INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal-500043, Hyderabad

B.Tech I SEMESTER END EXAMINATIONS (REGULAR) - FEBRUARY 2024

Regulation: BT23
ELECTRICAL CIRCUITS
Time: 3 Hours
(COMMON TO ECE \| EEE)
Max Marks: 60

Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Classify the various circuit elements with examples. Explain the concepts of independent and dependent sources with relevant examples.
[BL: Understand| CO: 1|Marks: 6]
(b) $\mathrm{A} 100 \mathrm{~V}, 50 \mathrm{~Hz}$ AC source is connected to a series RLC circuit with $\mathrm{R}=10 \Omega, \mathrm{~L}=0.5 \mathrm{H}$ and $\mathrm{C}=40 \mu \mathrm{~F}$. Calculate the impedance, current, power factor and true power. [BL: Apply| CO: 1|Marks: 6]
MODULE - II
2. (a) Describe in detail about star - delta transformation and derive the necessary equations
[BL: Understand| CO: 2|Marks: 6]
(b) Determine the mesh current I_{1} in the circuit shown in the Figure 1.
[BL: Apply| CO: 2|Marks: 6]

Figure 1

MODULE - III

3. (a) State and prove Norton's theorem for DC circuits with a suitable example.
[BL: Understand| CO: 3|Marks: 6]
(b) Determine the current through the 5Ω resistor in the circuit shown in the Figure 2 using the Norton's theorem.
[BL: Apply| CO: 3|Marks: 6]

Figure 2
4. (a) State superposition theorem. Explain the principle of superposition and how it is applied to circuit analysis.
[BL: Understand| CO: 4|Marks: 6]
(b) For the resistive network shown in Figure 3, find the current in each resistor, using the superposition principle.
[BL: Apply| CO: 4|Marks: 6]

Figure 3

MODULE - IV

5. (a) Explain the dot convention for coupled inductors. Illustrate with examples.
[BL: Understand| CO: 5|Marks: 6]
(b) A magnetic circuit consists of two coils wound on a laminated iron core. Coil 1 has 300 turns and carries a current of 2 A . Coil 2 has 500 turns and carries a current of 1 A . The relative permeability of the iron is 1500 and length of the magnetic path is 0.5 m . Determine the flux density in the core.
[BL: Apply| CO: 5|Marks: 6].
6. (a) Write about self and mutual inductances. Establish the polarity of two mutually coupled coils on a single magnetic core.
[BL: Understand| CO: 5|Marks: 6]
(b) Two coupled inductors have self-inductances of 50 mH and 75 mH . If the coefficient of coupling is 0.8 , find the mutual inductance.
[BL: Apply| CO: 5|Marks: 6]

MODULE - V

7. (a) Why Z parameters are called open circuit impedance parameters? Determine the interrelations between Z parameters to Y parameters.
[BL: Understand| CO: 6|Marks: 6]
(b) Find the Y-parameters of a two port network having Z-parameters: $Z_{11}=10 \Omega, Z_{12}=2 \Omega$, $Z_{21}=2 \Omega, Z_{22}=16 \Omega$.
[BL: Apply| CO: 6|Marks: 6]
8. (a) Summarize the terms graph, oriented graph, non-oriented graph, planar graph, non- planar graph, tree, co-tree, branches, links, nodes and degree of the node.
[BL: Understand| CO: 6|Marks: 6]
(b) Determine the brach voltages using cut-set marix for the graph shown in Figure 4.
[BL: Apply| CO: 6|Marks: 6]

Figure 4

