\square
B.Tech VII SEMESTER END EXAMINATIONS (REGULAR/SUPPLEMENTARY) - DECEMBER 2022

Regulation: R18
FLIGHT VEHICLE DESIGN
Time: 3 Hours
(AERONAUTICAL ENGINEERING) Max Marks: 70

Answer FIVE Questions choosing ONE question from each module All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

MODULE - I

1. (a) What is the initial phase of an aircraft design? Describe in detail about the design philosophy of an aircraft and explain with the help of diagram.
[BL: Understand| CO: 1|Marks: 7]
(b) Is the design of an airplane a complex engineering task? It generally involves the various factors. What are they? Explain about them in brief.
[BL: Apply| CO: 1|Marks: 7]
2. (a) Explain in detail about preliminary design process of aircraft design, with help of neat diagram.
[BL: Understand| CO: 1|Marks: 7]
(b) An aircraft with crew and payload of 180 kg is flying with a fuel weight fraction of 0.353 and empty weight fraction as 0.481 then, what will be the gross weight of aircraft?
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

3. (a) Describe the process of weight estimation - outline of approach in flight vehicle design.
[BL: Understand| CO: $2 \mid$ Marks: 7$]$
(b) An aircraft has cruise range of 1500 NM and SFC $\mathrm{C}=0.51 / \mathrm{hr}$. Cruise velocity of jet aircraft is $570 \mathrm{ft} / \mathrm{s}$ with L/D as 13.2. Aircraft is supposed to do loiter of 2 hrs . Then what should be the gross weight of aircraft? Given, empty weight fraction of 0.55 , crew and payload of 6500 kg with 0.98 as mission segment fuel fraction for climb, take-off and landing.
[BL: Apply| CO: 2|Marks: 7]
4. (a) Mention the different types of tail configurations and wing configurations are available? Explain their effects with neat sketches.
[BL: Understand| CO: 2|Marks: 7]
(b) An aircraft has crew and payload of 180 kg . It has empty weight fraction of 0.48 and fuel weight is 0.7 times empty weight. What will be the gross weight of an aircraft?
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

5. (a) Explain the landing gear arrangements for multi-wheel main landing gear with a neat sketch.
[BL: Understand| CO: 3|Marks: 7]
(b) A jet transport aircraft is flying with crew load of 175 kg , payload of 1400 kg and fuel weight of 500 kg . Find out fuel to empty weight fraction, if design take-off gross weight of the aircraft is 5600lb.
[BL: Apply| CO: 3|Marks: 7]
6. (a) Describe inlet geometry design with pitot inlet layout and inlet location for buried engines.
[BL: Understand| CO: 4|Marks: 7]
(b) Cessna 172 R has total gross weight of the 1110.98 kg with fuel capacity of 210 kg and weight of crew and passenger is 125 kg . Find out empty weight fraction.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

7. (a) What is the importance of sizing? Explain in detail about refined sizing method with help of neat sketch. [BL: Understand| CO: 5|Marks: 7]
(b) A jet transport aircraft has fuel storage of 1200 kg . It has completed taxi phase and preparing for take-off. At the end of the taxing, it has fuel fraction of 0.98 . Determine how much fuel is available after taxing? Given take-off gross weight is 9000 kg . [BL: Apply| CO: $5 \mid$ Marks: 7]
8. (a) Differentiate the static and dynamic stability of an aircraft with suitable examples and how the stability is important in design of an aircraft.
[BL: Understand| CO: 5|Marks: 7]
(b) A prop-driven aircraft having fuel weight of 650 kg . Now, aircraft is taxing on runway, after which it has fuel fraction of 0.975 . Determine fuel used during taxing of aircraft, if $\mathrm{W} 0=5000 \mathrm{~kg}$.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

9. (a) Describe detail sizing methods with the equations which are the basis of the highly-detailed sizing programs used by the major airframe companies.
[BL: Understand| CO: 6|Marks: 7]
(b) If an aircraft has lift curve slope of 4.76 per rad and moment coefficient curve slope of -0.116 per rad then, find the location of neutral point. Consider Xcg=0.3. [BL: Apply| CO: 6|Marks: 7]
10. (a) Explain how many engineering hours during the RDT and E phase were actually spent in support of production.
[BL: Understand| CO: 6|Marks: 7]
(b) An aircraft with wing aft tail configuration has tail efficiency of 0.95 and tail volume ratio of horizontal tail is 0.7 . Determine pitching moment coefficient slope for the tail. Given lift curve slope of tail is 4.2 per rad. Consider downwash derivative as 0.6 . Find tail efficiency if, dynamic pressure at tail and wing is 25 Pa and 28 Pa respectively.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

