Hall Ticket No	Question	Paper Code: AME553
	STITUTE OF AERONAUTICAL ENGINEER (Autonomous)	NG
TON FOR UNE	B.Tech VI Semester End Examinations (Regular), November– 2020 Regulation: IARE–R16	
Time: 2 Hours	INTRODUCTION TO ROBOTICS (AE)	Max Marks: 70
	Answer any Four Questions from Part A Answer any Five Questions from Part B	
	$\mathbf{PART} - \mathbf{A}$	
1. State the histor	ical development of robotics.	[5M]

2.	. Differentiate clearly with reference to 2-jointed manipulator of RR type and LL type.	[5M]
3.	Point out the necessity of trajectory planning in robotics.	[5M]
4.	. Explain with a neat diagram about DC servomotor.	[5M]
5.	Classify robot work cell and explain any two types.	[5M]
6.	. Write a short note on spatial resolution, accuracy and repeatability.	[5M]
7.	. Explain the Newton – Euler formulation of robot dynamics.	[5M]
8.	. List out the advantages of spray painting by robots.	[5M]

$\mathbf{PART} - \mathbf{B}$

9.	Explain the mechanical grippers with a neat sketch.	[10M]
10.	Write the design considerations to be made while selecting a gripper.	[10M]
11.	Explain about homogeneous transformation and its importance	[10M]
12.	Frame {2} is rotated w.r.t frame {1} about the x-axis by an angle of 60°. The position of the origin o {2} as seen from frame{1} is $1D_2 = [757]^T$. Obtain the transformation matrix $1T_2$, which describes frame lative to frame {1}. Also, find the description of point P in frame {1} if $2P = [246]^T$.	f frame me {2} [10M]
13.	Determine the equation of motion for a single link manipulator given the mass and length of the link.	[10M]
14.	Explain the potential energy as applied to robot arm dynamics analysis.	[10M]
15.	A single-link robot with a rotary joint is motionless at $\theta = 20^{\circ}$. It is desired to move the joint in a smanner to $\theta = 100^{\circ}$ in 3 seconds. Find the coefficients of a cubic that accomplishes this motion and brim manipulator to rest at the goal. Plot the position, velocity, and acceleration of the joint as a function of	smooth ngs the f time. [10M]

16.	Enlist the main elements of a pneumatic system used in robot and explain their functions briefly.	[10M]
17.	Compare benefits and drawbacks of pneumatic, hydraulic and electric actuators	[10M]
18.	Explain about application of robots in arc welding operation.	[10M]

 $-\circ\circ\bigcirc\circ\circ-$