

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER - I

Second Year B.Tech III Semester End Examinations, November - 2019

Regulations: R18

ELECTRO-MAGNETIC FIELD

(EEE)

Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

UNIT - I

- 1. a) Formulate the statement which says that force between charges is directly proportional [7M] to product of charges and inversely proportional to square of distance between them and explain.
 - b) Four line charges of 30μ C each are located four corners of a square, the diagonal of [7M] which measures 8m. Find the force on a 150 μ C charge located at 3m above the centre of the square.
- 2. a) Derive the expression for electric field intensity due to a line charge and Surface [7M] Charge.
 - b) Two small identical conducting spheres have charge of 2nc and -0.5nc [7M] respectively, when they are placed 4 cm apart, determine the force between them. If they are brought into contact and then separated by 4 cms, calculate force between them.

UNIT – II

- 3. a) A sphere of radius x meters having a charge q coulombs , then by assuming a second [7M] conductor of infinite radius and zero potential, imagine the formation of capacitance between them.
 - b) Calculate the capacitance of a parallel plate capacitor with following details. [7M] Plate area = 100 cm² Dielectric $\mathcal{E}_{r1} = 4$, $d_1 = 2mm$ Dielectric $\mathcal{E}_{r2} = 3$, d2 = 3mm

If 200V is applied across plates , determine the voltage gradient and energy stored in each dielectric.

4. a) A spherical capacitor having two concentric spheres of radius a and b meters are [7M] separated by a dielectric whose relative permittivity is €r, formulate the capacitance between them.

BUCHTON BOOLDER

b) [7M] A parallel plate capacitor consists of two square metal plates with 500mm side and separate by 10mm. A slab of sulphur ($\varepsilon r = 4$) 6mm thick is placed on the lower side of plate and air gap of 4mm. Give the capacitance of the capacitor.

[7M]

- 5. a) Write short notes on:
 - i) Magnetostatic field
 - Magnetic flux density. ii)
 - iii) Magnetic field intensity
 - iv) Magnetic permeability.
 - Intensity of magnetization v)
 - Magnetic susceptibility. vi)
 - Relation between B, H and I vii)
 - b) A steady current I amperes flows in a conductor bent in the form of square loop of [7M] side a. Find the magnetic field at the center of the loop.
- 6. a) Using Ampere circuital law to derive the expression for magnetic field intensity [7M] Due to long current carrying filament and due to an infinite current sheet.
 - [7M] b) i) Calculate the magnetic flux density at the center of a current carrying loop when the radius of loop is 2cm, loop current in 1mA and loop is paced in air.
 - ii) The magnitude of H at a radius of 1m from a long linear conductor is 1A/m. Find current in the wire.

UNIT – IV

- 7. Derive the expression for force on a straight current carrying conductor in a magnetic [7M] a) field and between two straight long and parallel current carrying conductors.
 - b) A single phase circuit comprises two parallel conductors A and B 1 cm diameters and [7M] special 1m apart. The conductors carry current 100A and -100A respectively. Determine the field intensity at the surface of the each conductor and also in the space exactly midway between A and B.
- 8. Derive the expression for property of the single coil depending on which emf induces [7M] a) in it for solenoid and toroid.
 - Two mutually coupled coils are connected in parallel with L1 = 0.2H, L2 = 0.1H and b) [7M] M = 0.1H, current flowing through circuit is increasing at rate of I A/sec. Derive the expression for effective inductance between coils i) when they in series aiding connection. ii) when they in series opposite connection.

UNIT – V

- 9. [7M] a) State faraday's laws of electro magnetic induction and explain the self, mutual induced emf. Explain and Give the importance of finite difference method in studying electric and b) [7M] magnetic field. 10. Derive the expression from modified Ampere's law. [7M] a) Write the short notes on Faraday's disc generator.
 - b) [7M] Give the importance of charge simulation method in studying electric and magnetic field.

COURSE OBJECTIVES:

The course should enable the students to:

Ι	Demonstrate the concept of electrostatic field intensity and electric potential.
II	Illustrate polarization of dielectrics and the behavior of conductors and dielectrics in an electric field.
III	Understand the concept of field intensity and flux density in magnetic fields.
IV	Discuss forces in magnetic fields and laws of electromagnetic induction
V	Summarize the concept of time varying field and analyze propagation of electro-magnetic waves.

COURSE OUTCOMES (COs):

CO 1	Determine the force and electric field intensity due various types of charge distribution with the
	help of vector calculus.
CO 2	Estimate the capacitance of various configurations and study behaviour of charges in conductors
	and dielectrics.
CO 3	Understand Bio-Savart's law and determine magnetic field intensity due different configuration of
	conductors, their other deductions.
CO 4	Calculate the magnetic force acting on body due to different configurations of conductors and
	deduce the magnetic potentials.
CO 5	State Faraday's laws of electromagnetic induction in time varying fields and analyze wave
	propagation in electro-magnetic fields.

COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

S. No	Description
AEEB10.01	Analyze the force and electric field intensity in the electrostatic field.
AEEB10.02	Identify the characteristics of electrostatic fields in terms of definitions.
AEEB10.03	State different laws which defines characteristics of electrostatic fields.
AEEB10.04	Illustrate polarization of dielectrics and the behavior of conductors and dielectrics in electric field.
AEEB10.05	Demonstrate the electric dipole and its effect on electric field.
AEEB10.06	Estimate the capacitance of parallel plates, spherical and coaxial capacitors with composite dielectrics.
AEEB10.07	Summarize the concept of magneto static and interrelate the terms of magnetic fields.
AEEB10.08	Interpret the magnetic field intensity due to circular, square and solenoid current carrying wire.
AEEB10.09	Use Ampere circuital law to determine magnetic field intensity due to an infinite sheet of current, a long current carrying filament and its applications.

AEEB10.10	Predict the force due to moving charge in the magnetic field for different configuration of current carrying conductor.
AEEB10.11	Demonstrate the magnetic dipole and its effect on magnetic field.
AEEB10.12	Calculate the self inductance and mutual inductance for different configurations of wires and applications of permanent magnet.
AEEB10.13	State the Faraday's laws of electromagnetic induction and nature of voltage induced in the coil.
AEEB10.14	Derive and explain the differential and integral form of Maxwell's equation in time varying fields and fields varying harmonically with time.
AEEB10.15	Discuss the electromagnetic wave propagation and its analysis.
AEEB10.16	Apply the concept of electromagnetic and electrostatic fields to solve real time world applications.
AEEB10.17	Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.

MAPPING OF MODEL QUESTION PAPER QUESTIONS TO THE ACHIEVEMENT OF COURSE LEARNING OUTCOMES:

SEE QUESTION No.		COURSE LEARNING OUTCOMES		BLOOM'S TAXONOMY LEVEL
1	a	AEEB10.01	Analyze the force and electric field intensity in the electrostatic field.	Understand
	b	AEEB10.03	Identify the characteristics of electrostatic fields in terms of definitions.	Understand
2	a	AEEB10.01	State different laws which defines characteristics of electrostatic fields.	Understand
	b	AEEB10.02	Illustrate polarization of dielectrics and the behavior of conductors and dielectrics in electric field.	Understand
	a	AEEB10.06	Demonstrate the electric dipole and its effect on electric field.	Understand
3	b	AEEB10.05	Estimate the capacitance of parallel plates, spherical and coaxial capacitors with composite dielectrics.	Understand
4	a	AEEB10.05	Summarize the concept of magneto static and interrelate the terms of magnetic fields.	Understand
	b	AEEB10.06	Interpret the magnetic field intensity due to circular, square and solenoid current carrying wire.	Understand
5	a	AEEB10.08	Use Ampere circuital law to determine magnetic field intensity due to an infinite sheet of current, a long current carrying filament and its applications.	Understand
	b	AEEB10.09	Predict the force due to moving charge in the magnetic field for different configuration of current carrying conductor.	Understand
	a	AEEB10.08	Demonstrate the magnetic dipole and its effect on magnetic field.	Understand
6	b	AEEB10.08	Calculate the self inductance and mutual inductance for different configurations of wires and applications of permanent magnet.	Understand
7	a	AEEB1012	State the Faraday's laws of electromagnetic induction and nature of voltage induced in the coil.	Remember
	b	AEEB10.11	Derive and explain the differential and integral form of Maxwell's equation in time varying fields and fields varying harmonically with time.	Understand
8	a	AEEB10.10	Discuss the different numerical methods to calculate the electrostatic and magneto static fields.	Understand
	b	AEEB10.10	Apply the concept of electromagnetic and electrostatic fields to solve real time world applications.	Understand

SEE QUESTION No.			COURSE LEARNING OUTCOMES	BLOOM'S TAXONOMY LEVEL
9	a	AEEB10.13	Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.	Understand
	b	AEEB10.13	Analyze the force and electric field intensity in the electrostatic field.	Understand
10	a	AEEB10.13	Identify the characteristics of electrostatic fields in terms of definitions.	Understand
	b	AEEB10.13	State different laws which defines characteristics of electrostatic fields.	Understand

Signature of the Course Coordinator Mr. T Anil Kumar, Assistant Professor,EEE Mr. B. Muralidhar Nayak, Assistant Professor,EEE

HOD, EEE