

Page 1 of 2

- 4. (a) If x+y+z=u, y+z=uv, z=uvw then show that $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2v$ [BL: Apply] CO: 4|Marks: 6]
 - (b) Examine the functional dependence or independence of $u = \frac{x-y}{x+y}$ and $v = \frac{x+y}{x}$. If dependent, find the relation between them.

[BL: Apply| CO: 4|Marks: 6]

[BL: Apply] CO: 5|Marks: 6].

[BL: Apply] CO: 5|Marks: 6]

$\mathbf{MODULE}-\mathbf{IV}$

- 5. (a) Obtain the Fourier series expansion for the function $f(x) = x(2\pi x)$ in $0 \le x \le 2\pi$ [BL: Apply] CO: 5|Marks: 6]
 - (b) Find the half range sine series for $f(x) = x^2$ in $(0, 2\pi)$
- 6. (a) Find the Fourier series expansion for $f(x) = \pi x$ in $[0, 2\pi]$ with period 2π . Hence find the sum of the series $1 \frac{1}{3} + \frac{1}{5}$ [BL: Apply| CO: 5|Marks: 6]
 - (b) Obtain the Fourier series of $f(x) = x^3$ in $[-\pi, \pi]$

$\mathbf{MODULE}-\mathbf{V}$

- 7. (a) Evaluate $\int \int y dx dy$ over the part of the curves bounded by the line y = x and the parabola $y = 4x x^2$ [BL: Apply] CO: 6|Marks: 6]
 - (b) Compute the value of integral $\int_0^{\pi/2} \int_0^{\sin\theta} r dr d\theta$
- 8. (a) Change the order of integration and evaluate $\int_0^a \int_{y^2/a}^a \frac{y dx dy}{(a-x)\sqrt{ax-y^2}}$
 - [BL: Apply| CO: 6|Marks: 6]

[BL: Apply] CO: 6|Marks: 6]

[BL: Apply] CO: 6|Marks: 6]

(b) Evaluate $\int_0^1 \int_0^{1-x} \int_0^{x+y} e^z dz dy dx$

 $-\circ\circ\bigcirc\circ\circ-$