace * by R.bid?)

 Illustrates why, in general, subquery must be re-computed for each Sailors tuple.

140

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:

Aggregate Functions

• These functions operate on the multiset of values of a column of a
relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

141

Aggregate Functions (Cont.)
 Find the average account balance at the Perryridge branch.

142

 Find the number of depositors in the bank.

 Find the number of tuples in the customer relation.

select avg (balance)
from account
where branch_name = 'Perryridge'

select count (*)

from customer

select count (distinct customer_name)

from depositor

Aggregate Functions – Group By
 Find the number of depositors for each branch.

143

Note: Attributes in select clause outside of aggregate functions must
appear in group by list

select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number = account.account_number
group by branch_name

Aggregate Functions – Having Clause

 Find the names of all branches where the average account balance is
more than $1,200.

144

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

select branch_name, avg (balance)
from account
group by branch_name
having avg (balance) > 1200

Nested Subqueries
• SQL provides a mechanism for the nesting of subqueries.

• A subquery is a select-from-where expression that is nested within
another query.

• A common use of subqueries is to perform tests for set membership,
set comparisons, and set cardinality.

145

“In” Construct
 Find all customers who have both an account

and a loan at the bank.

146

 Find all customers who have a loan at the bank

but do not have an account at the bank

select distinct customer_name

from borrower

where customer_name not in (select customer_name

from depositor)

select distinct customer_name

from borrower

where customer_name in (select customer_name

from depositor)

Example Query
 Find all customers who have both an account and

a loan at the Perryridge branch

147

 Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features.

select distinct customer_name

from borrower, loan

where borrower.loan_number = loan.loan_number and

branch_name = 'Perryridge' and

(branch_name, customer_name) in

(select branch_name, customer_name

from depositor, account

where depositor.account_number =

account.account_number)

“Some” Construct
 Find all branches that have greater assets than

some branch located in Brooklyn.

148

 Same query using > some clause

select branch_name

from branch

where assets > some

(select assets

from branch

where branch_city = 'Brooklyn')

select distinct T.branch_name

from branch as T, branch as S

where T.assets > S.assets and

S.branch_city = 'Brooklyn'

“All” Construct
 Find the names of all branches that have greater

assets than all branches located in Brooklyn.

149

select branch_name

from branch

where assets > all

(select assets

from branch

where branch_city = 'Brooklyn')

“Exists” Construct
 Find all customers who have an account at

all branches located in Brooklyn.

150

select distinct S.customer_name

from depositor as S

where not exists (

(select branch_name

from branch

where branch_city = 'Brooklyn')

except

(select R.branch_name

from depositor as T, account as R

where T.account_number = R.account_number and

S.customer_name = T.customer_name))

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

Absence of Duplicate Tuples
 The unique construct tests whether a subquery has any

duplicate tuples in its result.
 Find all customers who have at most one account at the

Perryridge branch.
select T.customer_name

from depositor as T
where unique (

select R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and

R.account_number = account.account_number
and

account.branch_name = 'Perryridge')

151

Example Query
 Find all customers who have at least two accounts at

the Perryridge branch.

152

select distinct T.customer_name

from depositor as T

where not unique (

select R.customer_name

from account, depositor as R

where T.customer_name = R.customer_name and

R.account_number = account.account_number and

account.branch_name = 'Perryridge')

• Variable from outer level is known as a

correlation variable

Modification of the Database –
Deletion

 Delete all account tuples at the Perryridge branch

delete from account
where branch_name = 'Perryridge'

 Delete all accounts at every branch located in the
city ‘Needham’.

delete from account
where branch_name in (select branch_name

from branch
where branch_city =

'Needham')

153

Example Query
• Delete the record of all accounts with

balances below the average at the bank.

154

delete from account

where balance < (select avg (balance)

from account)

 Problem: as we delete tuples from deposit, the average balance

changes

 Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg

or

retesting the tuples)

Modification of the Database – Insertion
 Add a new tuple to account

insert into account
values ('A-9732', 'Perryridge', 1200)

or equivalently

insert into account (branch_name, balance,
account_number)

values ('Perryridge', 1200, 'A-9732')

 Add a new tuple to account with balance set to null

insert into account
values ('A-777','Perryridge', null)

155

Modification of the Database – Insertion
• Provide as a gift for all loan customers of the Perryridge branch, a $200

savings account. Let the loan number serve as the account number for
the new savings account

insert into account
select loan_number, branch_name, 200
from loan
where branch_name = 'Perryridge'

insert into depositor
select customer_name, loan_number
from loan, borrower
where branch_name = 'Perryridge'

and loan.account_number = borrower.account_number

• The select from where statement is evaluated fully before any of its
results are inserted into the relation

– Motivation: insert into table1 select * from table1

156

Modification of the Database – Updates
 Increase all accounts with balances over

$10,000 by 6%, all other accounts receive 5%.
◦ Write two update statements:

update account
set balance = balance  1.06
where balance > 10000

update account
set balance = balance  1.05
where balance  10000

◦ The order is important
◦ Can be done better using the case statement (next

slide)

157

Case Statement for Conditional Updates

• Same query as before: Increase all accounts with
balances over $10,000 by 6%, all other accounts
receive 5%.

update account
set balance = case

when balance <= 10000 then
balance *1.05

else balance * 1.06
end

158

More on Set-Comparison
Operators

• We’ve already seen IN, EXISTS and UNIQUE. Can also use
NOT IN, NOT EXISTS and NOT UNIQUE.

• Also available: op ANY, op ALL, op IN

• Find sailors whose rating is greater than that of
some sailor called Horatio:

159

     , , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Rewriting INTERSECT Queries Using IN

• Similarly, EXCEPT queries re-written using NOT IN.

• To find names (not sid’s) of Sailors who’ve reserved
both red and green boats, just replace S.sid by S.sname
in SELECT clause. (What about INTERSECT query?)

160

Find sid’s of sailors who’ve reserved both a red and a green
boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=‘green’)

Division in SQL

• Let’s do it the hard
way, without EXCEPT:

161

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

((SELECT B.bid
FROM Boats B)

EXCEPT

(SELECT R.bid
FROM Reserves R
WHERE R.sid=S.sid))

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.
(1)

(2)

Aggregate Operators

• Significant extension of
relational algebra.

162

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Find name and age of the oldest sailor(s)

The first query is illegal!
(We’ll look into the
reason a bit later, when
we discuss GROUP BY.)
The third query is

equivalent to the second
query, and is allowed in
the SQL/92 standard,
but is not supported in
some systems.

163

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2)
= S.age

Motivation for Grouping

• So far, we’ve applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to
apply them to each of several groups of tuples.

• Consider: Find the age of the youngest sailor
for each rating level.

– In general, we don’t know how many rating levels
exist, and what the rating values for these levels
are!

– Suppose we know that rating values go from 1 to
10; we can write 10 queries that look like this (!):

164

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Queries With GROUP BY and HAVING

• The target-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).
– The attribute list (i) must be a subset of grouping-list.

Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

165

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Find age of the youngest sailor with age 18, for each rating
with at least 2 such sailors

rating minage

3 25.5

7 35.0

8 25.5

166

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:



Sailors instance:

Find age of the youngest sailor with age 18, for each rating
with at least 2 such sailors.

rating minage

3 25.5

7 35.0

8 25.5

167

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5



rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

Find age of the youngest sailor with age 18, for each rating
with at least 2 such sailors and with every sailor under 60.

rating minage

7 35.0

8 25.5

168

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5



rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

What is the result of

changing EVERY to

ANY?

Find age of the youngest sailor with age 18, for each rating
with at least 2 sailors between 18 and 60.

rating minage

3 25.5

7 35.0

8 25.5

169

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18 AND S.age <= 60
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:



Sailors instance:

For each red boat, find the number of reservations
for this boat

 Grouping over a join of three relations.
 What do we get if we remove B.color=‘red’ from the

WHERE clause and add a HAVING clause with this condition?
 What if we drop Sailors and the condition involving

S.sid?

170

SELECT B.bid, COUNT (*) AS scount
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Find age of the youngest sailor with age > 18,
for each rating with at least 2 sailors (of any age)

• Shows HAVING clause can also contain a subquery.
• Compare this with the query where we considered

only ratings with 2 sailors over 18!
• What if HAVING clause is replaced by:

– HAVING COUNT(*) >1

171

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating=S2.rating)

Find those ratings for which the average age is the
minimum over all ratings

 Aggregate operations cannot be nested! WRONG:

172

SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

 Correct solution (in SQL/92):

Null Values
• Field values in a tuple are sometimes unknown (e.g.,

a rating has not been assigned) or inapplicable (e.g.,
no spouse’s name).

– SQL provides a special value null for such situations.

• The presence of null complicates many issues. E.g.:

– Special operators needed to check if value is/is not null.

– Is rating>8 true or false when rating is equal to null? What
about AND, OR and NOT connectives?

– We need a 3-valued logic (true, false and unknown).

– Meaning of constructs must be defined carefully. (e.g.,
WHERE clause eliminates rows that don’t evaluate to true.)

– New operators (in particular, outer joins) possible/needed.
173

Null Values and Three Valued Logic
• Any comparison with null returns unknown

– Example: 5 < null or null <> null or null = null

• Three-valued logic using the truth value
unknown:
– OR: (unknown or true) = true,

(unknown or false) = unknown
(unknown or unknown) = unknown

– AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

– NOT: (not unknown) = unknown

– “P is unknown” evaluates to true if predicate P
evaluates to unknown

• Result of where clause predicate is treated as
false if it evaluates to unknown 174

Null Values
 It is possible for tuples to have a null value,

denoted by null, for some of their attributes
 null signifies an unknown value or that a value does

not exist.
 The predicate is null can be used to check for null

values.
◦ Example: Find all loan number which appear in the loan

relation with null values for amount.

select loan_number
from loan
where amount is null

 The result of any arithmetic expression involving
null is null
◦ Example: 5 + null returns null

 However, aggregate functions simply ignore nulls

175

Null Values and Aggregates
• Total all loan amounts

select sum (amount)
from loan

– Above statement ignores null amounts

– Result is null if there is no non-null
amount

• All aggregate operations except
count(*) ignore tuples with null values
on the aggregated attributes.

176

Joined Relations**
 Join operations take two relations and return as a result

another relation.

 These additional operations are typically used as subquery
expressions in the from clause

 Join condition – defines which tuples in the two relations
match, and what attributes are present in the result of the
join.

 Join type – defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated.

177

Joined Relations – Datasets for Examples

 Relation loan

178

 Relation borrower

 Note: borrower information missing for L-260 and loan

information missing for L-155

 Select S.sid, R.bid from Sailors S natural

left outer join Reserves R
Sid Bid

22 101

31 Null

58 103

Joined Relations – Examples
 loan inner join borrower on

loan.loan_number = borrower.loan_number

179

 loan left outer join borrower on

loan.loan_number = borrower.loan_number

Joined Relations – Examples
 loan natural inner join borrower

180

 loan natural right outer join borrower

Find all customers who have either an account or a loan (but not both) at the bank.

select customer_name

from (depositor natural full outer join borrower)

where account_number is null or loan_number is null

Joined Relations – Examples
 Natural join can get into trouble if two relations have an

attribute with same name that should not affect the join
condition

◦ e.g. an attribute such as remarks may be present in many
tables

 Solution:

◦ loan full outer join borrower using (loan_number)

181

Derived Relations
• SQL allows a subquery expression to be used in the from clause

• Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch_name, avg_balance
from (select branch_name, avg (balance)

from account
group by branch_name)
as branch_avg (branch_name, avg_balance)

where avg_balance > 1200

Note that we do not need to use the having clause, since we
compute the temporary (view) relation branch_avg in the from
clause, and the attributes of branch_avg can be used directly
in the where clause.

182

Integrity Constraints (Review)

• An IC describes conditions that every legal instance of a relation must
satisfy.

– Inserts/deletes/updates that violate IC’s are disallowed.

– Can be used to ensure application semantics (e.g., sid is a key), or
prevent inconsistencies (e.g., sname has to be a string, age must be
< 200)

• Types of IC’s: Domain constraints, primary key constraints, foreign key
constraints, general constraints.

– Domain constraints: Field values must be of right
type. Always enforced.

– EX:Create domain ratingval integer default 1
check(value>=1 and value<=10)

– Rating ratingval
183

General Constraints
 Useful when more general ICs

than keys are involved.
 Can use queries to express

constraint.
 Constraints can be named.

184

CREATE TABLE

Sailors
(sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10
)

CREATE TABLE Reserves
(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

Constraints Over Multiple
Relations

 Awkward and
wrong!

 If Sailors is
empty, the
number of
Boats tuples can
be anything!

 ASSERTION is
the right
solution; not
associated with
either table.

185

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Triggers
• Trigger: procedure that starts automatically if

specified changes occur to the DBMS

• Three parts:
• Event (activates the trigger)

• Condition (tests whether the triggers should run)

• Action (what happens if the trigger runs)

• Types of triggers

• Row level triggers:triggering event should be defined
to occur for each modified record. For each row
clause is used.

• Statement-level triggers: trigger is executed just once
for each(insert) statement. For each statement
clause is used.

186

Examples
 Create Trigger init_count before insert on students /*event*/

Declare
Count Integer;
Begin
count:=0; /*action*/

End

Create Trigger incr_count after insert on students /*event*/
When(new.age<18) /*condition*/
For each row
Begin
count:=count+1; /*action*/
end

187

Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate

AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors

FOR EACH STATEMENT

INSERT

INTO YoungSailors(sid, name, age, rating)

SELECT sid, name, age, rating

FROM NewSailors N

WHERE N.age <= 18

188

DATABASE MANAGEMENT SYSTEMS

UNIT-III

189

INTRODUCTION TO SCHEMA REFINEMENT

Problems Caused by Redundancy

 Storing the same information redundantly, that is, in more
than one place within a database, can lead to several
problems:

 Redundant storage: Some information is stored repeatedly.

 Update anomalies: If one copy of such repeated data is
updated, an inconsistency is created unless all copies are
similarly updated.

 Insertion anomalies: It may not be possible to store some
information unless some other information is stored as well.

 Deletion anomalies: It may not be possible to delete some
information without losing some other information as well.

190

• Consider a relation obtained by translating a variant of the
Hourly Emps entity set

Ex: Hourly Emps(ssn, name, lot, rating, hourly wages,

hours worked)

• The key for Hourly Emps is ssn. In addition, suppose
that the hourly wages attribute

is determined by the rating attribute.

That is, for a given rating value, there is only one
permissible hourly wages value. This IC is an example of
a functional dependency.

• It leads to possible redundancy in the relation Hourly
Emps

191

Example: Constraints on Entity Set

• Consider relation obtained from Hourly_Emps:
– Hourly_Emps (ssn, name, lot, rating, hrly_wages,

hrs_worked)

• Notation: We will denote this relation schema by
listing the attributes: SNLRWH
– This is really the set of attributes {S,N,L,R,W,H}.
– Sometimes, we will refer to all attributes of a relation by

using the relation name. (e.g., Hourly_Emps for SNLRWH)

• Some FDs on Hourly_Emps:
– ssn is the key: S SNLRWH
– rating determines hrly_wages: R W

192

 

Example (Contd.)

• Problems due to R W :

– Update anomaly: Can
we change W in just
the 1st tuple of SNLRWH?

– Insertion anomaly: What if
we want to insert an
employee and don’t know
the hourly wage for his
rating?

– Deletion anomaly: If we
delete all employees with
rating 5, we lose the
information about the wage
for rating 5!

193



S N L R W H

1 2 3 -2 2 -3 6 6 6 A tt is h o o 4 8 8 1 0 4 0

2 3 1 -3 1 -5 3 6 8 S m ile y 2 2 8 1 0 3 0

1 3 1 -2 4 -3 6 5 0 S m e th u rs t 3 5 5 7 3 0

4 3 4 -2 6 -3 7 5 1 G u ld u 3 5 5 7 3 2

6 1 2 -6 7 -4 1 3 4 M a d a y a n 3 5 8 1 0 4 0

S N L R H

1 2 3 -2 2 -3 6 6 6 A ttish o o 4 8 8 4 0

2 3 1 -3 1 -5 3 6 8 S m ile y 2 2 8 3 0

1 3 1 -2 4 -3 6 5 0 S m e th u rs t 3 5 5 3 0

4 3 4 -2 6 -3 7 5 1 G u ld u 3 5 5 3 2

6 1 2 -6 7 -4 1 3 4 M a d ay a n 3 5 8 4 0

R W

8 1 0

5 7

Hourly_Emps2Wages

194

ssn name lot rating
Hourly

wages

hours

worked

123-22-3666
Attishoo 48 8 10 40

231-31-5368
Smiley 22 8 10 30

131-24-3650 Smethurst
35 5 7 30

434-26-3751 Guldu
35 5 7 32

612-67-4134 Madayan
35 8 10 40

Decomposition
• Redundancy is at the root of several problems associated with

relational schemas:

– redundant storage, insert/delete/update anomalies

• Main refinement technique: decomposition (replacing ABCD with,
say, AB and BCD, or ACD and ABD).

• Decomposition should be used judiciously:

– Is there reason to decompose a relation?

– What problems (if any) does the decomposition cause?

195

Use of Decompositions
• Intuitively, redundancy arises when a relational schema

forces an association between attributes that is not natural.

• Functional dependencies (ICs) can be used to identify such
situations and to suggest revetments to the schema.

• The essential idea is that many problems arising from
redundancy can be addressed by replacing a relation with a
collection of smaller relations.

• Each of the smaller relations contains a subset of the
attributes of the original relation.

• We refer to this process as decomposition of the larger
relation into the smaller relations

196

We can deal with the redundancy in Hourly Emps by
decomposing it into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)
Wages(rating, hourly wages)

ratin

g

hourly

wages

8 10

5 7

197

ssn name lot rating hours worked

123-22-3666
Attishoo 48 8 40

231-31-5368
Smiley 22 8 30

131-24-3650 Smethurst
35 5 30

434-26-3751 Guldu
35 5 32

612-67-4134 Madayan
35 8 40

198

Problems Related todecomposition
• Unless we are careful, decomposing a relation schema can

create more problems than it solves.

• Two important questions must be asked repeatedly:

• 1. Do we need to decompose a relation?

• 2. What problems (if any) does a given decomposition
cause?

• To help with the rst question, several normal forms have
been proposed for relations.

• If a relation schema is in one of these normal forms, we
know that certain kinds of

problems cannot arise.

199

Functional Dependencies (FDs)

• A functional dependency X Y holds over relation
R if, for every allowable instance r of R:

– t1 r, t2 r, (t1) = (t2) implies (t1) =
(t2)

– If t1.X=t2.X then t1.Y=t2.Y

– i.e., given two tuples in r, if the X values agree, then the
Y values must also agree. (X and Y are sets of
attributes.)

– FD: AB C (a1,b1,c2,d1) will not satisfy

200



 


X 

X


Y


Y

 A B C D

a1 b1 c1 d1

a1 b1 c1 d1

a1 b2 c2 d1

a2 b1 c3 d1

REASONING ABOUT FD’S
Workers(ssn,name,lot,did,since)

We know ssn-did holds and FD did->lot is given to
hold. Therefore FD ssn->lot holds

We say that an FD f is implied by a given set F of FD’s
if f holds on every relation instance that satisfies all
dependencies in F.i.e f holds whenever all FD’s hold.

 Closure of set of FD’s:

 The set of all FD’s implied by a given set F of FD’s is
called closure of F denoted as F+.

 How can we infer or compute the closure of given set
F of FD’s. Sol:Armstrong axioms can be applied
repeatedly to infer all FD’s implied by set of F of FD’s

201

We use X,Y,Z to denote sets of attributes over a
relation schema R

Relexivity: If X subset of Y then X->Y

Augmentation: If X->Y then XZ->YZ for any Z

Transitivity: If X->Y and Y-> Z then X->Z

Union:If X->Y ,X->Z then X->YZ

Decomposition:If X->YZ then X->Y and X->Z

202

Constraints on a Relationship Set

• Suppose that we have entity sets Parts, Suppliers, and
Departments, as well as a relationship set Contracts that
involves all of them.

• We refer to the schema for Contracts as CQPSD. A contract
with contract id C species that a supplier S will supply some
quantity Q of a part P to a department D.

• We might have a policy that a department purchases at most
one part from any given supplier.

• Thus, if there are several contracts between the same
supplier and department, we know that the same part must
be involved in all of them. This constraint is an FD, DS ! P.

203

• Consider relation schema ABC with FD’s

A->B and B->C.

Using reflexivity

X->Y where Y C X,X C ABC and Y C ABC

From transitivity we get A->C

From augmentation we get nontrivial
dependencies

AC->BC,AB->AC,AB->CB

204

Reasoning About FDs (Contd.)
Couple of additional rules (that follow from AA):

◦ Union: If X Y and X Z, then X YZ
◦ Decomposition: If X YZ, then X Y and X Z

Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
◦ C is the key: C CSJDPQV
◦ Project purchases each part using single contract:
◦ JP C
◦ Dept purchases at most one part from a supplier: S
◦ SD P

 JP C, C CSJDPQV imply JP CSJDPQV
 SD P implies SDJ JP
 SDJ JP, JP CSJDPQV imply SDJ CSJDPQV

205

  
  







  

 

  

Closure of a Set of FDs
• The set of all FDs implied by a given set F of FDs is called the

closure of F and is denoted as F+.

• An important question is how we can infer, or compute, the
closure of a given set F of FDs.

• The following three rules, called Armstrong's Axioms, can be
applied repeatedly to infer all FDs implied by a set F of FDs.

• We use X, Y, and Z to denote sets of attributes over a relation
schema R:

206

Attribute Closure
 If we just want to check whether a given

dependency, say, X → Y, is in the closure of a set
F of FDs, we can do so effciently without
computing F+.
We first compute the attribute closure X+ with

respect to F, which is the set of attributes A such
that X → A can be inferred using the Armstrong
Axioms.
The algorithm for computing the attribute

closure of a set X of attributes is
 closure = X;

repeat until there is no change: {
if there is an FD U → V in F such that U subset of closure,

then set closure = closure union of V
}

207

NORMAL FORMS
• The normal forms based on FDs are first normal form (1NF),

second normal form (2NF), third normal form (3NF), and
Boyce-Codd normal form (BCNF).

• These forms have increasingly restrictive requirements:
Every relation in BCNF is also in 3NF, every relation in 3NF is
also in 2NF, and every relation in 2NF is in 1NF.

• A relation is in first normal form if every field contains only
atomic values, that is, not lists or sets.

• This requirement is implicit in our defition of the relational
model.

• Although some of the newer database systems are relaxing
this requirement 2NF is mainly of historical interest.

• 3NF and BCNF are important from a database design
standpoint.

208

Normal Forms
• Returning to the issue of schema refinement, the first question to

ask is whether any refinement is needed!

• If a relation is in a certain normal form (BCNF, 3NF etc.), it is known
that certain kinds of problems are avoided/minimized. This can be
used to help us decide whether decomposing the relation will help.

• Role of FDs in detecting redundancy:

– Consider a relation R with 3 attributes, ABC.

• No FDs hold: There is no redundancy here.

• Given A B: Several tuples could have the same A value,
and if so, they’ll all have the same B value!

209



Normal Forms

• Returning to the issue of schema refinement, the first question to ask is
whether any refinement is needed!

• If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that
certain kinds of problems are avoided/minimized. This can be used to help us
decide whether decomposing the relation will help.

• Role of FDs in detecting redundancy:

– Consider a relation R with 3 attributes, ABC.

• No FDs hold: There is no redundancy here.

• Given A B: Several tuples could have the same A value, and if so,
they’ll all have the same B value!

210

First Normal Form

 1NF (First Normal Form)

• a relation R is in 1NF if and only if it has only single-valued attributes
(atomic values)

• EMP_PROJ (SSN, PNO, HOURS, ENAME, PNAME, PLOCATION)

PLOCATION is not in 1NF (multi-valued attrib.)

• solution: decompose the relation

EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

LOC (PNO, PLOCATION)

211

Second Normal Form

 2NF (Second Normal Form)

• a relation R in 2NF if and only if it is in 1NF and every nonkey column
depends on a key not a subset of a key

• all nonprime attributes of R must be fully functionally dependent on
a whole key(s) of the relation, not a part of the key

• no violation: single-attribute key or no nonprime attribute

212

Second Normal Form (Contd)

 2NF (Second Normal Form)

• violation: part of a key  nonkey

EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

SSN  ENAME

PNO  PNAME

• solution: decompose the relation

EMP_PROJ3 (SSN, PNO, HOURS)

EMP (SSN, ENAME)

PROJ (PNO, PNAME)

213

Third Normal Form

• a relation R in 3NF if and only if it is in 2NF and every nonkey column
does not depend on another nonkey column

• all nonprime attributes of R must be non-transitively functionally
dependent on a key of the relation

214

Third Normal Form (Contd)

 3NF (Third Normal Form)

 violation: nonkey  nonkey

• SUPPLIER (SNAME, STREET, CITY, STATE, TAX)

SNAME  STREET, CITY, STATE

STATE  TAX (nonkey  nonkey)

SNAME  STATE  TAX (transitive FD)

• solution: decompose the relation

SUPPLIER2 (SNAME, STREET, CITY, STATE)

TAXINFO (STATE, TAX)

215

Boyce-Codd Normal Form (BCNF)

• Reln R with FDs F is in BCNF if, for all X A in

– A X (called a trivial FD), or

– X contains a key for R.

• In other words, R is in BCNF if the only non-trivial FDs that hold over R are key
constraints.

– No dependency in R that can be predicted using FDs alone.

– If we are shown two tuples that agree upon the X value, we
cannot infer the A value in one tuple from the A
value in the other.

– If example relation is in BCNF, the 2 tuples must be
identical (since X is a key).

216

F 



X Y A

x y 1 a

x y 2 ?

Decomposition of a Relation Scheme

 Suppose that relation R contains attributes A1 ... An. A decomposition of R
consists of replacing R by two or more relations such that:

◦ Each new relation scheme contains a subset of the attributes of R (and
no attributes that do not appear in R), and

◦ Every attribute of R appears as an attribute of one of the new relations.

 Intuitively, decomposing R means we will store instances of the relation
schemes produced by the decomposition, instead of instances of R.

 E.g., Can decompose SNLRWH into SNLRH and RW.

217

Example Decomposition

 Decompositions should be used only when needed.

◦ SNLRWH has FDs S SNLRWH and R W

◦ Second FD causes violation of 3NF; W values repeatedly associated with
R values. Easiest way to fix this is to create a relation RW to store these
associations, and to remove W from the main schema:

 i.e., we decompose SNLRWH into SNLRH and RW

 The information to be stored consists of SNLRWH tuples. If we just store
the projections of these tuples onto SNLRH and RW, are there any potential
problems that we should be aware of?

218

 

Problems with Decompositions

• There are three potential problems to consider:

– Some queries become more expensive.

• e.g., How much did sailor Joe earn? (salary = W*H)

– Given instances of the decomposed relations, we may not be able to
reconstruct the corresponding instance of the original relation!

• Fortunately, not in the SNLRWH example.

– Checking some dependencies may require joining the instances of
the decomposed relations.

• Fortunately, not in the SNLRWH example.

• Tradeoff: Must consider these issues vs. redundancy.

219

Lossless Join Decompositions

◦ Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every
instance r that satisfies F:

◦ (r) (r) = r

 It is always true that r (r) (r)

◦ In general, the other direction does not hold! If it does, the decomposition is
lossless-join.

 Definition extended to decomposition into 3 or more relations in a
straightforward way.

 It is essential that all decompositions used to deal with redundancy be lossless!

 Consider Hourly emps relation.It has attributes SNLRWH and FD R->W causes a
violation of 3NF.We dealt this violation by decomposing into SNLRH and RW.

 Since R is common to both decomposed relation and

R->W holds,this decomposition is lossles-join

220


X


Y 


X


Y



More on Lossless Join

 The decomposition of R into X and Y is
lossless-join wrt F if and only if the closure
of F contains:

◦ X Y X, or

◦ X Y Y

 In particular,if an fd X->Y holds over
relation R and X∩ Y is empty, the
decomposition of R into R-Y and XY is
lossless.

 Imp observation is repeated
decompositions

221








A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

Dependency Preserving Decomposition

• Consider CSJDPQV, C is key, JP C and SD P.

– Bcoz SD->P is not a key,it causes violation

– BCNF decomposition: CSJDQV and SDP

– Problem: Checking JP C requires a join!

• Dependency preserving decomposition (Intuitive):

– If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X,
on Y and on Z, then all FDs that were given to hold on R must also hold.

– Projection of set of FDs F: If R is decomposed into X, ... projection of F
onto X (denoted FX) is the set of FDs U V in F+ (closure of F) such that

U, V are in X.

222

 





Dependency Preserving Decompositions
(Contd.)

 Decomposition of R into X and Y is dependency preserving if (FX union FY)
+ = F +

◦ i.e., if we consider only dependencies in the closure F + that can be
checked in X without considering Y, and in Y without considering X,
these imply all dependencies in F +.

 Important to consider F +, not F, in this definition:

◦ ABC, A B, B C, C A, decomposed into AB and BC.

◦ Is this dependency preserving? Is C A preserved?????

 Dependency preserving does not imply lossless join:

◦ ABC, A B, decomposed into AB and BC.

 And vice-versa! (Example?)

223

  





Decomposition into BCNF

 Consider relation R with FDs F. If X Y violates BCNF, decompose R into R - Y and
XY.

◦ Repeated application of this idea will give us a collection of relations that are in
BCNF; lossless join decomposition, and guaranteed to terminate.

◦ e.g., CSJDPQV, key C, JP C, SD P, J S

◦ To deal with SD P, decompose into SDP, CSJDQV.

◦ To deal with J S, decompose CSJDQV into JS and CJDQV

 In general, several dependencies may cause violation of BCNF. The order in which
we ``deal with’’ them could lead to very different sets of relations!

224



 





BCNF and Dependency Preservation

• In general, there may not be a dependency preserving decomposition into BCNF.

– e.g., CSZ, CS Z, Z C

– Can’t decompose while preserving 1st FD; not in BCNF.

• Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency
preserving (w.r.t. the FDs JP C, SD P and J S).

– However, it is a lossless join decomposition.

– In this case, adding JPC to the collection of relations gives us a dependency
preserving decomposition.

• JPC tuples stored only for checking FD! (Redundancy!)

225

 

  

Decomposition into 3NF

• Obviously, the algorithm for lossless join decomp into BCNF can be used to
obtain a lossless join decomp into 3NF (typically, can stop earlier).

• To ensure dependency preservation, one idea:

– If X Y is not preserved, add relation XY.

– Problem is that XY may violate 3NF! e.g., consider the addition of CJP to
`preserve’ JP C. What if we also have J C ?

• Refinement: Instead of the given set of FDs F, use a minimal cover for F.

226







SCHEMA REFINEMENT
Constraints

on an Entity Set

• Consider the Hourly Emps relation again. The constraint that attribute ssn
is a key can be expressed as an FD:

• { ssn }-> { ssn, name, lot, rating, hourly wages, hours worked}

• For brevity, we will write this FD as S -> SNLRWH, using a single letter to
denote each attribute

• In addition, the constraint that the hourly wages attribute is determined
by the rating attribute is an

FD: R -> W.

227

Constraints on a Relationship Set

• The previous example illustrated how FDs can help to rene the subjective
decisions made during ER design,

• but one could argue that the best possible ER diagram would have led to
the same nal set of relations.

• Our next example shows how FD information can lead to a set of relations
that eliminates some redundancy problems and is unlikely to be arrived at
solely through ER design.

228

Identifying Attributes of Entities
• in particular, it shows that attributes can easily be associated with the

`wrong' entity set during ER design.

• The ER diagram shows a relationship set called Works In that is similar to
the Works In relationship set

• Using the key constraint, we can translate this ER diagram into two
relations:

• Workers(ssn, name, lot, did, since)

229

Identifying Entity Sets

• Let Reserves contain attributes S, B, and D as before, indicating that sailor
S has a reservation for boat B on day D.

• In addition, let there be an attribute C denoting the credit card to which
the reservation is charged.

• Suppose that every sailor uses a unique credit card for reservations. This
constraint is expressed by the FD S -> C. This constraint indicates that in
relation Reserves, we store the credit card number for a sailor as often as
we have reservations for that

• sailor, and we have redundancy and potential update anomalies.

230

Multivalued Dependencies

• Suppose that we have a relation with attributes course, teacher, and book,
which we denote as CTB.

• The meaning of a tuple is that teacher T can teach course C, and book B is
a recommended text for the course.

• There are no FDs; the key is CTB. However, the recommended texts for a
course are independent of the instructor.

231

There are three points to note here:

 The relation schema CTB is in BCNF; thus we would not consider
decomposing it further if we looked only at the FDs that hold over CTB.

 There is redundancy. The fact that Green can teach Physics101 is recorded
once per recommended text for the course. Similarly, the fact that Optics
is a text for Physics101 is recorded once per potential teacher.

 The redundancy can be eliminated by decomposing CTB into CT and CB.

 Let R be a relation schema and let X and Y be subsets of the attributes of
R. Intuitively,

 the multivalued dependency X !! Y is said to hold over R if, in every legal

232

• The redundancy in this example is due to the constraint that the texts for a
course are independent of the instructors, which cannot be epressed in
terms of FDs.

• This constraint is an example of a multivalued dependency, or MVD.
Ideally, we should model this situation using two binary relationship sets,
Instructors with attributes CT and Text with attributes CB.

• Because these are two essentially independent relationships, modeling
them with a single ternary relationship set with attributes CTB is
inappropriate.

233

• Three of the additional rules involve only MVDs:

• MVD Complementation: If X →→Y, then X →→ R − XY

• MVD Augmentation: If X →→ Y and W > Z, then

WX →→ YZ.

• MVD Transitivity: If X →→ Y and Y →→ Z, then

X →→ (Z − Y).

• Fourth Normal Form

• R is said to be in fourth normal form (4NF) if for every MVD X →→Y that
holds over R, one of the following statements is true:

• Y subset of X or XY = R, or

• X is a superkey.

234

Join Dependencies

• A join dependency is a further generalization of MVDs. A join dependency
(JD) ∞{ R1,….. Rn } is said to hold over a relation R if R1,…. Rn is a lossless-
join decomposition of R.

• An MVD X ->-> Y over a relation R can be expressed as the join
dependency ∞ { XY,X(R−Y)}

• As an example, in the CTB relation, the MVD C ->->T can be expressed as
the join dependency ∞{ CT, CB}

• Unlike FDs and MVDs, there is no set of sound and complete inference
rules for JDs.

235

Fifth Normal Form

• A relation schema R is said to be in fifth normal form (5NF) if for every JD
∞{ R1,…. Rn } that holds over R, one of the following statements is true:

• Ri = R for some i, or

• The JD is implied by the set of those FDs over R in which the left side is a
key for R.

• The following result, also due to Date and Fagin, identies conditions|again,
detected using only FD information|under which we can safely ignore JD
information.

• If a relation schema is in 3NF and each of its keys consists of a single
attribute,it is also in 5NF.

236

Inclusion Dependencies

• MVDs and JDs can be used to guide database design, as we have seen,
although they are less common than FDs and harder to recognize and
reason about.

• In contrast, inclusion dependencies are very intuitive and quite common.
However, they typically have little influence on database design

• The main point to bear in mind is that we should not split groups of
attributes that participate in an inclusion dependency.

• Most inclusion dependencies in practice are key-based, that is, involve
only keys.

237

Recovery System

• Modifying the database without ensuring that the transaction will
commit may leave the database in an inconsistent state.

• Consider transaction Ti that transfers $50 from account A to account B;
goal is either to perform all database modifications made by Ti or none
at all.

• Several output operations may be required for Ti (to output A and B).
A failure may occur after one of these modifications have been made
but before all of them are made.

238

Recovery and Atomicity (Cont.)

• To ensure atomicity despite failures, we first output information describing
the modifications to stable storage without modifying the database itself.

• We study two approaches:

– log-based recovery, and

– shadow-paging

• We assume (initially) that transactions run serially, that is, one after the
other.

239

Recovery Algorithms

• Recovery algorithms are techniques to ensure database consistency and
transaction atomicity and durability despite failures

– Focus of this chapter

• Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enough
information exists to recover from failures

2. Actions taken after a failure to recover the database contents to a
state that ensures atomicity, consistency and durability

240

Log-Based Recovery

• A log is kept on stable storage.

– The log is a sequence of log records, and maintains a record of
update activities on the database.

• When transaction Ti starts, it registers itself by writing a
<Ti start>log record

• Before Ti executes write(X), a log record <Ti, X, V1, V2> is written,
where V1 is the value of X before the write, and V2 is the value to
be written to X.

– Log record notes that Ti has performed a write on data item Xj
Xj had value V1 before the write, and will have value V2 after
the write.

• When Ti finishes it last statement, the log record <Ti commit> is
written.

• We assume for now that log records are written directly to stable
storage (that is, they are not buffered)

• Two approaches using logs

– Deferred database modification

– Immediate database modification 241

Deferred Database Modification

• The deferred database modification scheme records all modifications
to the log, but defers all the writes to after partial commit.

• Assume that transactions execute serially

• Transaction starts by writing <Ti start> record to log.

• A write(X) operation results in a log record <Ti, X, V> being written,
where V is the new value for X

– Note: old value is not needed for this scheme

• The write is not performed on X at this time, but is deferred.

• When Ti partially commits, <Ti commit> is written to the log

• Finally, the log records are read and used to actually execute the
previously deferred writes.

242

Deferred Database Modification (Cont.)

• During recovery after a crash, a transaction needs to be redone if and
only if both <Ti start> and<Ti commit> are there in the log.

• Redoing a transaction Ti (redoTi) sets the value of all data items
updated by the transaction to the new values.

• Crashes can occur while

– the transaction is executing the original updates, or

– while recovery action is being taken

• example transactionsT0 and T1 (T0 executes before T1):T0: read (A)
T1 : read (C)

A: - A - 50 C:- C- 100

Write (A) write (C)

read (B)

B:- B + 50

write (B)
243

LOG DATABASE

<t0 start>

<t0,A,950>

<t0,B,2050>

<t0,commit>

<t1,start>

<t1,c,600>

<t1,commit>

Portion of log

<t0 start>

<t0,A,950>

<t0,B,2050>

<t0,commit>
A=950

B=2050

<t1,start>

<t1,c,600>

<t1,commit>

C=600

244

Deferred Database Modification (Cont.)

• Below we show the log as it appears at three instances of time.

245

Immediate Database Modification Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>
To, B, 2000, 2050

A = 950
B = 2050

<T0 commit>
<T1 start>
<T1, C, 700, 600>

C = 600
BB, BC

<T1 commit>
BA

• Note: BX denotes block containing X.

x1

246

Immediate DB Modification Recovery Example

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000.

(b) undo (T1) and redo (T0): C is restored to 700, and then A and B are set to
950 and 2050 respectively.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050 respectively.
Then C is set to 600

247

Checkpoints

• Problems in recovery procedure as discussed earlier :

1. searching the entire log is time-consuming

2. we might unnecessarily redo transactions which have already output
their updates to the database.

• Streamline recovery procedure by periodically performing checkpointing

1. Output all log records currently residing in main memory onto stable
storage.

2. Output all modified buffer blocks to the disk.

3. Write a log record < checkpoint> onto stable storage.

248

Example of Checkpoints

• T1 can be ignored (updates already output to disk due to
checkpoint)

• T2 and T3 redone.

• T4 undone

Tc
Tf

T1

T2

T3

T4

checkpoint system failure

249

Recovery With Concurrent Transactions

• We modify the log-based recovery schemes to allow multiple transactions
to execute concurrently.

– All transactions share a single disk buffer and a single log

– A buffer block can have data items updated by one or more
transactions

1)Interaction with concurrency control

• We assume concurrency control using strict two-phase locking;

– i.e. the updates of uncommitted transactions should not be visible to
other transactions

• Otherwise how to perform undo if T1 updates A, then T2 updates
A and commits, and finally T1 has to abort?

• Logging is done as described earlier.

– Log records of different transactions may be interspersed in the log.

250

Recovery With Concurrent Transactions

• 2)Transaction Rollback

• We rollback a failed transaction ,Ti by using log

• System scans log backward.

• Scanning terminates when system finds<ti,start>

• Ex:<Ti,A,10,20>

• <Tj,A,20,30>

• Backward scanning correct. result:10

• Forward scanning incorrect. result:20

251

Recovery With Concurrent Transactions

• 3)checkpoints

• The checkpointing technique and actions taken on recovery have to be
changed

– since several transactions may be active when a checkpoint is
performed.

• Checkpoints are performed as before, except that the checkpoint log
record is now of the form

< checkpoint L> where L is the list of transactions active at the time of the
checkpoint

– We assume no updates are in progress either on biffer blocks or on
log while the checkpoint is carried out (will relax this later)

– A fuzzy checkpoint is a checkpoint where transactions are allowed
to perform updates even while buffer blocks are being written out.

252

Recovery With Concurrent Transactions (Cont.)

• 4)restart recovery

• When the system recovers from a crash, it first does the following:

1. Initialize undo-list and redo-list to empty

2. Scan the log backwards from the end, stopping when the first
<checkpoint L> record is found.
For each record found during the backward scan:

 if the record is <Ti commit>, add Ti to redo-list

 if the record is <Ti start>, then if Ti is not in redo-list, add Ti to
undo-list

3. For every Ti in L, if Ti is not in redo-list, add Ti to undo-list

253

Recovery With Concurrent Transactions

• At this point undo-list consists of incomplete transactions which must be
undone, and redo-list consists of finished transactions that must be
redone.

• Recovery now continues as follows:

1. Scan log backwards from most recent record, stopping when <Ti start>
records have been encountered for every Ti in undo-list.

 During the scan, perform undo for each log record that belongs to
a transaction in undo-list.

2. Locate the most recent <checkpoint L> record.

3. Scan log forwards from the <checkpoint L> record till the end of the
log.

 During the scan, perform redo for each log record that belongs to
a transaction on redo-list

254

BUFFER MANAGEMENT

• 1.Log Record Buffering

• Log record buffering: log records are buffered in main memory, instead
of of being output directly to stable storage.

– Log records are output to stable storage when a block of log records
in the buffer is full, or a log force operation is executed.

• Log force is performed to commit a transaction by forcing all its log
records (including the commit record) to stable storage.

255

3.Operating system role in buffer management

• Database buffer can be implemented either
– in an area of real main-memory reserved for the database, or
– in virtual memory

• Implementing buffer in reserved main-memory has drawbacks:
– Memory is partitioned before-hand between database buffer and

applications, limiting flexibility.
– Needs may change, and although operating system knows best how

memory should be divided up at any time, it cannot change the
partitioning of memory.

• Database buffers are generally implemented in virtual memory in spite of
some drawbacks:
– When operating system needs to evict a page that has been modified,

the page is written to swap space on disk.

256

4.Failure with Loss of Nonvolatile Storage

• So far we assumed no loss of non-volatile storage

• Technique similar to checkpointing used to deal with loss of non-
volatile storage

– Periodically dump the entire content of the database to stable
storage

– No transaction may be active during the dump procedure; a
procedure similar to checkpointing must take place

• Output all log records currently residing in main memory onto
stable storage.

• Output all buffer blocks onto the disk.

• Copy the contents of the database to stable storage.

• Output a record <dump> to log on stable storage.

257

Recovering from Failure of Non-Volatile Storage

• To recover from disk failure

– restore database from most recent dump.

– Consult the log and redo all transactions that committed after the
dump

• Can be extended to allow transactions to be active during dump; known as
fuzzy dump or online dump

258

Advanced Recovery: Operation Logging (Cont.)

• If crash/rollback occurs before operation completes:

– the operation-end log record is not found, and

– the physical undo information is used to undo operation.

• If crash/rollback occurs after the operation completes:

– the operation-end log record is found, and in this case

– logical undo is performed using U; the physical undo information for
the operation is ignored.

• Redo of operation (after crash) still uses physical redo information.

259

Advanced Recovery: Txn Rollback (Cont.)

• Scan the log backwards (cont.):

3. If a redo-only record is found ignore it

4. If a <Ti, Oj, operation-abort> record is found:

 skip all preceding log records for Ti until the record
<Ti, Oj, operation-begin> is found.

5. Stop the scan when the record <Ti, start> is found

6. Add a <Ti, abort> record to the log

Some points to note:

• Cases 3 and 4 above can occur only if the database crashes while a
transaction is being rolled back.

• Skipping of log records as in case 4 is important to prevent multiple rollback
of the same operation.

260

Advanced Recovery: Crash Recovery

The following actions are taken when recovering from system crash

1. (Redo phase): Scan log forward from last < checkpoint L> record till end of
log

1. Repeat history by physically redoing all updates of all transactions,

2. Create an undo-list during the scan as follows

• undo-list is set to L initially

• Whenever <Ti start> is found Ti is added to undo-list

• Whenever <Ti commit> or <Ti abort> is found, Ti is deleted from
undo-list

This brings database to state as of crash, with committed as well as
uncommitted transactions having been redone.

Now undo-list contains transactions that are incomplete, that is, have neither
committed nor been fully rolled back.

261

Advanced Recovery: Checkpointing

• Check pointing is done as follows:

1. Output all log records in memory to stable storage

2. Output to disk all modified buffer blocks

3. put to log on stable storage a < checkpoint L> record.

Transactions are not allowed to perform any actions while checkpointing
is in progress.

262

Advanced Rec: Fuzzy Checkpointing (Cont.)

• When recovering using a fuzzy checkpoint, start scan from the checkpoint
record pointed to by last_checkpoint

– Log records before last_checkpoint have their updates reflected in
database on disk, and need not be redone.

– Incomplete checkpoints, where system had crashed while performing
checkpoint, are handled safely

263

ARIES
• ARIES is a state of the art recovery method

– Incorporates numerous optimizations to reduce overheads during
normal processing and to speed up recovery

– The “advanced recovery algorithm” we studied earlier is modeled
after ARIES, but greatly simplified by removing optimizations

• Unlike the advanced recovery algorithm, ARIES

1. Uses log sequence number (LSN) to identify log records

• Stores LSNs in pages to identify what updates have already been
applied to a database page

2. Physiological redo

3. Dirty page table to avoid unnecessary redos during recovery

4. Fuzzy checkpointing that only records information about dirty pages,
and does not require dirty pages to be written out at checkpoint
time

264

ARIES Optimizations

• Physiological redo
– Affected page is physically identified, action

within page can be logical
• Used to reduce logging overheads

– e.g. when a record is deleted and all other records have to be
moved to fill hole

» Physiological redo can log just the record deletion

» Physical redo would require logging of old and new values for
much of the page

• Requires page to be output to disk atomically

– Easy to achieve with hardware RAID, also supported by some disk
systems

– Incomplete page output can be detected by checksum techniques,

» But extra actions are required for recovery

» Treated as a media failure

265

ARIES Data Structures

• ARIES uses several data structures

– Log sequence number (LSN) identifies each log
record

• Must be sequentially increasing

• Typically an offset from beginning of log file to allow fast access

– Easily extended to handle multiple log files

– Page LSN

– Log records of several different types

– Dirty page table

266

ARIES Data Structures: Page LSN
• Each page contains a PageLSN which is the

LSN of the last log record whose effects are
reflected on the page

– To update a page:
• X-latch the page, and write the log record

• Update the page

• Record the LSN of the log record in PageLSN

• Unlock page

– To flush page to disk, must first S-latch page
• Thus page state on disk is operation consistent

– Required to support physiological redo

– PageLSN is used during recovery to prevent
repeated redo 267

ARIES Data Structures: Log Record
• Each log record contains LSN of previous log record of the same

transaction

– LSN in log record may be implicit

• Special redo-only log record called compensation log record (CLR) used
to log actions taken during recovery that never need to be undone

– Serves the role of operation-abort log records used in advanced
recovery algorithm

– Has a field UndoNextLSN to note next (earlier) record to be
undone

• Records in between would have already been undone

• Required to avoid repeated undo of already undone actions

LSN TransID UndoNextLSN RedoInfo

1 2 3 4 4' 3' 2' 1'

268

ARIES Data Structures: DirtyPage Table

• DirtyPageTable

– List of pages in the buffer that have been updated

– Contains, for each such page

• PageLSN of the page

• RecLSN is an LSN such that log records before this LSN have
already been applied to the page version on disk

– Set to current end of log when a page is inserted into dirty
page table (just before being updated)

– Recorded in checkpoints, helps to minimize redo work

Page PLSN RLSN

P1 25 17

P6 16 15

P23 19 18

25

P1
16P6 19

P23

DirtyPage Table9

P15
Buffer Pool

P1 16
…

P6 12
..

P15 9
..

P23 11

Page LSNs

on disk

269

Remote Backup Systems

• Remote backup systems provide high availability by allowing transaction
processing to continue even if the primary site is destroyed.

270

Remote Backup Systems (Cont.)
• Detection of failure: Backup site must detect when primary site has

failed

– to distinguish primary site failure from link failure maintain
several communication links between the primary and the
remote backup.

– Heart-beat messages

• Transfer of control:

– To take over control backup site first perform recovery using its
copy of the database and all the long records it has received
from the primary.

• Thus, completed transactions are redone and incomplete
transactions are rolled back.

– When the backup site takes over processing it becomes the new
primary

– To transfer control back to old primary when it recovers, old
primary must receive redo logs from the old backup and apply
all updates locally.

271

Remote Backup Systems (Cont.)

• Time to recover: To reduce delay in takeover, backup site periodically
process the redo log records (in effect, performing recovery from
previous database state), performs a checkpoint, and can then delete
earlier parts of the log.

• Hot-Spare configuration permits very fast takeover:

– Backup continually processes redo log record as they arrive,
applying the updates locally.

• Alternative to remote backup: distributed database with replicated
data

272

Remote Backup Systems (Cont.)
• Ensure durability of updates by delaying transaction commit until update

is logged at backup; avoid this delay by permitting lower degrees of
durability.

• One-safe: commit as soon as transaction’s commit log record is written at
primary

– Problem: updates may not arrive at backup before it takes over.

• Two-very-safe: commit when transaction’s commit log record is written at
primary and backup

– Reduces availability since transactions cannot commit if either site
fails.

273

DATABASE MANAGEMENT SYSTEMS

UNIT-V

274

Data on External Storage
• Disks: Can retrieve random page at fixed cost

– But reading several consecutive pages is much cheaper than reading
them in random order

• Tapes: Can only read pages in sequence

– Cheaper than disks; used for archival storage

• File organization: Method of arranging a file of records on external
storage.

– Record id (rid) is sufficient to physically locate record

– Indexes are data structures that allow us to find the record ids of
records with given values in index search key fields

• Architecture: Buffer manager stages pages from external storage to main
memory buffer pool. File and index layers make calls to the buffer
manager.

275

Alternative File Organizations
Many alternatives exist, each ideal for some situations, and not so good in

others:

– Heap (random order) files: Suitable when typical access is a file
scan retrieving all records.

– Sorted Files: Best if records must be retrieved in some order, or
only a `range’ of records is needed.

– Indexes: Data structures to organize records via trees or hashing.

• Like sorted files, they speed up searches for a subset of
records, based on values in certain (“search key”) fields

• Updates are much faster than in sorted files.

276

Alternatives for Data Entry k* in Index

 In a data entry k* we can store:

◦ Data record with key value k, or

◦ <k, rid of data record with search key value k>, or

◦ <k, list of rids of data records with search key k>

 Choice of alternative for data entries is orthogonal to the indexing
technique used to locate data entries with a given key value k.

◦ Examples of indexing techniques: B+ trees, hash-based structures

◦ Typically, index contains auxiliary information that directs searches to
the desired data entries

277

Alternatives for Data Entries (Contd.)

• Alternative 1:

– If this is used, index structure is a file organization for data records
(instead of a Heap file or sorted file).

– At most one index on a given collection of data records can use
Alternative 1. (Otherwise, data records are duplicated, leading to
redundant storage and potential inconsistency.)

– If data records are very large, # of pages containing data entries is
high. Implies size of auxiliary information in the index is also large,

typically.

278

Alternatives for Data Entries (Contd.)

• Alternatives 2 and 3:

– Data entries typically much smaller than data records. So, better
than Alternative 1 with large data records, especially if search keys
are small. (Portion of index structure used to direct search, which
depends on size of data entries, is much smaller than with
Alternative 1.)

– Alternative 3 more compact than Alternative 2, but leads to variable
sized data entries even if search keys are of fixed length.

279

Clustered vs. Unclustered Index

• Suppose that Alternative (2) is used for data entries, and that the data records are
stored in a Heap file.

– To build clustered index, first sort the Heap file (with some free space on
each page for future inserts).

– Overflow pages may be needed for inserts. (Thus, order of data recs is `close
to’, but not identical to, the sort order.)

280

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree Indexes

281

 Leaf pages contain data entries, and are chained (prev & next)

 Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages

(Sorted by search key)

Leaf

Example B+ Tree

 Find 28*? 29*? All > 15* and < 30*

 Insert/delete: Find data entry in leaf, then change it. Need to adjust
parent sometimes.
◦ And change sometimes bubbles up the tree

282

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries

in leaf level are sorted

B+ Tree: Most Widely Used Index

 Insert/delete at log F N cost; keep tree height-balanced. (F = fanout, N = #
leaf pages)

 Minimum 50% occupancy (except for root). Each node contains d <= m <=

2d entries. The parameter d is called the order of the tree.
 Supports equality and range-searches efficiently.

283

Index Entries

Data Entries

("Sequence set")

(Direct search)

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.

– average fanout = 133

• Typical capacities:

– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:

– Level 1 = 1 page = 8 Kbytes

– Level 2 = 133 pages = 1 Mbyte

– Level 3 = 17,689 pages = 133 MBytes

284

Cost Model for Our Analysis
We ignore CPU costs, for simplicity:

– B: The number of data pages

– R: Number of records per page

– D: (Average) time to read or write disk page

– Measuring number of page I/O’s ignores gains of pre-fetching a
sequence of pages; thus, even I/O cost is only approximated.

– Average-case analysis; based on several simplistic assumptions.

285

Comparing File Organizations

• Heap files (random order; insert at eof)

• Sorted files, sorted on <age, sal>

• Clustered B+ tree file, Alternative (1), search key <age, sal>

• Heap file with unclustered B + tree index on search key <age, sal>

• Heap file with unclustered hash index on search key <age, sal>

286

Operations to Compare

• Scan: Fetch all records from disk

• Equality search

• Range selection

• Insert a record

• Delete a record

287

Assumptions (contd.)

• Scans:

– Leaf levels of a tree-index are chained.

– Index data-entries plus actual file scanned for unclustered indexes.

• Range searches:

– We use tree indexes to restrict the set of data records fetched, but
ignore hash indexes.

288

Cost of Operations

289

 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B D(log 2 B +
pgs with
match recs)

Search
+ BD

Search
+BD

(3)
Clustered

1.5BD Dlog F 1.5B D(log F 1.5B
+ # pgs w.
match recs)

Search
+ D

Search
+D

(4) Unclust.
Tree index

BD(R+0.15) D(1 +
log F 0.15B)

D(log F 0.15B
+ # pgs w.
match recs)

Search
+ 2D

Search
+ 2D

(5) Unclust.
Hash index

BD(R+0.125) 2D BD Search
+ 2D

Search
+ 2D

Clustered index organization

• Attributes in WHERE clause are candidates for index keys.

– Exact match condition suggests hash index.

– Range query suggests tree index.

• Clustering is especially useful for range queries; can also help on
equality queries if there are many duplicates.

• Multi-attribute search keys should be considered when a WHERE clause
contains several conditions.

– Order of attributes is important for range queries.

– Such indexes can sometimes enable index-only strategies for important
queries.

• For index-only strategies, clustering is not important!

290

Examples of Clustered Indexes

• B+ tree index on E.age can be used to get
qualifying tuples.

– How selective is the condition?

– Is the index clustered?

• Consider the GROUP BY query.

– If many tuples have E.age > 10, using
E.age index and sorting the retrieved
tuples may be costly.

– Clustered E.dno index may be better!

• Equality queries and duplicates:

– Clustering on E.hobby helps!

291

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

Indexes with Composite Search Keys

 Composite Search Keys: Search on a
combination of fields.
◦ Equality query: Every field value is

equal to a constant value. E.g. wrt
<sal,age> index:

 age=20 and sal =75
◦ Range query: Some field value is

not a constant. E.g.:

 age =20; or age=20 and sal > 10

 Data entries in index sorted by search
key to support range queries.
◦ Lexicographic order, or
◦ Spatial order.

292

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

tradeoffs
• A composite key index can support a broader range of queries bcoz it

matches more selection conditions

• Index only evaluation strategies are increased

• Disadv:a composite index must be updated in response to any
operation(insert,delete or update) that modifies any field in search key.

• A composite index is also likely to be larger than single attribute search
key

• For B+ tree index this increases no. of levels

Composite Search Keys

 To retrieve Emp records with age=30 AND sal=4000, an index on <age,sal>
would be better than an index on age or an index on sal.

◦ Choice of index key orthogonal to clustering etc.

 If condition is: 20<age<30 AND 3000<sal<5000:

◦ Clustered tree index on <age,sal> or <sal,age> is best.

 If condition is: age=30 AND 3000<sal<5000:

◦ Clustered <age,sal> index much better than <sal,age> index!

 Composite indexes are larger, updated more often.

294

Composite keys-Index-Only Plans

• A number of queries
can be answered
without retrieving
any tuples from one
or more of the
relations involved if a
suitable index is
available.

295

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>

Tree index!

<E. age,E.sal>
or

<E.sal, E.age>

Tree index!

Creating index in sql

Syntax

Create index indexname on tablename

with structure=Btree,

key=(age,sal);

296

Summary

 Many alternative file organizations exist, each appropriate in some
situation.

 If selection queries are frequent, sorting the file or building an index is
important.

◦ Hash-based indexes only good for equality search.

◦ Sorted files and tree-based indexes best for range search; also good for
equality search. (Files rarely kept sorted in practice; B+ tree index is
better.)

 Index is a collection of data entries plus a way to quickly find entries with
given key values.

297

Summary (Contd.)

 Data entries can be actual data records, <key, rid> pairs, or <key, rid-
list> pairs.

◦ Choice orthogonal to indexing technique used to locate data entries
with a given key value.

 Can have several indexes on a given file of data records, each with a
different search key.

 Indexes can be classified as clustered vs. unclustered, primary vs.
secondary, and dense vs. sparse. Differences have important
consequences for utility/performance.

298

Example B+ Tree

• Search begins at root, and key comparisons direct it to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

299

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Range Searches

• ``Find all students with gpa > 3.0’’

– If data is in sorted file, do binary search to find first such student,
then scan to find others.

– Cost of binary search can be quite high.

• Simple idea: Create an `index’ file.

300

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

ISAM

• Index file may still be quite large. But we can apply the idea repeatedly!

301

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

Comments on ISAM

 File creation: Leaf (data) pages allocated
sequentially, sorted by search key; then index pages
allocated, then space for overflow pages.

 Index entries: <search key value, page id>; they `direct’
search for data entries, which are in leaf pages.

 Search: Start at root; use key comparisons to go to leaf.
Cost log F N ; F = # entries/index pg, N = # leaf pgs

 Insert: Find leaf data entry belongs to, and put it there.

 Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

302

Data

Pages

Index Pages

Overflow pages

Example ISAM Tree

• Each node can hold 2 entries; no need for `next-leaf-page’ pointers.
(Why?)

303

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

After Inserting 23*, 48*, 41*, 42* ...

304

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Then Deleting 42*, 51*, 97*

305

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Example B+ Tree

• Search begins at root, and key comparisons direct it to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

306

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Inserting a Data Entry into a B+
Tree

• Find correct leaf L.

• Put data entry onto L.

– If L has enough space, done!

– Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

• This can happen recursively

– To split index node, redistribute entries evenly, but push up middle
key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.

– Tree growth: gets wider or one level taller at top.

307

Inserting 8* into Example B+ Tree

 Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

 Note difference
between copy-up
and push-up; be
sure you
understand the
reasons for this.

308

2* 3* 5* 7* 8*

5

5 24 30

17

13

Example B+ Tree After Inserting 8*

309

Notice that root was split, leading to increase in height.

 In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.

• Remove the entry.

– If L is at least half-full, done!

– If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent node with
same parent as L).

• If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L or sibling) from parent
of L.

• Merge could propagate to root, decreasing height.

310

Example Tree After (Inserting 8*, Then) Deleting
19* and 20* ...

• Deleting 19* is easy.

• Deleting 20* is done with re-distribution. Notice how middle key is
copied up.

311

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

And Then Deleting 24*

 Must merge.

 Observe `toss’ of index entry (on
right), and `pull down’ of index

entry (below)

312

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root

30135 17

First Normal Form

 1NF (First Normal Form)

• a relation R is in 1NF if and only if it has only
single-valued attributes (atomic values)

• EMP_PROJ (SSN, PNO, HOURS, ENAME, PNAME, PLOCATION)

PLOCATION is not in 1NF (multi-valued attrib.)

• solution: decompose the relation
EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

LOC (PNO, PLOCATION)

313

Second Normal Form

 2NF (Second Normal Form)
• a relation R in 2NF if and only if it is in 1NF and every

nonkey column depends on a key not a subset of a key

• all nonprime attributes of R must be fully functionally
dependent on a whole key(s) of the relation, not a part of
the key

• no violation: single-attribute key or no nonprime
attribute

314

Second Normal Form (Contd)

 2NF (Second Normal Form)

• violation: part of a key  nonkey

EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

SSN  ENAME

PNO  PNAME

• solution: decompose the relation

EMP_PROJ3 (SSN, PNO, HOURS)

EMP (SSN, ENAME)

PROJ (PNO, PNAME)

315

Third Normal Form

• a relation R in 3NF if and only if it is in 2NF and
every nonkey column does not depend on
another nonkey column

• all nonprime attributes of R must be non-
transitively functionally dependent on a key of
the relation

316

Third Normal Form (Contd)

 3NF (Third Normal Form)
 violation: nonkey  nonkey

• SUPPLIER (SNAME, STREET, CITY, STATE, TAX)

SNAME  STREET, CITY, STATE

STATE  TAX (nonkey  nonkey)
SNAME  STATE  TAX (transitive FD)

• solution: decompose the relation
SUPPLIER2 (SNAME, STREET, CITY, STATE)

TAXINFO (STATE, TAX)

317

Boyce-Codd Normal Form (BCNF)

• Reln R with FDs F is in BCNF if, for all X A in

– A X (called a trivial FD), or

– X contains a key for R.

• In other words, R is in BCNF if the only non-trivial
FDs that hold over R are key constraints.

– No dependency in R that can be predicted using FDs
alone.

– If we are shown two tuples that agree upon
the X value, we cannot infer the A value in
one tuple from the A value in the other.

– If example relation is in BCNF, the 2 tuples
318

F 



X Y A

x y 1 a

x y 2 ?

Decomposition of a Relation Scheme

Suppose that relation R contains attributes A1 ... An.
A decomposition of R consists of replacing R by two
or more relations such that:
◦ Each new relation scheme contains a subset of the

attributes of R (and no attributes that do not appear in R),
and

◦ Every attribute of R appears as an attribute of one of the
new relations.

 Intuitively, decomposing R means we will store
instances of the relation schemes produced by the
decomposition, instead of instances of R.
E.g., Can decompose SNLRWH into SNLRH and RW.

319

Example Decomposition

Decompositions should be used only when needed.
◦ SNLRWH has FDs S SNLRWH and R W
◦ Second FD causes violation of 3NF; W values repeatedly

associated with R values. Easiest way to fix this is to create
a relation RW to store these associations, and to remove W
from the main schema:
 i.e., we decompose SNLRWH into SNLRH and RW

The information to be stored consists of SNLRWH
tuples. If we just store the projections of these tuples
onto SNLRH and RW, are there any potential
problems that we should be aware of?

320

 

Problems with Decompositions

• There are three potential problems to consider:

– Some queries become more expensive.

• e.g., How much did sailor Joe earn? (salary = W*H)

– Given instances of the decomposed relations, we
may not be able to reconstruct the corresponding
instance of the original relation!

• Fortunately, not in the SNLRWH example.

– Checking some dependencies may require joining the
instances of the decomposed relations.

• Fortunately, not in the SNLRWH example.

• Tradeoff: Must consider these issues vs.
redundancy.

321

Lossless Join Decompositions
◦ Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every

instance r that satisfies F:
◦ (r) (r) = r

 It is always true that r (r) (r)
◦ In general, the other direction does not hold! If it does, the decomposition is

lossless-join.
 Definition extended to decomposition into 3 or more relations in a straightforward

way.

 It is essential that all decompositions used to deal with redundancy be lossless!

Consider Hourly emps relation.It has attributes
SNLRWH and FD R->W causes a violation of 3NF.We
dealt this violation by decomposing into SNLRH and
RW.
 Since R is common to both decomposed relation and

R->W holds,this decomposition is lossles-join
322


X


Y 


X


Y



More on Lossless Join

The decomposition of R into X
and Y is lossless-join wrt F if
and only if the closure of F
contains:
◦ X Y X, or
◦ X Y Y

 In particular,if an fd X->Y holds
over relation R and X∩ Y is
empty, the decomposition of
R into R-Y and XY is lossless.
 Imp observation is repeated

decompositions
323








A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

Dependency Preserving Decomposition

• Consider CSJDPQV, C is key, JP C and SD P.

– Bcoz SD->P is not a key,it causes violation

– BCNF decomposition: CSJDQV and SDP

– Problem: Checking JP C requires a join!

• Dependency preserving decomposition (Intuitive):

– If R is decomposed into X, Y and Z, and we enforce the
FDs that hold on X, on Y and on Z, then all FDs that
were given to hold on R must also hold.

– Projection of set of FDs F: If R is decomposed into X,
... projection of F onto X (denoted FX) is the set of FDs
U V in F+ (closure of F) such that U, V are in X.

324

 





Dependency Preserving Decompositions
(Contd.)

Decomposition of R into X and Y is dependency
preserving if (FX union FY)

+ = F +

◦ i.e., if we consider only dependencies in the closure F + that
can be checked in X without considering Y, and in Y without
considering X, these imply all dependencies in F +.

 Important to consider F +, not F, in this definition:
◦ ABC, A B, B C, C A, decomposed into AB and BC.
◦ Is this dependency preserving? Is C A preserved?????

Dependency preserving does not imply lossless join:
◦ ABC, A B, decomposed into AB and BC.

And vice-versa! (Example?)

325

  





Decomposition into BCNF
Consider relation R with FDs F. If X Y violates BCNF,

decompose R into R - Y and XY.
◦ Repeated application of this idea will give us a collection of

relations that are in BCNF; lossless join decomposition, and
guaranteed to terminate.

◦ e.g., CSJDPQV, key C, JP C, SD P, J S
◦ To deal with SD P, decompose into SDP, CSJDQV.
◦ To deal with J S, decompose CSJDQV into JS and CJDQV

 In general, several dependencies may cause violation
of BCNF. The order in which we ``deal with’’ them
could lead to very different sets of relations!

326



 





BCNF and Dependency Preservation

• In general, there may not be a dependency
preserving decomposition into BCNF.

– e.g., CSZ, CS Z, Z C

– Can’t decompose while preserving 1st FD; not in BCNF.

• Similarly, decomposition of CSJDQV into SDP, JS
and CJDQV is not dependency preserving (w.r.t.
the FDs JP C, SD P and J S).

– However, it is a lossless join decomposition.

– In this case, adding JPC to the collection of relations
gives us a dependency preserving decomposition.

• JPC tuples stored only for checking FD! (Redundancy!)

327

 

  

Decomposition into 3NF

• Obviously, the algorithm for lossless join decomp
into BCNF can be used to obtain a lossless join
decomp into 3NF (typically, can stop earlier).

• To ensure dependency preservation, one idea:

– If X Y is not preserved, add relation XY.

– Problem is that XY may violate 3NF! e.g., consider the
addition of CJP to `preserve’ JP C. What if we also
have J C ?

• Refinement: Instead of the given set of FDs F, use a
minimal cover for F. 328







SCHEMA REFINEMENT

Constraints on an Entity Set
• Consider the Hourly Emps relation again. The constraint that

attribute ssn is a key can be expressed as an FD:

• { ssn }-> { ssn, name, lot, rating, hourly wages, hours worked}

• For brevity, we will write this FD as S -> SNLRWH, using a
single letter to denote each attribute

• In addition, the constraint that the hourly wages attribute is
determined by the rating attribute is an

FD: R -> W.

329

Constraints on a Relationship Set

• The previous example illustrated how FDs can help to
rene the subjective decisions made during ER design,

• but one could argue that the best possible ER diagram
would have led to the same nal set of relations.

• Our next example shows how FD information can lead to
a set of relations that eliminates some redundancy
problems and is unlikely to be arrived at solely through
ER design.

330

Identifying Attributes of Entities
• in particular, it shows that attributes can easily

be associated with the `wrong' entity set
during ER design.

• The ER diagram shows a relationship set
called Works In that is similar to the Works In
relationship set

• Using the key constraint, we can translate this
ER diagram into two relations:

• Workers(ssn, name, lot, did, since)

331

Identifying Entity Sets
• Let Reserves contain attributes S, B, and D as before, indicating

that sailor S has a reservation for boat B on day D.

• In addition, let there be an attribute C denoting the credit card
to which the reservation is charged.

• Suppose that every sailor uses a unique credit card for
reservations. This constraint is expressed by the FD S -> C. This
constraint indicates that in relation Reserves, we store the credit
card number for a sailor as often as we have reservations for
that

• sailor, and we have redundancy and potential update anomalies.

332

Multivalued Dependencies
• Suppose that we have a relation with

attributes course, teacher, and book, which
we denote as CTB.

• The meaning of a tuple is that teacher T can
teach course C, and book B is a recommended
text for the course.

• There are no FDs; the key is CTB. However, the
recommended texts for a course are
independent of the instructor.

333

There are three points to note here:
 The relation schema CTB is in BCNF; thus we would not

consider decomposing it further if we looked only at the FDs
that hold over CTB.

 There is redundancy. The fact that Green can teach
Physics101 is recorded once per recommended text for the
course. Similarly, the fact that Optics is a text for Physics101 is
recorded once per potential teacher.

 The redundancy can be eliminated by decomposing CTB into
CT and CB.

 Let R be a relation schema and let X and Y be subsets of the
attributes of R. Intuitively,

 the multivalued dependency X !! Y is said to hold over R if, in
every legal

334

• The redundancy in this example is due to the constraint
that the texts for a course are independent of the
instructors, which cannot be epressed in terms of FDs.

• This constraint is an example of a multivalued
dependency, or MVD. Ideally, we should model this
situation using two binary relationship sets, Instructors
with attributes CT and Text with attributes CB.

• Because these are two essentially independent
relationships, modeling them with a single ternary
relationship set with attributes CTB is inappropriate.

335

• Three of the additional rules involve only MVDs:

• MVD Complementation: If X →→Y, then X →→ R − XY

• MVD Augmentation: If X →→ Y and W > Z, then

WX →→ YZ.

• MVD Transitivity: If X →→ Y and Y →→ Z, then

X →→ (Z − Y).

• Fourth Normal Form

• R is said to be in fourth normal form (4NF) if for every MVD X
→→Y that holds over R, one of the following statements is true:

• Y subset of X or XY = R, or

• X is a superkey.

336

Join Dependencies
• A join dependency is a further generalization of MVDs. A join

dependency (JD) ∞{ R1,….. Rn } is said to hold over a relation
R if R1,…. Rn is a lossless-join decomposition of R.

• An MVD X ->-> Y over a relation R can be expressed as the join
dependency ∞ { XY,X(R−Y)}

• As an example, in the CTB relation, the MVD C ->->T can be
expressed as the join dependency ∞{ CT, CB}

• Unlike FDs and MVDs, there is no set of sound and complete
inference rules for JDs.

337

Fifth Normal Form
• A relation schema R is said to be in fth normal form (5NF) if

for every JD ∞{ R1,…. Rn } that holds over R, one of the
following statements is true:

• Ri = R for some i, or

• The JD is implied by the set of those FDs over R in which the
left side is a key for R.

• The following result, also due to Date and Fagin, identies
conditions|again, detected using only FD information|under
which we can safely ignore JD information.

• If a relation schema is in 3NF and each of its keys consists of a
single attribute,it is also in 5NF.

338

Inclusion Dependencies
• MVDs and JDs can be used to guide database design, as we

have seen, although they are less common than FDs and
harder to recognize and reason about.

• In contrast, inclusion dependencies are very intuitive and
quite common. However, they typically have little influence on
database design

• The main point to bear in mind is that we should not split
groups of attributes that participate in an inclusion
dependency.

• Most inclusion dependencies in practice are key-based, that
is, involve only keys.

339

Recovery System

• Modifying the database without ensuring
that the transaction will commit may leave
the database in an inconsistent state.

• Consider transaction Ti that transfers $50
from account A to account B; goal is either
to perform all database modifications
made by Ti or none at all.

• Several output operations may be required
for Ti (to output A and B). A failure may
occur after one of these modifications have
been made but before all of them are
made.

340

Recovery and Atomicity (Cont.)

• To ensure atomicity despite failures, we first
output information describing the
modifications to stable storage without
modifying the database itself.

• We study two approaches:

– log-based recovery, and

– shadow-paging

• We assume (initially) that transactions run
serially, that is, one after the other.

341

Recovery Algorithms

• Recovery algorithms are techniques to
ensure database consistency and transaction
atomicity and durability despite failures

– Focus of this chapter

• Recovery algorithms have two parts

1. Actions taken during normal transaction
processing to ensure enough information exists
to recover from failures

2. Actions taken after a failure to recover the
database contents to a state that ensures
atomicity, consistency and durability

342

Log-Based Recovery
• A log is kept on stable storage.

– The log is a sequence of log records, and maintains a record of update
activities on the database.

• When transaction Ti starts, it registers itself by writing a
<Ti start>log record

• Before Ti executes write(X), a log record <Ti, X, V1, V2> is written, where V1 is
the value of X before the write, and V2 is the value to be written to X.

– Log record notes that Ti has performed a write on data item Xj Xj had
value V1 before the write, and will have value V2 after the write.

• When Ti finishes it last statement, the log record <Ti commit> is written.

• We assume for now that log records are written directly to stable storage
(that is, they are not buffered)

• Two approaches using logs

– Deferred database modification

– Immediate database modification

343

Deferred Database Modification
• Transaction starts by writing <Ti start>

record to log.

• When Ti partially commits, <Ti commit> is
written to the log

• Finally, the log records are read and used
to actually execute the previously
deferred writes.

344

Deferred Database Modification
(Cont.)

• During recovery after a crash, a transaction
needs to be redone if and only if both <Ti

start> and<Ti commit> are there in the log.

• Redoing a transaction Ti (redoTi) sets the
value of all data items updated by the
transaction to the new values.

• Crashes can occur while

– the transaction is executing the original updates,
or

– while recovery action is being taken
345

<t0 start>

<t0,A,950>

<t0,B,2050>

<t0,commit>

<t1,start>

<t1,c,600>

<t1,commit>

Portion of log

Log database

<t0 start>

<t0,A,950>

<t0,B,2050>

<t0,commit>
A=950

B=2050

<t1,start>

<t1,c,600>

<t1,commit>

C=600
346

Deferred Database Modification
(Cont.)

• Below we show the log as it appears at three
instances of time.

347

Immediate Database Modification
• The immediate database modification scheme allows

database updates of an uncommitted transaction to be
made as the writes are issued

– since undoing may be needed, update logs must have
both old value and new value

• Update log record must be written before database item is
written

– We assume that the log record is output directly to stable
storage

– Can be extended to postpone log record output, so long
as prior to execution of an output(B) operation for a data
block B, all log records corresponding to items B must be
flushed to stable storage

348

Immediate Database Modification• Output of updated blocks can take place at any time before or after
transaction commit

<to start>

<t0,A,1000,950>

<t0,B,2000,2050>

<t0 commit>

<t1 start>

<t1 start>

<t1,C,700,600>

<t1 commit>

• Recovery procedure has two operations instead of one:

– undo(Ti) restores the value of all data items updated by Ti to their
old values, going backwards from the last log record for Ti

– redo(Ti) sets the value of all data items updated by Ti to the new
values, going forward from the first log record for Ti

349

Immediate Database Modification
(Cont.)

• Both operations must be idempotent

– That is, even if the operation is executed multiple
times the effect is the same as if it is executed once

• Needed since operations may get re-executed
during recovery

• When recovering after failure:

– Transaction Ti needs to be undone if the log contains
the record <Ti start>, but does not contain the record
<Ti commit>.

– Transaction Ti needs to be redone if the log contains
both the record <Ti start> and the record <Ti commit>.

• Undo operations are performed first, then redo
operations.

350

Immediate Database Modification Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>
To, B, 2000, 2050

A = 950
B = 2050

<T0 commit>
<T1 start>
<T1, C, 700, 600>

C = 600
BB, BC

<T1 commit>
BA

• Note: BX denotes block containing X.

x1

351

Immediate DB Modification Recovery Example

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000.

(b) undo (T1) and redo (T0): C is restored to 700, and then A and
B are set to 950 and 2050 respectively.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050
respectively. Then C is set to 600

352

Checkpoints

• Problems in recovery procedure as discussed
earlier :

1. searching the entire log is time-consuming

2. we might unnecessarily redo transactions which
have already output their updates to the
database.

• Streamline recovery procedure by
periodically performing checkpointing

1. Output all log records currently residing in main
memory onto stable storage.

2. Output all modified buffer blocks to the disk.
353

Checkpoints (Cont.)• During recovery we need to consider only the most recent
transaction Ti that started before the checkpoint, and transactions
that started after Ti.

1. Scan backwards from end of log to find the most recent
<checkpoint> record

2. Continue scanning backwards till a record <Ti start> is found.

3. Need only consider the part of log following above start record.
Earlier part of log can be ignored during recovery, and can be
erased whenever desired.

4. For all transactions (starting from Ti or later) with no <Ti

commit>, execute undo(Ti). (Done only in case of immediate
modification.)

5. Scanning forward in the log, for all transactions starting from
Ti or later with a <Ti commit>, execute redo(Ti).

354

Example of Checkpoints

• T1 can be ignored (updates already output to
disk due to checkpoint)

Tc
Tf

T1

T2

T3

T4

checkpoint system failure

355

Recovery With Concurrent
Transactions

• We modify the log-based recovery schemes to allow multiple
transactions to execute concurrently.

– All transactions share a single disk buffer and a single log

– A buffer block can have data items updated by one or
more transactions

1)Interaction with concurrency control

• We assume concurrency control using strict two-phase
locking;

– i.e. the updates of uncommitted transactions should not
be visible to other transactions
• Otherwise how to perform undo if T1 updates A, then T2 updates

A and commits, and finally T1 has to abort?

• Logging is done as described earlier.
– Log records of different transactions may be interspersed in the

log.
356

Recovery With Concurrent
Transactions

• 2)Transaction Rollback

• We rollback a failed transaction ,Ti by using
log

• System scans log backward.

• Scanning terminates when system
finds<ti,start>

• Ex:<Ti,A,10,20>

• <Tj,A,20,30>

• Backward scanning correct. result:10
357

Recovery With Concurrent
Transactions• 3)checkpoints

• The checkpointing technique and actions taken on recovery
have to be changed

– since several transactions may be active when a checkpoint
is performed.

• Checkpoints are performed as before, except that the
checkpoint log record is now of the form

< checkpoint L> where L is the list of transactions active at the
time of the checkpoint

– We assume no updates are in progress either on biffer
blocks or on log while the checkpoint is carried out (will
relax this later)

– A fuzzy checkpoint is a checkpoint where transactions are
allowed to perform updates even while buffer blocks are
being written out.

358

Recovery With Concurrent
Transactions (Cont.)

• 4)restart recovery

• When the system recovers from a crash, it first does the
following:

1. Initialize undo-list and redo-list to empty

2. Scan the log backwards from the end, stopping when the
first <checkpoint L> record is found.
For each record found during the backward scan:

 if the record is <Ti commit>, add Ti to redo-list

 if the record is <Ti start>, then if Ti is not in redo-list,
add Ti to undo-list

3. For every Ti in L, if Ti is not in redo-list, add Ti to undo-list

359

Recovery With Concurrent
Transactions (Cont.)

• At this point undo-list consists of incomplete
transactions which must be undone, and
redo-list consists of finished transactions that
must be redone.

• Recovery now continues as follows:

1. Scan log backwards from most recent record,
stopping when <Ti start> records have been
encountered for every Ti in undo-list.
 During the scan, perform undo for each log record that belongs

to a transaction in undo-list.

2. Locate the most recent <checkpoint L> record.

3. Scan log forwards from the <checkpoint L>

360

Example of Recovery• Go over the steps of the recovery algorithm
on the following log:

<T0 start>

<T0, A, 0, 10>

<T0 commit>

<T1 start> /* Scan at step 1 comes up to here */

<T1, B, 0, 10>

<T2 start>

<T2, C, 0, 10>

<T2, C, 10, 20>

<checkpoint {T1, T2}>

<T3 start>

<T3, A, 10, 20>

<T3, D, 0, 10>

<T3 commit>

361

BUFFER MANAGEMENT
• 1.Log Record Buffering

• Log record buffering: log records are
buffered in main memory, instead of of
being output directly to stable storage.

– Log records are output to stable storage when a
block of log records in the buffer is full, or a log
force operation is executed.

• Log force is performed to commit a
transaction by forcing all its log records
(including the commit record) to stable
storage.

• Several log records can thus be output using
a single output operation, reducing the I/O

362

Log Record Buffering (Cont.)

• The rules below must be followed if log
records are buffered:

– Log records are output to stable storage in the
order in which they are created.

– Transaction Ti enters the commit state only when
the log record
<Ti commit> has been output to stable storage.

– Before a block of data in main memory is output
to the database, all log records pertaining to data
in that block must have been output to stable
storage.

• This rule is called the write-ahead logging or WAL rule

363

2.Database Buffering• Database maintains an in-memory buffer of
data blocks
– When a new block is needed, if buffer is full an

existing block needs to be removed from buffer

– If the block chosen for removal has been
updated, it must be output to disk

• If a block with uncommitted updates is
output to disk, log records with undo
information for the updates are output to the
log on stable storage first
– (Write ahead logging)

• No updates should be in progress on a block
when it is output to disk. Can be ensured as
follows.
– Before writing a data item, transaction acquires

364

3.Operating system role in buffer
management

• Database buffer can be implemented either
– in an area of real main-memory reserved for the database,

or
– in virtual memory

• Implementing buffer in reserved main-memory has drawbacks:
– Memory is partitioned before-hand between database

buffer and applications, limiting flexibility.
– Needs may change, and although operating system knows

best how memory should be divided up at any time, it
cannot change the partitioning of memory.

• Database buffers are generally implemented in virtual memory
in spite of some drawbacks:
– When operating system needs to evict a page that has been

modified, the page is written to swap space on disk.

365

Buffer Management (Cont.)
– When database decides to write buffer page to disk,

buffer page may be in swap space, and may have to
be read from swap space on disk and output to the
database on disk, resulting in extra I/O!

• Known as dual paging problem.

– Ideally when OS needs to evict a page from the buffer,
it should pass control to database, which in turn
should

1. Output the page to database instead of to swap
space (making sure to output log records first), if it
is modified

2. Release the page from the buffer, for the OS to use

Dual paging can thus be avoided, but common
operating systems do not support such
functionality.

366

4.Failure with Loss of Nonvolatile
Storage

• So far we assumed no loss of non-volatile storage

• Technique similar to checkpointing used to deal with
loss of non-volatile storage
– Periodically dump the entire content of the database to

stable storage

– No transaction may be active during the dump
procedure; a procedure similar to checkpointing must
take place
• Output all log records currently residing in main memory

onto stable storage.

• Output all buffer blocks onto the disk.

• Copy the contents of the database to stable storage.

• Output a record <dump> to log on stable storage.

367

Recovering from Failure of Non-Volatile Storage

• To recover from disk failure

– restore database from most recent dump.

– Consult the log and redo all transactions that committed
after the dump

• Can be extended to allow transactions to be active during
dump; known as fuzzy dump or online dump

368

Advanced Recovery: Key Features• Support for high-concurrency locking techniques, such as
those used for B+-tree concurrency control, which release
locks early

– Supports “logical undo”

• Recovery based on “repeating history”, whereby recovery
executes exactly the same actions as normal processing

– including redo of log records of incomplete transactions,
followed by subsequent undo

– Key benefits

• supports logical undo

• easier to understand/show correctness

369

Advanced Recovery: Logical Undo Logging• Operations like B+-tree insertions and deletions release locks
early.

– They cannot be undone by restoring old values (physical
undo), since once a lock is released, other transactions
may have updated the B+-tree.

– Instead, insertions (resp. deletions) are undone by
executing a deletion (resp. insertion) operation (known as
logical undo).

• For such operations, undo log records should contain the
undo operation to be executed

– Such logging is called logical undo logging, in contrast to
physical undo logging

• Operations are called logical operations

370

Advanced Recovery: Physical Redo• Redo information is logged physically (that is,
new value for each write) even for operations
with logical undo

– Logical redo is very complicated since database
state on disk may not be “operation consistent”
when recovery starts

– Physical redo logging does not conflict with early
lock release

371

Advanced Recovery: Operation
Logging

• Operation logging is done as follows:

1. When operation starts, log <Ti, Oj, operation-begin>. Here Oj is
a unique identifier of the operation instance.

2. While operation is executing, normal log records with physical
redo and physical undo information are logged.

3. When operation completes, <Ti, Oj, operation-end, U> is
logged, where U contains information needed to perform a
logical undo information.

Example: insert of (key, record-id) pair (K5, RID7) into index I9

<T1, O1, operation-begin>

….

<T1, X, 10, K5>

<T1, Y, 45, RID7>

<T1, O1, operation-end, (delete I9, K5, RID7)>

Physical redo of steps in insert

372

Advanced Recovery: Operation
Logging (Cont.)

• If crash/rollback occurs before operation completes:

– the operation-end log record is not found, and

– the physical undo information is used to undo operation.

• If crash/rollback occurs after the operation completes:

– the operation-end log record is found, and in this case

– logical undo is performed using U; the physical undo
information for the operation is ignored.

• Redo of operation (after crash) still uses physical redo
information.

373

Advanced Recovery: Txn RollbackRollback of transaction Ti is done as follows:

• Scan the log backwards

1. If a log record <Ti, X, V1, V2> is found, perform the undo and log a
special redo-only log record <Ti, X, V1>.

2. If a <Ti, Oj, operation-end, U> record is found

• Rollback the operation logically using the undo information
U.

– Updates performed during roll back are logged just like
during normal operation execution.

– At the end of the operation rollback, instead of logging an
operation-end record, generate a record

<Ti, Oj, operation-abort>.

• Skip all preceding log records for Ti until the record <Ti, Oj

operation-begin> is found

374

Advanced Recovery: Txn Rollback
(Cont.)

• Scan the log backwards (cont.):

3. If a redo-only record is found ignore it

4. If a <Ti, Oj, operation-abort> record is found:
 skip all preceding log records for Ti until the record

<Ti, Oj, operation-begin> is found.

5. Stop the scan when the record <Ti, start> is
found

6. Add a <Ti, abort> record to the log

Some points to note:

• Cases 3 and 4 above can occur only if the
database crashes while a transaction is being
rolled back.

375

Advanced Recovery: Txn Rollback
Example

• Example with a complete and an incomplete
operation
<T1, start>

<T1, O1, operation-begin>

….

<T1, X, 10, K5>

<T1, Y, 45, RID7>

<T1, O1, operation-end, (delete I9, K5, RID7)>

<T1, O2, operation-begin>

<T1, Z, 45, 70>

 T1 Rollback begins here

<T1, Z, 45>  redo-only log record during physical undo (of incomplete O2)

<T1, Y, .., ..>  Normal redo records for logical undo of O1

…

<T1, O1, operation-abort>  What if crash occurred immediately after this?

<T1, abort>

376

Advanced Recovery: Crash
Recovery

The following actions are taken when recovering from system crash

1. (Redo phase): Scan log forward from last < checkpoint L> record till
end of log

1. Repeat history by physically redoing all updates of all
transactions,

2. Create an undo-list during the scan as follows

• undo-list is set to L initially

• Whenever <Ti start> is found Ti is added to undo-list

• Whenever <Ti commit> or <Ti abort> is found, Ti is deleted
from undo-list

This brings database to state as of crash, with committed as well as
uncommitted transactions having been redone.

Now undo-list contains transactions that are incomplete, that is, have
neither committed nor been fully rolled back. 377

Advanced Recovery: Crash Recovery (Cont.)Recovery from system crash (cont.)

2. (Undo phase): Scan log backwards,
performing undo on log records of
transactions found in undo-list.

– Log records of transactions being rolled back
are processed as described earlier, as they
are found
• Single shared scan for all transactions being undone

– When <Ti start> is found for a transaction Ti

in undo-list, write a <Ti abort> log record.

– Stop scan when <Ti start> records have been
found for all Ti in undo-list

• This undoes the effects of incomplete
transactions (those with neither commit

378

Advanced Recovery: Checkpointing

• Checkpointing is done as follows:

1. Output all log records in memory to stable
storage

2. Output to disk all modified buffer blocks

3. put to log on stable storage a < checkpoint L>
record.

Transactions are not allowed to perform any
actions while checkpointing is in progress.

• Fuzzy checkpointing allows transactions to
progress while the most time consuming
parts of checkpointing are in progress

379

Advanced Recovery: Fuzzy
Checkpointing

• Fuzzy checkpointing is done as follows:

1. Temporarily stop all updates by transactions

2. Write a <checkpoint L> log record and force log to stable storage

3. Note list M of modified buffer blocks

4. Now permit transactions to proceed with their actions

5. Output to disk all modified buffer blocks in list M

 blocks should not be updated while being output

 Follow WAL: all log records pertaining to a block must be
output before the block is output

6. Store a pointer to the checkpoint record in a fixed position
last_checkpoint on disk

……

<checkpoint L>

…..

<checkpoint L>

…..

Log

last_checkpoint

380

Advanced Rec: Fuzzy
Checkpointing (Cont.)

• When recovering using a fuzzy checkpoint,
start scan from the checkpoint record
pointed to by last_checkpoint

– Log records before last_checkpoint have their
updates reflected in database on disk, and need
not be redone.

– Incomplete checkpoints, where system had
crashed while performing checkpoint, are
handled safely

381

ARIES• ARIES is a state of the art recovery method

– Incorporates numerous optimizations to reduce overheads during
normal processing and to speed up recovery

– The “advanced recovery algorithm” we studied earlier is modeled
after ARIES, but greatly simplified by removing optimizations

• Unlike the advanced recovery algorithm, ARIES

1. Uses log sequence number (LSN) to identify log records

• Stores LSNs in pages to identify what updates have already been
applied to a database page

2. Physiological redo

3. Dirty page table to avoid unnecessary redos during recovery

4. Fuzzy checkpointing that only records information about dirty pages,
and does not require dirty pages to be written out at checkpoint
time

382

ARIES Optimizations

• Physiological redo
– Affected page is physically identified, action

within page can be logical
• Used to reduce logging overheads

– e.g. when a record is deleted and all other records have to be
moved to fill hole

» Physiological redo can log just the record deletion

» Physical redo would require logging of old and new values for
much of the page

• Requires page to be output to disk atomically

– Easy to achieve with hardware RAID, also supported by some disk
systems

– Incomplete page output can be detected by checksum techniques,

» But extra actions are required for recovery

» Treated as a media failure

383

ARIES Data Structures

• ARIES uses several data structures

– Log sequence number (LSN) identifies each log
record

• Must be sequentially increasing

• Typically an offset from beginning of log file to allow fast access

– Easily extended to handle multiple log files

– Page LSN

– Log records of several different types

– Dirty page table

384

ARIES Data Structures: Page LSN• Each page contains a PageLSN which is the
LSN of the last log record whose effects are
reflected on the page

– To update a page:
• X-latch the page, and write the log record

• Update the page

• Record the LSN of the log record in PageLSN

• Unlock page

– To flush page to disk, must first S-latch page
• Thus page state on disk is operation consistent

– Required to support physiological redo

– PageLSN is used during recovery to prevent
repeated redo

• Thus ensuring idempotence
385

ARIES Data Structures: Log Record
• Each log record contains LSN of previous log record of the same

transaction

– LSN in log record may be implicit

• Special redo-only log record called compensation log record (CLR) used
to log actions taken during recovery that never need to be undone

– Serves the role of operation-abort log records used in advanced
recovery algorithm

– Has a field UndoNextLSN to note next (earlier) record to be
undone

• Records in between would have already been undone

• Required to avoid repeated undo of already undone actions

LSN TransID PrevLSN RedoInfo UndoInfo

LSN TransID UndoNextLSN RedoInfo

1 2 3 4 4' 3' 2' 1'

386

ARIES Data Structures: DirtyPage
Table

• DirtyPageTable

– List of pages in the buffer that have been updated

– Contains, for each such page
• PageLSN of the page

• RecLSN is an LSN such that log records before this LSN have already been
applied to the page version on disk

– Set to current end of log when a page is inserted into dirty page
table (just before being updated)

– Recorded in checkpoints, helps to minimize redo work

Page PLSN RLSN

P1 25 17

P6 16 15

P23 19 18

25

P1
16

P6

19

P23

DirtyPage Table
9

P15

Buffer Pool

P1 16
…

P6 12
..

P15 9
..

P23 11

Page LSNs

on disk

387

ARIES Data Structures: Checkpoint
Log

• Checkpoint log record

– Contains:
• DirtyPageTable and list of active transactions

• For each active transaction, LastLSN, the LSN of the last log record
written by the transaction

– Fixed position on disk notes LSN of last
completed checkpoint log record

• Dirty pages are not written out at checkpoint
time

• Instead, they are flushed out continuously, in the background

• Checkpoint is thus very low overhead

– can be done frequently

388

ARIES Recovery AlgorithmARIES recovery involves three passes

• Analysis pass: Determines

– Which transactions to undo

– Which pages were dirty (disk version not up to
date) at time of crash

– RedoLSN: LSN from which redo should start

• Redo pass:

– Repeats history, redoing all actions from
RedoLSN

• RecLSN and PageLSNs are used to avoid redoing actions already
reflected on page

• Undo pass:

– Rolls back all incomplete transactions
• Transactions whose abort was complete earlier are not undone

389

Remote Backup Systems

• Remote backup systems provide high
availability by allowing transaction processing
to continue even if the primary site is
destroyed.

390

Remote Backup Systems (Cont.)
• Detection of failure: Backup site must detect when primary site has

failed

– to distinguish primary site failure from link failure maintain
several communication links between the primary and the
remote backup.

– Heart-beat messages

• Transfer of control:

– To take over control backup site first perform recovery using its
copy of the database and all the long records it has received from
the primary.

• Thus, completed transactions are redone and incomplete
transactions are rolled back.

– When the backup site takes over processing it becomes the new
primary

– To transfer control back to old primary when it recovers, old
primary must receive redo logs from the old backup and apply all
updates locally.

391

Remote Backup Systems (Cont.)
• Time to recover: To reduce delay in

takeover, backup site periodically proceses
the redo log records (in effect, performing
recovery from previous database state),
performs a checkpoint, and can then delete
earlier parts of the log.

• Hot-Spare configuration permits very fast
takeover:

– Backup continually processes redo log record
as they arrive, applying the updates locally.

– When failure of the primary is detected the
backup rolls back incomplete transactions, and
is ready to process new transactions.

392

Remote Backup Systems (Cont.)
• Ensure durability of updates by delaying

transaction commit until update is logged at
backup; avoid this delay by permitting lower
degrees of durability.

• One-safe: commit as soon as transaction’s
commit log record is written at primary
– Problem: updates may not arrive at backup

before it takes over.

• Two-very-safe: commit when transaction’s
commit log record is written at primary and
backup
– Reduces availability since transactions cannot

commit if either site fails.

• Two-safe: proceed as in two-very-safe if both
393

DATABASE MANAGEMENT SYSTEMS

UNIT-V

394

Data on External Storage• Disks: Can retrieve random page at fixed cost

– But reading several consecutive pages is much cheaper
than reading them in random order

• Tapes: Can only read pages in sequence

– Cheaper than disks; used for archival storage

• File organization: Method of arranging a file of records on
external storage.

– Record id (rid) is sufficient to physically locate record

– Indexes are data structures that allow us to find the
record ids of records with given values in index search
key fields

• Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index layers
make calls to the buffer manager.

395

Alternative File OrganizationsMany alternatives exist, each ideal for some situations, and
not so good in others:

– Heap (random order) files: Suitable when typical

access is a file scan retrieving all records.

– Sorted Files: Best if records must be retrieved in

some order, or only a `range’ of records is needed.

– Indexes: Data structures to organize records via trees

or hashing.

• Like sorted files, they speed up searches for a

subset of records, based on values in certain

(“search key”) fields

• Updates are much faster than in sorted files.

396

Indexes• An index on a file speeds up selections on
the search key fields for the index.
– Any subset of the fields of a relation can be

the search key for an index on the relation.

– Search key is not the same as key (minimal
set of fields that uniquely identify a record in
a relation).

• An index contains a collection of data
entries, and supports efficient retrieval of
all data entries k* with a given key value k.
– Given data entry k*, we can find record with

key k in at most one disk I/O

397

Alternatives for Data Entry k* in Index

 In a data entry k* we can store:
◦ Data record with key value k, or

◦ <k, rid of data record with search key value k>, or

◦ <k, list of rids of data records with search key k>

Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.
◦ Examples of indexing techniques: B+ trees, hash-

based structures

◦ Typically, index contains auxiliary information that

directs searches to the desired data entries

398

Alternatives for Data Entries (Contd.)
• Alternative 1:

– If this is used, index structure is a file
organization for data records (instead of a Heap
file or sorted file).

– At most one index on a given collection of data
records can use Alternative 1. (Otherwise, data
records are duplicated, leading to redundant
storage and potential inconsistency.)

– If data records are very large, # of pages
containing data entries is high. Implies size of
auxiliary information in the index is also large,
typically.

399

Alternatives for Data Entries (Contd.)
• Alternatives 2 and 3:

– Data entries typically much smaller than data

records. So, better than Alternative 1 with large

data records, especially if search keys are small.

(Portion of index structure used to direct search,

which depends on size of data entries, is much

smaller than with Alternative 1.)

– Alternative 3 more compact than Alternative 2,

but leads to variable sized data entries even if

search keys are of fixed length.

400

Index Classification• Primary vs. secondary: If search key contains
primary key, then called primary index.

– Unique index: Search key contains a candidate

key.

• Clustered vs. unclustered: If order of data
records is the same as, or `close to’, order of
data entries, then called clustered index.

– Alternative 1 implies clustered; in practice,

clustered also implies Alternative 1 (since sorted

files are rare).

– A file can be clustered on at most one search key.

– Cost of retrieving data records through index

varies greatly based on whether index is clustered

or not!

401

Clustered vs. Unclustered Index
• Suppose that Alternative (2) is used for data entries, and that the

data records are stored in a Heap file.

– To build clustered index, first sort the Heap file (with some

free space on each page for future inserts).

– Overflow pages may be needed for inserts. (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

402

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Hash-Based Indexes
• Good for equality selections.

• Index is a collection of buckets.

– Bucket = primary page plus zero or more

overflow pages.

– Buckets contain data entries.

• Hashing function h: h(r) = bucket in which
(data entry for) record r belongs. h looks at
the search key fields of r.

– No need for “index entries” in this scheme.

403

B+ Tree Indexes

404

 Leaf pages contain data entries, and are chained (prev & next)
 Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages

(Sorted by search key)

Leaf

Example B+ Tree

Find 28*? 29*? All > 15* and < 30*

 Insert/delete: Find data entry in leaf, then
change it. Need to adjust parent sometimes.
◦ And change sometimes bubbles up the tree

405

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries

in leaf level are sorted

B+ Tree: Most Widely Used Index

 Insert/delete at log F N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

Minimum 50% occupancy (except for root).
Each node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

Supports equality and range-searches
efficiently.

406

Index Entries

Data Entries

("Sequence set")

(Direct search)

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.

– average fanout = 133

• Typical capacities:

– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:

– Level 1 = 1 page = 8 Kbytes

– Level 2 = 133 pages = 1 Mbyte

– Level 3 = 17,689 pages = 133 MBytes
407

Cost Model for Our AnalysisWe ignore CPU costs, for simplicity:

– B: The number of data pages

– R: Number of records per page

– D: (Average) time to read or write disk page

– Measuring number of page I/O’s ignores gains of
pre-fetching a sequence of pages; thus, even I/O
cost is only approximated.

– Average-case analysis; based on several
simplistic assumptions.

408

Comparing File Organizations

• Heap files (random order; insert at eof)

• Sorted files, sorted on <age, sal>

• Clustered B+ tree file, Alternative (1), search
key <age, sal>

• Heap file with unclustered B + tree index on
search key <age, sal>

• Heap file with unclustered hash index on
search key <age, sal>

409

Operations to Compare

• Scan: Fetch all records from disk

• Equality search

• Range selection

• Insert a record

• Delete a record

410

Assumptions in Our Analysis• Heap Files:

– Equality selection on key; exactly one

match.

• Sorted Files:

– Files compacted after deletions.

• Indexes:

– Alt (2), (3): data entry size = 10% size of

record

– Hash: No overflow buckets.

• 80% page occupancy => File size = 1.25

data size

– Tree: 67% occupancy (this is typical).

• Implies file size = 1.5 data size

411

Assumptions (contd.)

• Scans:

– Leaf levels of a tree-index are chained.

– Index data-entries plus actual file scanned for
unclustered indexes.

• Range searches:

– We use tree indexes to restrict the set of data
records fetched, but ignore hash indexes.

412

Cost of Operations

413

 (a) S c a n (b) E q u a l i t y (c) R a n g e (d) I n s e r t (e) D e l e t e

(1) H e a p B D 0 .5 B D B D 2 D S e a r c h

+ D

(2) S o r t e d B D D l o g 2 B D (l o g 2 B +

p g s w i t h

m a t c h r e c s)

S e a r c h

+ B D

S e a r c h

+ B D

(3)

C l u s t e r e d

1 .5 B D D l o g F 1 .5 B D (l o g F 1 .5 B

+ # p g s w .

m a t c h r e c s)

S e a r c h

+ D

S e a r c h

+ D

(4) U n c l u s t .

T r e e i n d e x

B D (R + 0 .1 5) D (1 +

l o g F 0 .1 5 B)

D (l o g F 0 .1 5 B

+ # p g s w .

m a t c h r e c s)

S e a r c h

+ 2 D

S e a r c h

+ 2 D

(5) U n c l u s t .

H a s h i n d e x

B D (R + 0 .1 2 5) 2 D B D S e a r c h

+ 2 D

S e a r c h

+ 2 D

Clustered index organization
• Attributes in WHERE clause are candidates for index keys.

– Exact match condition suggests hash index.

– Range query suggests tree index.

• Clustering is especially useful for range queries; can also
help on equality queries if there are many duplicates.

• Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.

– Order of attributes is important for range queries.

– Such indexes can sometimes enable index-only strategies for
important queries.

• For index-only strategies, clustering is not important!

414

Examples of Clustered Indexes
• B+ tree ndex on E.age can be used to get

qualifying tuples.

– How selective is the condition?

– Is the index clustered?

• Consider the GROUP BY query.

– If many tuples have E.age > 10, using
E.age index and sorting the retrieved
tuples may be costly.

– Clustered E.dno index may be better!

• Equality queries and duplicates:

– Clustering on E.hobby helps!

415

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

Indexes with Composite Search Keys
 Composite Search Keys: Search on a

combination of fields.
◦ Equality query: Every field value is

equal to a constant value. E.g. wrt
<sal,age> index:

 age=20 and sal =75
◦ Range query: Some field value is not

a constant. E.g.:

 age =20; or age=20 and sal >
10

 Data entries in index sorted by search
key to support range queries.
◦ Lexicographic order, or
◦ Spatial order.

416

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

tradeoffs

• A composite key index can support a broader
range of queries bcoz it matches more
selection conditions

• Index only evaluation strategies are increased

• Disadv:a composite index must be updated in
response to any operation(insert,delete or
update) that modifies any field in search key.

• A composite index is also likely to be larger
than single attribute search key

• For B+ tree index this increases no. of levels
417

Composite Search Keys
 To retrieve Emp records with age=30 AND sal=4000, an

index on <age,sal> would be better than an index on age or
an index on sal.

◦ Choice of index key orthogonal to clustering etc.

 If condition is: 20<age<30 AND 3000<sal<5000:

◦ Clustered tree index on <age,sal> or <sal,age> is best.

 If condition is: age=30 AND 3000<sal<5000:

◦ Clustered <age,sal> index much better than <sal,age>
index!

 Composite indexes are larger, updated more often.

418

Composite keys-Index-Only Plans

• A number of
queries can be
answered
without
retrieving any
tuples from
one or more of
the relations
involved if a
suitable index
is available.

419

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>

Tree index!

<E. age,E.sal>
or

<E.sal, E.age>

Tree index!

Creating index in sql

Syntax

Create index indexname on tablename

with structure=Btree,

key=(age,sal);

420

Summary

Many alternative file organizations exist, each
appropriate in some situation.

 If selection queries are frequent, sorting the file
or building an index is important.
◦ Hash-based indexes only good for equality search.
◦ Sorted files and tree-based indexes best for range

search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index is better.)

 Index is a collection of data entries plus a way to
quickly find entries with given key values.

421

Summary (Contd.)
 Data entries can be actual data records, <key, rid>

pairs, or <key, rid-list> pairs.
◦ Choice orthogonal to indexing technique used to locate

data entries with a given key value.

 Can have several indexes on a given file of data
records, each with a different search key.

 Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and dense vs.
sparse. Differences have important consequences
for utility/performance.

422

Example B+ Tree

• Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

423

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Introduction• As for any index, 3 alternatives for data
entries k*:

– Data record with key value k

– <k, rid of data record with search key value k>

– <k, list of rids of data records with search key
k>

• Choice is orthogonal to the indexing
technique used to locate data entries k*.

• Tree-structured indexing techniques
support both range searches and equality
searches.

• ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

424

Range Searches• ``Find all students with gpa > 3.0’’

– If data is in sorted file, do binary search to find
first such student, then scan to find others.

– Cost of binary search can be quite high.

• Simple idea: Create an `index’ file.

425

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

ISAM

• Index file may still be quite large. But we can
apply the idea repeatedly!

426

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

Comments on ISAM
 File creation: Leaf (data) pages allocated

sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

 Index entries: <search key value, page id>; they
`direct’ search for data entries, which are in leaf
pages.

 Search: Start at root; use key comparisons to go to
leaf. Cost log F N ; F = # entries/index pg, N = # leaf
pgs

 Insert: Find leaf data entry belongs to, and put it
there.

 Delete: Find and remove from leaf; if empty
overflow page, de-allocate.

427



Data

Pages

Index Pages

Overflow pages

Example ISAM Tree

• Each node can hold 2 entries; no need for
`next-leaf-page’ pointers. (Why?)

428

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

After Inserting 23*, 48*, 41*, 42* ...

429

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

... Then Deleting 42*, 51*, 97*

430

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Overflow pages,locking considerationsOnce ISAM file is created,inserts and deletes
affect only contents of leaf pages.so as a result
for more number of insertions overflow pages
increase.
Solution:20% of pages sholud be left free when

initially tree is created
The fact that only leaf pages can be modified

has advantage with respect to concurrent
access.
When a page is accessed it is typically locked by

the requestor to ensure that it is not
concurrently modified by other users
ADV:Since we know that indexlevel pages are

never modifiedwe can safely omit locking step.

431

Example B+ Tree

• Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

432

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Inserting a Data Entry into a B+ Tree
• Find correct leaf L.

• Put data entry onto L.

– If L has enough space, done!

– Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

• This can happen recursively

– To split index node, redistribute entries evenly, but push up middle
key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.

– Tree growth: gets wider or one level taller at top.

433

Inserting 8* into Example B+ Tree

 Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

 Note difference
between copy-up
and push-up; be
sure you
understand the
reasons for this.

434

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

Example B+ Tree After Inserting 8*

435

Notice that root was split, leading to increase in height.

 In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.

• Remove the entry.

– If L is at least half-full, done!

– If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

• If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L or sibling)
from parent of L.

• Merge could propagate to root, decreasing height.

436

Example Tree After (Inserting 8*, Then)
Deleting 19* and 20* ...

• Deleting 19* is easy.

• Deleting 20* is done with re-distribution.
Notice how middle key is copied up.

437

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

... And Then Deleting 24*

Must merge.

Observe `toss’ of
index entry (on
right), and `pull
down’ of index
entry (below).

438

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root

30135 17

