Hall Ticket No	Question	Paper Code: AEC012
	STITUTE OF AERONAUTICAL ENGINEERI (Autonomous)	NG
TON YOU UNE	B.Tech VI Semester End Examinations (Regular), November – 2020 Regulation: IARE–R16 DIGITAL SIGNAL PROCESSING	
Time: 2 Hours	(ECE)	Max Marks: 70
	Answer any Four Questions from Part A Answer any Five Questions from Part B	
	$\mathbf{PART} - \mathbf{A}$	
1. Express and ske	etch the graphical representations of a unit impulse and step function.	[5M]

1. Express and sketch the graphical representations of a unit impulse and step for	unction. [51VI]
2. List any four properties of Discrete Fourier Transform.	[5M]
3. Compare IIR and FIR digital filters with real time examples	[5M]
4. List the well known design technique for linear phase FIR filter design.	[5M]
5. Show that the up sampler and down sampler are time variant systems.	[5M]
6. What are the basic building blocks of realization structures?	[5M]
7. Distinguish between linear convolution and circular convolution of two sequer	nces. [5 M]
8. What is mean by IIR filter and what are advantages of IIR filter?	[5M]

$\mathbf{PART} - \mathbf{B}$

9. Find the output y(n) of a filter whose impulse response is $h(n) = \{1,1,1\}$ and input signal x(n) = 3,-1,0,1,3,2,0,1,2,1 using overlap-add method [10M]

10. Determine the impulse response and step response of the causal system given below and discuss on stability. y(n) + y(n-1) - 2y(n-2) = x(n-1) + 2x(n-2). [10M]

- 11. Develop a 8 point DIF-FFT algorithm. Draw the signal flow graph [10M]
- 12. Find the circular convolution of two finite duration sequences $x1(n) = \{1,2,2,1\}$; $x2(n) = \{1,2,3,1\}$ using concentric circle method [10M]
- 13. Explain transformation of analog filters into equivalent digital filters using impulse invariant method. [10M]
- 14. Determine H(z) that results when the bilinear transformation is applied to $Ha(s) = (s^2 + 4.525)/(s^2 + 0.692s + 0.504).$
- 15. Explain optimized design of FIR filter using Parks-McClellan remez algorithm and its limitations. [10M]
- 16. Using a rectangular window technique design a lowpass filter with passband gain of unity, cutoff frequency of 1000 Hz and working at a sampling frequency of 5kHz. The length of the impulse response should be 7. [10M]
- 17. Write short note on i) Limit cycle oscillations due to overflow in digital filters ii) Dead band effects. [10M]
- 18. With the help of block diagram explain the sampling rate conversion by a rational factor 'I/D'. Obtain necessary expressions. [10M]

 $-\circ\circ\bigcirc\circ\circ-$

[10M]