




# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal, Hyderabad - 500 043

# MODEL QUESTION PAPER -I

Four B.Tech VI Semester End Examinations Regulations: IARE-R16 ELECTRONIC MEASUREMENT AND INSTRUMENTATION

(Only for ECE)

### **Time:3hours**

Max. Marks:70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

## UNIT – I

- 1 a) A voltmeter having a sensitivity of  $1K\Omega/V$  is connected across an unknown resistance in [7M] series with a milli ammeter reading 80V on 150V scale. When the milli ammeter reads 10mA, Calculatethe,
  - i. Apparent resistance of the unknownresistor
  - ii. Actual resistance of the unknown resistor, and
  - iii. Error due to the loading effect of thevoltmeter?
  - b) How the working of a potentiometer type digital voltmeter be explained? Determine the [7M] Multiplier resistance on the 50V range of a DC voltmeter, which uses 300mA meter movement having internal resistance of  $1.2\Omega$
- 2 a) Define PMMC? Explain indetail about the working principle of PMMC movement with the [7M] neat block diagram and equations.
  - b) A basic D'Arsonval movement with a full scale deflection of 100  $\mu$ A and aninternal [7M] resistance of 2000  $\Omega$  is available. It is to be Converted into a 0-5V, 0-10V, 0-25V, and 0-50V multi range voltmeter using individual multipliers for each range. Calculate the values of the individualresistors.

### UNIT – II

- 3 a) Explain the working of Dual Beam CRO with neat block diagram. Explain about Delay lines [7M] in CROs.
  - b) Determine the Velocity of electron beam of an oscilloscope when voltage applied is 2500V [7M]
- 4 a) Determine the secondary emission ratio `S' of a digital storage oscilloscope, if the value [7M] secondary emission current IS is 15μA, and the primary beam current IP is 150μA.
  - b) Explain the method of finding frequency relationship of two waveforms using Lissajous [7M] figures?

## UNIT – III

- 5 a) Explain the working of Basic Spectrum Analyzer with neat schematic block diagram. List out [7M] the applications of Spectrum Analyzer?
  - b) Explain the working of heterodyne wave analyzer with neat diagram. Distinguish between [7M] wave analyzer and Harmonic distortion analyzer.

| 6 | a) | Discuss about the generation of broadband sweep frequencies using a sweep generator.List | [7M] |
|---|----|------------------------------------------------------------------------------------------|------|
|   |    | out the applications of sweep generator?                                                 |      |
|   | b) | What is Heterodyning and explain the use of Heterodyning in spectrum analyzer            | [7M] |

b) What is Heterodyning and explain the use of Heterodyning in spectrum analyzer [7M] along with its circuit diagram.

#### UNIT - IV

- 7 a) Draw and explain the Maxwell Bridge with neat diagram and derive the expression for [7M] unknown inductance.
  b) A Maxwell bridge is used to measure inductive impedance. The bridge constants at balance
  - are C1=0.01 $\mu$ F, R1=470k  $\Omega$ , R2=5.1k  $\Omega$  and R3=100k  $\Omega$ . Find the series equivalent of the [7M] unknown impedance?
- 8 a) Explain the Kelvin Bridge with neat diagram and derive the expression for unknown [7M] resistance.
  - b) In a certain Wheatstone bridge circuit measurements, RA=200k  $\Omega$ , RB=400k  $\Omega$ , RC=100k  $\Omega$ , [7M] RD=300k  $\Omega$ . E=1.5V, Rg=100  $\Omega$ , with usual notation. Determine the current through the detector galvonometer.

#### $\mathbf{UNIT} - \mathbf{V}$

- 9 a) Explain about Piezo-electric effect? Explain the operation of a Piezo electric transducer. [7M]
  b) A resistance strain gauge with a guage factor of 2 is cemented to a steel member, which is subjected to a strain of 1x10-6. If original resistance value of the gauge is 130 Ω, calculate the change in resistance.
- 10 a) Explain the Principle and working of Strain gauges. Explain working of strain gauge and [7M] what are its specificadvantages?
  - b) An ac LVDT has the following data. Input = 6.3V, Output = 5.2V, range  $\pm 0.5$  in. Determine [7M]
    - i. Calculate the output voltage vs core position for a core movement going from +0.45 in. to -0.30 in.
    - ii. The output voltage when the core is -0.25 in. from thecentre

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

# **COURSE OBJECTIVES**

The course should enable the students to:

| Ι   | Acquire a sound understanding theory and performance characteristics of instruments and errors in measurement and apply to DC voltmeters, ammeters, ohmmeters. |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| II  | Provide concepts and operation of different signal generators and wave form analyzers.                                                                         |  |  |  |
| III | Compare and contrast different types of oscilloscopes.                                                                                                         |  |  |  |
| IV  | Select different types of D.C and A.C bridges for measurement of passive components and physical                                                               |  |  |  |
|     | parameters.                                                                                                                                                    |  |  |  |

## **COURSE OUTCOMES (COs):**

| CO 1 | Describe the types of voltmeters, ammeters, ohmmeters and Dynamic characteristics of measuring systems |  |  |
|------|--------------------------------------------------------------------------------------------------------|--|--|
| CO 2 | Understand the different types of Oscilloscopes and their working principles.                          |  |  |
| CO 3 | Understand the Different types of signal generators and signal analyzers and their working principles  |  |  |
| CO 4 | Explore the different types of A.C.and DC Bridges and their operations                                 |  |  |
| CO 5 | Demonstrate the different types of transducers and their principles and operations                     |  |  |

### **COURSE LEARNING OUTCOMES**

Students who complete the course will have demonstrated the ability to do the following

| AEC014.01 | Analyze Block schematics of measuring systems, performance characteristics like accuracy, precision, resolution and the types of errors.                                                  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AEC014.02 | 2014.02 Understand the analog measuring instruments its working of analog measuring instruments D' Arson movement.                                                                        |  |  |
| AEC014.03 | Discuss various types measuring range meters like DC and AC voltmeters ammeters.                                                                                                          |  |  |
| AEC014.04 | Understand of basic building of Cathode ray oscilloscopes and cathode ray tubes its specifications and applications.                                                                      |  |  |
| AEC014.05 | Illustrate the various types of special purpose oscilloscopes and discuss Lissajous figures, frequency measurement, phase measurement, CRO probes.                                        |  |  |
| AEC014.06 | Understand working principle of signal generators like AF and RF signal generators and Discuss the types of function generators.                                                          |  |  |
| AEC014.07 | Understand the function of various types of signal analyzers and discuss the type like AF, HF wave analyzers.                                                                             |  |  |
| AEC014.08 | Understand the various wave analyzers heterodyne wave analyzers, harmonic distortion, spectrum analyzers, power analyzers.                                                                |  |  |
| AEC014.09 | Discuss various measurements using DC bridges for Wheat stone bridge, Kelvin bridge.                                                                                                      |  |  |
| AEC014.10 | Discuss various measurements using AC bridges, Maxwell, Hay, Schering, Wien, Anderson bridges, wagner& ground connection.                                                                 |  |  |
| AEC014.11 | Understand transducers and its classifications and discuss strain gauges, force and displacement tranducers, resistance thermometers, hotwire anemometers, LVDT, thermocouples, synchros. |  |  |
| AEC014.12 | Discuss the types of transducers Piezoelectric transducers, variable capacitance transducers; Magneto strictive transducers                                                               |  |  |
| AEC014.13 | 4.13 Determine measurement of physical parameters Flow measurement, displacement meters, liquid leve measurement, measurement of humidity and moisture                                    |  |  |
| AEC014.14 | Illustrate the following: active and passive, primary and secondary transducers                                                                                                           |  |  |
| AEC014.15 | Illustrate the measurement of physical parameters of transducer like velocity, force, pressure, high pressure, vacuum level, temperature measurements                                     |  |  |

| AEC014.16 | Apply the concept of Electronic measurement and instrumentation to understand and analyze the real time applications. |
|-----------|-----------------------------------------------------------------------------------------------------------------------|
| AEC014.17 | Acquire the knowledge and develop capability to succeed national and international level competitive examinations.    |

## MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES:

| SEE             |   |                          |                                                                                                                                                             | C                  | Blooms            |
|-----------------|---|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| Question<br>No. |   | Course Learning Outcomes |                                                                                                                                                             | Course<br>Outcomes | Taxonomy<br>Level |
| 1               | a | AEC014.01                | Analyze Block schematics of measuring systems,<br>performance characteristics like accuracy, precision,<br>resolution and the types of errors.              | CO 1               | Understand        |
| I               | b | AEC014.01                | Analyze Block schematics of measuring systems,<br>performance characteristics like accuracy, precision,<br>resolution and the types of errors.              | CO 1               | Understand        |
|                 | a | AEC014.03                | Discuss various types measuring range meters like DC and AC voltmeters ammeters.                                                                            | CO 1               | Remember          |
| 2               | b | AEC014.02                | Understand the analog measuring instruments its<br>working of analog measuring instruments D'<br>Arsonval movement.                                         | CO 1               | Understand        |
| 3               | a | AEC014.04                | Understand of basic building of Cathode ray<br>oscilloscopes and cathode ray tubes its<br>specifications and applications                                   | CO 2               | Understand        |
|                 | b | AEC014.04                | Understand of basic building of Cathode ray<br>oscilloscopes and cathode ray tubes its<br>specifications and applications                                   | CO 2               | Understand        |
| 4               | a | AEC014.05                | Illustrate the various types of special purpose<br>oscilloscopes and discuss Lissajous figures,<br>frequency measurement, phase measurement, CRO<br>probes. | CO 2               | Remember          |
|                 | b | AEC014.05                | Illustrate the various types of special purpose<br>oscilloscopes and discuss Lissajous figures,<br>frequency measurement, phase measurement, CRO<br>probes  | CO 2               | Understand        |
| 5               | a | AEC014.06                | Understand working principle of signal generators<br>like AF and RF signal generators and Discuss the<br>types of function generators.                      | CO 3               | Remember          |
| 5               | b | AEC014.07                | Understand the function of various types of signal<br>analyzers and discuss the type like AF, HF wave<br>analyzers.                                         | CO 3               | Remember          |
| 6               | a | AEC014.06                | Understand working principle of signal generators<br>like AF and RF signal generators and Discuss the<br>types of function generators.                      | CO 3               | Understand        |
| 0               | b | AEC014.08                | Understand the various wave analyzers heterodyne<br>wave analyzers, harmonic distortion, spectrum<br>analyzers, power analyzers.                            | CO 3               | Remember          |
| 7               | a | AEC014.10                | Discuss various measurements using AC bridges,<br>Maxwell, Hay, Schering, Wien, Anderson bridges,<br>wagner& ground connection.                             | CO 4               | Remember          |
|                 | b | AEC014.09                | Discuss various measurements using DC bridges for<br>Wheat stone bridge, Kelvin bridge                                                                      | CO 4               | Understand        |
| 8               | a | AEC014.09                | Discuss various measurements using DC bridges for<br>Wheat stone bridge, Kelvin bridge                                                                      | CO 4               | Remember          |
| 0               | b | AEC014.10                | Discuss various measurements using AC bridges,<br>Maxwell, Hay, Schering, Wien, Anderson bridges,<br>wagner& ground connection.                             | CO 4               | Understand        |

| 9  | а | AEC014.12 | Discuss the types of transducers Piezoelectric<br>transducers, variable capacitance transducers;<br>Magneto strictive transducers                                                                  | CO5 | Understand |
|----|---|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
|    | b | AEC014.11 | Understand transducers and its classifications and discuss strain gauges, force and displacement tranducers, resistance thermometers, hotwire anemometers, LVDT, thermocouples, synchros.          | CO5 | Remember   |
| 10 | a | AEC014.13 | Determine measurement of physical parameters<br>Flow measurement, displacement meters, liquid<br>level measurement, measurement of humidity and<br>moisture                                        | CO5 | Understand |
|    | b | AEC014.11 | Understand transducers and its classifications and<br>discuss strain gauges, force and displacement<br>tranducers, resistance thermometers, hotwire<br>anemometers, LVDT, thermocouples, synchros. | CO5 | Understand |

# Signature of Course Coordinator

# HOD,ECE