\square

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

B.Tech VI Semester End Examinations (Regular), November - 2020

Regulation: IARE-R16
RADAR SYSTEMS
Time: 2 Hours
Max Marks: 70

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. State the RADAR equation for maximum unambiguous range.
2. List the limitations of CW radar.
3. Differentiate coherent and non-coherent MTI radars.
4. Write short notes on: i) Tracking in range and ii) Acquisition
5. Appraise the working of duplexers.
6. List the applications of CW radar
7. Write short notes on double cancellation.
8. Contrast matched filter receiver and cross-correlation receiver.

PART - B

9. Discuss the effect of receiver noise and derive the radar range equation that includes the receiver noise. [10M]
10. A Radar system transmits pulses of duration of $2 \mu \mathrm{~s}$ and repetition rate of 1 kHz . Find the maximum and minimum range of radar.
[10M]
11. Describe methods to achieve isolation between transmitter and receiver of CW Doppler radar if same antenna is to be used for transmission and reception.
[10M]
12. With neat block diagram explain in detail the functioning of CW RADAR systems.
13. Explain the working principle of pulse doppler radar.
[10M]
14. What are delay line cancellers? Explain how they are used in RADAR?
[10M]
15. With neat diagram, explain in detail about cross correlation receiver
[10M]
16. Identify the necessity of a matched filter in a radar receiver. Determine the impulse response of a matched filter that is commonly used in a radar receiver.
[10M]
17. Explain the working of balanced type duplexer with neat diagram.
18. Find the overall noise figure of a radar receiver consisting of a low-noise RF amplifier with noise figure of 1.4 dB and gain of 15 dB , a mixer with 6 dB conversion loss and noise temperature ratio of 1.2 , and an IF amplifier with noise figure of 1.0 dB .
[10M]
