
SOFTWARE ENGINEERING

IT

IV SEMESTER ​
​

Prepared by:
Mr. G Chandra sekhar, Assistant Professor

Ms. Dhanalaxmi, Assistant Professor

Course Objectives

The course should enable the students to:

1 Understand the concept of process models associated under
requirements development process.

2 Explore the importance of requirements analysis and preparation
of an system requirements document, for any software
development

3 Understand the basic design principles and mapping data flow into
architecture.

4 Explore the benefits of different testing strategies.

5 Understand the concept of risk management and the relation
between people and effort.

2

Course Outcomes

The course should enable the students to:

CO 1 Understand the key concerns that are common to all software
development processes.

CO 2 Identify the appropriate process models, approaches and techniques
to manage a given software development process.

CO 3 Identify the approach to risks management through risk
identification, risk measurement and risk mitigation.

CO 4 Use the concept of Earned Value Analysis (EVA) to measure the
projects progress at any given point in time, forecasting its
completion date and final cost, and analyzing variances in the
schedule and budget as the project proceeds.

CO 5 Memorize project planning activities that accurately help in selection
and initiation of individual projects and of portfolios of projects in
the enterprise.

3

Course Learning Outcomes

The course will enable the students to:

CLO 1 Understand the key concerns that are common to all software
development processes.

CLO 2 Identify the appropriate process models, approaches and
techniques to manage a given software development process.

CLO 3 Identify the approach to risks management through risk
identification, risk measurement and risk mitigation.

CLO 4 Use the concept of Earned Value Analysis (EVA) to measure the
projects progress at any given point in time, forecasting its
completion date and final cost, and analyzing variances in the
schedule and budget as the project proceeds.

CLO 5 Memorize project planning activities that accurately help in
selection and initiation of individual projects and of portfolios of
projects in the enterprise.

CLO 6 Identify dependability and security issues that affect a given
software product.

4

The course will enable the students to:

CLO 7 Use the concept of classical analysis to determine the acceptance
criteria as part of specification.

CLO 8 Memorize the importance of eliciting the requirements for a
software product and translate these into a documented design.

CLO 9 Understand the concept of data dictionary in order to manage
the details in large-scale systems, to locate errors and omissions
in the system.

CLO 10 Understand the concept of petri nets that exhibit concurrency,
synchronization and used as a visual communication aid to model
the system behavior.

CLO 11 Memorize the design of object oriented software using with the
aid of a formal system modeling notation.

CLO 12 Learn to model the structure and behavior of a software system.

Course Learning Outcomes cont.

5

6

The course will enable the students to:

CLO 13 Use the concept of classical analysis to determine the acceptance
criteria as part of specification.

CLO 14 Memorize the importance of eliciting the requirements for a
software product and translate these into a documented design.

CLO 15 Understand the concept of data dictionary in order to manage
the details in large-scale systems, to locate errors and omissions
in the system.

CLO 16 Understand the concept of petri nets that exhibit concurrency,
synchronization and used as a visual communication aid to model
the system behavior.

CLO 17 Memorize the design of object oriented software using with the
aid of a formal system modeling notation.

CLO 18 Learn to model the structure and behavior of a software system.

Course Learning Outcomes cont.

7

The course will enable the students to:

CLO 19 Identify the major differences between white box testing and
black box testing.

CLO 20 Understand the importance of refactoring which improves the
performance of non functional attributes of the software.

CLO 21 Learn to manage time, processes and resources effectively by
prioritizing competing demands to achieve personal and team
goals.

CLO 22 Use a proactive, structured risk assessment and analysis activity
to identify and analyze root causes.

CLO 23 Understand the concept of risk management through risk
identification, risk measurement and mitigation.

CLO 24 Memorize the relationship between people and effort.

CLO 25 Identify the importance of earned value analysis related to
project scheduling and also understand the various process and
project metric used to improve the quality of software.

Course Learning Outcomes cont.

Running Course Learning Outcomes

The course should enable the students to:

CO 1 Understand the key concerns that are common to all software
development processes.

CO 2 Identify the appropriate process models, approaches and techniques
to manage a given software development process.

CO 3 Identify the approach to risks management through risk
identification, risk measurement and risk mitigation.

CO 4 Use the concept of Earned Value Analysis (EVA) to measure the
projects progress at any given point in time, forecasting its
completion date and final cost, and analyzing variances in the
schedule and budget as the project proceeds.

CO 5 Memorize project planning activities that accurately help in selection
and initiation of individual projects and of portfolios of projects in
the enterprise.

8

MODULE-I

SOFTWARE PROCESS AND PROJECT MANAGEMENT

9

Contents

Software process and project management:

 Introduction to software engineering

 Software process

 Perspective and specialized process models

Software project management:

 Estimation: LOC and FP based estimation

 COCOMO model

 Project scheduling: Scheduling

 Earned value analysis

 Risk management.

10

Introduction to Software Engineering

11

What is Software?

 The product that software professionals build and then support over the long

term.

Software encompasses:

1.instructions (computer programs) that when executed provide desired
features, function, and performance;

2.data structures that enable the programs to adequately store and
manipulate information and

3.documentation that describes the operation and use of the programs.

Introduction to Software Engineering

12

Software products

 Generic products

 Stand-alone systems that are marketed and sold to any customer
 who wishes to buy them.

 Examples – PC software such as editing, graphics programs, project
management tools; CAD software; software for specific markets such as
appointments systems for dentists.

 Customized products

 Software that is commissioned by a specific customer to meet their own
needs.

 Examples – embedded control systems, air traffic control software, traffic
monitoring systems.

Why Software is Important?

13

 The economies of ALL developed nations are dependent on software.

More and more systems are software controlled (transportation, medical,
telecommunications, military, industrial, entertainment, etc…)

 Software engineering is concerned with theories, methods and tools for
professional software development.

 Expenditure on software represents a significant fraction of Gross national product

in all developed countries.

Features of Software?

14

 Its characteristics that make it different from other things human being build.

Features of such logical system:

 Software is developed or engineered, it is not manufactured in the classical
sense which has quality problem.

 Software doesn't "wear out.” but it deteriorates (due to change). Hardware
has bathtub curve of failure rate (high failure rate in the beginning, then drop
to steady state, then cumulative effects of dust, vibration, abuse occurs).

 Although the industry is moving toward component-based construction (e.g.
standard screws and off-the-shelf integrated circuits), most software
continues to be custom-built. Modern reusable components encapsulate data
and processing into software parts to be reused by different programs. E.g.
graphical user interface, window, pull-down menus in library etc.

15

Software Myths
Software Myths

– Software myths – beliefs about software and the process used to

build it

– Management Myths

• Myth – We already have a book that’s full of standards and

procedures for building software. Won’t that provide my people

with everything they need to know?

• Reality – The book of standards may very well exist but is it

used? Are software practitioners aware of its existence? Does it

reflect modern software engineering practice? Is it adaptable?

• Myth – If we get behind schedule, we can add more

programmers and catch up

• Reality – Software development is not a mechanistic process

like manufacturing. “ Adding more people to a late software

project makes it later”

16

Software Myths

Software Myths

– Software myths – beliefs about software and the process used to

build it

– Management Myths

• Myth – If I decide to outsource the software project to a third

party, I can relax and let that firm build it

• Reality – If an organization does not understand how to manage

and control software projects internally, it will invariably struggle

when it is outsourced.

17

Software Myths

Software Myths

– Customer Myths

• Myth – A general statement of objectives is sufficient to begin

writing programs – we can fill in the details later

• Reality – An ambiguous statement of objectives is a recipe for

disaster. Unambiguous requirements are developed only

through effective and continuous communication between

customer and developer

• Myth – Project requirements change, but change can be easily

accommodated because software is flexible

• Reality – When requirement changes are requested early, cost

impact is relatively small. With time, cost impact grows rapidly,

and a change can cause additional resources and major design

modifications

18

Software Myths

Software Myths

– Practitioner Myths

• Myth – Once we write the program and get it to work, our job is

done

• Reality – The sooner you begin writing code, the longer it will

take you to get done. Between 60 to 80 percent of all effort

spent on software will be spent after it is delivered to the

customer for the first time

• Myth – Until I get the program running, I have no way of

assessing its quality

• Reality – Software reviews are a “quality filter” that have been

found to be more effective than testing for finding certain

classes of software errors

19

Software Myths

Software Myths

– Practitioner Myths

• Myth – The only deliverable work product for a successful

project is the working program

• Reality – A working program is only one part of a software

configuration that includes many elements. Documentation

provides a foundation for successful engineering and guidance

for software support

• Myth – Software engineering will make us create voluminous

and unnecessary documentation and will invariably slow us

down

• Reality – Software engineering is not about creating documents,

it si about creating quality. Better quality leads to reduced

rework. Reduced rework results in faster delivery times

Software Applications

20

1. System software: such as compilers, editors, file management utilities

2. Application software: stand-alone programs for specific needs.

3. Engineering/scientific software: Characterized by “number crunching”algorithms.

such as automotive stress analysis, molecular biology, orbital dynamics etc

4. Embedded software resides within a product or system. (key pad control

of a microwave oven, digital function of dashboard display in a car)

5. Product-line software focus on a limited marketplace to address mass

consumer market. (word processing, graphics, database management)

6. WebApps (Web applications) network centric software. As web 2.0 emerges, more

sophisticated computing environments is supported integrated with remote

database and business applications.

7. AI software uses non-numerical algorithm to solve complex problem. Robotics,

expert system, pattern recognition game playing

The seminal definition:

[Software engineering is] the establishment and use of sound engineering

principles in order to obtain economically software that is reliable and works

efficiently on real machines.

The IEEE definition:

Software Engineering: (1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is,
the application of engineering to software.

(2) The study of approaches as in (1).

Software Engineering Definition

21

Importance of Software Engineering

22

More and more, individuals and society rely on advanced software
systems. We need to be able to produce reliable and trustworthy systems
economically and quickly.

 It is usually cheaper, in the long run, to use software engineering methods
and techniques for software systems rather than just write the programs
as if it was a personal programming project. For most types of system, the
majority of costs are the costs of changing the software after it has gone
into use.

Software Process

• A process is a collection of activities, actions and tasks that are performed
when some work product is to be created. It is not a rigid prescription for how
to build computer software. Rather, it is an adaptable approach that enables
the people doing the work to pick and choose the appropriate set of work
actions and tasks.

• Purpose of process is to deliver software in a timely manner and with
sufficient quality to satisfy those who have sponsored its creation and those
who will use it.

23

Software Engineering A Layered Technology

24

Any engineering approach must rest on organizational commitment to quality which fosters a
continuous process improvement culture.

• Process layer as the foundation defines a framework with activities for effective delivery of software
engineering technology. Establish the context where products (model, data, report, and forms)
are produced, milestone are established, quality is ensured and change is managed.

• Method provides technical how-to’s for building software. It encompasses many tasks including
communication, requirement analysis, design modeling, program construction, testing14and
support.

• Tools provide automated or semi-automated support for the process and methods.

Five Activities of a Generic Process Framework

• Communication: communicate with customer to understand objectives and
gather requirements.

• Planning: creates a “map” defines the work by describing the tasks, risks and
resources, work products and work schedule.

• Modeling: Create a “sketch”, what it looks like architecturally, how the
constituent parts fit together and other characteristics.

• Construction: code generation and the testing.

• Deployment: Delivered to the customer who evaluates the products and
provides feedback based on the evaluation.

• These five framework activities can be used to all software development
regardless of the application domain, size of the project, complexity of the
efforts etc, though the details will be different in each case.

• For many software projects, these framework activities are applied iteratively as
a project progresses. Each iteration produces a software increment that provides
a subset of overall software features and functionality.

25

Umbrella Activities

26

Complement the five process framework activities and help team manage and control
progress, quality, change, and risk.

• Software project tracking and control: assess progress against the plan and take
actions to maintain the schedule.

• Risk management: assesses risks that may affect the outcome and quality.

• Software quality assurance: defines and conduct activities to ensure quality.

• Technical reviews: assesses work products to uncover and remove errors before
going to the next activity.

• Measurement: define and collects process, project, and product measures to
ensure stakeholder's needs are met.

• Software configuration management: manage the effects of change throughout
the software process.

• Reusability management: defines criteria for work product reuse and
establishes mechanism to achieve reusable components.

• Work product preparation and production: create work products such as
models, documents, logs, forms and lists.

Adapting a Process Model

The process should be agile and adaptable to problems. Process adopted for
one project might be significantly different than a process adopted from
another project. (to the problem, the project, the team, organizational culture).
Among the differences are:

27

• the overall flow of activities, actions, and tasks and the interdependencies
among them

• the degree to which actions and tasks are defined within each framework
activity

• the degree to which work products are identified and required

• the manner which quality assurance activities are applied

• the manner in which project tracking and control activities are applied

• the overall degree of detail and rigor with which the process is described

• the degree to which the customer and other stakeholders are involved with
the project

• the level of autonomy given to the software team
• the degree to which team organization and roles are prescribed

Prescriptive and Agile Process Models

•The prescriptive process models stress detailed definition, identification, and
application of process activates and tasks. Intent is to improve system quality,
make projects more manageable, make delivery dates and costs more
predictable, and guide teams of software engineers as they perform the work
required to build a system.

•Unfortunately, there have been times when these objectives were not achieved.
If prescriptive models are applied dogmatically and without adaptation, they can
increase the level of bureaucracy.

•Agile process models emphasize project “agility” and follow a set of principles
that lead to a more informal approach to software process. It emphasizes
maneuverability and adaptability. It is particularly useful when Web applications
are engineered.

28

Prescriptive and agile process models

Understand the Problem

• Who has a stake in the solution to the problem? That is, who are the

stakeholders?

• What are the unknowns? What data, functions, and features are required to

properly solve the problem?

• Can the problem be compartmentalized? Is it possible to represent smaller
problems that may be easier to understand?

• Can the problem be represented graphically? Can an analysis model be

created?

29

Plan the Solution

• Have you seen similar problems before? Are there patterns that are
recognizable in a potential solution? Is there existing software that implements
the data, functions, and features that are required?

• Has a similar problem been solved? If so, are elements of the solution
reusable?

• Can subproblems be defined? If so, are solutions readily apparent for the
subproblems?

• Can you represent a solution in a manner that leads to effective
implementation? Can a design model be created?rry Out the Plan

• Does the solutions conform to the plan? Is source code traceable to the design

model?

• Is each component part of the solution provably correct? Has the design and

code been reviewed, or better, have correctness proofs been applied to

algorithm?

30

Definition of Software Process

31

• A framework for the activities, actions, and tasks that are required to build

high-quality software.

• SP defines the approach that is taken as software is engineered.

• Is not equal to software engineering, which also encompasses technologies
that populate the process – technical methods and automated tools.

A Generic Process Model

32

A Generic Process Model

• A generic process framework for software engineering defines five framework
activities- communication, planning, modeling, construction, and
deployment.

• In addition, a set of umbrella activities- project tracking and control, risk
management, quality assurance, configuration management, technical
reviews, and others are applied throughout the process.

• Next question is: how the framework activities and the actions and tasks that
occur within each activity are organized with respect to sequence and time?
See the process flow for answer.

33

Process Flow

34

7

1. Linear process flow executes each of the five activities in sequence.

2. An iterative process flow repeats one or more of the activities before
proceeding to the next.

3. An evolutionary process flow executes the activities in a circular manner. Each
circuit leads to a more complete version of the software.

4. A parallel process flow executes one or more activities in parallel with other
activities (modeling for one aspect of the software in parallel with
construction of another aspect of the software.

35

Process Flow

Before you can proceed with the process model, a key question: what actions
are appropriate for a framework activity given the nature of the problem, the
characteristics of the people and the stakeholders?

36

 A task set defines the actual work to be done to accomplish the objectives of a
software engineering action.

 A list of the task to be accomplished

 A list of the work products to be produced

 A list of the quality assurance filters to be applied

Identifying a Task Set

Identifying a Task Set

For example, a small software project requested by one person with simple
requirements, the communication activity might encompass little more than a
phone all with the stakeholder. Therefore, the only necessary action is phone
conversation, the work tasks of this action are:

• Make contact with stakeholder via telephone.

• Discuss requirements and take notes.

• Organize notes into a brief written statement of requirements.

• E-mail to stakeholder for review and approval.

37

Example of a Task Set for Elicitation

The task sets for Requirements gathering action for a simple project may
include:

38

1. Make a list of stakeholders for the project.

2. Invite all stakeholders to an informal meeting.

3. Ask each stakeholder to make a list of features and functions required.

4. Discuss requirements and build a final list.

5. Prioritize requirements.

6. Note areas of uncertainty.

1. Make a list of stakeholders for the project.

2. Interview each stakeholders separately to determine overall wants and needs.

3. Build a preliminary list of functions and features based on stakeholder input.

4. Schedule a series of facilitated application specification meetings.

5. Conduct meetings.

6. Produce informal user scenarios as part of each meeting.

7. Refine user scenarios based on stakeholder feedback.

8. Build a revised list of stakeholder requirements.

9. Use quality function deployment techniques to prioritize requirements.

10. Package requirements so that they can be delivered incrementally.

11. Note constraints and restrictions that will be placed on the system.

12. Discuss methods for validating the system.

Both do the same work with different depth and formality. Choose the task sets that

achieve the goal and still maintain quality and agility.

Example of a Task Set for Elicitation

39

Process Patterns

• A process pattern

• describes a process-related problem that is encountered during software
engineering work,

• identifies the environment in which the problem has been encountered, and

• suggests one or more proven solutions to the problem.

• Stated in more general terms, a process pattern provides you with a template
[Amb98]—a consistent method for describing problem solutions within the
context of the software process.

(defined at different levels of abstraction)

1. Problems and solutions associated with a complete process model (e.g.
prototyping).

2. Problems and solutions associated with a framework activity (e.g. planning)
or

3. an action with a framework activity (e.g. project estimating).

40

Process Pattern Types

• Stage patterns—defines a problem associated with a framework activity for the
process. It includes multiple task patterns as well. For example, Establishing
Communication would incorporate the task pattern Requirements Gathering
and others.

• Task patterns—defines a problem associated with a software engineering
action or work task and relevant to successful software engineering practice

• Phase patterns—define the sequence of framework activities that occur with
the process, even when the overall flow of activities is iterative in nature.
Example includes Sprial Model or Prototyping.

14

41

An Example of Process Pattern

42

• Describes an approach that may be applicable when stakeholders have a general idea of
what must be done but are unsure of specific software requirements.

• Pattern name. Requirement Unclear
• Intent. This pattern describes an approach for building a model that can be assessed

iteratively by stakeholders in an effort to identify or solidify software requirements.

• Type. Phase pattern

• Initial context. Conditions must be met (1) stakeholders have been identified; (2) a
mode of communication between stakeholders and the software team has been
established; (3) the overriding software problem to be solved has been identified by
stakeholders ; (4) an initial understanding of project scope, basic business requirements
and project constraints has been developed.

• Problem. Requirements are hazy or nonexistent. stakeholders are unsure of what they
want.

• Solution. A description of the prototyping process would be presented here.

• Resulting context. A software prototype that identifies basic requirements. (modes of
interaction, computational features, processing functions) is approved by stakeholders.
Following this, 1. This prototype may evolve through a series of increments to become
the production software or 2. the prototype may be discarded.

• Related patterns. CustomerCommunication, IterativeDesign, Iterative Development,

Customer Assessment, Requirement Extraction.

Process Assessment and Improvement

 The existence of a software process is no guarantee that software will be
delivered on time, that it will meet the customer’s needs, or that it will exhibit
the technical characteristics that will lead to long-term quality characteristics.

 A number of different approaches to software process assessment and
improvement have been proposed over the past few decades:

 Standard CMMI Assessment Method for Process Improvement (SCAMPI)—
provides a five-step process assessment model that incorporates five phases:
initiating, diagnosing, establishing, acting, and learning. The SCAMPI method
uses the SEI CMMI as the basis for assessment [SEI00].

 CMM-Based Appraisal for Internal Process Improvement (CBA IPI)— provides
a diagnostic technique for assessing the relative maturity of a software
organization; uses the SEI CMM as the basis for the assessment [Dun01].

43

Process Assessment and Improvement

 SPICE (ISO/IEC15504)—a standard that defines a set of requirements for
software process assessment. The intent of the standard is to assist
organizations in developing an objective evaluation of the efficacy of any
defined software process [ISO08].

 ISO 9001:2000 for Software—a generic standard that applies to any
organization that wants to improve the overall quality of the products,
systems, or services that it provides. Therefore, the standard is directly
applicable to software organizations and companies [Ant06].

44

Prescriptive Models

45

• Prescriptive process models were originally proposed to bring order to chaos.

• Prescriptive process models advocate an orderly approach to software
engineering. However, will some extent of chaos (less rigid) be beneficial to
bring some creativity?

That leads to a few questions …

• If prescriptive process models strive for structure and order (prescribe a set of
process elements and process flow), are they inappropriate for a software world
that thrives on change?

• Yet, if we reject traditional process models (and the order they imply) and
replace them with something less structured, do we make it impossible to
achieve coordination and coherence in software work?

46

Software Process Models

• Classic Process Models

- Waterfall Model (Linear Sequential Model)

• Incremental Process Models

- Incremental Model

• Evolutionary Software Process Models

• Prototyping

• Spiral Model

• Concurrent Development Model

The Waterfall Model

47

Modeling
analysis design Construction

code test

Communication

project initiation

requirement

gathering

Planning

estimating

scheduling

tracking
Deployment
delivery support

feedback

• The waterfall model, sometimes called the classic life cycle.

• It is the oldest paradigm for Software Engineering. When requirements are

well defined and reasonably stable, it leads to a linear fashion

• The waterfall model, sometimes called the classic life cycle, suggests a

systematic,

• sequential approach to software development that begins with customer

specification of requirements and progresses through planning, modeling,

construction, and deployment, culminating in ongoing support of the

completed software.

TheV-Model A variation of waterfall model depicts
the relationship of quality assurance
actions to the actions associated with
communication, modeling and early
code construction activates.

48

Team first moves down the left side of
the V to refine the problem
requirements. Once code is generated,
the team moves up the right side of
the V, performing a series of tests
that validate each of the models
created as the team moved down the
left side.

The V-model provides a way of
visualizing how verification and
validation actions are applied to earlier
engineering work.

The Waterfall Model

The Waterfall Model

The problems that are sometimes encountered when the waterfall model is
applied are:

 Real projects rarely follow the sequential flow that the model proposes.
Although the linear model can accommodate iteration, it does so
indirectly. As a result, changes can cause confusion as the project team
proceeds.

 It is often difficult for the customer to state all requirements explicitly.
The waterfall model requires this and has difficulty accommodating the
natural uncertainty that exists at the beginning of many projects.

 The customer must have patience. A working version of the program(s)
will not be available until late in the project time span. A major blunder, if
undetected until the working program is reviewed, can be disastrous.

49

The Incremental Model

50

Co m m u n i c a t i on

P l a n n i n g

Co n s t ru c t i on

De p l o y m e n t

d e l i v e ry fe e

d b a c k

M o d e l i n g

analysis

design
code

test

increment #1

increment #2

delivery of

1st increment

delivery of

2nd increment

delivery of
nth increment

increment #n

project calendar time

Co m m u n i c a t i on

P l a n n i n g

Co n s t ru c t i on

De p l o y m e nt
d e l i v e ry

fe e d b a c k

M o d e l i n g

analysis

design
code

test

Co m m u n i c a t i on
P l a n n i n g

Co n s t ru c t i on

De p l o y m e n t

d e l i v e ry fe e

d b a c k

M o d e l i n g

analysis

design
code
test

project calendar time

The Incremental Model

51

• When initial requirements are reasonably well defined, but the overall scope of
the development effort precludes a purely linear process. A compelling need to
expand a limited set of new functions to a later system release.

• It combines elements of linear and parallel process flows. Each linear sequence
produces deliverable increments of the software.

• The first increment is often a core product with many supplementary features.
Users use it and evaluate it with more modifications to better meet the needs.

• The incremental process model focuses on the delivery of an operational
product with each increment. Early increments are stripped-down versions of
the final product, but they do provide capability that serves the user and also
provide a platform for evaluation by the user.

• Incremental development is particularly useful when staffing is unavailable for a
complete implementation by the business deadline that has been established
for the project

Evolutionary Models

52

• Software system evolves over time as requirements often change as
development proceeds. Thus, a straight line to a complete end product is
not possible. However, a limited version must be delivered to meet
competitive pressure.

• Usually a set of core product or system requirements is well understood,

but the details and extension have yet to be defined.

• You need a process model that has been explicitly designed to
accommodate a product that evolved over time.

• It is iterative that enables you to develop increasingly more complete
version of the software.

• Two types are introduced, namely Prototyping and Spiral models

Evolutionary Models: Prototyping

53

• When to use: Customer defines a set of general objectives but does not
identify detailed requirements for functions and features. or Developer may
be unsure of the efficiency of an algorithm, the form that human computer
interaction should take.

• What step: Begins with communication by meeting with stakeholders to
define the objective, identify whatever requirements are known, outline
areas where further definition is mandatory. A quick plan for prototyping
and modeling (quick design) occur. Quick design focuses on a representation
of those aspects the software that will be visible to end users. (interface
and output). Design leads to the construction of a prototype which will be
deployed and evaluated. Stakeholder’s comments will be used to refine
requirements.

• Both stakeholders and software engineers like the prototyping paradigm.
Users get a feel for the actual system, and developers get to build
something immediately. However, engineers may make compromises in
order to get a prototype working quickly. The less-than-ideal choice may be
adopted forever after you get used to it.

Evolutionary Models: Prototyping

54

Construction
of prototype

Com m u n ication

Q u ick p lan

Con stru ction

of

prototype

Mo d e lin g

Q u ick d e sig n

Deployment

De live ry

& Fe e dback

communication

Quick
plan

Modeling
Quick design

Construction
of prototype

Deployment
delivery &
feedback

Evolutionary Models: Prototyping

55

Prototyping can be problematic for the following reasons:

• Stakeholders see what appears to be a working version of the software,
unaware that the prototype is held together haphazardly, unaware that
in the rush to get it working you haven’t considered overall software
quality or long-term maintainability.

• As a software engineer, you often make implementation compromises in
order to get a prototype working quickly.

• An inappropriate operating system or programming language may be
used simply because it is available and known;

• An inefficient algorithm may be implemented simply to demonstrate
capability. After a time, you may become comfortable with these choices
and forget all the reasons why they were inappropriate. The less-than-
ideal choice has now become an integral part of the system

Evolutionary Models: The Spiral

56

• It couples the iterative nature of prototyping with the controlled and
systematic aspects of the waterfall model and is a risk-driven process model
generator that is used to guide multi-stakeholder concurrent engineering of
software intensive systems.

• Two main distinguishing features: one is cyclic approach for incrementally
growing a system’s degree of definition and implementation while
decreasing its degree of risk. The other is a set of anchor point milestones
for ensuring stakeholder commitment to feasible and mutually satisfactory
system solutions.

• A series of evolutionary releases are delivered. During the early iterations,
the release might be a model or prototype. During later iterations,
increasingly more complete version of the engineered system are produced.

• The first circuit in the clockwise direction might result in the product
specification; subsequent passes around the spiral might be used to develop
a prototype and then progressively more sophisticated versions of the
software.

• Each pass results in adjustments to the project plan. Cost and

schedule are adjusted based on feedback. Also, the number of

iterations will be adjusted by project manager.

• Good to develop large-scale system as software evolves as the

process progresses and risk should be understood and properly

reacted to. Prototyping is used to reduce risk.

• However, it may be difficult to convince customers that it is

controllable as it demands considerable risk assessment expertise.

57

Evolutionary Models: The Spiral

Evolutionary Models: The Spiral

58

communication

deployment

delivery

feedback

start

modeling
analysis

design

construction
code

test

planning
estimation

scheduling

risk analysis

Concurrent Model

59

• Allow a software team to represent iterative and concurrent elements of any
of the process models. For example, the modeling activity defined for the
spiral model is accomplished by invoking one or more of the following actions:
prototyping, analysis and design.

• The Figure shows modeling may be in any one of the states at any given time.
For example, communication activity has completed its first iteration and in
the awaiting changes state. The modeling activity was in inactive state, now
makes a transition into the under development state. If customer indicates
changes in requirements, the modeling activity moves from the under
development state into the awaiting changes state.

• Concurrent modeling is applicable to all types of software development and
provides an accurate picture of the current state of a project. Rather than
confining software engineering activities, actions and tasks to a sequence of
events, it defines a process network. Each activity, action or task on the
network exists simultaneously with other activities, actions or tasks. Events
generated at one point trigger transitions among28the state.

Concurrent Model

60

Under review

Done

Under revision

Baselined

Awaiting

changes

Under

developmen

t

none

Modeling activity

represents the state

of a software engineering

activity or task

61

SPECIALIZED PROCESS MODELS

• Component-Based Development

• The Formal Methods Model

• Aspect-Oriented Software Development

61

62

SPECIALIZED PROCESS MODELS

Component-Based Development:

Commercial off-the-shelf (COTS) software components, developed by vendors

who offer them as products, provide targeted functionality with well-defined

interfaces that enable the component to be integrated into the software that is

to be built.

These components can be as either conventional software modules or

object-oriented packages or packages of classes

• Steps involved in CBS are

• Available component-based products are researched and

evaluated for the application domain in question.

• Component Integration issues are considered.

• A software architecture is designed to accommodate the

components

• Components are integrated into the architecture

• Comprehensive testing is conducted to ensure proper

functionality

62

63

SPECIALIZED PROCESS MODELS

•Component-Based Development

• Component-based development model leads to software reuse and

reusability helps software engineers with a number of measurable

benefits

• Component-based development leads to a 70 percent reduction in

development cycle time, 84 percent reduction in project cost and

productivity index of 26.2 compared to an industry norm of 16.9

63

The Component Assembly Model

Construction & Release

Risk Analysis

Planning

Customer

Evaluation

Customer

Communication

Identify

candidate

component

Build

components

if unavailable

Put new

components

in library

Extract

components

if available

Construct

nth iteration

of system

Look up

components

in library
Engineering

64

65

Reuse-oriented development

66

SPECIALIZED PROCESS MODELS

Formal Methods Model

• Formal methods model encompasses a set of activities that leads to

formal mathematical specification of computer software

• They enable software engineers to specify, develop and verify a

computer-based system by applying a rigorous mathematical notation

• Development of formal models is quite time consuming and expensive

• Extensive training is needed in applying formal methods

• Difficult to use the model as a communication mechanism for technically

unsophisticated customers

66

67

SPECIALIZED PROCESS MODELS

Aspect-oriented Software Development

• The aspect-oriented approach is based on the principle of identifying

common program code within certain aspects and placing the

common procedures outside the main business logic

• The process of aspect orientation and software

development may include modeling, design, programming, reverse-

engineering and re-engineering;

• The domain of AOSD includes applications, components and

databases;

• Interaction with and integration into other paradigms is carried out

with the help of frameworks, generators,

program languages and architecture-description

languages (ADL).

67

68

Unified Process
• The Unified Process is an iterative and incremental development process.

Unified Process divides the project into four phases

1. Inception 2. Elaboration 3. Construction 4. Transition

• The Inception, Elaboration, Construction and Transition phases are divided
into a series of time boxed iterations. (The Inception phase may also be
divided into iterations for a large project.)

• Each iteration results in an increment, which is a release of the system that
contains added or improved functionality compared with the previous
release.

• Although most iterations will include work in most of the process disciplines
(e.g. Requirements, Design, Implementation, Testing) the relative effort and
emphasis will change over the course of the project.

• Risk Focused

– The Unified Process requires the project team to focus on addressing
the most critical risks early in the project life cycle. The deliverables of
each iteration, especially in the Elaboration phase, must be selected in
order to ensure that the greatest risks are addressed first. Risk Focused

69

Unified Process
• Inception Phase

– Inception is the smallest phase in the project, and ideally it should be
quite short. If the Inception Phase is long then it is usually an indication
of excessive up-front specification, which is contrary to the spirit of the
Unified Process.

– The following are typical goals for the Inception phase.

• Establish a justification or business case for the project

• Establish the project scope and boundary conditions

• Outline the use cases and key requirements that will drive the design
tradeoffs

• Outline one or more candidate architectures

• Identify risks

• Prepare a preliminary project schedule and cost estimate

– The Lifecycle Objective Milestone marks the end of the
Inception phase.

http://en.wikipedia.org/wiki/Business_case
http://en.wikipedia.org/wiki/Business_case
http://en.wikipedia.org/wiki/Business_case
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Risk

70

Unified Process

• Elaboration Phase
– During the Elaboration phase the project team is expected to

capture a majority of the system requirements. The primary goals of

Elaboration are to address known risk factors and to establish and

validate the system architecture.

– Common processes undertaken in this phase include the creation

of use case diagrams, conceptual diagrams (class diagrams with

only basic notation) and package diagrams (architectural diagrams).

– The architecture is validated primarily through the implementation

of an Executable Architectural Baseline. This is a partial

implementation of the system which includes the core, most

architecturally significant, components. It is built in a series of

small, timeboxed iterations.

71

Unified Process

• Elaboration Phase

– By the end of the Elaboration phase the system architecture must
have stabilized and the executable architecture baseline must
demonstrate that the architecture will support the key system
functionality and exhibit the right behavior in terms of performance,
scalability and cost.

– The final Elaboration phase deliverable is a plan (including cost and

schedule estimates) for the Construction phase. At this point the

plan should be accurate and credible, since it should be based on

the Elaboration phase experience and since significant risk factors

should have been addressed during the Elaboration phase.

– The Lifecycle Architecture Milestone marks the end of the

Elaboration phase.

72

Unified Process
• Construction Phase

– Construction is the largest phase in the project. In this phase the
remainder of the system is built on the foundation laid in Elaboration.
System features are implemented in a series of short, timeboxed
iterations. Each iteration results in an executable release of the
software. It is customary to write full text use cases during the
construction phase and each one becomes the start of a new iteration.

– Common UML (Unified Modeling Language) diagrams used during this
phase include Activity, Sequence, Collaboration, State (Transition) and
Interaction Overview diagrams.

– The Initial Operational Capability Milestone marks the end of the
Construction phase.

73

Unified Process

• Transition Phase

– The final project phase is Transition. In this phase the system is

deployed to the target users. Feedback received from an initial

release (or initial releases) may result in further refinements to be

incorporated over the course of several Transition phase iterations.

The Transition phase also includes system conversions and user

training.

– The Product Release Milestone marks the end of the Transition

phase.

Unified Process

74

75

Unified Process

 Advantages of UP Software Development

 This is a complete methodology in itself with an emphasis on accurate
documentation

 It is proactively able to resolve the project risks associated with the
client's evolving requirements requiring careful change request
management

 Less time is required for integration as the process of integration goes
on throughout the software development life cycle.

 The development time required is less due to reuse of components.

http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html

76

Unified Process

 Disadvantages of RUP Software Development
 The team members need to be expert in their field to develop a software

under this methodology.
 On cutting edge projects which utilise new technology, the reuse of

components will not be possible. Hence the time saving one could have
made will be impossible to fulfill.

 Integration throughout the process of software development, in theory
sounds a good thing. But on particularly big projects with multiple
development streams it will only add to the confusion and cause more
issues during the stages of testing

http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html

Unified Process

77

78

Unified Process

 Advantages of UP Software Development

 This is a complete methodology in itself with an emphasis on accurate
documentation

 It is proactively able to resolve the project risks associated with the client's
evolving requirements requiring careful change request management

 Less time is required for integration as the process of integration goes on
throughout the software development life cycle.

 The development time required is less due to reuse of components.

http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/change-request-management.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html
http://www.my-project-management-expert.com/software-development-life-cycle-model.html

79

Unified Process

 Disadvantages of RUP Software Development
 The team members need to be expert in their field to develop a software

under this methodology.
 On cutting edge projects which utilise new technology, the reuse of

components will not be possible. Hence the time saving one could have
made will be impossible to fulfill.

 Integration throughout the process of software development, in theory
sounds a good thing. But on particularly big projects with multiple
development streams it will only add to the confusion and cause more
issues during the stages of testing

http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html
http://www.my-project-management-expert.com/process-of-software-development.html

Personal and Team process models

The best software process is one that is close to the people who will be doing
the work. The PSP model defines five framework activities.

1. Personal Software Process (PSP)

Planning. This activity isolates requirements and develops both size and
resource estimates. In addition, a defect estimate is made. All metrics are
recorded on worksheets or templates. Finally, development tasks are
identified and a project schedule is created.

High-level design. External specifications for each component to be
constructed are developed and a component design is created. Prototypes
are built when uncertainty exists. All issues are recorded and tracked.

High-level design review. Formal verification methods (Chapter 21) are
applied to uncover errors in the design. Metrics are maintained for all
important tasks and work results.

80

Personal and Team process models

 Development. The component-level design is refined and reviewed. Code is
generated, reviewed, compiled, and tested. Metrics are maintained for all
important tasks and work results.

 Postmortem. Using the measures and metrics collected, the effectiveness of the
process is determined. Measures and metrics should provide guidance for
modifying the process to improve its effectiveness.

2. Team Software Process (TSP): The goal of TSP is to build a “self directed” project
team that organizes itself to produce high-quality software. TSP objectives are,

 Build self-directed teams that plan and track their work, establish goals, and
own their processes and plans. These can be pure software teams or
integrated product teams (IPTs) of 3 to about 20 engineers.

 Show managers how to coach and motivate their teams and how to help them
sustain peak performance.

 Accelerate software process improvement by making CMM23 Level 5 behavior
normal and expected.

 Provide improvement guidance to high-maturity organizations.

 Facilitate university teaching of industrial-grade team skills.

81

What is Estimation

There are three parameters involved in computing the total cost of a software
development project:

 Hardware and software costs including maintenance

 Travel and training costs

 Effort costs (the costs of paying software engineers).

The following costs are all part of the total effort cost:

1. Costs of providing, heating and lighting office space

2. Costs of support staff such as accountants, administrators, system managers,
cleaners and technicians

3. Costs of networking and communications

4. Costs of central facilities such as a library or recreational facilities

5. Costs of Social Security and employee benefits such as pensions and health
insurance.

82

Factors affecting software pricing

83

84

Cost Estimation Process

Errors

Effort

Development Time

Size Table

Lines of Code

Number of Use Case

Function Point

Estimation Process

Number of Personnel

85

Function Points

 STEP 1: measure size in terms of the amount of functionality in a system.
Function points are computed by first calculating an unadjusted function
point count (UFC). Counts are made for the following categories

 External inputs – those items provided by the user that describe distinct
application-oriented data (such as file names and menu selections)

 External outputs – those items provided to the user that generate
distinct application-oriented data (such as reports and messages, rather
than the individual components of these)

 External inquiries – interactive inputs requiring a response

- External files – machine-readable interfaces to other systems

- Internal files – logical master files in the system

86

Function Points

 STEP 2: Multiply each number by a weight factor, according to complexity
(simple, average or complex) of the parameter, associated with that
number. The value is given by a table:

• STEP 3: Calculate the total UFP (Unadjusted Function Points)

• STEP 4: Calculate the total TCF (Technical Complexity Factor) by giving a value
between 0 and 5 according to the importance of the following points:

87

Function Points

Technical Complexity Factors:

1. Data Communication

2. Distributed Data Processing

3. Performance Criteria

4. Heavily Utilized Hardware

5. High Transaction Rates

6. Online Data Entry

7. Online Updating

8. End-user Efficiency

9. Complex Computations

10. Reusability

11. Ease of Installation

12. Ease of Operation

13. Portability

14. Maintainability

88

Function Points

 STEP 5: Sum the resulting numbers too obtain DI (degree of influence)

 STEP 6: TCF (Technical Complexity Factor) by given by the formula

 TCF=0.65+0.01*DI

 STEP 6: Function Points are by given by the formula

 FP=UFP*TCF

Relation between LOC and FP

 LOC = Language Factor * FP

 where

○ LOC (Lines of Code)

○ FP (Function Points)

89

Effort Computation
 The Basic COCOMO model computes effort as a function of program size.

The Basic COCOMO equation is:

 E = aKLOC^b

 Effort for three modes of Basic COCOMO.

Mode a b

Organic 2.4 1.05

Semi-

detached

3.0 1.12

Embedded 3.6 1.20

90

Effort Computation

 The intermediate COCOMO model computes effort as a function of
program size and a set of cost drivers. The Intermediate COCOMO
equation is:

 E = aKLOC^b*EAF

 Effort for three modes of intermediate COCOMO.

Mode a b

Organic 3.2 1.05

Semi-

detached

3.0 1.12

Embedded 2.8 1.20

Total EAF = Product of the selected factors

Adjusted value of Effort: Adjusted Person Months:

APM = (Total EAF) * PM

91

Software Development Time

 Development Time Equation Parameter Table:

Development Time, TDEV = C * (APM **D)

Number of Personnel, NP = APM / TDEV

Parameter Organic Semi-

detached

Embedded

C 2.5 2.5 2.5

D 0.38 0.35 0.32

92

Distribution of Effort

A development process typically consists of the following stages:

 Requirements Analysis

 Design (High Level + Detailed)

 Implementation & Coding

 Testing (Unit + Integration)

93

Error Estimation

 Calculate the estimated number of errors in your design, i.e.total errors
found in requirements, specifications, code, user manuals, and bad fixes:

 Adjust the Function Point calculated in step1

AFP = FP ** 1.25

 Use the following table for calculating error estimates

Error Type Error / AFP

Requirements 1

Design 1.25

Implementation 1.75

Documentation 0.6

Due to Bug Fixes 0.4

Estimation

LOC based estimation

 Source lines of code (SLOC), also known as lines of code (LOC), is a software metric used
to measure the size of a computer program by counting the number of lines in the text
of the program's source code.

 SLOC is typically used to predict the amount of effort that will be required to develop a
program, as well as to estimate programming productivity or maintainability once the
software is produced.

 Lines used for commenting the code and header file are ignored.

Two major types of LOC:

1. Physical LOC

 Physical LOC is the count of lines in the text of the program's source code including
comment lines.

 Blank lines are also included unless the lines of code in a section consists of more than
25% blank lines.

2. Logical LOC

 Logical LOC attempts to measure the number of executable statements, but their
specific definitions are tied to specific computer languages.

 Ex: Logical LOC measure for C-like programming languages is the number of statement-
terminating semicolons(;) 94

Estimation

LOC‐based Estimation
The problems of lines of code (LOC)

• Different languages lead to different lengths of code
• It is not clear how to count lines of code
• A report, screen, or GUI generator can generate thousands of lines of code in

minutes
• Depending on the application, the complexity of code is different.

95

What is estimation?

 Estimation is attempt to determine how much money, effort, resources &

time it will take to build a specific software based system or project.

 Estimation involves answering the following questions:

1. How much effort is required to complete each activity?

2. How much calendar time is needed to complete each activity?

3. What is the total cost of each activity?

 Project cost estimation and project scheduling are normally carried out

together.

 The costs of development are primarily the costs of the effort involved,

so the effort computation is used in both the cost and the schedule

estimate.

 Do some cost estimation before detailed schedules are drawn up.

 These initial estimates may be used to establish a budget for the project

or to set a price for the software for a customer

96

97

COCOMO Models Motivation

The software cost estimation provides:

 The vital link between the general concepts and techniques of economic
analysis and the particular world of software engineering.

 Software cost estimation techniques also provides an essential part of the
foundation for good software management.

Cost of a project

 The cost in a project is due to:

 due the requirements for software, hardware and human resources

 the cost of software development is due to the human resources
needed

 most cost estimates are measured in person-months (PM)

 the cost of the project depends on the nature and
characteristics of the project, at any point, the accuracy of the
estimate will depend on the amount of reliable information we
have about the final product.

98

Software Cost Estimation

99

Introduction to COCOMO models
 The Constructive Cost Model (COCOMO) is the most widely used software

estimation model in the world.

 The COCOMO model predicts the effort and duration of a project based

on inputs relating to the size of the resulting systems and a number of

"cost drives" that affect productivity.

Effort

 Effort Equation

 PM = C * (KDSI)n (person-months)

○ where PM = number of person-month (=152 working hours),

○ C = a constant,

○ KDSI = thousands of "delivered source instructions" (DSI) and

○ n = a constant.

100

Introduction to COCOMO models

 Productivity equation

 (DSI) / (PM)

○ where PM = number of person-month (=152 working hours),

○ DSI = "delivered source instructions“

 Schedule equation

 TDEV = C * (PM)n (months)

○ where TDEV = number of months estimated for software

development.

 Average Staffing Equation

 (PM) / (TDEV) (FSP)

○ where FSP means Full-time-equivalent Software Personnel.

101

COCOMO Models

 COCOMO is defined in terms of three different models:

 the Basic model,

 the Intermediate model, and

 the Detailed model.

 The more complex models account for more factors that influence

software projects, and make more accurate estimates.

102

The Development mode

 The most important factors contributing to a project's duration and

cost is the Development Mode

○ Organic Mode: The project is developed in a familiar, stable

environment, and the product is similar to previously

developed products. The product is relatively small, and

requires little innovation.

○ Semidetached Mode: The project's characteristics are

intermediate between Organic and Embedded.

○ Embedded Mode: The project is characterized by tight,

inflexible constraints and interface requirements. An

embedded mode project will require a great deal of innovation.

103

Modes

Feature

Organic Semidetached Embedded

Organizational
understanding of
product and
objectives

Thorough

Considerable

General

Experience in
working with
related software
systems

Extensive

Considerable

Moderate

Need for
software
conformance
with pre-
established
requirements

Basic

Considerable

Full

Need for
software
conformance
with external
interface
specifications

Basic

Considerable

Full

104

Modes

Feature

Organic Semidetached Embedded

Concurrent
development of
associated new
hardware and
operational
procedures

Some

Moderate

Extensive

Need for
innovative data
processing
architectures,
algorithms

Minimal

Some

Considerable

Premium on
early completion

Low

Medium

High

Product size
range

<50 KDSI

<300KDSI

All

What is PROJECT SCHEDULING?

 In the late 1960s, a bright-eyed young engineer was chosen to “write” a
computer program for an automated manufacturing application. The
reason for his selection was simple. He was the only person in his
technical group who had attended a computer programming seminar. He
knew the ins and outs of assembly language and FORTRAN but nothing
about software engineering and even less about project scheduling and
tracking. His boss gave him the appropriate manuals and a verbal
description of what had to be done. He was informed that the project
must be completed in two months. He read the manuals, considered his
approach, and began writing code. After two weeks, the boss called him
into his office and asked how things were going. “Really great,” said the
young engineer with youthful enthusiasm. “This was much simpler than I
thought. I’m probably close to 75 percent finished.”

105

What is PROJECT SCHEDULING?

 The boss smiled and encouraged the young engineer to keep up the good
work. They planned to meet again in a week’s time. A week later the boss
called the engineer into his office and asked, “Where arewe?”
“Everything’s going well,” said the youngster, “but I’ve run into a few
small snags. I’ll get them ironed out and be back on track soon.” “How
does the deadline look?” the boss asked. “No problem,” said the
engineer. “I’m close to 90 percent complete.” If you’ve been working in
the software world for more than a few years, you can finish the story.
It’ll come as no surprise that the young engineer1 stayed 90 percent
complete for the entire project duration and finished (with the help of
others) only one month late. This story has been repeated tens of
thousands of times by software developers during the past five decades.
The big question is why?

106

What is PROJECT SCHEDULING?

 The boss smiled and encouraged the young engineer to keep up the good
work. They planned to meet again in a week’s time. A week later the boss
called the engineer into his office and asked, “Where arewe?”
“Everything’s going well,” said the youngster, “but I’ve run into a few small
snags. I’ll get them ironed out and be back on track soon.” “How does the
deadline look?” the boss asked. “No problem,” said the engineer. “I’m close
to 90 percent complete.” If you’ve been working in the software world for
more than a few years, you can finish the story. It’ll come as no surprise
that the young engineer1 stayed 90 percent complete for the entire project
duration and finished (with the help of others) only one month late. This
story has been repeated tens of thousands of times by software developers
during the past five decades. The big question is why?

107

What is PROJECT SCHEDULING?

 Why it’s Important?
 In order to build a complex system, many software engineering tasks

occur in parallel.
 The result of work performed during one task may have a profound

effect on work to be conducted in another task.
 These interdependencies are very difficult to understand without a

schedule.
 lt’s also virtually impossible to assess progress on a moderate or large

software project without a detailed schedule

 What are the steps?
 The software engineering tasks dictated by the software process

model are refined for the functionality to be built.

 Effort and duration are allocated to each task and a task network
(also called an “activity network”) is created in a manner that enables
the software team to meet the delivery deadline established.

108

What is PROJECT SCHEDULING?

Basic Concept of Project Scheduling

 An unrealistic deadline established by someone outside the software
development group and forced on managers and practitioner's within the
group.

 Changing customer requirements that are not reflected in schedule changes.

 An honest underestimate of the amount of effort and/or the number of
resources that will be required to do the job.

 Predictable and/or unpredictable risks that were not considered when the
project commenced.

 Technical difficulties that could not have been foreseen in advance.

 Why should we do when the management demands that we make a dead line
I impossible?
 Perform a detailed estimate using historical data from past projects.

 Determine the estimated effort and duration for the project.

 Using an incremental process model, develop a software engineering
strategy that will deliver critical functionality by the imposed deadline, but
delay other functionality until later. Document the plan.

 Meet with the customer and (using the detailed estimate), explain why the
imposed deadline is unrealistic.

109

Project Scheduling

Project Scheduling

• Basic Principles

• The Relationship Between People and Effort

• Effort Distribution

• Software project scheduling is an action that distributes estimated effort
across the planned project duration by allocating the effort to specific
software engineering tasks.

• During early stages of project planning, a macroscopic schedule is
developed.

• As the project gets under way, each entry on the macroscopic schedule is
refined into a detailed schedule.

110

Project Scheduling

Basic Principles of Project Scheduling.

1. Compartmentalization: The project must be compartmentalized into a
number of manageable activities and tasks. To accomplish
compartmentalization, both the product and the process are refined.

2. Interdependency: The interdependency of each compartmentalized activity
or task must be determined. Some tasks must occur in sequence, while
others can occur in parallel. Other activities can occur independently.

3. Time allocation: Each task to be scheduled must be allocated some number
of work units (e.g., person‐days of effort). In addition, each task must be
assigned a start date and a completion date. whether work will be conducted
on a full-time or part-time basis.

4. Effort validation: Every project has a defined number of people on the
software team. The project manager must ensure that no more than the
allocated number of people have been scheduled at any given time.

5. Defined responsibilities. Every task that is scheduled should be assigned to a
specific team member.

111

Project Scheduling

6. Defined outcomes: Every task that is scheduled should have a defined
outcome. For software projects, the outcome is normally a work product
(e.g., the design of a component) or a part of a work product. Work
products are often combined in deliverables.

7. Defined milestones: Every task or group of tasks should be associated
with a project milestone. A milestone is accomplished when one or more
work products has been reviewed for quality and has been approved.

Each of these principles is applied as the project schedule evolves.

112

Project Scheduling

The Relationship Between People and Effort

• In a small software development project a single person can analyze
requirements, perform design, generate code, and conduct tests. As the size
of a project increases, more people must become involved.

• There is a common myth that is still believed by many managers who are
responsible for software development projects: “If we fall behind schedule,
we can always add more programmers and catch up later in the project.”

• Unfortunately, adding people late in a project often has a disruptive effect on
the project, causing schedules to slip even further. The people who are added
must learn the system, and the people who teach them are the same people
who were doing the work.

• While teaching, no work is done, and the project falls further behind. In
addition to the time it takes to learn the system, more people.

• Although communication is absolutely essential to successful software
development, every new communication path requires additional effort and
therefore additional time.

113

Project Scheduling

Effort Distribution

• A recommended distribution of effort across the software process is often referred to as the
40–20–40 rule.

• Forty percent of all effort is allocated to frontend analysis and design. A similar percentage is
applied to back-end testing. You can correctly infer that coding (20 percent of effort) is
deemphasized.

• Work expended on project planning rarely accounts for more than 2 to 3 percent of effort,
unless the plan commits an organization to large expenditures with high risk.

• Customer communication and requirements analysis may comprise 10 to 25 percent of
project effort.

• Effort expended on analysis or prototyping should increase in direct proportion with project
size and complexity.

• A range of 20 to 25 percent of effort is normally applied to software design. Time expended
for design review and subsequent iteration must also be considered.

• Because of the effort applied to software design, code should follow with relatively little
difficulty.

• A range of 15 to 20 percent of overall effort can be achieved. Testing and subsequent
debugging can account for 30 to 40 percent of software development effort.

• The criticality of the software often dictates the amount of testing that is required. If
software is human rated (i.e., software failure can result in loss of life), even higher
percentages are typical. 114

Scheduling

 Scheduling of a software project does not differ greatly from scheduling of
any multitask engineering effort. Therefore, generalized project scheduling
tools and techniques can be applied with little modification for software
projects.

 Program evaluation and review technique (PERT) and the critical path
method (CPM) are two project scheduling methods that can be applied to
software development.

1. Time-Line Charts:

When creating a software project schedule, begin with a set of tasks.

 If automated tools are used, the work breakdown is input as a task network
or task outline. Effort, duration, and start date are then input for each task.
In addition, tasks may be assigned to specific individuals.

 As a consequence of this input, a time-line chart, also called a Gantt chart,
is generated.

 A time-line chart can be developed for the entire project. Alternatively,
separate charts can be developed for each project function or for each
individual working on the project.

115

Scheduling

 All project tasks (for concept scoping) are listed in the left hand column.
The horizontal bars indicate the duration of each task. When multiple bars
occur at the same time on the calendar, task concurrency is implied. The
diamonds indicate milestones.

 Once the information necessary for the generation of a time-line chart has
been input, the majority of software project scheduling tools produce
project tables. —a tabular listing of all project tasks, their planned and
actual start and end dates, and a variety of related information. Used in
conjunction with the time-line chart, project tables enable you to track
progress.

116

Scheduling

2. Tracking the Schedule

 If it has been properly developed, the project schedule becomes a road
map that defines the tasks and milestones to be tracked and controlled as
the project proceeds.

 Tracking can be accomplished in a number of different ways:

 Conducting periodic project status meetings in which each team member
reports progress and problems.

 Evaluating the results of all reviews conducted throughout the software
engineering process.

 Determining whether formal project milestones have been accomplished
by the scheduled date.

 Comparing the actual start date to the planned start date for each project
task listed in the resource table.

 Meeting informally with practitioners to obtain their subjective assessment
of progress to date and problems on the horizon.

 Using earned value analysis to assess progress quantitatively.

In reality, all of these tracking techniques are used by experienced project
managers.

117

Scheduling

3. Tracking Progress for an OO Project

Technical milestone: OO analysis complete

o All hierarchy classes defined and reviewed

o Class attributes and operations are defined and reviewed

o Class relationships defined and reviewed

o Behavioral model defined and reviewed

o Reusable classed identified

Technical milestone: OO design complete

o Subsystems defined and reviewed

o Classes allocated to subsystems and reviewed

o Task allocation has been established and reviewed

o Responsibilities and collaborations have been identified

o Attributes and operations have been designed and reviewed

o Communication model has been created and reviewed

118

Scheduling

 Technical milestone: OO programming complete

o Each new design model class has been implemented

o Classes extracted from the reuse library have been implemented

o Prototype or increment has been built

 Technical milestone: OO testing

o The correctness and completeness of the OOA and OOD models has
been reviewed

o Class-responsibility-collaboration network has been developed and
reviewed

o Test cases are designed and class-level tests have been conducted for
each class

o Test cases are designed, cluster testing is completed, and classes have
been integrated

o System level tests are complete

119

Scheduling

Scheduling for WebApp Projects

 WebApp project scheduling distributes estimated effort across the planned
time line (duration) for building each WebApp increment.

 This is accomplished by allocating the effort to specific tasks.

 The overall WebApp schedule evolves over time.

 During the first iteration, a macroscopic schedule is developed.

 This type of schedule identifies all WebApp increments and projects the
dates on which each will be deployed.

 As the development of an increment gets under way, the entry for the
increment on the macroscopic schedule is refined into a detailed schedule.

 Here, specific development tasks (required to accomplish an activity) are
identified and scheduled.

120

EARNED VALUE ANALYSIS

• It is reasonable to ask whether there is a quantitative technique for assessing
progress as the software team progresses through the work tasks allocated to
the project schedule.

• A Technique for performing quantitative analysis of progress does exist. It is
called earned value analysis (EVA).

To determine the earned value, the following steps are performed:

 The budgeted cost of work scheduled (BCWS) is determined for each work task
represented in the schedule. During estimation, the work (in person-hours or
person-days) of each software engineering task is planned. Hence, BCWSi is the
effort planned for work task i. To determine progress at a given point along the
project schedule, the value of BCWS is the sum of the BCWSi values for all work
tasks that should have been completed by that point in time on the project
schedule.

 The BCWS values for all work tasks are summed to derive the budget at
completion (BAC). Hence, BAC (BCWSk) for all tasks k

 Next, the value for budgeted cost of work performed (BCWP) is computed. The
value for BCWP is the sum of the BCWS values for all work tasks that have
actually been completed by a point in time on the project schedule.

121

EARNED VALUE ANALYSIS

• Given values for BCWS, BAC, and BCWP, important progress indicators
can be computed:

 Schedule performance index, SPI = BCWP / BCWS

 Schedule variance, SV = BCWP – BCWS

• SPI is an indication of the efficiency with which the project is utilizing
scheduled resources. An SPI value close to 1.0 indicates efficient
execution of the project schedule. SV is simply an absolute indication of
variance from the planned schedule.

• Percent scheduled for completion = BCWS / BAC

 provides an indication of the percentage of work that should have been
completed by time t.

• Percent complete = BCWP / BAC

 provides a quantitative indication of the percent of completeness of the
project at a given point in time t. It is also possible to compute the actual
cost of work performed (ACWP). The value for ACWP is the sum of the
effort actually expended on work tasks that have been completed by a
point in time on the project schedule. It is then possible to compute

122

EARNED VALUE ANALYSIS

Cost performance index, CPI = BCWP /ACWP

Cost variance, CV = BCWP - ACWP

 A CPI value close to 1.0 provides a strong indication that the

project is within its defined budget. CV is an absolute indication

of cost savings (against planned costs) or shortfall at a particular

stage of a project.

123

Risk Management

• A Hazard is

 Any real or potential condition that can cause injury, illness, or death to
personnel; damage to or loss of a system, equipment or property; or
damage to the environment. Simpler A threat of harm. A hazard can lead
to one or several consequences.

• Risk is

 The expectation of a loss or damage (consequence)

 The combined severity and probability of a loss

 The long term rate of loss

 A potential problem (leading to a loss) that may - or may not occur in the
future.

• Risk Management is A set of practices and support tools to identify, analyze, and
treat risks explicitly.

• Treating a risk means understanding it better, avoiding or reducing it (risk
mitigation), or preparing for the risk to materialize.

• Risk management tries to reduce the probability of a risk to occur and the
impact (loss) caused by risks.



124

Risk Management

• Reactive versus Proactive Risk Strategies

• Software risks

Reactive versus Proactive Risk Strategies

• The majority of software teams rely solely on reactive risk strategies. At best,
a reactive strategy monitors the project for likely risks. Resources are set
aside to deal with them, should they become actual problems.

• The software team does nothing about risks until something goes wrong.
Then, the team flies into action in an attempt to correct the problem rapidly.
This is often called a fire-fighting mode.

• A considerably more intelligent strategy for risk management is to be
proactive.

• A proactive strategy begins long before technical work is initiated. Potential
risks are identified, their probability and impact are assessed, and they are
ranked by importance. Then,

• The software team establishes a plan for managing risk. The primary
objective is to avoid risk, but because not all risks can be avoided, the team
works to develop a contingency plan that will enable it to respond in a
controlled and effective manner.

125

Software Risks

Risk always involves two characteristics:

• Risk always involves two characteristics: uncertainty—the risk may or may not
happen; that is, there are no 100 percent probable risks—and loss—if the risk
becomes a reality, unwanted consequences or losses will occur.

• When risks are analyzed, it is important to quantify the level of uncertainty and
the degree of loss associated with each risk.

• Different categories of risks are follows:

1. Project risks

 Threaten the project plan. That is, if project risks become real, it is likely
that the project schedule will slip and that costs will increase.

 Project risks identify potential budgetary, schedule, personnel (staffing and
organization), resource, stakeholder, and requirements problems and their
impact on a software project.

126

Software Risks

2. Technical risks

 Threaten the quality and timeliness of the software to be produced.

 If a technical risk becomes a reality, implementation may become difficult or
impossible. Technical risks identify potential design, implementation, interface,
verification, and maintenance problems.

 In addition, specification ambiguity, technical uncertainty, technical obsolescence,
and “leading-edge” technology are also risk factors. Technical risks occur because
the problem is harder to solve than you thought it would be.

3. Business risks

 Business risks threaten the viability of the software to be built and often jeopardize
the project or the product.

 Candidates for the top five business risks are

(1) building an excellent product or system that no one really wants (market risk)

(2) building a product that no longer fits into the overall business strategy for the
company (strategic risk)

(3) building a product that the sales force doesn’t understand how to sell (sales
risk)

(4) losing the support of senior management due to a change in focus or a
change in people (management risk)

(5) losing budgetary or personnel commitment (budget risks).

127

Software Risks

Another general categorization of risks has been proposed by Charette.

1. Known risks are those that can be uncovered after careful evaluation of the
project plan, the business and technical environment in which the project is
being developed, and other reliable information sources (e.g., unrealistic
delivery date, lack of documented requirements or software scope, poor
development environment).

2. Predictable risks are extrapolated from past project experience (e.g., staff
turnover, poor communication with the customer, dilution of staff effort as
ongoing maintenance requests are serviced).

3. Unpredictable risks are the joker in the deck. They can and do occur, but they
are extremely difficult to identify in advance.

128

MODULE-II

REQUIREMENT ANALYSIS AND SPECIFICATION

129

Contents

Requirement Analysis and Specification:

 Software requirements:

 Functional and nonfunctional

 User requirements

 System requirements

 Software requirements document

Requirement engineering process:

 Feasibility studies

 Requirements elicitation and analysis

 Requirements validation, requirements management; Classical analysis:
Structured system analysis, petri nets, data dictionary.

130

131

SOFTWARE REQUIREMENTS

IEEE defines Requirement as :
1. A condition or capability needed by a user to solve a problem or achieve an

objective
2. A condition or capability that must be met or possessed by a system or a

system component to satisfy contract, standard, specification or formally
imposed document

3. A documented representation of a condition or capability as in 1 or 2

• Requirements may range from a high-level abstract statement of a service or
of a system constraint to a detailed mathematical functional specification.

• Requirements may serve a dual function

– May be the basis for a bid for a contract - therefore must be open to
interpretation

– May be the basis for the contract itself - therefore must be defined in
detail

132

132

“If a company wishes to let a contract for a large software development
project, it must define its needs in a sufficiently abstract way that a solution
is not pre-defined. The requirements must be written so that several
contractors can bid for the contract, offering, perhaps, different ways of
meeting the client organisation’s needs. Once a contract has been awarded,
the contractor must write a system definition for the client in more detail so
that the client understands and can validate what the software will do. Both
of these documents may be called the requirements document for the
system.”

SOFTWARE REQUIREMENTS

SOFTWARE REQUIREMENTS

FUNCTIONAL REQUIREMENTS

• Statements of services the system should provide, how the system should
react to particular inputs and how the system should behave in particular
situations.

• A functional requirement defines a function of a software system or its
component.

• A function is described as a set of inputs, the behavior, and outputs.

• Functional requirements may be calculations, technical details, data
manipulation and processing and other specific functionality that define
what a system is supposed to accomplish.

• Behavioral requirements describing all the cases where the system uses the
functional requirements are captured in use cases

• Functional requirements drive the application architecture of a system

• The plan for implementing functional requirements is detailed in the system
design

133

SOFTWARE REQUIREMENTS

NON FUNCTIONAL REQUIREMENTS

• A non-functional requirement is a requirement that specifies criteria that
can be used to judge the operation of a system, rather than specific
behaviors

• The plan for implementing non-functional requirements is detailed in the
system architecture.

• Non-functional requirements are often called qualities of a system. Other
terms for non-functional requirements are "constraints", "quality
attributes", "quality goals", "quality of service requirements" and "non-
behavioral requirements

• These define system properties and constraints e.g. reliability, response
time and storage requirements. Constraints are I/O device capability,
system representations, etc.

• Process requirements may also be specified mandating a particular CASE
system, programming language or development method.

• Non-functional requirements may be more critical than functional
requirements. If these are not met, the system may become useless.

134

135

SOFTWARE REQUIREMENTS

NON FUNCTIONAL REQUIREMENTS

• These define system properties and constraints e.g. reliability, response
time and storage requirements. Constraints are I/O device capability,
system representations, etc.

• Process requirements may also be specified mandating a particular CASE
system, programming language or development method.

• Non-functional requirements may be more critical than functional
requirements. If these are not met, the system is useless.

136

Non-functional Requirements classifications

• Product requirements

– Requirements which specify that the delivered product must behave
in a particular way e.g. execution speed, reliability, etc.

• Organisational requirements

– Requirements which are a consequence of organisational policies and
procedures e.g. process standards used, implementation
requirements, etc.

• External requirements

– Requirements which arise from factors which are external to the
system and its development process e.g. interoperability
requirements, legislative requirements, etc.

SOFTWARE REQUIREMENTS

137

Perfor manc e

requir ements

Space

requir ements

Usa bility

requir ements

Efficiency

requir ements

Relia bility

requir ements

Porta bility

requir ements

Inter ope r a bility

requir ements

Ethical

requir ements

Leg isla tive

requir ements

Implementa tion

requir ements

Standar ds

requir ements

Deli very

requir ements

Safety

requir ements

Pri vacy

requir ements

Product

requir ements

Organisational

requir ements

External

requir ements

Non-functional

requir ements

Non-functional requirement types

SOFTWARE REQUIREMENTS

138

Non – functional requirements examples

• Product requirement

The user interface for the system shall be implemented as simple HTML
without frames or Java applets.

• Organisational requirement

The system development process and deliverable documents shall conform
to the process and deliverables defined in XYZCo-SP-STAN-95.

• External requirement

The system shall not disclose any personal information about customers
apart from their name and reference number to the operators of the
system.

SOFTWARE REQUIREMENTS

139

Non-Functional Requirements measures

Property Measure

Speed Processed transactions/second

User/Event response time

Screen refresh time

Size M Bytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

SOFTWARE REQUIREMENTS

USER REQUIREMENTS AND SYSTEM REQUIREMENTS

Business Requirements

 A high-level business objective of the organization that builds a product
or of a customer who procures it

 Generally stated by the business owner or sponsor of the project

 Example: A system is needed to track the attendance of employees

 A system is needed to account the inventory of the organization

140

Business Requirements

Contents of Business Requirements:

 Purpose, Inscope, Out of Scope, Targeted Audiences

 Use Case diagrams

 Data Requirements

 Non Functional Requirements

 Interface Requirements

 Limitations

 Risks

 Assumptions

 Reporting Requirements

 Checklists

141

USER REQUIREMENTS AND SYSTEM
REQUIREMENTS
User requirements

 A user requirement refers to a function that the user requires a system to
perform.

 Made through statements in natural language and diagrams of the
services the system provides and its operational constraints. Written for
customers.

 User requirements are set by client and confirmed before system
development.

 For example, in a system for a bank the user may require a function to
calculate interest over a set time period.

142

USER REQUIREMENTS AND SYSTEM
REQUIREMENTS

System Requirements

 A system requirement is a more technical requirement, often relating to
hardware or software required for a system to function.

 System requirements may be something like - "The system must run on
a server with IIS

 System requirements may also include validation requirements such as
"File upload is limited to .xls format

 System requirements are more commonly used by developers throughout
the development life cycle. The client will usually have less interest in
these lower level requirements.

 A structured document setting out detailed descriptions of the system’s
functions, services and operational constraints.

143

144

The Software Requirements Specifications (SRS)
Document

• The requirements document is the official statement of what is required
of the system developers.

• Should include both a definition of user requirements and a specification
of the system requirements.

• It is NOT a design document. As far as possible, it should set of WHAT the
system should do rather than HOW it should do it.

145

Users of a requirements document

146

Purpose of SRS

• Communication between the Customer, Analyst, System

Developers, Maintainers

• Firm foundation for the design phase

• Support system testing activities

• Support project management and control

• Controlling the evolution of the system

146

• Communication between the Customer, Analyst, System Developers,
Maintainers

• Firm foundation for the design phase

• Support system testing activities

• Support project management and control

• Controlling the evolution of the system

147

IEEE Requirements Standard

1.Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. General description

2.1 Product perspective

2.2 Product function summary

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

147

148

IEEE Requirements Standard
3. Specific Requirements

- Functional requirements

- External interface requirements

- Performance requirements

- Design constraints

- Attributes

eg.security, availability, maintainability,

transferability/conversion

- Other requirements

• Appendices

• Index

148

149

Suggested SRS Document Structure
• Preface

– Should define the expected readership of the document and describe its
version history, including a rationale for the creation of a new version and a
summary of the changes made in each version

• Introduction

– This should describe the for the system. It should briefly describe its
functions and explain how it will work with other. It should describe how it
will with other systems. It should describe how the system fits into the
overall business or strategic objectives of the organization commissioning
the software

• Glossary

– This should define the technical terms used in the document. Should not
make assumptions about the experience or expertise of the reader

149

150

Suggested SRS Document Structure

• User Requirements Definition
– The services provided for the user and the non-functional system

requirements should be described in this section. This description may use
natural language, diagrams or other notations that are understandable by
customers. Product and process standards which must be followed should
be specified

• System Architecture
– This chapter should present a high-level overview of the anticipated

system architecture showing the distribution of functions across modules.
Architectural components that re reused should be highlighted

• System Requirements Specification
– This should describe the functional and non-functional requirements in

more detail. If necessary, further detail may also be added to the non-
functional requirements e.g. interfaces to other systems may be defined

150

151

Suggested SRS Document Structure

• System Models

– This should set out one or more system models showing the
relationships between the system components and the system and its
environment. These might be object models and data-flow models

• System Evolution

– This should describe the fundamental assumptions on which the
system is based and anticipated changes due to hardware evolution,
changing user needs etc

• Appendices

– These should provide detailed, specific information which is related to
the application which is being developed. E.g. Appendices that may
include hardware and database descriptions.

• Index

– Several indexes to the document may be included

151

152

Requirements Engineering Processes

• A customer says “ I know you think you understand what I said, but what you
don’t understand is what I said is not what I mean”

• Requirement engineering helps software engineers to better understand the
problem to solve.

• It is carried out by software engineers (analysts) and other project
stakeholders

• It is important to understand what the customer wants before one begins to
design and build a computer based system

• Work products include user scenarios, functions and feature lists, analysis
models

Requirements Engineering Processes

• Requirements engineering (RE) is a systems and software engineering
process which covers all of the activities involved in discovering,
documenting and maintaining a set of requirements for a computer-based
system

• The processes used for RE vary widely depending on the application
domain, the people involved and the organisation developing the
requirements.

• Activities within the RE process may include:

– Requirements elicitation - discovering requirements from system
stakeholders

– Requirements Analysis and negotiation - checking requirements and
resolving stakeholder conflicts

153

Requirements Engineering Processes

• Requirements engineering (RE) is a systems and software engineering
process which covers all of the activities involved in discovering,
documenting and maintaining a set of requirements for a computer-based
system

• The processes used for RE vary widely depending on the application
domain, the people involved and the organisation developing the
requirements.

• Activities within the RE process may include:

– Requirements elicitation - discovering requirements from system
stakeholders

– Requirements Analysis and negotiation - checking requirements and
resolving stakeholder conflicts

154

155

Requirements Engineering Processes

Requirements Elicitation Requirements Analysis

Requirements Specification Requirements Verification

Requirements Management

Requirements Engineering

156

Requirements Engineering Process

Feasibility

study

Requirements

elicitation and

analysis
Requirements

specification

Requirements

validation
Feasibility

report

System

models

User and system
requirements

Requirements

document

156

Requirements Engineering Process

157

Requirements

specification

Requirements

validation

Requirements
elicitation

System requirements

specification and
modeling

System

requirements
elicitation

User requirements
specification

User
requ irements

elicitation

Business requirements
specification

Prototyping

Feasibility

study

Reviews

System requirements

document

Feasibility studies

 The purpose of feasibility study is not to solve the problem, but to
determine whether the problem is worth solving.

 A feasibility study decides whether or not the proposed system is
worthwhile.

 The feasibility study concentrates on the following area.

 Operational Feasibility

 Technical Feasibility

 Economic Feasibility

 A short focused study that checks

 If the system contributes to organisational objectives;

 If the system can be engineered using current technology and within
budget;

 If the system can be integrated with other systems that are used.

158

Feasibility Study Implementation

• Based on information assessment (what is required), information
collection and report writing.

• Questions for people in the organisation

– What if the system wasn’t implemented?

– What are current process problems?

– How will the proposed system help?

– What will be the integration problems?

– Is new technology needed? What skills?

– What facilities must be supported by the proposed system?

159

Feasibility study implementation

• Based on information assessment (what is required), information
collection and report writing.

• Questions for people in the organisation

– What if the system wasn’t implemented?

– What are current process problems?

– How will the proposed system help?

– What will be the integration problems?

– Is new technology needed? What skills?

– What facilities must be supported by the proposed system?

160

Requirements Analysis

• Requirements analysis in systems engineering and software engineering,
encompasses those tasks that go into determining the needs or conditions
to meet for a new or altered product, taking account of the possibly
conflicting requirements of the various stakeholders, such as beneficiaries
or users.

• Requirements analysis is critical to the success of a systems or software
project. The requirements should be documented, actionable,
measurable, testable, traceable, related to identified business needs or
opportunities, and defined to a level of detail sufficient for system design.

161

Requirement Analysis

Requirements analysis includes three types of activities

– Eliciting requirements: The task of identifying the various types of
requirements from various sources including project documentation,
(e.g. the project charter or definition), business process
documentation, and stakeholder interviews. This is sometimes also
called requirements gathering.

– Analyzing requirements: determining whether the stated
requirements are clear, complete, consistent and unambiguous, and
resolving any apparent conflicts.

– Recording requirements: Requirements may be documented in various
forms, usually including a summary list and may include natural-
language documents, use cases, user stories, or process specifications.

162

Problems of Requirements Analysis

• Stakeholders don’t know what they really want.

• Stakeholders express requirements in their own terms.

• Different stakeholders may have conflicting requirements.

• Organisational and political factors may influence the system
requirements.

• The requirements change during the analysis process. New stakeholders
may emerge and the business environment change.

163

Requirement Elicitation

• Requirements elicitation is the practice of collecting the requirements of a
system from users, customers and other stakeholders. Sometimes called
Requirements Discovery

• Requirements elicitation is important because one can never be sure to
get all requirements from the user and customer by just asking them what
the system should do

• Requirements elicitation practices include interviews, questionnaires, user
observation, workshops, brain storming, use cases, role playing and
prototyping.

• Before requirements can be analyzed, modeled, or specified they must be
gathered through an elicitation process.

• Requirements elicitation is a part of the requirements engineering
process, usually followed by analysis and specification of the
requirements.

164

Requirements discovery

• The process of gathering information about the proposed and existing
systems and distilling(complete separation) the user and system
requirements from this information.

• Sources of information include documentation, system stakeholders and
the specifications of similar systems.

Stakeholder Identification

– Stakeholders (SH) are people or organizations (legal entities such as
companies, standards bodies) that have a valid interest in the system.
They may be affected by it either directly or indirectly

– Stakeholders are not limited to the organization employing the
analyst. Other stakeholders will include:

• Anyone who operates the system (normal and maintenance
operators)

• Anyone who benefits from the system (functional, political,
financial and social beneficiaries)

165

Requirements discovery

– Other stakeholders will include:

• Anyone involved in purchasing or procuring the system. In a mass-
market product organization, product management, marketing
and sometimes sales act as surrogate consumers (mass-market
customers) to guide development of the product

• Organizations which regulate aspects of the system (financial,
safety, and other regulators)

• People or organizations opposed to the system (negative
stakeholders

• Organizations responsible for systems which interface with the
system under design

166

Requirements Discovery

• E.g. ATM stakeholders
– Bank customers

– Representatives of other banks

– Bank managers

– Counter staff

– Database administrators

– Security managers

– Marketing department

– Hardware and software maintenance engineers

– Banking regulators

167

• Viewpoints are a way of structuring the requirements to represent the
perspectives of different stakeholders. Stakeholders may be classified
under different viewpoints.

• This multi-perspective analysis is important as there is no single correct
way to analyse system requirements.

• Types of viewpoint
– Interactor viewpoints

• People or other systems that interact directly with the system. In
an ATM, the customers and the account database are interactor
VPs.

– Indirect viewpoints
• Stakeholders who do not use the system themselves but who

influence the requirements. In an ATM, management and security
staff are indirect viewpoints.

– Domain viewpoints
• Domain characteristics and constraints that influence the

requirements. In an ATM, an example would be standards for
inter-bank communications.

168

Requirements Discovery -Viewpoints

Viewpoint Identification

Identify viewpoints using

– Providers and receivers of system services;

– Systems that interact directly with the system being specified;

– Regulations and standards;

– Sources of business and non-functional requirements.

– Engineers who have to develop and maintain the system;

– Marketing and other business viewpoints.

169

LIBSYS viewpoint hierarchy

170

Article

providers
Finance

Library

manager

Library

staff
Users

InteractorIndirect

All VPs

Classification
system

UI

standards

Domain

ExternalStaffStudents Cataloguers
System

managers

Interviewing

• The interview is the primary technique for information gathering during
the systems analysis phases of a development project. It is a skill which
must be mastered by every analyst.

• The interviewing skills of the analyst determine what information is
gathered, and the quality and depth of that information. Interviewing,
observation, and research are the primary tools of the analyst.

• In formal or informal interviewing, the RE team puts questions to
stakeholders about the system that they use and the system to be
developed.

• Interviews are good for getting an overall understanding of what
stakeholders do and how they might interact with the system.

171

Interviewing

• Goals of the Interview

– At each level, each phase, and with each interviewee, an interview
may be conducted to:

• Gather information on the company

• Gather information on the function

• Gather information on processes or activities

• Uncover problems

• Conduct a needs determination

• Verification of previously gathered facts

• Gather opinions or viewpoints

• Provide information

• Obtain leads for further interviews

172

Interviews In Practice
• There are two types of interview

– Closed interviews where a pre-defined set of questions are answered.

– Open interviews where there is no pre-defined agenda and a range of
issues are explored with stakeholders.

• Normally a mix of closed and open-ended interviewing is undertaken.

• Interviews are not good for understanding domain requirements

– Requirements engineers cannot understand specific domain
terminology;

– Some domain knowledge is so familiar that people find it hard to
articulate or think that it isn’t worth articulating.

173

Interviews

• Effective Interviewers

– Interviewers should be open-minded, willing to listen to stakeholders
and should not have pre-conceived ideas about the requirements.

– They should prompt the interviewee with a question or a proposal and
should not simply expect them to respond to a question such as ‘what
do you want’.

• Information form interviews supplement other information about the
system from documents, user observations, and so on

• Sometimes, apart from information from documents, interviews may be
the only source of information about the system requirements

• It should be used alongside other requirements elicitation techniques

174

Scenarios
• Scenarios are real-life examples of how a system can be used.

• Scenarios can be particularly useful for adding detail to an outline
requirements description.

• Each scenario covers one or more possible interactions

• Several forms of scenarios can be developed, each of which provides
different types of information at different levels of detail about the system

• Scenarios may be written as text, supplemented by diagrams, screen shots
and so on.

• A scenario may include

– A description of the starting situation;

– A description of the normal flow of events;

– A description of what can go wrong;

– Information about other concurrent activities that might be going on
at the same time

– A description of the system state when the scenario finishes.

175

LIBSYS scenario (1)

176

Initial assumption : The user has logged on to the LIBSYS system and has located the journal
containing the copy of the article.

Normal: The user selects the article to be copied. He or she is then prompted by the system to
either provide subscriber informa tion for the journal or to indicate how they will pay for the
article. Alternative payment methods are by credit card or by quoting an organisational account
number.

The user is then asked to fill in a copyright form that maintains details of the transacti on and
they then submit this to the LIBSYS system.

The copyright form is checked and, if OK, the PDF version of the article is downloaded to the
LIBSYS working area on the user’s computer and the user is informed that it is available. The
user is asked to select a printer and a copy of the article is printed. If the article has been
flagged as ‘print-only’ it is deleted from the user’s system once the user has confirmed that
printing is complete.

LIBSYS scenario (2)

177

What can go wrong : The user may fail to fill in the copyright form correctly. In this case, the
form should be re-presented to the user for correction. If the resubmitted form is still incorrect
then the user’s request for the article is rejected.

The payment may be rejected by the system. The user’s request for the article is rejected.

The article download may fail. Retry until successful or the user terminates the session.

It may not be possible to print the article. If the article is not flagged as ‘pri nt-only’ then it is
held in the LIBSYS workspace. Otherwise, the article is deleted and the user’s account credited
with the cost of the article.

Other activities : Simultaneous downloads of other articles.

System state on completion : User is logged on. The downloaded article has been deleted from
LIBSYS workspace if it has been flagged as print -only.

Use cases

• Use-cases are a scenario based technique in the UML which identify the
actors in an interaction and which describe the interaction itself.

• A set of use cases should describe all possible interactions with the
system.

• Sequence diagrams may be used to add detail to use-cases by showing the
sequence of event processing in the system.

• Use-case approach helps with requirements prioritization

178

Article printing use-case

LIBSYS use cases

179

Print article sequence

180

USE CASES

• A Use case can have high priority for
– It describes one of the business process that the system enables

– Many users will use it frequently

– A favoured user class requested it

– It provides capability that’s required for regularity compliance

– Other system functions depend on its presence

Social and organisational factors

• Software systems are used in a social and organisational context. This can
influence or even dominate the system requirements.

• Social and organisational factors are not a single viewpoint but have
influences on all viewpoints.

• Good analysts must be sensitive to these factors but currently no
systematic way to tackle their analysis.

181

Ethnography

• A social scientists spends a considerable time observing and analysing how
people actually work.

• People do not have to explain or articulate their work.

• Social and organisational factors of importance may be observed.

• Ethnographic studies have shown that work is usually richer and more
complex than suggested by simple system models.

Focused ethnography

• Developed in a project studying the air traffic control process

• Combines ethnography with prototyping

• Prototype development results in unanswered questions which focus the
ethnographic analysis.

• The problem with ethnography is that it studies existing practices which
may have some historical basis which is no longer relevant.

182

Ethnography and prototyping

183

Scope of Ethnography

Ethnography is particularly effective for discovering two types of
requirements:

• Requirements that are derived from the way that people actually work
rather than the way which process definitions suggest that they ought to
work.

• Requirements that are derived from cooperation and awareness of other
people’s activities.

184

Requirements Validation
• Concerned with demonstrating that the requirements define the system

that the customer really wants.

• Requirements error costs are high so validation is very important

– Fixing a requirements error after delivery may cost up to 100 times the
cost of fixing an implementation error.

Requirements Checking

• Validity. Does the system provide the functions which best support the
customer’s needs?

• Consistency. Are there any requirements conflicts?

• Completeness. Are all functions required by the customer included?

• Realism. Can the requirements be implemented given available budget
and technology

• Verifiability. Can the requirements be checked?

185

Requirements Validation Techniques
• Requirements reviews

– Systematic manual analysis of the requirements.

• Prototyping

– Using an executable model of the system to check requirements.

• Test-case generation

– Developing tests for requirements to check testability.

186

Requirements Reviews

• Regular reviews should be held while the requirements definition is being
formulated.

• Both client and contractor staff should be involved in reviews.

• Reviews may be formal (with completed documents) or informal. Good
communications between developers, customers and users can resolve
problems at an early stage.

• Dont underestimate the problems involved in requirements validation.
Ultimately, it is difficult to show that a set of requirements does in fact
meet a user’s needs. Users need to picture the system in operation and
imagine how that system would fit into their work.

• It is hard even for skilled computer professionals to perform this type of
abstract analysis and harder still for system users. As a result, you rarely
find all requirements problems during the requirements validation
process. It is inevitable that there will be further requirements changes to
correct omissions and misunderstandings after the requirements
document has been agreed upon.

187

Requirements Management

• Requirements management is the process of managing changing
requirements during the requirements engineering process and system
development.

• Requirements are inevitably incomplete and inconsistent

– New requirements emerge during the process as business needs
change and a better understanding of the system is developed;

– Different viewpoints have different requirements and these are often
contradictory.

188

Requirements Change

• The priority of requirements from different viewpoints changes during the
development process.

• System customers may specify requirements from a business perspective
that conflict with end-user requirements.

• The business and technical environment of the system changes during its
development.

189

Requirements Evolution

190

191

Enduring and Volatile Requirements

• Enduring requirements

– These are relatively stable requirements that derive from the core

activity of the organization

– Relate directly to the domain of the system

– These requirements may be derived from domain models that show

the entities and relations which characterize an application domain

– For example, in a hospital there will always be requirements

concerned with patients, doctors, nurses, treatments, etc

192

Enduring and Volatile Requirements

• Volatile requirements can be classified as Requirement type Description

Mutable

requirements

Requirements that change because of changes to the environment in

which the organization is operating. For example, in hospital systems, the

funding of patient care may change and thus require different treatment

information to be collected

Consequential

requirements

Requirements that result from the introduction of the computer system.

Introducing the computer system may change the organizations

processes and open up new ways of working which generate new system

requirements.

Compatibility

requirements

Requirements that depend on the particular systems or business

processes within an organization. As these change, the compatibility

requirements on the commissioned or delivered system may also have to

evolve.

Emergent

requirements

Requirements that emerge as the customer's understanding of the

system develops during the system development. The design process

may reveal new emergent requirements.

Traceability

• Traceability is concerned with the relationships between requirements,
their sources and the system design

• Source traceability

– Links from requirements to stakeholders who proposed these
requirements;

• Requirements traceability

– Links between dependent requirements;

• Design traceability

– Links from the requirements to the design;

193

A traceability Matrix

194

Req.

id

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 D R

1.2 D D D

1.3 R R

2.1 R D D

2.2 D

2.3 R D

3.1 R

3.2 R

CASE tool support

• Requirements storage

– Requirements should be managed in a secure, managed data store.

• Change management

– The process of change management is a workflow process whose
stages can be defined and information flow between these stages
partially automated.

• Traceability management

– Automated retrieval of the links between requirements.

195

Requirements Management Planning

• During the requirements engineering process, one has to plan:

– Requirements identification

• How requirements are individually identified;

– A change management process

• The process followed when analysing a requirements change;

– Traceability policies

• The amount of information about requirements relationships that
is maintained;

– CASE tool support

• The tool support required to help manage requirements change;

196

Classical Analysis

• A Data Flow Diagram (DFD) is a graphical representation of the
"flow" of data through an information system.

• It differs from the system flowchart as it shows the flow of data
through processes instead of computer hardware.

• It is common practice to draw a System Context Diagram first which
shows the interaction between the system and outside entities.

• The DFD is designed to show how a system is divided into smaller
portions and to highlight the flow of data between those parts.

• This context-level Data flow diagram is then "exploded" to show
more detail of the system being modeled. 10

197

Classical Analysis

High-Level Petri Nets

 The classical Petri net was invented by Carl Adam Petri in 1962.

 A lot of research has been conducted (>10,000 publications).

 Until 1985 it was mainly used by theoreticians.

 Since the 80’s their practical use has increased because of the introduction of
high-level Petri nets and the availability of many tools.

 High-level Petri nets are Petri nets extended with

 colour (for the modelling of attributes)

 time (for performance analysis)

 hierarchy (for the structuring of models, DFD's)

198

Classical Analysis

Why do we need Petri Nets?

 Petri Nets can be used to rigorously define a system (reducing ambiguity, making
the operations of a system clear, allowing us to prove properties of a system etc.)

 They are often used for distributed systems (with several subsystems acting
independently) and for systems with resource sharing.

 Since there may be more than one transition in the Petri Net active at the same
time (and we do not know which will ‘fire’ first), they are non-deterministic.

199

The Classical Petri Net Model

A Petri net is a network composed of places () and transitions

t2

p

1

p

2

p

4
t3

t1

p3

Connections are directed and between a place and a transition, or a
transition and a place (e.g. Between “p1 and t1” or “t1 and p2”
above).Tokens () are the dynamic objects.

200

The Classical Petri Net Model

Another (equivalent) notation is to use a solid bar for the transitions:

t

2

p

1

p

2

p

3

p

4
t

3

t

1

We may use either notation since they are equivalent, sometimes one makes the

diagram easier to read than the other..

The state of a Petri net is determined by the distribution of tokens over the places
(we could represent the above state as (1,2,1,1) for (p1,p2,p3,p4))

201

Transition t1 has three input places (p1, p2 and p3) and two output places (p3 and

p4). Place p3 is both an input and an output place of t1.

p1

p4

p2

p3

Transitions with Multiple Inputs and Outputs

t1

202

Enabling Condition

 Transitions are the active components and places and tokens are passive
components.

 A transition is enabled if each of the input places contains tokens.

t1 t2

Transition t1 is not enabled, transition t2 is enabled.

203

Firing

• An enabled transition may fire.

• Firing corresponds to consuming tokens from the input places and producing

tokens for the output places.

t2t2

Firing is atomic (only one transition fires at a time, even if more than one is

enabled)

204

An Example Petri Net

205

Creating/Consuming Tokens

A transition without any input can fire at any time and produces tokens in the

connected places:

T1

After firing 3
times..

T1

T1T1

P

1
P

1

P

1
P

1

206

Creating/Consuming Tokens

A transition without any output must be enabled to fire and deletes (or

consumes) the incoming token(s):

T1

After firing 3
times..

T1

T1 T1

P

1
P

1

P

1
P

1

207

Non-Determinism in Petri Nets

Two transitions fight for the same token: conflict.

Even if there are two tokens, there is still a conflict.

The next transition to fire (t1 or t2) is arbitrary (non-deterministic).

t1

t2

208

Data Dictionary

1. A tool for recording and processing information (metadata) about the data that
an organization uses.

2. A central catalogue for metadata.

3. Can be integrated within the DBMS or be separate.

4.May be referenced during system design, programming, and by actively-
executing programs.

5. Can be used as a repository for common code (e.g. library routines).

209

Benefits of a DDS

Benefits of a DDS are mainly due to the fact that it is a central store of information
about the database.

• Benefits include -

• improved documentation and control

• consistency in data use

• easier data analysis

• reduced data redundancy

• simpler programming

• the enforcement of standards

• better means of estimating the effect of change.

210

DDS Facilities

A DDS should provide two sets of facilities:

 To record and analyse data requirements independently of how they are going
to be met - conceptual data models (entities, attributes, relationships).

 To record and design decisions in terms of database or file structures
implemented and the programs which access them - internal schema.

One of the main functions of a DDS is to show the relationship between the
conceptual and implementation views. The mapping should be consistent -
inconsistencies are an error and can be detected here.

211

DD Management

 With so much detail held on the DDS, it is essential that an indexing and
cross-referencing facility is provided by the DDS.

 The DDS can produce reports for use by the data administration staff (to
investigate the efficiency of use and storage of data), systems analysts,
programmers, and users.

 DDS can provide a pre-printed form to aid data input into the database and
DD.

 A query language is provided for ad-hoc queries. If the DD is tied to the
DBMS, then the query language will be that of the DBMS itself.

212

Management Advantages

A number of possible benefits may come from using a DDS:

• improve control and knowledge about the data resource.

• allows accurate assessment of cost and time scale to effect any changes.

• reduces the clerical load of database administration, and gives more control

a) over the design and use of the database. accurate data definitions can be
provided securely directly to programs. aid the recording, processing, storage
and destruction of data and associated documents.

213

Management Disadvantages

A DDS is a useful management tool, but at a price.

 The DDS ’project’ may itself take two or three years.

 It needs careful planning, defining the exact requirements designing its
contents, testing, implementation and evaluation.

 The cost of a DDS includes not only the initial price of its installation and any
hardware requirements, but also the cost of collecting the information
entering it into the DDS, keeping it up-to-date and enforcing standards.

 The use of a DDS requires management commitment, which is not easy to
achieve, particularly where the benefits are intangible and long term.

214

MODULE-III

SOFTWARE DESIGN

215

Contents

Software Design:

 Design process:

 Design concepts

 Design model

 Design heuristic

 Architectural design

 Architectural styles

 Accessing alternative architectural designs, and

 Architectural mapping using data flow.

User interface design:

 Interface analysis

 Interface design

 Component level design: Designing class based components

 Traditional components

216

217

The Design Process

• Software design is an iterative process through which requirements are translated into
a “blueprint” for constructing the software. Initially, the blue print depicts a holistic
view of software. That is, the design is represented at a high level of abstraction— a
level that can be directly traced to the specific system objective and more detailed data,
functional, and behavioral requirements.

1. Software Quality Guidelines and Attributes

• Design Guidelines

• A good design should

• exhibit good architectural structure

• be modular

• contain distinct representations of data, architecture, interfaces, and components
(modules)

• lead to data structures that are appropriate for the objects to be implemented
and be drawn from recognizable design patterns

• lead to components that exhibit independent functional characteristics

• lead to interfaces that reduce the complexity of connections between modules
and with the external environment

• be derived using a reputable method that is driven by information obtained
during software requirements analysis.

218

• Quality Guidelines

• A design should exhibit an architecture that

(1) Has been created using recognizable architectural styles or patterns

(2) Is composed of components that exhibit good design characteristics (these
are discussed later in this chapter)

(3) Can be implemented in an evolutionary fashion, thereby facilitating
implementation and testing.

• A design should be modular; that is, the software should be logically
partitioned into elements or subsystems.

• A design should contain distinct representations of data, architecture,
interfaces, and components.

• A design should lead to data structures that are appropriate for the classes to
be implemented and are drawn from recognizable data patterns.

The Design Process

219

Quality Guidelines

• A design should lead to components that exhibit independent
functional characteristics.

• A design should lead to interfaces that reduce the complexity of
connections between components and with the external
environment.

• A design should be derived using a repeatable method that is driven
by information obtained during software requirements analysis.

• A design should be represented using a notation that effectively
communicates its meaning.

The Design Process

220

• Quality attributes

– Functionality is assessed by evaluating the feature set and capabilities of
the program, the generality of the functions that are derived and the
security of the overall system

– Usability is assessed by considering human factors, overall aesthetics,
consistency and documentation

– Reliability is evaluated by measuring the frequency and severity of
failure, the accuracy of output results, the mean-time-to-failure, the
ability to recover form failure, and the predictability of the program

– Performance is measured by processing speed, response time, resource
consumption, throughput, and efficiency

– Supportability combines the ability to extend the program, adaptability,
serviceability, testability, compatibility, configurability, the ease with
which a system can be installed, and the ease with which problems can
be localized

The Design Process

The Design Process

2. The Evolution of Software Design:

 The evolution of software design is a continuing process that has now spanned
almost six decades.

 All these methods have a number of common characteristics:

1. a mechanism for the translation of the requirements model into a design
representation,

2. a notation for representing functional components and their interfaces,

3. heuristics for refinement and partitioning, and

4. guidelines for quality assessment.

Regardless of the design method that is used, you should apply a set of basic
concepts to data, architectural, interface, and component-level design. These
concepts are considered in the sections that follow

221

222

Design Concepts

• A set of fundamental software design concepts has evolved over the
history of software engineering

• Fundamental software design concepts

– Abstraction

– Architecture

– Patterns

– Separation of Concerns

– Modularity

– Information hiding

– Functional independence

– Refinement

– Aspects

– Refactoring

– Object-Oriented Design Concepts

– Design Classes

223

Design Concepts
• Abstraction

– Abstraction is the process by which data and programs are defined with a
representation similar in form to its meaning (semantics), while hiding
away the implementation details.

– Abstraction tries to reduce and factor out details so that the programmer
can focus on a few concepts at a time

– At the highest level of abstraction, a solution is stated in broad terms using
the language of the problem environment. At the lower levels of
abstraction, a more detailed description of the solution is provided.

Abstraction can be

• Data abstraction is a named collection of data that describes a data object.
Data abstraction for ‘door’ would encompass a set of attributes that
describe the door (e.g. door type, swing direction, opening mechanism,
weight, dimensions).

• The procedural abstraction ‘open’ would make use of information
contained in the attributes of the data abstraction ‘door’

http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Program_(machine)
http://en.wikipedia.org/wiki/Representation_(mathematics)
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Programmer

224

Design Concepts

door

implemented as a data structure

manufacturer
model number
type
swing direction
inserts
lights

type
number

weight
opening mechanism

225

• Architecture
– Architecture is the structure or organization of program components

(modules), the manner in which these components interact, and the
structure of data that are used by the components. Architectural design
can be represented using ,

• Structural models represent architecture as an organized collection of
program components

• Framework models increase the level of design abstraction by
attempting to identify repeatable architectural design frameworks that
are encountered in similar types of application

• Dynamic models address the behavioural aspects of the program
architecture, indicating how the structure or system configuration may
change as a function of external events

• Procedural models focus on the design of the business or technical
process that the system must accommodate

• Function models can be used to represent the functional hierarchy of a
system

Design Concepts

226

Patterns

– Design pattern describes a design structure that solves a particular design
problem within a specific context.

– Each design pattern is to provide a description that enables a designer to
determine

• Whether the pattern is applicable to the current work

• Whether the pattern can be reused

• Whether the pattern can serve as a guide for developing a similar, but
functionally or structurally different pattern

Separation of Concerns
• Separation of concerns is a design concept that suggests that any complex problem

can be more easily handled if it is subdivided into pieces that can each be solved
and/or optimized independently.

• A concern is a feature or behavior that is specified as part of the requirements
model for the software.

• By separating concerns into smaller, and therefore more manageable pieces, a
problem takes less effort and time to solve.

• For two problems, p1 and p2, if the perceived complexity of p1 is greater than the
perceived complexity of p2, it follows that the effort required to solve p1 is greater
than the effort required to solve p2.

Design Concepts

227

Design Concepts

Modularity

– Software is divided into separately named and addressable components,
called modules that are integrated to satisfy problem requirements

– Design has to be modularized so that development can be more easily
planned, software increments can be defined and delivered, changes can be
more easily accommodated, testing and debugging can be conducted more
efficiently and long-term maintenance can be conducted without serious
side effects

easier to build, easier to change, easier to fix ...

228

Design Concepts

Information Hiding
– Modules should be specified and designed so that information (algorithms

and data) contained in a module is inaccessible to other modules that have no
need for such information

– Hiding implies that effective modularity can be achieved by defining a set of
independent modules that communicate with one another only that
information necessary to achieve software function

– Hiding defines and enforces access constraints to both data procedural detail
within a module and any local data structure used by the module

– The use of information hiding as a design criterion for modular systems
provides the benefits when modifications are required during testing and
later during software maintenance

229

Design Concepts
Information Hiding
• Reduces the likelihood of “side effects”
• Limits the global impact of local design decisions
• Emphasizes communication through controlled interfaces
• Discourages the use of global data
• Leads to encapsulation—an attribute of high quality design
• Results in higher quality software

module

controlled
interface

"secret"

• algorithm

• data structure

• details of external interface

• resource allocation policy

clients

a specific design decision

230

Design Concepts

Functional Independence

– Functional independence is achieved by developing modules with ‘single
minded’ function and avoids excessive interaction with other modules.

– Independent modules are easier to maintain because secondary effects
caused by design or code modification are limited, error propagation is
reduced

Independence is assessed using two qualitative criteria

• Cohesion which is an indication of the relative functional strength of a
module. A cohesive module performs a single task, requiring little
interaction with other components in other parts of a program

• Coupling is an indication of the relative interdependence among
modules. Coupling depends on the interface complexity between
modules, the point at which entry or reference is made to a module, and
what data pass across the interface

231

Design Concepts

Refinement
– Refinement is a process of elaboration. Refinement causes the designer

to elaborate on the original statement, providing more and more detail
as each successive refinement occurs.

– Refinement helps the designer to reveal low-level details as design
progresses.

Stepwise Refinement
open

walk to door;
reach for knob;

open door;
walk through;
close door.

repeat until door opens

turn knob clockwise;
if knob doesn't turn, then

take key out;

find correct key;

insert in lock;

endif
pull/push door
move out of way;end repeat

232

Design Concepts

Refactoring

– Refactoring is the process of changing a software system in such a way that it
does not alter the external behaviour of the code yet improves its internal
structure

– When software is refactored, the existing design is examined for redundancy,
unused design elements, inefficient or unnecessary algorithms, poorly
constructed or inappropriate data structures, or any other design failure that
can be corrected to yield a better design

Aspects
• As requirements analysis occurs, a set of “concerns” is uncovered. These

concerns “include requirements, use cases, features, data structures, quality-
of-service issues, variants, intellectual property boundaries, collaborations,
patterns and contracts”

• Ideally, a requirements model can be organized in a way that allows you to
isolate each concern (requirement) so that it can be considered
independently.

• In practice, however, some of these concerns span the entire system and
cannot be easily compartmentalized. As design begins, requirements are
refined into a modular design representation.

• Consider two requirements, A and B. Requirement A crosscuts requirement B
“if a software decomposition [refinement] has been chosen in which B cannot
be satisfied without taking A into account”.

Refactoring
• An important design activity suggested for many agile methods, refactoring is a

reorganization technique that simplifies the design (or code) of a component
without changing its function or behavior

• When software is refactored, the existing design is examined for redundancy,
unused design elements, inefficient or unnecessary algorithms, poorly
constructed or inappropriate data structures, or any other design failure that
can be corrected to yield a better design .

Design Concepts

233

Design Concepts

 Object-Oriented Design Concepts

• The object-oriented (OO) paradigm is widely used in modern software
engineering.

• OO design concepts such as classes and objects, inheritance, messages,
and polymorphism, among others.

 Design classes

– As the design model evolves, a set of design classes are to be defined that

• Refine the analysis classes by providing design detail that will enable
the classes to be implemented

• Create a new set of design classes that implement a software
infrastructure to support the business solution

234

235

Design Concepts

Design classes

– Types of design classes

• User Interface classes define all abstractions that are necessary for
human-computer interaction (HCI). Design classes for the interface may
be visual representations of the elements of the metaphor

• Business domain classes are refinements of the analysis classes . The
classes identify the attributes and services that are required to implement
some element of the business domain

• Process classes implement lower-level business abstractions required to
fully manage the business domain classes

• Persistent classes represent data stores that will persist beyond the
execution of the software

• System classes implement software management and control functions
that enable the system to operate and communicate within its computing
environment and with the outside world

236

236

The Design Model

process dimension

archit ect ure

element s

int erface

element s

component -level

element s

deployment -level

element s

low

high

class diagrams

analysis packages

CRC models

collaborat ion diagrams

use-cases - t ext

use-case diagrams

act ivit y diagrams

sw im lane diagrams

collaborat ion diagrams dat a f low diagrams

cont rol- f low diagrams

processing narrat ives

dat a f low diagrams

cont rol- f low diagrams

processing narrat ives

st at e diagrams

sequence diagrams

st at e diagrams

sequence diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

ref inement s t o:

deployment diagrams

class diagrams

analysis packages

CRC models

collaborat ion diagrams

component diagrams

design classes

act ivit y diagrams

sequence diagrams

ref inement s t o:

component diagrams

design classes

act ivit y diagrams

sequence diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

component diagrams

design classes

act ivit y diagrams

sequence diagrams

a na ly sis mode l

de sign mode l

Requirement s:

 const raint s

 int eroperabilit y

 t arget s and

 conf igurat ion

t echnical int erf ace

 design

Navigat ion design

GUI design

237

The Design Model

• Data design elements

– Data design creates a model of data and/or information that is represented
at a high level of abstraction.

– Data model is then refined into progressively more implementation-
specific representations that can be processed by the computer-based
system

• Architectural level  databases and files
• Component level  data structures

238

The Design Model

Architectural design elements

• The architectural design for software is the equivalent to the floor plan of a
house. The floor plan depicts the overall layout of the rooms; their size,
shape, and relationship to one another; and the doors and windows that
allow movement into and out of the rooms. The floor plan gives us an overall
view of the house. Architectural design elements give us an overall view of
the software.

– The architectural model is derived from

• Information about the application domain for the software to be built

• Specific requirements model elements such as data flow diagrams or
analysis classes, their relationships and collaborations for the
problem at hand

• The availability of architectural patterns and styles

239

The Design Model

• Interface design elements
– The interface design elements for software tell how information flows into

and out of the system and how it is communicated among the components
defined as part of the architecture

– Important elements of interface design

• The user interface (UI): Usability design incorporates aesthetic
elements (e.g., layout, color, graphics, interaction mechanisms),
ergonomic elements (e.g., information layout and placement,
metaphors, UI navigation), and technical elements (e.g., UI patterns,
reusable components). In general, the UI is a unique subsystem within
the overall application architecture.

• External interfaces to other systems, devices, networks or other
producers or consumers of informationThe design of external
interfaces requires definitive information about the entity to which
information is sent or received.

• Internal interfaces between various design componentsThe design of
internal interfaces is closely aligned with component-level design

Design Model - Interface Elements

240

The Design Model

241

The Design Model

Component-level design elements
• The component-level design for software is the equivalent to a set of detailed

drawings (and specifications) for each room in a house. These drawings depict
wiring and plumbing within each room, the location of electrical receptacles
and wall switches, faucets, sinks, showers, tubs, drains, cabinets, and closets.

• Component-level design for software fully describes the internal detail of
each software component.

• Component-level design defines data structures for all local data objects
and algorithmic detail for all processing that occurs within a component
and an interface that allows access to all component operations

• The design details of a component can be modelled at many different levels
of abstraction.

• An UML activity diagram can be used to represent processing logic. Detailed
procedural flow for a component can be represented using either
pseudocode or diagrammatic form (e.g., flowchart or box diagram.

242

Component Elements

SensorManagement
Sensor

The Design Model

243

The Design Model

• Deployment-level design elements

– Deployment-level design elements indicate how software functionality
and subsystems will be allocated within the physical computing
environment that will support the software.

– Deployment diagrams shows the computing environment but does not
explicitly indicate configuration details

244

Deployment Diagram

The Design Model

245

Software Architecture

What is software Architecture
• When you consider the architecture of a building, many different attributes

come to mind. At the most simplistic level, you think about the overall shape of
the physical structure. But in reality, architecture is much more. It is the
manner in which the various components of the building are integrated to
form a cohesive whole.

• The software architecture of a program or computing system is the structure
or structures of the system, which comprise software components, the
externally visible properties of those components, and the relationships
among them

• Software architecture enables to

– Analyze the effectiveness of the design in meeting its stated requirements

– Consider architectural alternatives at a stage when making design changes
is still relatively easy

– Reduce the risks associated with the construction of the software

246

Software Architecture

• Architectural design represents the structure of data and program
components that are required to build a computer-based system.

• It considers the architectural style that the system will take, the structure
and properties of the components that constitute the system, and the
interrelationships that occur among all architectural components of a
system

• Architecture considers two levels of the design – data design and
architectural design. Data design enables us to represent the data
component of the architecture.

• Architectural design focuses on the representation of the structure of
software components, their properties, and interactions

247

Software Architecture
Why Is Architecture Important?
• Representations of software architecture are an enabler for communication

between all parties, interested in the development of a computer-based
system.

• The architecture highlights early design decisions that will have a profound
impact on all software engineering work that follows and, as important, on
ultimate success of the system as an operational entity.

• Architecture constitutes a relatively small, intellectually graspable model of
how the system is structured and how its components work together.

248

248

Example Software Architecture Diagrams

Software Architecture

 Architectural Descriptions

• Each of us has a mental image of what the word architecture means. In
reality, however, it means different things to different people.

• The implication is that different stakeholders will see an architecture
from different viewpoints that are driven by different sets of concerns.

• An architectural description is actually a set of work products that
reflect different views of the system.

• An architectural description of a software-based system must exhibit
characteristics that are analogous to those noted for the office building.

• Developers want clear, decisive guidance on how to proceed with design.

• Customers want a clear understanding on the environmental changes
that must occur and assurances that the architecture will meet their
business needs.

• Other architects want a clear, salient understanding of the architecture’s
key aspects.” Each of these “wants” is reflected in a different view
represented using a different viewpoint.

249

Software Architecture

 Architectural Decisions

• Each view developed as part of an architectural description addresses a
specific stakeholder concern.

• To develop each view (and the architectural description as a whole) the
system architect considers a variety of alternatives and ultimately decides
on the specific architectural features that best meet the concern.

• Therefore, architectural decisions themselves can be considered to be
one view of the architecture.

• The reasons that decisions were made provide insight into the structure
of a system and its conformance to stakeholder concerns.

250

1. A Brief Taxonomy of Architectural Styles
2. Architectural Patterns
3. Organization and Refinement

Software Architectural Styles

251

252

Common Architectural Styles of Homes

253

Software Architectural Style

 The software that is built for computer-based systems exhibit one of many
architectural styles

 Each style describes a system category that encompasses

 A set of component types that perform a function required by the system

 A set of connectors (subroutine call, remote procedure call, data stream,
socket) that enable communication, coordination, and cooperation
among components

 constraints that define how components can be integrated to form the
system;

 semantic models that enable a designer to understand the overall
properties of a system by analyzing the known properties of its
constituent parts

254

A brief Taxonomy of Architectural Styles

Independent Components

Communicating
Processes

Event Systems

Client/Server Peer-to-Peer
Implicit
Invocation

Explicit
Invocation

Data Flow

Batch Sequential Pipe and
Filter

Virtual Machine

Interpreter Rule-Based
System

Data-Centered

Repository Blackboard

Call and Return

Main Program
and Subroutine

Object
OrientedLayered

Remote Procedure Call

Software Architectural Style

 A Brief Taxonomy of Architectural Styles

• Data-centered architectures. A data store (e.g., a file or database) resides
at the center of this architecture and is accessed frequently by other
components that update, add, delete, or otherwise modify data within
the store.

• illustrates a typical data-centered style. Client software accesses a central
repository. In some cases the data repository is passive. That is, client
software accesses the data independent of any changes to the data or
the actions of other client software. A variation on this approach
transforms the repository into a “blackboard

255

256

Data-Centered Style

Shared Data

Client A Client B Client C

Client D Client E Client F

Software Architectural Style

Data-flow architectures

 This architecture is applied when input data are to be transformed through a
series of computational or manipulative components into output data.

 A pipe-and-filter pattern shows has a set of components, called filters,
connected by pipes that transmit data from one component to the next.

 Each filter works independently of those components upstream and
downstream, is designed to expect data input of a certain form, and
produces data output (to the next filter) of a specified form.

 However, the filter does not require knowledge of the workings of its
neighboring filters.

257

258

Data Flow Style

Validate Sort Update Report

fIilter

pipe

Software Architectural Style

Call and return architectures.

 This architectural style enables you to achieve a program structure that is
relatively easy to modify and scale.

 A number of substyles exist within this category:

 Main program/subprogram architectures: This classic program structure
decomposes function into a control hierarchy where a “main” program
invokes a number of program components that in turn may invoke still other
components. Figure illustrates an architecture of this type.

 Remote procedure call architectures: The components of a main
program/subprogram architecture are distributed across multiple computers
on a network.

259

260

Call-and-Return Style

Main module

Subroutine A
Subroutine B

Subroutine A-1 Subroutine A-2

Physical layer

Data layer

Network layer

Transport layer

Application layer Class WClass V

Class X

Class Z

Class Y

Software Architectural Style

Object-oriented architectures

 The components of a system encapsulate data and the operations that must
be applied to manipulate the data.

 Communication and coordination between components are accomplished via
message passing.

Layered architectures.

 The basic structure of a layered architecture is illustrated in Figure.

 A number of different layers are defined, each accomplishing operations that
progressively become closer to the machine instruction set.

 At the outer layer, components service user interface operations.

 At the inner layer, components perform operating system interfacing.

 Intermediate layers provide utility services and application software
functions.

261

Layered architectures

262

263

Architectural Patterns

• As the requirements model is developed, you’ll notice that the software must
address a number of broad problems that span the entire application.

• For example, the requirements model for virtually every e-commerce
application is faced with the following problem: How do we offer a broad array
of goods to a broad array of customers and allow those customers to purchase
our goods online?

• Architectural patterns address an application-specific problem within a specific
context and under a set of limitations and constraints. The pattern proposes an
architectural solution that can serve as the basis for architectural design.

Software Architectural Style
Organization and Refinement

 Because the design process often leaves you with a number of architectural
alternatives, it is important to establish a set of design criteria that can be used to
assess an architectural design that is derived.

Control.

 How is control managed within the architecture? Does a distinct control hierarchy
exist, and if so, what is the role of components within this control hierarchy? How
do components transfer control within the system? How is control shared among
components? What is the control topology (i.e., the geometric form that the control
takes)? Is control synchronized or do components operate asynchronously?

Data.

 How are data communicated between components? Is the flow of data continuous,
or are data objects passed to the system sporadically? What is the mode of data
transfer (i.e., are data passed from one component to another or are data available
globally to be shared among system components)? Do data components (e.g., a
blackboard or repository) exist, and if so, what is their role? How do functional
components interact with data components? Are data components passive or active
(i.e., does the data component actively interact with other components in the
system)? How do data and control interact within the system?

264

265

Architectural Design Steps

 As architectural design begins, the software to be developed must be put into
context—that is, the design should define the external entities (other systems,
devices, people) that the software interacts with and the nature of the
interaction.

1. Represent the system in context

2. Define archetypes

3. Refine the architecture into components

4. Describe instantiations of the system

266

Architectural Design Steps

Represent the System in Context
 Use an architectural context diagram (ACD) that shows

 The identification and flow of all information into and out of a system

 The specification of all interfaces

 Any relevant support processing from/by other systems

 An ACD models the manner in which software interacts with entities external
to its boundaries

267

Architectural Design Steps

Target system

I/F I/F

I/F I/F I/F

Actors
Peers

"Super"ordinate systems

"Sub"ordinate systems

Used by

Produces or
consumesProduces or

consumes
Depends on

Uses

268

Architectural Design Steps

 An ACD identifies systems that interoperate with the target system

 Super-ordinate systems

○ Use target system as part of some higher level processing scheme

 Sub-ordinate systems

 those systems that are used by the target system and provide data or
processing that are necessary to complete target system functionality

- Peer-level systems

○ Interact on a peer-to-peer basis with target system to produced or
consumed by peers and target system

 Actors

○ People or devices that interact with target system to produce or
consume data

269

Architectural Design Steps

Define Archetypes
 Archetypes indicate the important abstractions within the problem domain

(i.e., they model information)
 An archetype is a class or pattern that represents a core abstraction that is

critical to the design of an architecture for the target system
 Only a relatively small set of archetypes is required in order to design even

relatively complex systems
 The target system architecture is composed of these archetypes

 They represent stable elements of the architecture
 They may be instantiated in different ways based on the behavior of the

system
 They can be derived from the analysis class model

 The archetypes and their relationships can be illustrated in a UML class diagram

270

Architectural Design Steps

Archetypes in Software Architecture

 Node - Represents a cohesive collection of input and output elements of the
home security function

 Detector/Sensor - An abstraction that encompasses all sensing equipment
that feeds information into the target system.

 Indicator - An abstraction that represents all mechanisms (e.g., alarm siren,
flashing lights, bell) for indicating that an alarm condition is occurring.

 Controller - An abstraction that depicts the mechanism that allows the arming
or disarming of a node. If controllers reside on a network, they have the ability
to communicate with one another.

271

Archetypes – their attributes

272

Archetypes – their methods

273

Architectural Design Steps

Refine the Architecture into Components

 Based on the archetypes, the architectural designer refines the
software architecture into components to illustrate the overall
structure and architectural style of the system

 These components are derived from various sources

 The application domain provides application components, which
are the domain classes in the analysis model that represent
entities in the real world

 The infrastructure domain provides design components (i.e., design
classes) that enable application components but have no business
connection

○ Examples: memory management, communication, database, and task
management

 These components are derived from various sources

 The interfaces in the ACD imply one or more specialized
components that process the data that flow across the interface

274

Architectural Design Steps

• A UML class diagram can represent the classes of the refined
architecture and their relationships

275

Architectural Design Steps

Describe Instantiations of the System

 The architectural design that has been modeled to this point is still
relatively high level.

 The context of the system has been represented, archetypes that indicate
the important abstractions within the problem domain have been defined,
the overall structure of the system is apparent, and the major software
components have been identified.

 However, further refinement (recall that all design is iterative) is still
necessary.

Assessing alternative architectural design

 Design results in a number of architectural alternatives that are each
assessed to determine which is the most appropriate for the problem to be
solved.

1. An Architecture Trade-Off Analysis Method

The Software Engineering Institute (SEI) has developed an architecture trade-
off analysis method that establishes an iterative evaluation process for
software architectures. The design analysis activities that follow are
performed iteratively:

 Collect scenarios. A set of use cases is developed to represent the system
from the user’s point of view.

 Elicit requirements, constraints, and environment description. This
information is determined as part of requirements engineering and is
used to be certain that all stakeholder concerns have been addressed.

 Describe the architectural styles/patterns that have been chosen to
address the scenarios and requirements.

 Evaluate quality attributes by considering each attribute in isolation.

276

Assessing alternative architectural design
 Identify the sensitivity of quality attributes to various architectural attributes

for a specific architectural style.

 Critique candidate architectures (developed in step 3) using the sensitivity
analysis conducted.

2. Architectural Complexity

A useful technique for assessing the overall complexity of a proposed
architecture is to consider dependencies between components within the
architecture. These dependencies are driven by information/control flow within
the system.

3. Architectural Description Languages

 Architectural description language (ADL) provides a semantics and syntax for
describing a software architecture.

 ADL should provide the designer with the ability to decompose architectural
components, compose individual components into larger architectural blocks,
and represent interfaces (connection mechanisms) between components.

 Once descriptive, language based techniques for architectural design have
been established, it is more likely that effective assessment methods for
architectures will be established as the design evolves. 277

Architectural Mapping using Data Flow

 Transform mapping is a set of design steps that allows a DFD with transform
flow characteristics to be mapped into a specific architectural style.

 Information must enter and exit software in an “external world”. Such
externalized data must be converted into an internal form for processing.
Information enters along paths that transform external data into an internal
form. These paths are identified are Incoming flow.

 Incoming data are transformed through a transform center and move along
the paths that now lead “out” of the software. Data moving along these
paths are called Outgoing flow.

 Transaction Flow

 Information flow is often characterized by a single data item, called
transaction, that triggers other data flow along one of many paths

 Transaction flow is characterized by data moving along an incoming path that
converts external world information into a transaction

 The transaction is evaluated and, based on its value, flow along one of many
action paths is initiated. The hub of information from which many action
paths emanate is called a transaction center

278

Architectural Mapping using Data Flow

Transform flow

Transaction

flow

279

Flow Characteristics

Architectural Mapping using Data Flow

 Transform Mapping

1. Review the fundamental system model.

2. Review and refine data flow diagrams for the software

3. Determine whether the DFD has transform or transaction flow
characteristics.

4. Isolate the transform center by specifying incoming and outgoing flow
boundaries.

5. Perform “first-level factoring”

6. Perform “second-level factoring”

7. Refine the first-iteration architecture using design heuristics for improved
software quality.

280

Architectural Mapping using Data Flow

data flow model

"Transform" mapping

a
b

c

d e f
g h

i
j

x1

x2 x3 x4

b c

a

d e f g i

h j

281

Transform Mapping

Architectural Mapping using Data Flow

main
program
controller

input
controller

processing
controller

output

controller

282

First Level Factoring

Architectural Mapping using Data Flow

D

C

B
A

A

C

B

Dmapping from the
flow boundary outward

main

control

283

Second Level Factoring

Architectural Mapping using Data Flow

 Transaction Mapping
1. Review the fundamental system model.
2. Review and refine data flow diagrams for the software
3. Determine whether the DFD has transform or transaction flow

characteristics.
4. Isolate the transaction center and the flow characteristics along each of

the action paths.
5. Map the DFD in a program structure amenable to transaction processing.
6. Factor and refine the transaction structure and the structure of each

action path.
7. Refine the first-iteration architecture using design heuristics for improved

software quality.

284

Architectural Mapping using Data Flow

a

b

t

g

h

d

e

f

i

k

j

l

m

n

Data flow model

x1

b

a

t

x2 x3 x4

d e f g h x3.1 l m n

i j

k

mapping

program structure

285

Transaction Mapping

Architectural Mapping using Data Flow

read
command

validate
command

determine
type

read
record

calculate
output
values

format
report

produce
error msg

read
fixture
status

determine
setting

format
setting

send
control
value

command

command

invalid command

error msg

status

combined
status

raw setting

fixture setting

robot control

start/stop

assembly
record

record

values

report

valid command

286

Isolate Flow Paths

Architectural Mapping using Data Flow

process
operator

commands

command
input

controller

read
command

validate
command

produce
error

message

determine
type

fixture
status

controller

report
generation
controller

send
control
value

each of the action paths must be expanded further

287

Map the Flow Model

Architectural Mapping using Data Flow

process
operator

commands

command
input

controller

read
command

validate
command

produce
error

message

determine
type

send
control
value

read
fixture
status

determine
setting

format
setting

read
record

calculate
output
values

format
report

fixture
status

controller

report
generation
controller

288

Refining

Architectural Mapping using Data Flow

Refining the Architectural Design

 Any discussion of design refinement should be prefaced with the following
comment:

 “Remember that an ‘optimal design’ that doesn’t work has questionable
merit.”

 You should be concerned with developing a representation of software that
will meet all functional and performance requirements and merit
acceptance based on design measures and heuristics.

 Refinement of software architecture during early stages of design is to be
encouraged.

289

User interface design

Elements of the User Interface
•To perform user interface analysis, the practitioner needs to study and
understand four elements

•The users who will interact with the system through the interface
•The tasks that end users must perform to do their work
•The content that is presented as part of the interface
•The work environment in which these tasks will be conducted

290

User Interface Analysis

 User Analysis

 The analyst strives to get the end user's mental model and the design
model to converge by understanding

○ The users themselves

○ How these people use the system

 Information can be obtained from

○ User interviews with the end users

○ Sales input from the sales people who interact with customers and
users on a regular basis

○ Marketing input based on a market analysis to understand how
different population segments might use the software

○ Support input from the support staff who are aware of what works and
what doesn't, what users like and dislike, what features generate
questions, and what features are easy to use

 A set of questions should be answered during user analysis

291

User Interface Analysis

User Analysis Questions

1) Are the users trained professionals, technicians, clerical or
manufacturing workers?

2) What level of formal education does the average user have?

3) Are the users capable of learning on their own from written
materials or have they expressed a desire for classroom training?

4) Are the users expert typists or are they keyboard phobic?

5) What is the age range of the user community?

6) Will the users be represented predominately by one gender?

7) How are users compensated for the work they perform or are they
volunteers?

292

User Interface Analysis

 Content Analysis

 The display content may range from character-based reports, to
graphical displays, to multimedia information

 Display content may be

○ Generated by components in other parts of the application

○ Acquired from data stored in a database that is accessible from the
application

○ Transmitted from systems external to the application in question

 The format and aesthetics of the content (as it is displayed by the
interface) needs to be considered

 A set of questions should be answered during content analysis

293

User Interface Analysis

Content Analysis Guidelines

1) Are various types of data assigned to consistent locations on the
screen (e.g., photos always in upper right corner)?

2) Are users able to customize the screen location for content?

3) Is proper on-screen identification assigned to all content?

4) Can large reports be partitioned for ease of understanding?

5) Are mechanisms available for moving directly to summary
information for large collections of data?

6) Is graphical output scaled to fit within the bounds of the display
device that is used?

7) How is color used to enhance understanding?

8) How are error messages and warnings presented in order to make
them quick and easy to see and understand?

294

User Interface Analysis

 Work Environment Analysis

 Software products need to be designed to fit into the work environment,
otherwise they may be difficult or frustrating to use

 Factors to consider include

○ Type of lighting

○ Display size and height

○ Keyboard size, height and ease of use

○ Mouse type and ease of use

○ Surrounding noise

○ Space limitations for computer and/or user

○ Weather or other atmospheric conditions

○ Temperature or pressure restrictions

○ Time restrictions (when, how fast, and for how long)

295

Interface Design Steps

1. Applying Interface Design Steps
2. User Interface Design Patterns
3. Design Issues

296

User Interface Design

 User interface design is an iterative process, where each iteration
elaborate and refines the information developed in the preceding
steps

 General steps for user interface design
1) Using information developed during user interface analysis,

define user interface objects and actions (operations)
2) Define events (user actions) that will cause the state of the user

interface to change; model this behavior
3) Depict each interface state as it will actually look to the end user
4) Indicate how the user interprets the state of the system from

information provided through the interface
 During all of these steps, the designer must

○ Always follow the three golden rules of user interfaces
○ Model how the interface will be implemented
○ Consider the computing environment (e.g., display technology,

operating system, development tools) that will be used

297

User Interface Design

Applying Interface Design Steps

 Interface objects and actions are obtained from a grammatical parse of the
use cases and the software problem statement

 Interface objects are categorized into types: source, target, and
application

○ A source object is dragged and dropped into a target object such as to
create a hardcopy of a report

○ An application object represents application-specific data that are not
directly manipulated as part of screen interaction such as a list

 After identifying objects and their actions, an interface designer performs
screen layout which involves

○ Graphical design and placement of icons

○ Definition of descriptive screen text

○ Specification and titling for windows

○ Definition of major and minor menu items

○ Specification of a real-world metaphor to follow

298

User Interface Design

User Interface Design Patterns

 Graphical user interfaces have become so common that a wide variety of
user interface design patterns has emerged.

 A design pattern is an abstraction that prescribes a design solution to a
specific, well-bounded design problem.

 As an example of a commonly encountered interface design problem,
consider a situation in which a user must enter one or more calendar
dates, sometimes months in advance. There are many possible solutions
to this simple problem, and a number of different patterns that might be
proposed. Laakso [Laa00] suggests a pattern called CalendarStrip that
produces a continuous, scrollable calendar in which the current date is
highlighted and future dates may be selected by picking them from the
calendar. The calendar metaphor is well known to every user and
provides an effective mechanism for placing a future date in context.

299

User Interface Design

Design Issues

 Four common design issues usually surface in any user interface

 System response time

• System response time is the primary complaint for many interactive
applications.

• System response time is measured from the point at which the user
performs some control action (e.g., hits the return key or clicks a
mouse) until the software responds with desired output or action.

• System response time has two important characteristics: length and
variability. If system response is too long, user frustration and stress
are inevitable. Variability refers to the deviation from average
response time, and in many ways, it is the most important response
time characteristic.

300

User Interface Design

 Help facilities

• Almost every user of an interactive, computer-based system requires
help now and then.

• Modern software provides online help facilities that enable a user to
get a question answered or resolve a problem without leaving the
interface.

• A number of design issues must be addressed when a help facility is
considered:

○ When is it available, how is it accessed, how is it represented to the
user, how is it structured, what happens when help is exited

 Error handling

• Error messages and warnings are “bad news” delivered to users of
interactive systems when something has gone awry. At their worst,
error messages and warnings impart useless or misleading information
and serve only to increase user frustration.

301

User Interface Design
 In general, every error message or warning produced by an interactive

system should have the following characteristics:

 The message should describe the problem in plain language that a
typical user can understand

 The message should provide constructive advice for recovering from
the error

 The message should indicate any negative consequences of the error
(e.g., potentially corrupted data files) so that the user can check to
ensure that they have not occurred (or correct them if they have)

 The message should be accompanied by an audible or visual cue such
as a beep, momentary flashing, or a special error color

 The message should be non-judgmental i.e The message should never
place blame on the user

An effective error message philosophy can do much to improve the quality of
an interactive system and will significantly reduce user frustration when
problems do occur

302

User Interface Design
 Menu and command labeling

 The typed command was once the most common mode of interaction
between user and system software and was commonly used for
applications of every type.

 Today, the use of window-oriented, point-and pick interfaces has reduced
reliance on typed commands, but some power-users continue to prefer a
command-oriented mode of interaction.

 A number of design issues arise when typed commands or menu labels
are provided as a mode of interaction:
 Will every menu option have a corresponding command?
 What form will a command take? A control sequence? A function key?

A typed word?
 How difficult will it be to learn and remember the commands?
 What can be done if a command is forgotten?
 Can commands be customized or abbreviated by the user?
 Are menu labels self-explanatory within the context of the interface?
 Are submenus consistent with the function implied by a master menu

item?

303

Designing Class Based Components

Designing Class Based Components

1. Basic Design Principles
2. Component-Level Design Guidelines
3. Cohesion
4. Coupling

• Component-level design focuses on the elaboration of analysis classes
(problem domain specific classes) and definition and refinement of
infrastructure classes

• Purpose of using design principles is to create designs that are more
amenable to change and to reduce propagation of side effects when changes
do occur

304

Basic Design Principles

 SOLID Principles

S SRP Single responsibility principle
an object should have only a single responsibility.

O OCP Open/closed principle “software entities … should be open
for extension, but closed for modification”.

L LSP Liskov substitution principle “objects in a program should
be replaceable with instances of their subtypes without
altering the correctness of that program”.

I ISP Interface segregation principle “many client specific
interfaces are better than one general purpose interface

D DIP Dependency inversion principle one should “Depend upon
Abstractions. Do not depend upon concretions

305

http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Open/closed_principle
http://en.wikipedia.org/wiki/Open/closed_principle
http://en.wikipedia.org/wiki/Open/closed_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Interface_segregation_principle
http://en.wikipedia.org/wiki/Interface_segregation_principle
http://en.wikipedia.org/wiki/Interface_segregation_principle
http://en.wikipedia.org/wiki/Interface_segregation_principle
http://en.wikipedia.org/wiki/Interface_segregation_principle
http://en.wikipedia.org/wiki/Dependency_inversion_principle
http://en.wikipedia.org/wiki/Dependency_inversion_principle
http://en.wikipedia.org/wiki/Dependency_inversion_principle
http://en.wikipedia.org/wiki/Dependency_inversion_principle
http://en.wikipedia.org/wiki/Dependency_inversion_principle

Basic Design Principles

 Single Responsibility Principle

 Open-Closed Principle

 Liskov Substitution Principle

 Dependency inversion Principle

 Interface segregation Principle

306

Single Responsibility Principle

 Single responsibility principle states that every class should have a single
responsibility, and that responsibility should be entirely encapsulated by
the class. All its services should be narrowly aligned with that
responsibility.

 Classes that keeps track of a lot of information and have several
responsibilities.

 One code change will most likely affect other parts of the class and
therefore indirectly all other classes that uses it.

 That in turn leads to an even bigger maintenance mess since no one
dares to do any changes other than adding new functionality to it.

307

Open-Closed Principle

 A module should be open for extension but closed for modification

 The designer should specify the component in a way that it allows to be
extended (within the functional domain that it addresses) without the
need to make internal modifications (code or logic level) to the
component

 Abstractions are created that serve as a buffer between the functionality
that is likely to be extended and the design class

308

The Liskov Substitution Principle (LSP).

 “Subclasses should be substitutable for their base classes”.
 A component that uses a base class should continue to function properly

if a class derived from the base class is passed to the component instead
 Any class derived from the base class must honour any implied contract

between the base class and the components that uses it
 A contract is a precondition that must be true before the component uses

a base class and a post condition that should be true after the
component uses the base class

 When a designer creates derived classes, they must also conform to pre
and post conditions

 Subclasses should be substitutable for base classes

309

The Interface Segregation Principle (ISP)
 “Many client-specific interfaces are better than one general purpose interface”

 Many instances in which multiple client components use the operations
provided by a server class.

 ISP suggests that you should create a specialized interface to serve each major
category of clients.

 Only those operations that are relevant to a particular category of clients should
be specified in the interface for that client.

 If multiple clients require the same operations, it should be specified in each of
the specialized interfaces

 Many client-specific interfaces are better than one general purpose interface.

310

Dependency Inversion Principle (DIP)

 “Depend on abstractions. Do not depend on concretions”

 High level modules should not depend upon low level modules. Both should
depend upon abstractions.

 Abstractions should not depend upon details. Details should depend upon
abstractions.

• Dependency Inversion Principle:

– High level components should not depend upon low level components.
Instead, both should depend on abstractions.

– Abstractions should not depend upon details. Details should depend upon the
abstractions.

• We all can agree that complex systems need to be structured into layers. But if
that is not done carefully the top levels tend to depend on the lower levels.

– On the next page we show a “standard” architecture that appears to be
practical and useful.

– Unfortunately it has the ugly property that policy layer depends on
implementation layer which depends on utility layer, e.g., dependencies all the
way down.

311

Component-Level Design Guidelines

 In addition to the principles discussed, a set of pragmatic design
guidelines can be applied as component-level design proceeds.

 These guidelines apply to components, their interfaces, and the
dependencies and inheritance and inheritance characteristics that have
an impact on the resultant design.

 Components: Naming conventions should be established for components
that are specified as part of the architectural model and then refined and
elaborated as part of the component-level model.

 Architectural component names should be drawn from the problem
domain and should have meaning to all stakeholders who view the
architectural model.

 For example, the class name FloorPlan is meaningful to everyone reading
it regardless of technical background.

312

Component-Level Design Guidelines

 Interfaces: Interfaces provide important information about
communication and collaboration

 Ambler recommends that

(1) lollipop representation of an interface should be used in lieu of the
more formal UML box and dashed arrow approach, when diagrams
grow complex;

(2) for consistency, interfaces should flow from the left-hand side of the
component box;

(3)only those interfaces that are relevant to the component under
consideration should be shown, even if other interfaces are available.

 Dependencies and Inheritance:

 For improved readability, it is a good idea to model dependencies from
left to right and inheritance from bottom (derived classes) to top (base
classes).

313

Cohesion

 The “single-mindedness” of a component.

 Cohesion implies that a single component or class encapsulates only
attributes and operations that are closely related to one another and to the
class or component itself.

 Types of cohesion

1. Functional 2. Layer 3. Communicational

 A Functional cohesion is a form of cohesion in which modules together
perform a function (a computation) that returns a result and has no side
effects) are kept together, and everything else is kept out

 Has advantages
 It is easier to understand a module when you know all it does is generate

one specific output and has no side effects
 It is easier to replace a functionally cohesive module with another that

performs the same computation
 Functionally cohesive module is much more likely to be reusable

314

Cohesion

Functional cohesion
 Typically applies to operations. Occurs when a module performs one and

only one computation and then returns a result.

315

Cohesion

Layer Cohesion
 Form of cohesion in which the facilities for providing or accessing a set of

services through an API or hardware interface are kept together
 There must also be a strict hierarchy in which higher level layers can access only

lower-level layers. In other words, the system is effectively divided into layers
 The set of related services which could form a layer might include:

 Services for computation
 Services for transmission of messages or data
 Services for storage of data
 Services for managing security
 Services for interacting with users
 Services provided by an operating system
 Services provided directly by the hardware

Applies to packages, components, and classes. Occurs when a higher
layer can access a lower layer, but lower layers do not access higher layers.

316

Cohesion
Communicational Cohesion

 All operations that access the same data are defined within one class.

 In general, such classes focus solely on the data in question, accessing and storing it.

 Example: A Student Record class that adds, removes, updates, and accesses various
fields of a student record for client components.

Other types of Cohesion

 Procedural Cohesion

 Components or operations are grouped in a manner that allows one to be
invoked immediately after the preceding one was invoked, even when there is no
data passed between them

 Sequential Cohesion

 Components or operations are grouped in a manner that allows the first to
provide input to the next and so on. The intent is to implement sequence of
operations

 Temporal Cohesion

 Operations that are performed to reflect a specific behavior or state e.g an
operation performed at start up or all operations performed when an error is
detected

317

Coupling

 Coupling or Dependency is the degree to which each program module relies on
each one of the other modules.

 Coupling is usually contrasted with cohesion. Low coupling often correlates
with high cohesion, and vice versa

 Low coupling is often a sign of a well-structured computer system and a good
design, and when combined with high cohesion, supports the general goals of
high readability and maintainability.

 Coupling can be "low" (also "loose" and "weak") or "high" (also "tight"
and "strong"). Types of coupling, are as follows:

 Content coupling (high)

 Content coupling (also known as Pathological coupling) is when one
module modifies or relies on the internal workings of another
module (e.g., accessing local data of another module).

 Therefore changing the way the second module produces data
(location, type, timing) will lead to changing the dependent module.

 Violates information hiding

318

Coupling

 Content coupling (high)
 Example

○ module a modifies statements of module b
○ module a refers to local data of module b in terms of some numerical

displacement within b
○ module a branches into local label of module b

 Why is this bad?
○ almost any change to b requires changes to a

 Common coupling
 Common coupling (also known as Global coupling) is when two modules

share the same global data (e.g., a global variable)
 Changing the shared resource implies changing all the modules using it

319

Coupling

 External coupling
 External coupling occurs when two modules share an externally

imposed data format, communication protocol, or device interface.
This is basically related to the communication to external tools and
devices.

 Occurs when a component communicates or collaborates with
infrastructure components (operating systems, data base capability,
telecommunication functions).

 Although this type of coupling is necessary, it should be limited to a
small number of components or classes within a system.

 Control coupling
 Control coupling is one module controlling the flow of another, by

passing it information on what to do (e.g., passing a what-to-do flag).
 Occurs when operation A() invokes operation B() and passes a control

flag. The control flag then “directs” logical flow within B.
 Problem with this form of coupling is that an unrelated change in B

can result in the necessity to change the meaning of the control flag
that A passes

320

Coupling

 Stamp coupling (Data-structured coupling)

 Stamp coupling is when modules share a composite data structure and use
only a part of it, possibly a different part (e.g., passing a whole record to a
function that only needs one field of it).

 This may lead to changing the way a module reads a record because a field
that the module doesn't need has been modified.

 Occurs when Class B is declared as a type for an argument of an operation of
Class A. Because Class B is now part of the definition of Class A, modifying
the system becomes more complex.

 Data coupling
 Data coupling is when modules share data through, for example, parameters.

Each datum is an elementary piece, and these are the only data shared (e.g.,
passing an integer to a function that computes a square root).

 Occurs when operations pass long strings of data arguments. The bandwidth
of communication between classes and components grows and the
complexity of the interface increases. Testing and maintenance are more
difficult

321

Coupling
 Routine call Coupling

 Certain types of coupling occur routinely in object-oriented programming.

 Message coupling (low)

 This is the loosest type of coupling. Component communication is done via
parameters or message passing

 Software must communicate internally and externally and hence coupling is
essential. However the designer should work to reduce coupling wherever
possible and understand the ramifications of high coupling when it cannot be
avoided

Routine call coupling

322

Coupling
 Avoid

 Content coupling

 Use caution

 Common coupling

 Be aware

 Routine call coupling

 Type use coupling

 Inclusion or import coupling

323

Designing Traditional Components

• Conventional design constructs emphasize the maintainability of a
functional/procedural program
– Sequence, condition, and repetition
– The constructs are sequence, condition, and repetition.
– Sequence implements processing steps that are essential in the

specification of any algorithm.
– Condition provides the facility for selected processing based on some

logical occurrence.
– repetition allows for looping.
– These three constructs are fundamental to structured programming—an

important component-level design technique.
• Each construct has a predictable logical structure where control enters at the

top and exits at the bottom, enabling a maintainer to easily follow the
procedural flow

• Various notations depict the use of these constructs
– Graphical design notation

• Sequence, if-then-else, selection, repetition
– Tabular design notation
– Program design language

324

Graphical Design Notation

 ”A picture is worth a thousand words,” but it’s rather important to know which
picture and which 1000 words.

 There is no question that graphical tools, such as the UML activity diagram or
the flowchart, provide useful pictorial patterns that readily depict procedural
detail.

 However, if graphical tools are misused, the wrong picture may lead to the
wrong software.

 The activity diagram allows you to represent sequence, condition, and
repetition—

 all elements of structured programming—and is a descendent of an earlier
pictorial design representation (still used widely) called a flowchart.

 A flowchart, like an activity diagram, is quite simple pictorially. A box is used
to indicate a processing step. A diamond represents a logical condition, and
arrows show the flow of control. The sequence is represented as two
processing boxes connected by a line (arrow) of control.

325

Graphical Design Notation

Sequence If-then-else

Selection Repetition

T F

T

T

T

F

F

F

T

F

326

Tabular Design Notation
 In many software applications, a module may be required to evaluate a complex

combination of conditions and select appropriate actions based on these conditions.

 Decision tables provide a notation that translates actions and conditions (described
in a processing narrative or a use case) into a tabular form.

 The following steps are applied to develop a decision table:

1. List all actions that can be associated with a specific procedure (or module)

2. List all conditions (or decisions made) during execution of the procedure

3. Associate specific sets of conditions with specific actions, eliminating impossible
combinations of conditions; alternatively, develop every possible permutation of
conditions

4. Define rules by indicating what action(s) occurs for a set of conditions.

327

Program Design Language

• Program design language (PDL), also called structured English or
pseudocode, incorporates the logical structure of a programming language
with the free-form expressive ability of a natural language (e.g., English).

• Narrative text (e.g., English) is embedded within a programming language-
like syntax. Automated tools (e.g., [Cai03]) can be used to enhance the
application of PDL.

• A basic PDL syntax should include constructs for component definition,
interface description, data declaration, block structuring, condition
constructs, repetition constructs, and input-output (I/O) constructs.

• PDL can be extended to include keywords for multitasking and/or
concurrent processing, interrupt handling, interprocess synchronization,
and many other features

328

Program Design Language

329

MODULE-IV

TESTING AND IMPLEMENTATION

330

Contents

Testing and Implementation :

 Software testing fundamentals:

 Internal and external views of testing

 White box testing

 Basis path testing

 Control structure testing

 Black box testing

 Regression testing

 Unit testing

 Integration testing

 Validation testing

 System testing and debugging

Software implementation techniques:

 Coding practices

 Refactoring.

331

Software Testing Fundamentals

• The goal of testing is to find errors, and a good test is one that has a high
probability of finding an error.

• Therefore, you should design and implement a computer based system or a
product with “testability” in mind.

• The tests themselves must exhibit a set of characteristics that achieve the goal
of finding the most errors with a minimum of effort.

• Testability. James Bach1 provides the following definition for testability:
“Software testability is simply how easily [a computer program] can be tested.”
The following characteristics lead to testable software.

Operability. “The better it works, the more efficiently it can be tested.” If a system
is designed and implemented with quality in mind, relatively few bugs will block
the execution of tests, allowing testing to progress without fits and starts.
Observability. “What you see is what you test.” Inputs provided as part of testing
produce distinct outputs. System states and variables are visible or queriable
during execution. Incorrect output is easily identified. Internal errors are
automatically detected and reported. Source code is accessible.

332

Software Testing Fundamentals

Controllability. “The better we can control the software, the more the testing can be
automated and optimized.” All possible outputs can be generated through some
combination of input, and I/O formats are consistent and structured.

Decomposability. “By controlling the scope of testing, we can more quickly isolate
problems and perform smarter retesting.” The software system is built from
independent modules that can be tested independently.

Simplicity. “The less there is to test, the more quickly we can test it.” The program
should exhibit functional simplicity (e.g., the feature set is the minimum necessary to
meet requirements); structural simplicity (e.g., architecture is modularized to limit the
propagation of faults), and code simplicity (e.g., a coding standard is adopted for ease
of inspection and maintenance).

Stability. “The fewer the changes, the fewer the disruptions to testing.” Changes to
the software are infrequent, controlled when they do occur, and do not invalidate
existing tests. The software recovers well from failures.

Understandability. “The more information we have, the smarter we will test.” The
architectural design and the dependencies between internal, external, and shared
components are well understood. Technical documentation is instantly accessible, well
organized, specific and detailed, and accurate. Changes to the design are
communicated to testers.

333

Software Testing Fundamentals

 What are good Test Characteristics (or) What is a “good” test?

 A good test has a high probability of finding an error. To achieve this goal, the
tester must understand the software and attempt to develop a mental
picture of how the software might fail. Ideally, the classes of failure are
probed.

 A good test is not redundant. Testing time and resources are limited. There is
no point in conducting a test that has the same purpose as another test.
Every test should have a different purpose (even if it is subtly different).

 A good test should be “best of breed” . In a group of tests that have a similar
intent, time and resource limitations may mitigate toward the execution of
only a subset of these tests. In such cases, the test that has the highest
likelihood of uncovering a whole class of errors should be used.

 A good test should be neither too simple nor too complex. Although it is
sometimes possible to combine a series of tests into one test case, the
possible side effects associated with this approach may mask errors. In
general, each test should be executed separately.

334

Internal and External Views of Testing

Any engineered product (and most other things) can be tested in one of two
ways:

(1) Knowing the specified function that a product has been designed to
perform, tests can be conducted that demonstrate each function is
fully operational while at the same time searching for errors in each
function.

(2) Knowing the internal workings of a product, tests can be conducted to
ensure that “all gears mesh,” that is, internal operations are performed
according to specifications and all internal components have been
adequately exercised.

The first test approach takes an external view and is called black-box testing. The
second requires an internal view and is termed white-box testing.

335

Internal and External Views of Testing

 Black-box testing alludes to tests that are conducted at the software
interface. A black-box test examines some fundamental aspect of a system
with little regard for the internal logical structure of the software.

 White-box testing of software is predicated on close examination of
procedural detail. Logical paths through the software and collaborations
between components are tested by exercising specific sets of conditions
and/or loops.

 White-box testing would lead to “100 percent correct programs.” need do
is define all logical paths, develop test cases to exercise them, and evaluate
results, i.e, generate test cases to exercise program logic exhaustively.

 A limited number of important logical paths can be selected and exercised.
Important data structures can be probed for validity.

336

White-Box Testing

• White-box testing is the detailed investigation of internal logic and structure of
the code.

• White-box testing, sometimes called glass-box testing or open-box testing, Clear
Box testing, Structural testing, Transparent Box testing, Code-Based testing.

• It is a test-case design philosophy that uses the control structure described as
part of component-level design to derive test cases.

• The tester needs to have a look inside the source code and find out which
unit/chunk of the code is behaving inappropriately.

• Using White-box testing methods, you can derive test cases that

(1) guarantee that all independent paths within a module have been
exercised at least once,

(2) exercise all logical decisions on their true and false sides,
(3) execute all loops at their boundaries and within their operational

bounds, and
(4) exercise internal data structures to ensure their validity.

337

White-Box Testing

Advantages Disadvantages

As the tester has knowledge of the source
code, it becomes very easy to find out
which type of data can help in testing the
application effectively

Due to the fact that a skilled tester is
needed to perform white-box testing, the
costs are increased.

It helps in optimizing the code. Sometimes it is impossible to look into
every nook and corner to find out hidden
errors that may create problems, as many
paths will go untested.

Extra lines of code can be removed which
can bring in hidden defects.

It is difficult to maintain white-box
testing, as it requires specialized tools like
code analyzers and debugging tools.

Due to the tester's knowledge about the
code, maximum coverage is attained
during test scenario writing.

338

Basis Path Testing

• Basis path testing is a white-box testing technique.
• The basis path method enables the test-case designer to derive a logical

complexity measure of a procedural design and use this measure as a guide
for defining a basis set of execution paths.

• Test cases derived to exercise the basis set are guaranteed to execute every
statement in the program at least one time during testing.

 Flow Graph Notation

 Independent Program Paths

 Deriving Test Cases

 Graph Matrices

339

Basis Path Testing
Flow Graph Notation

 A simple notation for the representation of control flow, called a flow graph
(or program graph).

 The flow graph depicts logical control flow using the notation in the
following figure.

 Arrows called edges represent flow of control

 Circles called nodes represent one or more actions.

 Areas bounded by edges and nodes called regions.

 A predicate node is a node containing a condition.

 Any procedural design can be translated into a flow graph.

 Note that compound Boolean expressions at tests generate at least two
predicate node and additional arcs

340

Basis Path Testing

 To illustrate the use of a flow graph, consider the procedural design
representation in Figure.

 Here, Figure (a) flow chart is used to depict program control structure.

 Figure(b) maps the flowchart into a corresponding flow graph (assuming that
no compound conditions are contained in the decision diamonds of the
flowchart).

 Figure(b), each circle, called a flow graph node, represents one or more
procedural statements.

 A sequence of process boxes and a decision diamond can map into a single
node.

 The arrows on the flow graph, called edges or links, represent flow of control
and are analogous to flowchart arrows.

 An edge must terminate at a node, even if the node does not represent any
procedural statements (e.g., see the flow graph symbol for the if-then-else
construct).

 Areas bounded by edges and nodes are called regions. When counting regions.

341

Basis Path Testing

342

Basis Path Testing

Independent Program Paths

 An independent path is any path through the program that introduces at least one
new set of processing statements or a new condition.

 Cyclomatic complexity is a software metric that provides a quantitative measure of
the logical complexity if a program.

 When used in the context of the basis path testing method, the value computed for
Cyclomatic complexity defines the number of independent paths in the basis set of
a program and provides you with an upper bound for the number of tests that
must be conducted to ensure that all statements have been executed at least once.

 Cyclomatic complexity has a foundation in graph theory and provides you with an
extremely useful software metric. Complexity is computed in one of three ways:

1. The number of regions of the flow graph corresponds to the Cyclomatic
complexity.

2. Cyclomatic complexity V(G) for a flow graph G is defined as

V(G) =E – N + 2 where E is the number of flow graph edges and N is the
number of flow graph nodes.

3. Cyclomatic complexity V(G) for a flow graph G is also defined as V(G) = P+ 1
where P is the number of predicate nodes contained in the flow graph G.

343

Basis Path Testing

Deriving Test Cases

The following steps can be applied to derive the basis set:

1. Using the design or code as a foundation, draw a corresponding flow graph.

2. Determine the Cyclomatic complexity of the resultant flow graph.

3. Determine a basis set of linearly independent paths.

4. Prepare test cases that will force execution of each path in the basis set.

Graph Matrices:

 A data structure, called a graph matrix, can be quite useful for developing a
software tool that assists in basis path testing.

 A graph matrix is a square matrix whose size (i.e., number of rows and columns)
is equal to the number of nodes on the flow graph.

 Each row and column corresponds to an identified node, and matrix entries
correspond to connections (an edge) between nodes.

344

Basis Path Testing

A simple example of a flow graph and its corresponding graph matrix is shown in
Figure.

Referring to the figure, each node on the flow graph is identified by numbers,
while each edge is identified by letters.

A letter entry is made in the matrix to correspond to a connection between two
nodes. For example, node 3 is connected to node 4 by edge b.

The graph matrix is nothing more than a tabular representation of a flow graph.

By adding a link weight to each matrix entry, the graph matrix can become a
powerful tool for evaluating program control structure during testing.

The link weight provides additional information about control flow. In its simplest
form, the link weight is 1 (a connection exists) or 0 (a connection does not exist).

345

Control Structure Testing

• Although basis path testing is simple and highly effective, it is not sufficient in
itself.

• Other variations on control structure testing necessary. These broaden testing
coverage and improve the quality of white-box testing.

1.Condition testing:
• Condition testing is a test-case design method that exercises the logical

conditions contained in a program module.
• A simple condition is a Boolean variable or a relational expression, possibly

preceded with one NOT (¬) operator.
• A relational expression takes the form

• E1<relational-operator> E2
• Where E1 and E2 are arithmetic expressions and <relational-operator> is one

of the following:
• A compound condition is composed of two or more simple conditions,

Boolean operators, and parentheses.
• The condition testing method focuses on testing each condition in the

program to ensure that it does not contain errors.

346

Control Structure Testing

Data Flow Testing

 The data flow testing method selects test paths of a program according to
the locations of definitions and uses of variables in the program. T

 To illustrate the data flow testing approach, assume that each statement
in a program is assigned a unique statement number and that each
function does not modify its parameters or global variables.

 For a statement with S as its statement number,

 DEF(S)= {X | statement S contains a definition of X}

 USE(S) = {X | statement S contains a use of X}

 If statement S is an if or loop statement, its DEF set is empty and its USE
set is based on the condition of statement S. The definition of variable X at
statement S is said to be live at statement S’ if there exists a path from
statement S to statement S’ that contains no other definition of X.

347

Control Structure Testing

Loop Testing

Loops are the cornerstone for the vast majority of all algorithms
implemented in software.

Loop testing is a white-box testing technique that focuses exclusively on the
validity of loop constructs.

 Four different classes of loops can be defined:

1. Simple loops: The following set of tests can be applied to simple loops,
where n is the maximum number of allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n - 1, n, n + 1 passes through the loop.

348

Control Structure Testing

2. Nested loops: If we were to extend the test approach for simple loops to
nested loops, the number of possible tests would grow geometrically as the
level of nesting increases.

 Beizer suggests an approach that will help to reduce the number of tests:
1.Start at the innermost loop. Set all other loops to minimum values.
2.Conduct simple loop tests for the innermost loop while holding the

outer loops at their minimum iteration parameter (e.g., loop
counter) values. Add other tests for out-of-range or excluded values.

3. Work outward, conducting tests for the next loop, but keeping all
other outer loops at minimum values and other nested loops to
“typical” values.

4. Continue until all loops have been tested.

349

Control Structure Testing

3. Concatenated loops: In the concatenated loops, if two loops are
independent of each other then they are tested using simple loops or else
test them as nested loops. However if the loop counter for one loop is used
as the initial value for the others, then it will not be considered as an
independent loops.

4. Unstructured loops: Whenever possible, this class of loops should be
redesigned to reflect the use of the structured programming constructs.

350

Black-Box Testing

 Black-box testing, also called behavioral testing.

 It focuses on the functional requirements of the software.

 Black-box testing techniques enable you to derive sets of input conditions
that will fully exercise all functional requirements for a program.

 Black-box testing attempts to find errors in the following categories:

(1) incorrect or missing functions

(2) interface errors

(3) errors in data structures or external database access

(4) behavior or performance errors

(5) initialization and termination errors.

Black – Box Testing Techniques

1. Graph-Based Testing Methods 2. Equivalence Partitioning

3. Boundary Value Analysis 4. Orthogonal Array Testing

351

Black-Box Testing
1. Graph-Based Testing Methods

 The first step in black-box testing is to understand the objects5 that are modeled
in software and the relationships that connect these objects.

 Next step is to define a series of tests that verify “all objects have the expected
relationship to one another.

 To accomplish these steps, create a graph—a collection of nodes that represent
objects, links that represent the relationships between objects, node weights that
describe the properties of a node (e.g., a specific data value or state behavior),
and link weights that describe some characteristic of a link.

 The symbolic representation of a graph is shown in below Figure.

 Nodes are represented as circles connected by links that take a number of
different forms.

 A directed link (represented by an arrow) indicates that a relationship moves in
only one direction.

 A bidirectional link, also called a symmetric link, implies that the relationship
applies in both directions.

 Parallel links are used when a number of different relationships are established
between graph nodes

352

Black-Box Testing

1. Graph-Based Testing Methods

 The first step in black-box testing is to understand the objects5 that are modeled in
software and the relationships that connect these objects.

 Next step is to define a series of tests that verify “all objects have the expected
relationship to one another.

 To accomplish these steps, create a graph—a collection of nodes that represent
objects, links that represent the relationships between objects, node weights that
describe the properties of a node (e.g., a specific data value or state behavior), and
link weights that describe some characteristic of a link.

 The symbolic representation of a graph is shown in below Figure.

 Nodes are represented as circles connected by links that take a number of different
forms.

 A directed link (represented by an arrow) indicates that a relationship moves in only
one direction.

 A bidirectional link, also called a symmetric link, implies that the relationship applies
in both directions.

 Parallel links are used when a number of different relationships are established
between graph nodes

353

Black-Box Testing

354

Black-Box Testing

2. Equivalence Partitioning

 Equivalence partitioning is a black-box testing method that divides the input
domain of a program into classes of data from which test cases can be
derived.

 Test-case design for equivalence partitioning is based on an evaluation of
equivalence classes for an input condition.

 Equivalence classes may be defined according to the following guidelines:

 If an input condition specifies a range, one valid and two invalid
equivalence classes are defined.

 If an input condition requires a specific value, one valid and two invalid
equivalence classes are defined.

 If an input condition specifies a member of a set, one valid and one invalid
equivalence class are defined.

 If an input condition is Boolean, one valid and one invalid class are
defined.

355

Black-Box Testing

3.Boundary Value Analysis

 A greater number of errors occurs at the boundaries of the input domain rather than in
the “center of input domain.

 For this reason that boundary value analysis (BVA) has been developed as a testing
technique

 Boundary value analysis leads to a selection of test cases that exercise bounding values.

 BVA leads to the selection of test cases at the “edges” of the class. Rather than focusing
solely on input conditions.

 BVA derives test cases from the output domain also.

 Guidelines for BVA are similar in many respects to those provided for equivalence
partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases should
be designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be developed
that exercise the minimum and maximum numbers. Values just above and below
minimum and maximum are also tested.

356

Black-Box Testing

3. Apply guidelines 1 and 2 to out put conditions. For example, assume that a
temperature versus pressure table is required as output from an engineering
analysis program. Test cases should be designed to create an output report
that produces the maximum(and minimum)allowable number of table entries.

4. If internal program data structures have prescribed boundaries (e.g., a table
has a defined limit of 100 entries), be certain to design a test case to exercise
the data structure at its boundary.

Most software engineers intuitively perform BVA to some degree. By applying
these guidelines, boundary testing will be more complete, thereby having a higher
likelihood for error detection.

357

Black-Box Testing

 To illustrate the use of the L9 orthogonal array, consider the send function for a fax
application.

 Four parameters, P1, P2, P3, and P4, are passed to the send function. Each takes on
three discrete values. For example, P1 takes on values:

 P1 = 1, send it now : P1 = 2, send it one hour later : P1 = 3, send it after midnight

 P2, P3, and P4 would also take on values of 1, 2, and 3, signifying other send
functions.

 If a “one input item at a time” testing strategy were chosen, the following
sequence of tests (P1,P2,P3,P4) would be specified: (1,1,1,1),(2,1,1,1),(3,1,1,1), (1,
2, 1, 1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 1, 2), and (1, 1, 1, 3).

 The orthogonal array testing approach enables you to provide good test coverage
with far fewer test cases than the exhaustive strategy. An L9 orthogonal array for
the fax send function is illustrated in Figure.

358

Regression Testing

 When any modification or changes are done to the application or even when any
small change is done to the code then it can bring unexpected issues. Along with
the new changes it becomes very important to test whether the existing
functionality is intact or not. This can be achieved by doing the regression testing.

 The purpose of the regression testing is to find the bugs which may get introduced
accidentally because of the new changes or modification.

 During confirmation testing the defect got fixed and that part of the application
started working as intended. But there might be a possibility that the fix may have
introduced or uncovered a different defect elsewhere in the software. The way to
detect these ‘unexpected side-effects’ of fixes is to do regression testing.

 This also ensures that the bugs found earlier are NOT creatable.

 Usually the regression testing is done by automation tools because in order to fix
the defect the same test is carried out again and again and it will be very tedious
and time consuming to do it manually.

 During regression testing the test cases are prioritized depending upon the
changes done to the feature or module in the application. The feature or module
where the changes or modification is done that entire feature is taken into priority
for testing.

359

Regression testing

 This testing becomes very important when there are continuous modifications
or enhancements done in the application or product. These changes or
enhancements should NOT introduce new issues in the existing tested code.

 This helps in maintaining the quality of the product along with the new
changes in the application.

Example:

 Let’s assume that there is an application which maintains the details of all the
students in school. This application has four buttons Add, Save, Delete and
Refresh. All the buttons functionalities are working as expected. Recently a
new button ‘Update’ is added in the application. This ‘Update’ button
functionality is tested and confirmed that it’s working as expected. But at the
same time it becomes very important to know that the introduction of this
new button should not impact the other existing buttons functionality. Along
with the ‘Update’ button all the other buttons functionality are tested in order
to find any new issues in the existing code. This process is known as regression
testing.

360

Regression testing

When to use Regression testing it:

1. Any new feature is added 2. Any enhancement is done

3. Any bug is fixed 4. Any performance related issue is fixed

Advantages of Regression testing:

 It helps us to make sure that any changes like bug fixes or any enhancements to
the module or application have not impacted the existing tested code.

 It ensures that the bugs found earlier are NOT creatable.

 Regression testing can be done by using the automation tools

 It helps in improving the quality of the product.

Disadvantages of Regression testing:

 If regression testing is done without using automated tools then it can be very
tedious and time consuming because here we execute the same set of test
cases again and again.

 Regression test is required even when a very small change is done in the code
because this small modification can bring unexpected issues in the existing
functionality.

362

Unit Testing

 Unit testing focuses verification effort on the smallest unit of software
design—the software component or module

 Targets for Unit Test Cases

 Module interface

○ Ensure that information flows properly into and out of the module

 Local data structures

○ Ensure that data stored temporarily maintains its integrity during all
steps in an algorithm execution

 Boundary conditions

○ Ensure that the module operates properly at boundary values
established to limit or restrict processing

 Independent paths (basis paths)

○ Paths are exercised to ensure that all statements in a module have been
executed at least once

 Error handling paths

○ Ensure that the algorithms respond correctly to specific error conditions

363

Unit Testing

 Targets for Unit Test Cases



364

Unit Testing

 Common Computational Errors in Execution Paths

○ Misunderstood or incorrect arithmetic precedence

○ Mixed mode operations (e.g., int, float, char)

○ Incorrect initialization of values

○ Precision inaccuracy and round-off errors

○ Incorrect symbolic representation of an expression (int vs. float)

 Other Errors to Uncover

 Comparison of different data types

 Incorrect logical operators or precedence

 Expectation of equality when precision error makes equality unlikely (using
== with float types)

 Incorrect comparison of variables

 Improper or nonexistent loop termination

 Failure to exit when divergent iteration is encountered

 Improperly modified loop variables

 Boundary value violations

365

Unit Testing

 Problems to uncover in Error Handling

 Error description is unintelligible or ambiguous

 Error noted does not correspond to error encountered

 Error condition causes operating system intervention prior to error
handling

 Exception condition processing is incorrect

 Error description does not provide enough information to assist in the
location of the cause of the error

366

Unit Testing

 Unit test procedures

 Because a component is not a stand-alone program, driver and / or stub
software must be developed for each unit test.

 Driver

 A simple main program that accepts test case data, passes such data to
the component being tested, and prints the returned results

 Stubs

 Serve to replace modules that are subordinate to (called by) the
component to be tested

 It uses the module’s exact interface, may do minimal data manipulation,
provides verification of entry, and returns control to the module
undergoing testing

 Drivers and stubs both represent overhead

 Both must be written but don’t constitute part of the installed software
product

367

Unit Testing

368

Integration Testing

Integration testing is systematic technique for constructing the software
architecture while at the same time conducting tests to cover to uncover
errors associated with interfacing

 Objective is to take unit tested modules and build a program structure
based on the prescribed design

 Two Approaches

○ Non-incremental Integration Testing

○ Incremental Integration Testing

369

Integration Testing

 Non-incremental Integration Testing
 Commonly called the “Big Bang” approach
 All components are combined in advance
 The entire program is tested as a whole
 Disadvantages

○ Chaos results
○ Many seemingly-unrelated errors are encountered
○ Correction is difficult because isolation of causes is complicated
○ Once a set of errors are corrected, more errors occur, and testing appears to

enter an endless loop
 Incremental Integration Testing

 Three kinds
○ Top-down integration
○ Bottom-up integration
○ Sandwich integration

 The program is constructed and tested in small increments
 Errors are easier to isolate and correct
 Interfaces are more likely to be tested completely
 A systematic test approach is applied

370

Integration Testing

 Top-down Integration

 Modules are integrated by moving downward through the control
hierarchy, beginning with the main module

 Subordinate modules are incorporated in either a depth-first or
breadth-first fashion

○ DF: All modules on a major control path are integrated

○ BF: All modules directly subordinate at each level are integrated

 The main control module is used as a test driver, and stubs are
substituted for all components directly subordinate to the main
control module

 Depending on the integration approach selected subordinate stubs
are replaced one at a time with actual components

 Tests are conducted as each component is integrated

 On completion of each set of tests, another stub is replaced with real
component

371

Integration Testing

 Top-down Integration

 Advantages

○ This approach verifies major control or decision points early in the
test process

 Disadvantages

○ Stubs need to be created to substitute for modules that have not
been built or tested yet; this code is later discarded

○ Because stubs are used to replace lower level modules, no
significant data flow can occur until much later in the
integration/testing process

372

M9

M8

M1 M2

M3 M4 M5

M6 M7

M10

M11

Integration C

Integration A
Integration B

Stage 3

Stage 1

Stage 2

Stage 5

Integration D

Stage 4

Stage 6

373

Integration Testing

 Bottom-up Integration

 Integration and testing starts with the most atomic modules (i.e.,
components at the lowest levels in the program structure) in the control
hierarchy

 Begins construction and testing with atomic modules. As components are
integrated from the bottom up, processing required for components
subordinate to a given level is always available and the need for stubs is
eliminated

 Low-level components are combined into clusters that perform a specific
software sub-function

 A driver is written to coordinate test case input and output

 The cluster is tested

 Drivers are removed and clusters are combined moving upward in the
program structure

 As integration moves upward, the need for separate test drivers lessens. If
the top two levels of program structure are integrated top down, the number
of drivers can be reduced substantially and integration of clusters is greatly
simplified

374

Integration Testing

 Bottom-up Integration

 Advantages

○ This approach verifies low-level data processing early in the testing
process

○ Need for stubs is eliminated

 Disadvantages

○ Driver modules need to be built to test the lower-level modules;
this code is later discarded or expanded into a full-featured version

○ Drivers inherently do not contain the complete algorithms that will
eventually use the services of the lower-level modules;
consequently, testing may be incomplete or more testing may be
needed later when the upper level modules are available

375

M9

M8

M1 M2 M3 M4 M5 M6 M7

M10

M11

Integration A

Integration B Integration c

Stage 2

Stage 4

Stage 3

Stage 1

Integration Testing

376

Top-down testing of module M8 Bottom-up testing of module M8

Module
on test

M9

Stub
of M2

Stub
of M1

M8 Module
on test

Driver
of M9

M2M1

M8

Module
tested in
an earlier
stage

Modules
tested in
an earlier
stage

Integration Testing

377

Sandwich Integration

• Consists of a combination of both top-down and bottom-up integration
• Occurs both at the highest level modules and also at the lowest level

modules
• Proceeds using functional groups of modules, with each group completed

before the next
– High and low-level modules are grouped based on the control and data

processing they provide for a specific program feature
– Integration within the group progresses in alternating steps between

the high and low level modules of the group
– When integration for a certain functional group is complete, integration

and testing moves onto the next group
• Reaps the advantages of both types of integration while minimizing the

need for drivers and stubs
• Requires a disciplined approach so that integration doesn’t tend towards

the “big bang” scenario

378

Smoke Testing

• Taken from the world of hardware

– Power is applied and a technician checks for sparks, smoke, or other
dramatic signs of fundamental failure

• Designed as a pacing mechanism for time-critical projects

– Allows the software team to assess its project on a frequent basis

• Includes the following activities

– The software is compiled and linked into a build

– A series of breadth tests is designed to expose errors that will keep the
build from properly performing its function

• The goal is to uncover “show stopper” errors that have the highest likelihood
of throwing the software project behind schedule

– The build is integrated with other builds and the entire product is smoke
tested daily

• Daily testing gives managers and practitioners a realistic assessment of the
progress of the integration testing

– After a smoke test is completed, detailed test scripts are executed

379

Smoke Testing

• Benefits of Smoke Testing

– Integration risk is minimized

• Daily testing uncovers incompatibilities and show-stoppers early in the
testing process, thereby reducing schedule impact

– The quality of the end-product is improved

• Smoke testing is likely to uncover both functional errors and
architectural and component-level design errors

– Error diagnosis and correction are simplified

• Smoke testing will probably uncover errors in the newest components
that were integrated

– Progress is easier to assess

• As integration testing progresses, more software has been integrated
and more has been demonstrated to work

• Managers get a good indication that progress is being made

380

Validation Testing

• Validation testing follows integration testing

– The distinction between conventional and object-oriented software
disappears

– Focuses on user-visible actions and user-recognizable output from the
system

– Demonstrates conformity with requirements

1. Validation-Test Criteria

• Designed to ensure that

– All functional requirements are satisfied

– All behavioral characteristics are achieved

– All performance requirements are attained

– Documentation is correct

– Usability and other requirements are met (e.g., transportability,
compatibility, error recovery, maintainability)

381

Validation Testing

• After each validation test

– The function or performance characteristic conforms to
specification and is accepted

– A deviation from specification is uncovered and a deficiency list is
created

• Deviation or error discovered at this stage in a project can rarely be
corrected prior to scheduled delivery

2. A configuration review or audit ensures that all elements of the
software configuration have been properly developed, cataloged, and
have the necessary detail for entering the support phase of the
software life cycle (activies)

382

Validation Testing

• It is virtually impossible for a software developer to foresee how the customer
will really use a program.

• Instructions for use may be misinterpreted; strange combinations of data may
be regularly used; output that seemed clear to the tester may be unintelligible
to a user in the field.

• When custom software is built for one customer, a series of acceptance tests are
conducted to enable the customer to validate all requirements. Conducted by
the end user rather than software engineers, an acceptance test can range from
an informal “test drive” to a planned and systematically executed series of tests.

• In fact, acceptance testing can be conducted over a period of weeks or months,
thereby uncovering cumulative errors that might degrade the system over time.

• If software is developed as a product to be used by many customers, it is
impractical to perform formal acceptance tests with each one. Most software
product builders use a process called alpha and beta testing to uncover errors
that only the end user seems able to find.

383

Validation Testing

3. Alpha and Beta Testing

– Alpha Testing

• Conducted at the developer’s site by end users

• Software is used in a natural setting with developers watching intently

• Testing is conducted in a controlled environment

– Beta Testing

• Conducted at end-user sites

• Developer is generally not present

• It serves as a live application of the software in an environment that
cannot be controlled by the developer Alpha and Beta Testing

– Beta Testing

• The end-user records all problems that are encountered and reports
these to the developers at regular intervals

• After beta testing is complete, software engineers make software modifications
and prepare for release of the software product to the entire customer base.

384

System Testing
• System testing is a series of different test whose primary purpose is to

fully exercise the computer-based system.

• Each test has a different purpose, all work to verify that system elements
have been properly integrated and perform allocated functions.

1. Recovery testing

– Tests for recovery from system faults

– Forces the software to fail in a variety of ways and verifies that
recovery is properly performed

– Tests reinitialization, checkpointing mechanisms, data recovery, and
restart for correctness

– If recovery is automatic, reinitialization, checkpointing mechanisms,
data recovery, and restart are evaluated for correctness

– If recovery requires human intervention, the mean-time-to-repair is
evaluated to determine whether it is within acceptable limits

385

System Testing

2. Security testing

– Verifies that protection mechanisms built into a system will, in fact,
protect it from improper access

– During security testing, the tester plays the role of the individual who
desires to penetrate the system.

– Anything goes! The tester may attempt to acquire passwords through
external clerical means.

– may attack the system with custom software designed to break down any
defenses that have been constructed

3. Stress testing

– Executes a system in a manner that demands resources in abnormal
quantity, frequency, or volume.

– Stress tests are designed to confront programs with abnormal situations.
In essence, the tester who performs stress testing asks: “How high can
we crank this up before it fails?”

– A variation of stress testing is a technique called sensitivity testing.

System Testing

• A very small range of data contained within the bounds of valid data for a
program may cause extreme and even erroneous processing or profound
performance degradation.

• Sensitivity testing attempts to uncover data combinations within valid input
classes that may cause instability or improper processing.

4. Performance Testing

• Performance testing is designed to test the run-time performance of
software within the context of an integrated system.

• Performance testing occurs throughout all steps in the testing process.
Even at the unit level, the performance of an individual module may be
assessed as tests are conducted

• Performance tests are often coupled with stress testing and usually
requires both hardware and software instrumentation.

• That is, it is often necessary to measure resource utilization (e.g.,
processor cycles) in an exacting fashion

386

387

The Art of Debugging
• Debugging occurs as a consequence of successful testing. When a test case

uncovers an error, debugging is an action that results in the removal of the
error.

1. The debugging process

The debugging process attempts to match symptom with cause, thereby
leading to error correction.

The debugging process will usually have one of two outcomes:

(1) the cause will be found and corrected or

(2) the cause will not be found. In the latter case, the person performing
debugging may suspect a cause, design a test case to help validate that
suspicion, and work toward error correction in an iterative fashion.

– Debugging process beings with the execution of a test case. Results are
assessed and a lack of correspondence between expected and actual
performance is observed

– Debugging attempts to match symptom with cause , thereby leading to
error correction .

388

The Art of Debugging

389

The Art of Debugging

• Characteristics of bugs

– The symptom and the cause may be geographically remote.

– The symptom may disappear (temporarily) when another error is
corrected

– The symptom may actually be caused by non-errors

– The symptom may be caused by human error that is not easily traced

– The symptom my be a result of timing problems, rather than processing
problems

– It may be difficult to accurately reproduce input conditions

– The symptom may be intermittent.

– The symptom may be due to causes that are distributed across a number
of tasks running on different processors

390

2. Psychological Considerations

• Unfortunately, there appears to be some evidence that debugging prowess is
an innate human trait. Some people are good at it and others aren’t.

• Although experimental evidence on debugging is open to many
interpretations, large variances in debugging ability have been reported for
programmers with the same education and experience.

3. Debugging Strategies

• Objective of debugging is to find and correct the cause of a software error or
defect.

• Bugs are found by a combination of systematic evaluation, intuition, and luck.

• Debugging methods and tools are not a substitute for careful evaluation
based on a complete design model and clear source code

• There are three main debugging strategies

1. Brute force 2. Backtracking 3. Cause elimination

The Art of Debugging

391

The Art of Debugging

• Brute Force

– Most commonly used and least efficient method for isolating the cause of
a software error

– Used when all else fails

– Involves the use of memory dumps, run-time traces, and output
statements

– Leads many times to wasted effort and time

• Backtracking

– Can be used successfully in small programs

– The method starts at the location where a symptom has been uncovered

– The source code is then traced backward (manually) until the location of
the cause is found

– In large programs, the number of potential backward paths may become
unmanageably large

392

The Art of Debugging

• Cause Elimination

– Involves the use of induction or deduction and introduces the concept
of binary partitioning

• Induction (specific to general): Prove that a specific starting value is
true; then prove the general case is true

• Deduction (general to specific): Show that a specific conclusion
follows from a set of general premises

– Data related to the error occurrence are organized to isolate potential
causes

– A cause hypothesis is devised, and the aforementioned data are used to
prove or disprove the hypothesis

– Alternatively, a list of all possible causes is developed, and tests are
conducted to eliminate each cause

– If initial tests indicate that a particular cause hypothesis shows promise,
data are refined in an attempt to isolate the bug

393

The Art of Debugging

4. Correcting the Error

• Once a bug has been found, it must be corrected.

• But the correction of a bug can introduce other errors and therefore do more
harm than good.

• Van Vleck suggests three simple questions that you should ask before making
the “correction” that removes the cause of a bug.

• Three Questions to ask Before Correcting the Error

– Is the cause of the bug reproduced in another part of the program?

• Similar errors may be occurring in other parts of the program

– What next bug might be introduced by the fix that I’m about to make?

• The source code (and even the design) should be studied to assess the
coupling of logic and data structures related to the fix

– What could we have done to prevent this bug in the first place?

• This is the first step toward software quality assurance

• By correcting the process as well as the product, the bug will be
removed from the current program and may be eliminated from all
future programs

Software Implementation Techniques
Coding Practices:

 Best coding practices are a set of informal rules that the software
development community has learned over time which can help improve the
quality of software

 Many computer programs remain in use for far longer than the original
authors ever envisaged (sometimes 40 years or more) so any rules need to
facilitate both initial development and subsequent maintenance and
enhancement by people other than the original authors.

 In Ninety-ninety rule, Tim Cargill is credited with this explanation as to why
programming projects often run late: "The first 90% of the code accounts for
the first 90% of the development time. The remaining 10% of the code
accounts for the other 90% of the development time." Any guidance which
can redress this lack of foresight is worth considering.

 The size of a project or program has a significant effect on error rates,
programmer productivity, and the amount of management needed

a) Maintainability b) Dependability (c) Efficiency d) Usability.

394

Software Implementation Techniques

Refactoring:

 Refactoring is usually motivated by noticing a code smell.

 For example the method at hand may be very long, or it may be a near
duplicate of another nearby method.

 Once recognized, such problems can be addressed by refactoring the source
code, or transforming it into a new form that behaves the same as before
but that no longer "smells".

There are two general categories of benefits to the activity of refactoring.

Maintainability. It is easier to fix bugs because the source code is easy to
read and the intent of its author is easy to grasp. This might be achieved by
reducing large monolithic routines into a set of individually concise, well-
named, single-purpose methods. It might be achieved by moving a method
to a more appropriate class, or by removing misleading comments.

Extensibility. It is easier to extend the capabilities of the application if it
uses recognizable design patterns, and it provides some flexibility where
none before may have existed.

395

Software Implementation Techniques

Before applying a refactoring to a section of code, a solid set of
automatic unit tests is needed. The tests are used to demonstrate that the
behavior of the module is correct before the refactoring.

 The tests can never prove that there are no bugs, but the important point is
that this process can be cost-effective: good unit tests can catch enough
errors to make them worthwhile and to make refactoring safe enough.

396

MODULE-V

PROJECT MANAGEMENT

397

Contents

Project Management:

 Estimation:

 FP based

 LOC based

 Make/buy decision

COCOMO II:

 Planning

 Project plan

 Planning process

 RFP risk management

 Identification

 Projection

RMMM:

 Scheduling and tracking Relationship between people and effort

 Task set and network, Scheduling

EVA:

 Process and project metrics.
398

Project Management

 Organising, planning and scheduling software projects

 Objectives

 To introduce software project management and to describe its distinctive
characteristics

 To discuss project planning and the planning process

 To show how graphical schedule representations are used by project
management

 To discuss the notion of risks and the risk management process

399

 Concerned with activities involved in ensuring that software is delivered

 on time

 within the budget

 in accordance with the requirements

 Project management is needed because software development is always
subject to budget and schedule constraints

 Set by the development organisation or the customer

Software Project Management

400

 The product is intangible

 The product is uniquely flexible

 The product is uniquely complex

 Software engineering is not recognized as an engineering discipline with the
same status as mechanical, electrical engineering, etc.

 The software development process is not standardised

 Many software projects are “one-off” projects

Software Management Distinctions

401

 Proposal writing

 Project planning and scheduling

 Project costing

 Project monitoring and reviews

 Personnel selection and evaluation

 Report writing and presentations

Management activities

402

Project staffing
 May not be possible to appoint the ideal people to work on a project

 Project budget may not allow for the use of highly-paid staff

 Staff with the appropriate experience may not be available

 An organisation may wish to develop employee skills on a software project

○ Here’s Bob. He’s a sophomore. He’ll be a member of your HazMat Rover
team. He doesn’t know much yet, but he can brew a mean cup of
coffee and has a great personality.

 Managers have to work within these constraints

 especially when (as is currently the case) there is an international shortage
of skilled IT staff

403

Project planning

 Probably the most time-consuming project management activity

 Continuous activity from initial concept through to system delivery

 Plans must be regularly revised as new information becomes available

 Beware of grumbling developers

 Various different types of plan may be developed to support the main
software project plan that is concerned with schedule and budget

404

Types of project plan

Plan Description

Quality plan Describes the quality procedures and

standards that will be used in a project

Validation plan Describes the approach, resources and

schedule used for system validation.

Configuration management

plan

Describes the configuration management

procedures and structures to be used.

Maintenance plan Predicts the maintenance requirements of

the system, maintenance costs and effort

required.

Staff development plan Describes how the skill and experience of the

project team members will be developed.

405

Estimation

 Software cost and effort estimation will never be an exact science. Too many
variables—human, technical, environmental, political—can affect the ultimate
cost of software and effort applied to develop it.

 To achieve reliable cost and effort estimates, a number of options arise:

1. Delay estimation until late in the project (obviously, we can achieve 100 percent
accurate estimates after the project is complete!).

2. Base estimates on similar projects that have already been completed.

3. Use relatively simple decomposition techniques to generate project cost and
effort estimates.

4. Use one or more empirical models for software cost and effort estimation.

Unfortunately, the first option, however attractive, is not practical. Cost estimates
must be provided up-front. However, recognize that the longer you wait, the more you
know, and the more you know, the less likely you are to make serious errors in your
estimates.

The second option can work reasonably well, if the current project is quite similar to
past efforts and other project influences (e.g., the customer, business conditions, the
software engineering environment, deadlines) are roughly equivalent. Unfortunately,
past experience has not always been a good indicator of future results.

406

Function Point based Estimation

Function Point based Estimation :

 A Function Point (FP) is a unit of measurement to express the amount of
business functionality, an information system (as a product) provides to a user.
FPs measure software size. They are widely accepted as an industry standard
for functional sizing

 Function point analysis is a method of quantifying the size and complexity of a
software system in terms of the functions that the system delivers to the user

 It is independent of the computer language, development methodology,
technology or capability of the project team used to develop the application

 Function point analysis is designed to measure business applications (not
scientific applications)

 Scientific applications generally deal with complex algorithms that the function
point method is not designed to handle

 Function points are independent of the language, tools, or methodologies used
for implementation (ex. Do not take into consideration programming languages,
DBMS, or processing hardware)

 Function points can be estimated early in analysis and design
407

Function Point based Estimation

Uses of Function Point:

 Measure productivity (ex. Number of function points achieved per work
hour expended)

 Estimate development and support (cost benefit analysis, staffing
estimation)

 Monitor outsourcing agreements (Ensure that the outsourcing entity
delivers the level of support and productivity gains that they promise)

 Drive IS related business decisions (Allow decisions regarding the
retaining, retiring and redesign of applications to be made)

 Normalize other measures (Other measures, such as defects, frequently
require the size in function points)

408

LOC based Estimation
LOC based estimation

 Source lines of code (SLOC), also known as lines of code (LOC), is a software metric used
to measure the size of a computer program by counting the number of lines in the text
of the program's source code.

 SLOC is typically used to predict the amount of effort that will be required to develop a
program, as well as to estimate programming productivity or maintainability once the
software is produced.

 Lines used for commenting the code and header file are ignored.

Two major types of LOC:

1. Physical LOC

 Physical LOC is the count of lines in the text of the program's source code including
comment lines.

 Blank lines are also included unless the lines of code in a section consists of more than
25% blank lines.

2. Logical LOC

 Logical LOC attempts to measure the number of executable statements, but their
specific definitions are tied to specific computer languages.

 Ex: Logical LOC measure for C-like programming languages is the number of statement-
terminating semicolons(;)

409

LOC based Estimation

The problems of lines of code (LOC)
– Different languages lead to different lengths of code
– It is not clear how to count lines of code
– A report, screen, or GUI generator can generate thousands of lines of code in

minutes
– Depending on the application, the complexity of code is different.

410

make/buy decision

 In many software application areas, it is often more cost effective to acquire
rather than develop computer software.

 Software engineering managers are faced with a make/ buy decision that can
be further complicated by a number of acquisition options.

(1) Software may be purchased (or licensed) off-the-shelf

(2) “full-experience” or “partial-experience” software components may be
acquired and then modified and integrated to meet specific needs.

(3) Software may be custom built by an outside contractor to meet the
purchaser’s specifications.

 In the final analysis the make/buy decision is made based on the following
conditions:

(1) Will the delivery date of the software product be sooner than that for
internally developed software?

(2) Will the cost of acquisition plus the cost of customization be less than the
cost of developing the software internally?

(3) Will the cost of outside support (e.g., a maintenance contract) be less than
the cost of internal support?

411

make/buy decision

Creating a Decision Tree :

 The steps just described can be augmented using statistical techniques such as
decision tree analysis.

 For example, considered the figure below it depicts a decision tree for a
software based system X. In this case, the software engineering organization
can

(1) build system X from scratch

(2) reuse existing partial-experience components to construct the system

(3) buy an available software product and modify it to meet local needs, or

(4) contract the software development to an outside vendor.

If the system is to be built from scratch, there is a 70 percent probability that the
job will be difficult.

The expected value for cost, computed along any branch of the decision tree, is:

where i is the decision tree path. For the build path.
412

make/buy decision
 It is important to note, however, that many criteria —not just cost—must be

considered during the decision-making process. Availability, experience of the
developer/ vendor/contractor, conformance to requirements, local “politics,”
and the likelihood of change are but a few of the criteria that may affect the
ultimate decision to build, reuse, buy, or contract.

413

make/buy decision

Outsourcing

 Sooner or later, every company that develops computer software asks a fundamental
question: “Is there a way that we can get the software and systems we need at a
lower price?”

 The answer to this question is not a simple one, and the emotional discussions that
occur in response to the question always lead to a single word: outsourcing.
Regardless of the breadth of focus, the outsourcing decision is often a financial one.

 Outsourcing is extremely simple. Software engineering activities are contracted to a
third party who does the work at lower cost and, hopefully, higher quality.

 The decision to outsource can be either strategic or tactical.

 At the strategic level, business managers consider whether a significant portion of all
software work can be contracted to others.

 At the tactical level, a project manager determines whether part or all of a project
can be best accomplished by subcontracting the software work.

 On the positive side, cost savings can usually be achieved by reducing the number of
software people and the facilities (e.g., computers, infrastructure) that support them.
On the negative side, a company loses some control over the software that it needs.

414

COCOMO - II

 Barry Boehm [Boe81] introduced a hierarchy of software estimation models
bearing the name COCOMO, for Constructive Cost MOdel. The original
COCOMO model became one of the most widely used and discussed software
cost estimation models in the industry. It has evolved into a more
comprehensive estimation model, called COCOMOII.

 COCOMOII is actually a hierarchy of estimation models that address the
following areas:

Application composition model. Used during the early stages of software
engineering, when prototyping of user interfaces, consideration of software
and system interaction, assessment of performance, and evaluation of
technology maturity are paramount.

Early design stage model. Used once requirements have been stabilized and basic
software architecture has been established.

Post-architecture-stage model. Used during the construction of the software.

 The COCOMO II models require sizing information.

 Three different sizing options are available as part of the model hierarchy:
object points, function points, and lines of source code.

415

COCOMO - II

The COCOMO II application composition model uses object points :

 The object point is an indirect software measure that is computed using
counts of the number of

(1) screens (at the user interface),

(2) reports

(3) components likely to be required to build the application.

Each object instance (e.g., a screen or report) is classified into one of three
complexity levels (i.e., simple, medium, or difficult).

Once complexity is determined, the number of screens, reports, and
components are weighted according to the table given below

416

COCOMO - II
 When component-based development or general software reuse is to be

applied, the percent of reuse (%reuse) is estimated and the object point
count is adjusted:

where NOP is defined as new object points.

 To derive an estimate of effort based on the computed NOP value, a
“productivity rate” must be derived.

 Once the productivity rate has been determined, an estimate of project
effort is computed using,

417

The Project Planning Process

 The Project Planning Phase is the second phase in the project life cycle. It involves
creating of a set of plans to help guide your team through the execution and
closure phases of the project.

 The plans created during this phase will help you to manage time, cost, quality,
change, risk and issues. They will also help you manage staff and external
suppliers, to ensure that you deliver the project on time and within budget.

 The objective of software project planning is to provide a framework that enables
the manager to make reasonable estimates of resources, cost, and schedule.

 In addition, estimates should attempt to define best-case and worst-case
scenarios so that project outcomes can be bounded.

 Although there is an inherent degree of uncertainty, the software team embarks
on a plan that has been established as a consequence of these tasks.

 Therefore, the plan must be adapted and updated as the project proceeds.
 The Project Planning Phase is often the most challenging phase for a Project

Manager, as you need to make an educated guess of the staff, resources and
equipment needed to complete your project. You may also need to plan your
communications and procurement activities, as well as contract any 3rd party
suppliers.

418

Risk Management

• A Hazard is

 Any real or potential condition that can cause injury, illness, or death to
personnel; damage to or loss of a system, equipment or property; or damage to
the environment. Simpler A threat of harm. A hazard can lead to one or
several consequences.

• Risk is

 The expectation of a loss or damage (consequence)

 The combined severity and probability of a loss

 The long term rate of loss

 A potential problem (leading to a loss) that may - or may not occur in the
future.

• Risk Management is A set of practices and support tools to identify, analyze, and
treat risks explicitly.

• Treating a risk means understanding it better, avoiding or reducing it (risk
mitigation), or preparing for the risk to materialize.

• Risk management tries to reduce the probability of a risk to occur and the impact
(loss) caused by risks.



419

Risk Management
• Reactive versus Proactive Risk Strategies

• Software risks

Reactive versus Proactive Risk Strategies

• The majority of software teams rely solely on reactive risk strategies. At best, a
reactive strategy monitors the project for likely risks. Resources are set aside to
deal with them, should they become actual problems.

• The software team does nothing about risks until something goes wrong. Then,
the team flies into action in an attempt to correct the problem rapidly. This is
often called a fire-fighting mode.

• A considerably more intelligent strategy for risk management is to be proactive.

• A proactive strategy begins long before technical work is initiated. Potential
risks are identified, their probability and impact are assessed, and they are
ranked by importance. Then,

• The software team establishes a plan for managing risk. The primary objective is
to avoid risk, but because not all risks can be avoided, the team works to
develop a contingency plan that will enable it to respond in a controlled and
effective manner.

420

Software Risks

Risk always involves two characteristics:

• Risk always involves two characteristics: uncertainty—the risk may or may not
happen; that is, there are no 100 percent probable risks—and loss—if the risk
becomes a reality, unwanted consequences or losses will occur.

• When risks are analyzed, it is important to quantify the level of uncertainty and
the degree of loss associated with each risk.

• Different categories of risks are follows:

1. Project risks

 Threaten the project plan. That is, if project risks become real, it is likely
that the project schedule will slip and that costs will increase.

 Project risks identify potential budgetary, schedule, personnel (staffing and
organization), resource, stakeholder, and requirements problems and their
impact on a software project.

421

Software Risks

2. Technical risks

 Threaten the quality and timeliness of the software to be produced.

 If a technical risk becomes a reality, implementation may become difficult or
impossible. Technical risks identify potential design, implementation, interface,
verification, and maintenance problems.

 In addition, specification ambiguity, technical uncertainty, technical obsolescence,
and “leading-edge” technology are also risk factors. Technical risks occur because the
problem is harder to solve than you thought it would be.

3. Business risks

 Business risks threaten the viability of the software to be built and often jeopardize
the project or the product.

 Candidates for the top five business risks are

(1) building an excellent product or system that no one really wants (market risk)

(2) building a product that no longer fits into the overall business strategy for the
company (strategic risk)

(3) building a product that the sales force doesn’t understand how to sell (sales risk)

(4) losing the support of senior management due to a change in focus or a change in
people (management risk)

(5) losing budgetary or personnel commitment (budget risks). 422

Software Risks

Another general categorization of risks has been proposed by Charette.

1. Known risks are those that can be uncovered after careful evaluation of the
project plan, the business and technical environment in which the project is
being developed, and other reliable information sources (e.g., unrealistic
delivery date, lack of documented requirements or software scope, poor
development environment).

2. Predictable risks are extrapolated from past project experience (e.g., staff
turnover, poor communication with the customer, dilution of staff effort as
ongoing maintenance requests are serviced).

3. Unpredictable risks are the joker in the deck. They can and do occur, but they
are extremely difficult to identify in advance.

423

Risk Identification

 Risk identification is a systematic attempt to specify threats to the project
plan (estimates, schedule, resource loading, etc.).

 By identifying known and predictable risks, the project manager takes a first
step toward avoiding them when possible and controlling them when
necessary.

 There are two distinct types of risks: generic risks and product-specific risks.

 Generic risks are a potential threat to every software project.

 Product-specific risks can be identified only by those with a clear
understanding of the technology, the people, and the environment that is
specific to the software that is to be built.

 To identify product-specific risks, the project plan and the software
statement of scope are examined, and an answer to the following question is
developed: “What special characteristics of this product may threaten our
project plan?”

424

Risk Identification

 One method for identifying risks is to create a risk item checklist.

 The checklist can be used for risk identification and focuses on some subset of
known and predictable risks in the following generic subcategories:

 Product size—risks associated with the overall size of the software to be built or
modified.

 Business impact—risks associated with constraints imposed by management or the
marketplace.

 Stakeholder characteristics—risks associated with the sophistication of the
stakeholders and the developer’s ability to communicate with stakeholders in a
timely manner.

 Process definition—risks associated with the degree to which the software process
has been defined and is followed by the development organization. • Development
environment—risks associated with the availability and quality of the tools to be
used to build the product.

 Technology to be built—risks associated with the complexity of the system to be
built and the “newness” of the technology that is packaged by the system.

 Staff size and experience—risks associated with the overall technical and project
experience of the software engineers who will do the work.

425

Risk Identification

Assessing Overall Project Risk

The following questions have been derived from risk data obtained by surveying
experienced software project managers in different parts of the world.

1. Have top software and customer managers formally committed to support the
project?

2. Are end users enthusiastically committed to the project and the system/ product to
be built?

3. Are requirements fully understood by the software engineering team and its
customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end users have realistic expectations?

6. Is the project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Doestheprojectteamhaveexperiencewiththetechnologytobeimplemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project and on
the requirements for the system/product to be built 426

Risk Identification

 The project manager identify the risk drivers that affect software risk
components— performance, cost, support, and schedule.

 The risk components are defined in the following manner:

 Performance risk—the degree of uncertainty that the product will meet its
requirements and be fit for its intended use.

 Cost risk—the degree of uncertainty that the project budget will be
maintained.

 Support risk—the degree of uncertainty that the resultant software will be
easy to correct, adapt, and enhance.

 Schedule risk—the degree of uncertainty that the project schedule will be
maintained and that the product will be delivered on time.

 The impact of each risk driver on the risk component is divided into one of
four impact categories—negligible, marginal, critical, or catastrophic.

427

Risk Projection

 Risk projection, also called risk estimation, attempts to rate each risk
in two ways.

(1) The likelihood or probability that the risk is real and

(2) The consequences of the problems associated with the risk, should
it occur

Managers and technical staff to perform four risk projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will
be no misunderstandings.

The intent of these steps is to consider risks in a manner that leads to
prioritization. No software team has the resources to address every
possible risk with the same degree of rigor.

By prioritizing risks, you can allocate resources where they will have the
most impact.

428

Risk Projection

1. Developing a Risk Table

 A risk table provides you with a simple technique for risk projection. A
sample risk table is illustrated in Figure.

 List all the risks (no matter how remote) in the first column of the table.

 Each risk is categorized in the second column (e.g., PS implies a project size
risk, BU implies a business risk).

 The probability of occurrence of each risk is entered in the next column of
the table. The probability value for each risk can be estimated by team
members individually.

 Next, the impact of each risk is assessed. Each risk component is assessed,
and an impact category is determined.

 The categories for each of the four risk components—performance,
support, cost, and schedule—are averaged to determine an overall impact
value.

 Once the first four columns of the risk table have been completed, the table
is sorted by probability and by impact.

 High-probability, high-impact risks percolate to the top of the table, and
low-probability risks drop to the bottom.

429

Risk Projection

Sample Risk table prior to sorting

430

Risk Projection

2. Assessing Risk Impact

 Three factors affect the consequences that are likely if a risk does occur:

its nature, its scope, and its timing.

 The nature of the risk indicates the problems that are likely if it occurs. For
example, a poorly defined external interface to customer hardware (a technical
risk) will preclude early design and testing and will likely lead to system
integration problems late in a project.

 The scope of a risk combines the severity (just how serious is it?) with its
overall distribution (how much of the project will be affected or how many
stakeholders are harmed?).

 The timing of a risk considers when and for how long the impact will be felt. In
most cases, you want the “bad news” to occur as soon as possible, but in some
cases, the longer the delay, the better.

 The overall risk exposure RE is determined using the following relationship

RE= P * C

where P is the probability of occurrence for a risk, and C is the cost to the
project should the risk occur.

431

Risk Mitigation, Monitoring, and Management

• An effective strategy for dealing with risk must consider three issues
(Note: these are not mutually exclusive)

– Risk mitigation

– Risk monitoring

– Risk management and contingency planning

• Risk mitigation - is the primary strategy and is achieved through a plan

– Example: Risk of high staff turnover

• Meet with current staff to determine causes for turnover (e.g., poor
working conditions, low pay, competitive job market)

• Mitigate those causes that are under our control before the project starts

• Once the project commences, assume turnover will occur and develop
techniques to ensure continuity when people leave

432

Risk Mitigation, Monitoring, and Management

• Organize project teams so that information about each development activity is
widely dispersed

• Define documentation standards and establish mechanisms to ensure that
documents are developed in a timely manner

• Conduct peer reviews of all work (so that more than one person is "up to
speed")

• Assign a backup staff member for every critical technologist.

• During risk monitoring, the project manager monitors factors that may provide
an indication of whether a risk is becoming more or less likely

• Risk management and contingency planning assume that mitigation efforts
have failed and that the risk has become a reality

433

Risk Mitigation, Monitoring, and Management

• RMMM steps incur additional project cost

– Large projects may have identified 30 – 40 risks

• Risk is not limited to the software project itself

– Risks can occur after the software has been delivered to the user
• Software safety and hazard analysis

– These are software quality assurance activities that focus on the
identification and assessment of potential hazards that may affect
software negatively and cause an entire system to fail

– If hazards can be identified early in the software process, software
design features can be specified that will either eliminate or control
potential hazards.

• It is important to note that risk mitigation, monitoring, and management
(RMMM) steps incur additional project cost

434

The RMMM Plan

• The RMMM plan may be a part of the software development plan or may
be a separate document

• Once RMMM has been documented and the project has begun, the risk
mitigation, and monitoring steps begin

– Risk mitigation is a problem avoidance activity

– Risk monitoring is a project tracking activity

• Risk monitoring has three objectives

– To assess whether predicted risks do, in fact, occur

– To ensure that risk aversion steps defined for the risk are being properly
applied

– To collect information that can be used for future risk analysis

• The findings from risk monitoring may allow the project manager to
ascertain what risks caused which problems throughout the project

435

What is PROJECT SCHEDULING?

 In the late 1960s, a bright-eyed young engineer was chosen to “write” a
computer program for an automated manufacturing application. The
reason for his selection was simple. He was the only person in his
technical group who had attended a computer programming seminar. He
knew the ins and outs of assembly language and FORTRAN but nothing
about software engineering and even less about project scheduling and
tracking. His boss gave him the appropriate manuals and a verbal
description of what had to be done. He was informed that the project
must be completed in two months. He read the manuals, considered his
approach, and began writing code. After two weeks, the boss called him
into his office and asked how things were going. “Really great,” said the
young engineer with youthful enthusiasm. “This was much simpler than I
thought. I’m probably close to 75 percent finished.”

436

What is PROJECT SCHEDULING?

 The boss smiled and encouraged the young engineer to keep up the good
work. They planned to meet again in a week’s time. A week later the boss
called the engineer into his office and asked, “Where arewe?”
“Everything’s going well,” said the youngster, “but I’ve run into a few
small snags. I’ll get them ironed out and be back on track soon.” “How
does the deadline look?” the boss asked. “No problem,” said the
engineer. “I’m close to 90 percent complete.” If you’ve been working in
the software world for more than a few years, you can finish the story.
It’ll come as no surprise that the young engineer1 stayed 90 percent
complete for the entire project duration and finished (with the help of
others) only one month late. This story has been repeated tens of
thousands of times by software developers during the past five decades.
The big question is why?

437

What is PROJECT SCHEDULING?

 The boss smiled and encouraged the young engineer to keep up the good
work. They planned to meet again in a week’s time. A week later the boss
called the engineer into his office and asked, “Where arewe?”
“Everything’s going well,” said the youngster, “but I’ve run into a few small
snags. I’ll get them ironed out and be back on track soon.” “How does the
deadline look?” the boss asked. “No problem,” said the engineer. “I’m close
to 90 percent complete.” If you’ve been working in the software world for
more than a few years, you can finish the story. It’ll come as no surprise
that the young engineer1 stayed 90 percent complete for the entire project
duration and finished (with the help of others) only one month late. This
story has been repeated tens of thousands of times by software developers
during the past five decades. The big question is why?

438

What is PROJECT SCHEDULING?

 Why it’s Important?
 In order to build a complex system, many software engineering tasks

occur in parallel.
 The result of work performed during one task may have a profound

effect on work to be conducted in another task.
 These interdependencies are very difficult to understand without a

schedule.
 lt’s also virtually impossible to assess progress on a moderate or large

software project without a detailed schedule

 What are the steps?
 The software engineering tasks dictated by the software process

model are refined for the functionality to be built.

 Effort and duration are allocated to each task and a task network
(also called an “activity network”) is created in a manner that enables
the software team to meet the delivery deadline established.

439

What is PROJECT SCHEDULING?

Basic Concept of Project Scheduling

 An unrealistic deadline established by someone outside the software
development group and forced on managers and practitioner's within the
group.

 Changing customer requirements that are not reflected in schedule changes.

 An honest underestimate of the amount of effort and/or the number of
resources that will be required to do the job.

 Predictable and/or unpredictable risks that were not considered when the
project commenced.

 Technical difficulties that could not have been foreseen in advance.

 Why should we do when the management demands that we make a dead line
I impossible?
 Perform a detailed estimate using historical data from past projects.

 Determine the estimated effort and duration for the project.

 Using an incremental process model, develop a software engineering
strategy that will deliver critical functionality by the imposed deadline, but
delay other functionality until later. Document the plan.

 Meet with the customer and (using the detailed estimate), explain why the
imposed deadline is unrealistic.

440

Project Scheduling

Project Scheduling

• Basic Principles

• The Relationship Between People and Effort

• Effort Distribution

• Software project scheduling is an action that distributes estimated effort
across the planned project duration by allocating the effort to specific
software engineering tasks.

• During early stages of project planning, a macroscopic schedule is
developed.

• As the project gets under way, each entry on the macroscopic schedule is
refined into a detailed schedule.

441

Project Scheduling

Basic Principles of Project Scheduling.

1. Compartmentalization: The project must be compartmentalized into a
number of manageable activities and tasks. To accomplish
compartmentalization, both the product and the process are refined.

2. Interdependency: The interdependency of each compartmentalized activity
or task must be determined. Some tasks must occur in sequence, while
others can occur in parallel. Other activities can occur independently.

3. Time allocation: Each task to be scheduled must be allocated some number
of work units (e.g., person‐days of effort). In addition, each task must be
assigned a start date and a completion date. whether work will be conducted
on a full-time or part-time basis.

4. Effort validation: Every project has a defined number of people on the
software team. The project manager must ensure that no more than the
allocated number of people have been scheduled at any given time.

5. Defined responsibilities. Every task that is scheduled should be assigned to a
specific team member.

442

Project Scheduling

6. Defined outcomes: Every task that is scheduled should have a defined
outcome. For software projects, the outcome is normally a work product
(e.g., the design of a component) or a part of a work product. Work
products are often combined in deliverables.

7. Defined milestones: Every task or group of tasks should be associated
with a project milestone. A milestone is accomplished when one or more
work products has been reviewed for quality and has been approved.

Each of these principles is applied as the project schedule evolves.

443

The Relationship Between People and Effort

The Relationship Between People and Effort

• In a small software development project a single person can analyze
requirements, perform design, generate code, and conduct tests. As the size
of a project increases, more people must become involved.

• There is a common myth that is still believed by many managers who are
responsible for software development projects: “If we fall behind schedule,
we can always add more programmers and catch up later in the project.”

• Unfortunately, adding people late in a project often has a disruptive effect on
the project, causing schedules to slip even further. The people who are added
must learn the system, and the people who teach them are the same people
who were doing the work.

• While teaching, no work is done, and the project falls further behind. In
addition to the time it takes to learn the system, more people.

• Although communication is absolutely essential to successful software
development, every new communication path requires additional effort and
therefore additional time.

444

The Relationship Between People and Effort

Effort Distribution

• A recommended distribution of effort across the software process is often referred to as the
40–20–40 rule.

• Forty percent of all effort is allocated to frontend analysis and design. A similar percentage is
applied to back-end testing. You can correctly infer that coding (20 percent of effort) is
deemphasized.

• Work expended on project planning rarely accounts for more than 2 to 3 percent of effort,
unless the plan commits an organization to large expenditures with high risk.

• Customer communication and requirements analysis may comprise 10 to 25 percent of
project effort.

• Effort expended on analysis or prototyping should increase in direct proportion with project
size and complexity.

• A range of 20 to 25 percent of effort is normally applied to software design. Time expended
for design review and subsequent iteration must also be considered.

• Because of the effort applied to software design, code should follow with relatively little
difficulty.

• A range of 15 to 20 percent of overall effort can be achieved. Testing and subsequent
debugging can account for 30 to 40 percent of software development effort.

• The criticality of the software often dictates the amount of testing that is required. If
software is human rated (i.e., software failure can result in loss of life), even higher
percentages are typical. 445

Scheduling

 Scheduling of a software project does not differ greatly from scheduling of
any multitask engineering effort. Therefore, generalized project scheduling
tools and techniques can be applied with little modification for software
projects.

 Program evaluation and review technique (PERT) and the critical path
method (CPM) are two project scheduling methods that can be applied to
software development.

1. Time-Line Charts:

When creating a software project schedule, begin with a set of tasks.

 If automated tools are used, the work breakdown is input as a task network
or task outline. Effort, duration, and start date are then input for each task.
In addition, tasks may be assigned to specific individuals.

 As a consequence of this input, a time-line chart, also called a Gantt chart,
is generated.

 A time-line chart can be developed for the entire project. Alternatively,
separate charts can be developed for each project function or for each
individual working on the project.

446

Scheduling

 All project tasks (for concept scoping) are listed in the left hand column.
The horizontal bars indicate the duration of each task. When multiple bars
occur at the same time on the calendar, task concurrency is implied. The
diamonds indicate milestones.

 Once the information necessary for the generation of a time-line chart has
been input, the majority of software project scheduling tools produce
project tables. —a tabular listing of all project tasks, their planned and
actual start and end dates, and a variety of related information. Used in
conjunction with the time-line chart, project tables enable you to track
progress.

447

Scheduling and Tracking

2. Tracking the Schedule

 If it has been properly developed, the project schedule becomes a road
map that defines the tasks and milestones to be tracked and controlled as
the project proceeds.

 Tracking can be accomplished in a number of different ways:

 Conducting periodic project status meetings in which each team member
reports progress and problems.

 Evaluating the results of all reviews conducted throughout the software
engineering process.

 Determining whether formal project milestones have been accomplished
by the scheduled date.

 Comparing the actual start date to the planned start date for each project
task listed in the resource table.

 Meeting informally with practitioners to obtain their subjective assessment
of progress to date and problems on the horizon.

 Using earned value analysis to assess progress quantitatively.

In reality, all of these tracking techniques are used by experienced project
managers.

448

Scheduling

3. Tracking Progress for an OO Project

Technical milestone: OO analysis complete

o All hierarchy classes defined and reviewed

o Class attributes and operations are defined and reviewed

o Class relationships defined and reviewed

o Behavioral model defined and reviewed

o Reusable classed identified

Technical milestone: OO design complete

o Subsystems defined and reviewed

o Classes allocated to subsystems and reviewed

o Task allocation has been established and reviewed

o Responsibilities and collaborations have been identified

o Attributes and operations have been designed and reviewed

o Communication model has been created and reviewed

449

Scheduling

 Technical milestone: OO programming complete

o Each new design model class has been implemented

o Classes extracted from the reuse library have been implemented

o Prototype or increment has been built

 Technical milestone: OO testing

o The correctness and completeness of the OOA and OOD models has
been reviewed

o Class-responsibility-collaboration network has been developed and
reviewed

o Test cases are designed and class-level tests have been conducted for
each class

o Test cases are designed, cluster testing is completed, and classes have
been integrated

o System level tests are complete

450

Scheduling and Tracking

Scheduling for WebApp Projects

 WebApp project scheduling distributes estimated effort across the planned
time line (duration) for building each WebApp increment.

 This is accomplished by allocating the effort to specific tasks.

 The overall WebApp schedule evolves over time.

 During the first iteration, a macroscopic schedule is developed.

 This type of schedule identifies all WebApp increments and projects the
dates on which each will be deployed.

 As the development of an increment gets under way, the entry for the
increment on the macroscopic schedule is refined into a detailed schedule.

 Here, specific development tasks (required to accomplish an activity) are
identified and scheduled.

451

EARNED VALUE ANALYSIS

• It is reasonable to ask whether there is a quantitative technique for assessing progress
as the software team progresses through the work tasks allocated to the project
schedule.

• A Technique for performing quantitative analysis of progress does exist. It is called
earned value analysis (EVA).

• To determine the earned value, the following steps are performed:

1. The budgeted cost of work scheduled (BCWS) is determined for each work task
represented in the schedule. During estimation, the work (in personhours or
person-days) of each software engineering task is planned. Hence, BCWSi is the
effort planned for work task i. To determine progress at a given point along the
project schedule, the value of BCWS is the sum of the BCWSi values for all work
tasks that should have been completed by that point in time on the project
schedule.

2. The BCWS values for all work tasks are summed to derive the budget at completion
(BAC). Hence, BAC (BCWSk) for all tasks k

3. Next, the value for budgeted cost of work performed (BCWP) is computed. The
value for BCWP is the sum of the BCWS values for all work tasks that have actually
been completed by a point in time on the project schedule.

452

EARNED VALUE ANALYSIS

• Given values for BCWS, BAC, and BCWP, important progress indicators can be
computed:

Schedule performance index, SPI = BCWP / BCWS

Schedule variance, SV = BCWP – BCWS

• SPI is an indication of the efficiency with which the project is utilizing scheduled
resources. An SPI value close to 1.0 indicates efficient execution of the project
schedule. SV is simply an absolute indication of variance from the planned
schedule.

Percent scheduled for completion = BCWS / BAC

provides an indication of the percentage of work that should have been
completed by time t.

Percent complete = BCWP / BAC

provides a quantitative indication of the percent of completeness of the project
at a given point in time t. It is also possible to compute the actual cost of work
performed (ACWP). The value for ACWP is the sum of the effort actually
expended on work tasks that have been completed by a point in time on the
project schedule. It is then possible to compute

453

EARNED VALUE ANALYSIS

Cost performance index, CPI = BCWP /ACWP

Cost variance, CV = BCWP – ACWP

A CPI value close to 1.0 provides a strong indication that the project is within

its defined budget. CV is an absolute indication of cost savings (against
planned costs) or shortfall at a particular stage of a project

454

Process and Project Metrics

455

What are Metrics?

• Software process and project metrics are quantitative measures

• They are a management tool

• They offer insight into the effectiveness of the software process and the
projects that are conducted using the process as a framework

• Basic quality and productivity data are collected

• These data are analyzed, compared against past averages, and assessed

• The goal is to determine whether quality and productivity improvements have
occurred

• The data can also be used to pinpoint problem areas

• Remedies can then be developed and the software process can be improved

Process and Project Metrics

456

Reasons to Measure

• To characterize in order to
• Gain an understanding of processes, products, resources, and

environments
• Establish baselines for comparisons with future assessments

• To evaluate in order to
• Determine status with respect to plans

• To predict in order to
• Gain understanding of relationships among processes and products Build

models of these relationships

• To improve in order to
• Identify roadblocks, root causes, inefficiencies, and other opportunities for

improving product quality and process performance

Metrics In The Process and Project Domains

457

• Process metrics are collected across all projects and over long periods of time.

• Their intent is to provide a set of process indicators that lead to long-term
software process improvement.

• Project metrics enable a software project manager to

• assess the status of an ongoing project,
• track potential risks,
• uncover problem areas before they go “critical,”
• adjust work flow or tasks,

• evaluate the project team’s ability to control quality of software work
products

Metrics In The Process and Project Domains

458

Process Metrics and Software Process Improvement:-

• Software process improvement, it is important to note that process is only
one of a number of “controllable factors in improving software quality and
organizational performance”.

• Process sits at the center of a triangle connecting three factors that have a
profound influence on software quality and organizational performance.

• The skill and motivation of people has been shown to be the single most
influential factor in quality and performance.

• The complexity of the product can have a substantial impact on quality and
team performance.

• The technology (i.e., the software engineering methods and tools) that
populates the process also has an impact.

• In addition, the process triangle exists within a circle of environmental
conditions that include the development environment (e.g., integrated software
tools), business conditions (e.g., deadlines, business rules), and customer
characteristics (e.g., ease of communication and collaboration).

Metrics In The Process and Project Domains

459

Determinants for software quality and organizational
effectiveness.

Metrics In The Process and Project Domains

460

• Measure the effectiveness of a process by deriving a set of metrics based on
outcomes of the process such as

• Errors uncovered before release of the software
• Defects delivered to and reported by the end users
• Work products delivered
• Human effort expended
• Calendar time expended
• Conformance to the schedule
• Time and effort to complete each generic activity.

• Etiquette(good manners) of Process Metrics:
• Use common sense and organizational sensitivity when interpreting metrics data
• Provide regular feedback to the individuals and teams who collect measures and

metrics
• Don’t use metrics to evaluate individuals
• Work with practitioners and teams to set clear goals and metrics that will be

used to achieve them.
• Never use metrics to pressure individuals or teams.
• Metrics data that indicate a problem should not be considered “negative

Metrics In The Process and Project Domains

461

Project Metrics:-

 Many of the same metrics are used in both the process and project domain

 Project metrics are used for making tactical decisions

 They are used to adapt project workflow and technical activities .
 The first application of project metrics occurs during estimation

 Metrics from past projects are used as a basis for estimating time and

effort

 As a project proceeds, the amount of time and effort compared to
original estimates.

 As technical work commences, other project metrics become important.

 Production rates are measured (represented in terms of models created,
review hours, function points, and delivered source lines of code)

 Error uncovered during each generic framework activity (i.e, communication,
planning, modeling, construction, deployment) are measured.

Metrics In The Process and Project Domains

462

 Project metrics are used to

 Minimize the development schedule by making the adjustments necessary
to avoid delays and mitigate potential problems and risks.

 Assess product quality on an ongoing basis and, when necessary, to modify

the technical approach to improve quality In summary as quality improves,
defects are minimized.

 As defects go down, the amount of rework required during the project is also
reduced.

 As rework goes down, the overall project cost is reduced.

Software Measurement

463

 Measurements in the physical world can be categorized in two ways: direct
measures and indirect measures.

 Direct measures of the software process include cost and effort applied.

 Direct measures of the product include lines of code (LOC) produced, execution
speed, memory size, and defects reported over some set period of time.

 Indirect measures of the product include functionality, quality, complexity,

efficiency, reliability, maintainability.

 Project metrics can be consolidated to create process metrics for an

organization.

Software Measurement

464

Size-Oriented Metrics
 Size-oriented metrics are not universally accepted as the best way to

measure the software process.
 Opponents argue that KLOC measurements

 Are dependent on the programming language
 Penalize well-designed but short programs
 Cannot easily accommodate nonprocedural languages
 Require a level of detail that may be difficult to achieve.

Function-Oriented Metrics:-
 Function-oriented metrics use a measure of the functionality delivered by the

application as a normalization value
 Most widely used metric of this type is the function point
 Computation of the function point is based on characteristics of the

software’s information domain and complexity

Software Measurement

465

 Function Point Controversy

 Like the KLOC measure, function point use also has proponents and
Opponents

 Proponents claim that

 FP is programming language independent

 FP is based on data that are more likely to be known in the early stages of a
project, making it more attractive as an estimation approach

 Opponents claim that
 FP requires some “sleight of hand” because the computation is based on

subjective data

 Counts of the information domain can be difficult to collect
after the fact

 FP has no direct physical meaning…it’s just a number

Software Measurement

466

Reconciling LOC and FP Metrics:-

 Relationship between LOC and FP depends upon

 The programming language that is used to implement the software

 The quality of the design

 FP and LOC have been found to be relatively accurate
software development effort and cost

 However, a historical baseline of information must first be established.

 LOC and FP can be used to estimate object-oriented software projects

 However, they do not provide enough granularity for the schedule and effort
adjustments required in the iterations of an evolutionary or incremental
process

 The table on the next slide provides a rough estimate of the average LOC to
one FP in various programming languages.

Software Measurement

467

LOC Per Function Point

Language Average Median Low High

Ada 154 -- 104 205

Assembler 337 315 91 694

C 162 109 33 704

C++ 66 53 29 178

COBOL 77 77 14 400

Java 55 53 9 214

PL/1 78 67 22 263

Visual Basic 47 42 16 158

Software Measurement

468

Object-oriented Metrics:-

 Following set of metrics for OO projects:

 Number of scenario scripts:- A scenario script is a detailed sequence of
steps that describe the interaction between the user and the application.

 Each script is organized into triplets of the form
{initiator, action, participant}
 where initiator is the object that requests some service, action is the result of the

request, and participant is the server object that satisfies the request.

Number of key classes.:- Key classes are the “highly independent
components ” that are defined early in object-oriented analysis

 Because key classes are central to the problem domain, the number of such
classes is an indication of the amount of effort required to develop the
software.

 Also an indication of the potential amount of reuse to be applied during
system development.

Software Measurement

469

Number of support classes:- Support classes are required to implement the
system but are not immediately related to the problem domain.

• The number of support classes is an indication of the amount of effort required
to develop the software and also an indication of the potential amount of reuse
to be applied during system development.

• Number of subsystems
• A subsystem is an aggregation of classes that support a function that is

visible to the end user of a system.

Average number of support classes per key class
 Key classes are identified early in a project (e.g., at requirements

analysis)
 Estimation of the number of support classes can be made from the

number of key classes

 GUI applications have between two and three times more support

classes as key classes

 Non-GUI applications have between one and two times more support

classes as key classes

Software Measurement

470

Use-Case–Oriented Metrics:-

 Use cases describe user-visible functions and features that are basic
requirements for a system.

 The number of use cases is directly proportional to the size of the application in
LOC and to the number of test cases that will have to be designed to fully
exercise the application.

WebApp Project Metrics:-

 The objective of all WebApp projects is to deliver a combination of content and

functionality to the end user.

 The measures that can be collected are:

• Number of static Web pages.
• Number of dynamic Web pages.
• Number of internal page links.:-Internal page links are pointers that provide a

hyperlink to some other Web page within the WebApp

Software Measurement

471

Number of persistent data objects.

 Number of external systems interfaced:- WebApps must often interface
with “backroom” business applications.

 Number of static content objects:-Static content objects encompass static text-
based, graphical, video, animation, and audio information that are incorporated
within the WebApp.

 Number of dynamic content objects.
 Number of executable functions

Metrics For SoftwareQuality

472

 The overriding goal of software engineering is to produce a high-quality system,
application, or product within a time frame that satisfies a market need.

 The quality of a system, application, or product is only as good as the
requirements that describe the problem, the design that models the solution,
the code that leads to an executable program, and the tests that exercise the
software to uncover errors.

Measuring Quality

• There are many measures of software quality,8 correctness, maintainability,
integrity, and usability provide useful indicators for the project team

Correctness:

• Correctness is the degree to which the software performs its required function.
• The most common measure for correctness is defects per KLOC, where a defect

is defined as a verified lack of conformance to requirements.
• Defects are those problems reported by a user of the program after the

program has been released for general use.

Metrics For SoftwareQuality

473

Maintainability:

• Maintainability is the ease with which a program can be corrected if an error is
encountered, adapted if its environment changes, or enhanced if the customer
desires a change in requirements.

• Mean -time-to-change (MTTC), the time it takes to analyze the change request,
design an appropriate modification, implement the change, test it, and
distribute the change to all users.

Integrity:
• Software integrity has become increasingly important in the age of

cyber terrorists and hackers.
• Attacks can be made on all three components of software: programs,

data, and documentation.
• To measure integrity, two attributes must be defined:
• threat and security.

Usability:
• If a program is not easy to use, it is often doomed to failure, even if the

functions that it performs are valuable

Metrics For SoftwareQuality

474

Defect Removal Efficiency:

 Defect removal efficiency provides benefits at both the project and process level

 It is a measure of the filtering ability of quality assurances activities as they are

applied throughout all process framework activities

 It indicates the percentage of software errors found before software release

 It is defined as DRE = E / (E + D)

 E is the number of errors found before delivery of the software to the end

user

 D is the number of defects found after delivery

• As D increases, DRE decreases (i.e., becomes a smaller and smaller fraction)

• The ideal value of DRE is 1, which means no defects are found after delivery

• DRE encourages a software team to institute techniques for finding as many

errors as possible before delivery.

Integrating Metrics Within The SoftwareProcess

475

Arguments for Software Metrics:-
• Most software developers do not measure, and most have little desire to

begin

• Establishing a successful company-wide software metrics program can be a
multi-year effort

• But if we do not measure, there is no real way of determining whether we
are improving

• Measurement is used to establish a process baseline from which
improvements can be assessed

• Software metrics help people to develop better project estimates, produce
higher-quality systems, and get products out the door on time.

• The collection of quality metrics enables an organization to “tune” its
software process to remove the “vital few” causes of defects that have the
greatest impact on software development

Integrating Metrics Within The SoftwareProcess

476

Establishing a Baseline:-
• By establishing a metrics baseline, benefits can be obtained at the software

process, product, and project levels

• The same metrics can serve many masters

• The baseline consists of data collected from past software development
projects.

 Baseline data must have the following attributes
 Data must be reasonably accurate (guesses should be avoided)
 Data should be collected for as many projects as possible
 Measures must be consistent (e.g., a line of code must be interpreted

consistently across all projects)
 Past applications should be similar to the work that is to be estimated.

Metrics Collection, Computation, and Evaluation
• Data collection requires an historical investigation of past projects to

reconstruct required data
• After data is collected and metrics are computed, the metrics should be

evaluated and applied during estimation, technical work, project control, and
process improvement.

Integrating Metrics Within The SoftwareProcess

477

Software Metrics Baseline Process

Software
Engineering
Process

Software
Project

Software
Product

Data
Collection

Metrics

Computation

Metrics
Evaluation

Measures

Metrics

Indicators

Metrics For Small Organizations

478

• Most software organizations have fewer than 20 software engineers.

• It is reasonable to suggest that software organizations of all sizes measure and
then use the resultant metrics to help improve their local software process and
the quality and timeliness of the products they produce.

• A commonsense approach to the implementation of any software process-related
activity is: keep it simple, customize to meet local needs, and be sure it adds
value.

A small organization might select the following set of easily collected measures:

• Time (hours or days) elapsed from the time a request is made until evaluation
is complete, tqueue.

• Effort (person-hours) to perform the evaluation, Weval.

• Time (hours or days) elapsed from completion of evaluation to assignment of
change order to personnel, teval.

Metrics For Small Organizations

479

 Effort (person-hours) required to make the change, Wchange.

 Time required (hours or days) to make the change, tchange.

 Errors uncovered during work to make change, Echange.

 Defects uncovered after change is released to the customer base, Dchange.

 The defectremoval efficiencycan becomputed as

DRE can be compared to elapsed time and total effort to determine the impact of
quality assurance activities on the time and effort required to make a change.

Establishing a Software Metrics Program

480

 The Software Engineering Institute has developed a comprehensive guidebook
for establishing a “goal-driven” software metrics program.

The guidebook suggests the following steps:

• Identify business goal

• Identify what you want to know

• Identify subgoals

• Identify subgoal entities and attributes

• Formalize measurement goals

• Identify quantifiable questions and indicators related to subgoals

• Identify data elements needed to be collected to construct the indicators

• Define measures to be used and create operational definitions for them

• Identify actions needed to implement the measures

• Prepare a plan to implement the measures

Establishing a Software Metrics Program

481

• For example, consider the SafeHome product. Working as a team, software
engineering and business managers develop a list of prioritized business goals:

1. Improve our customers’ satisfaction with our products.

2. Make our products easier to use.

3. Reduce the time it takes us to get a new product to market.

4. Make support for our products easier.

5. Improve our overall profitability.

