B.Tech I SEMESTER END EXAMINATIONS (REGULAR) - FEBRUARY 2024
 Regulation: BT23
 APPLIED PHYSICS

Time: 3 Hours (COMMON TO CSE \| CSE (CS) \| CSE (DS)) Max Marks: 60

Answer ALL questions in Module I and II
 Answer ONE out of two questions in Modules III, IV and V
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

MODULE - I

1. (a) What is packing fraction? Show that FCC is most closely packed of the three cubic structures by working out the packing factors.
[BL: Understand| CO: 1|Marks: 6]
(b) Sketch (001), (110) and (1111) planes for a cubic crystal. Calculate the interplanar distance for (3 2 1) plane in simple cubic lattice with interatomic spacing equal to $4.12 \AA$
[BL: Apply| CO: 1|Marks: 6]

MODULE - II

2. (a) What is the de-Broglie concept of matter waves? On the basis of Planck's and Einstein's theory of radiation, derive an expression for de-Broglie wavelength [BL: Understand| CO: 2|Marks: 6]
(b) An electron is trapped in a one dimensional region of length $4 \AA$. How much energy must be supplied to excite the electron from the ground state to the second excited state? (Planck's constant $=6.63 \times 10^{-34} \mathrm{Js}$ and Mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$) [BL: Apply| CO: 2|Marks: 6]
MODULE - III
3. (a) Mention the characteristics of lasers. Describe with suitable diagram, principle and working of He -Ne laser system.
[BL: Understand| CO: 3|Marks: 6]
(b) Calculate how many photons are emitted in each minute in a He-Ne laser source which emits light at a wavelength of $6328 \AA$. The output power of this source is 3 mW .
[BL: Apply| CO: 3|Marks: 6]
4. (a) Obtain an mathematical expression of numerical aperture with appropriate ray diagram.
[BL: Understand| CO: 4|Marks: 6]
(b) Calculate the numerical aperture and hence the acceptance angle for an optical fiber kept in an air medium whose core and cladding have a refractive index of 1.45 and 1.40 respectively
[BL: Apply| CO: 4|Marks: 6]

MODULE - IV

5. (a) Demonstrate type-I and type-II superconductors with suitable diagrams. Prove that the susceptibility of superconductor is -1 .
[BL: Understand| CO: 5|Marks: 6]
(b) The superconducting transition temperature of lead of 7.26 K . The initial field at 0 K is 64×10^{3} Amp m^{-1}. Calculate the critical field at 5 K .
[BL: Apply| CO: 5|Marks: 6].
6. (a) Elucidate hysteresis in ferromagnetic materials. Discuss about the origin of magnetic moment in detail.
[BL: Understand| CO: 5|Marks: 6]
(b) A magnetic field of $2000 ~ A m^{-1}$ is applied to a material which has a susceptibility of 1000 . Calculate
i) Relative permeability of the material
ii) Magnetization
iii) Flux density.
[BL: Apply| CO: 5|Marks: 6]

MODULE - V

7. (a) With neat diagram, explain fabrication of nano-materials by using chemical vapour deposition method.
[BL: Understand| CO: 6|Marks: 6]
(b) An X-ray beam of wavelength $3 A^{0}$ is diffracted from (100) plane of a cubic crystal. The first order maximum is obtained for glancing angle of 40°. Determine the space of the reflecting plane and also the volume of the unit cell.
[BL: Apply| CO: 6|Marks: 6]
8. (a) Write the synthesis of nanomaterials by sol gel method. Discuss the application of nanomaterials.
[BL: Understand| CO: 6|Marks: 6]
(b) Monochromatic X-rays of wavelength $\lambda=1.5 \mathrm{AU}$ are incident on a crystal face having an interplanar spacing of 1.6 AU. Find the highest order for which Bragg's reflection maximum can be seen.
[BL: Apply| CO: 6|Marks: 6]
