B.Tech VII SEMESTER END EXAMINATIONS (REGULAR/SUPPLEMENTARY) - DECEMBER 2022

Regulation: R18

AEROSPACE STRUCTURAL DYNAMICS
Time: 3 Hours
(AERONAUTICAL ENGINEERING)
Max Marks: 70

Answer FIVE Questions choosing ONE question from each module
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

MODULE - I

1. (a) Differentiate between deterministic and random vibration? Give two practical examples of each. [BL: Understand| CO: 1|Marks: 7]
(b) A bridge structure is modeled as a single-degree-of-freedom system with an equivalent mass of 5 x $10^{5} \mathrm{~kg}$ and an equivalent stiffness of $25 \times 10^{6} \mathrm{~N} / \mathrm{m}$. During a free-vibration test, the ratio of successive amplitudes was found to be 1.04. Estimate the structural damping constant and the approximate free-vibration response of the bridge.
[BL: Apply| CO: 1|Marks: 7]
2. (a) Why does the amplitude of free vibration gradually diminish in practical systems? Determine the vibration response of a system subjected to step excitation.
[BL: Understand| CO: 1|Marks: 7]
(b) Find the peak time, percent overshoot, settling time and rise time from the transfer function of the system given by
[BL: Apply| CO: 1|Marks: 7]
$T(s)=\frac{X(s)}{F(s)}=\frac{225}{s^{2}+15 s+225}$

MODULE - II

3. (a) What is meant by static and dynamic coupling? Determine the equation of motion for the two degrees of freedom system.
[BL: Understand| CO: $2 \mid$ Marks: 7$]$
(b) Consider a two degree-of-freedom system shown in Figure 1. Determine i) The natural frequencies ii) The modes shapes.
[BL: Apply| CO: 2|Marks: 7]

Figure 1
4. (a) Discuss the first and second mode shapes of the two rotor torsional system.
[BL: Understand| CO: 2|Marks: 7]
(b) Determine the transfer function for the 20 kg block of the system shown in Figure 2 if a force applied to first block.
[BL: Apply| CO: 2|Marks: 7]

Figure 2

MODULE - III

5. (a) Summarize about torsional vibrations of a system consisting of 2 discs mounted on a single shaft.
[BL: Understand| CO: 3|Marks: 7]
(b) The three blocks slide on a frictionless surface, as shown in Figure 3. Derive the differential equations governing the vibrations of the system using x_{1}, x_{2} and x_{3} as generalized coordinates.
[BL: Apply| CO: 3|Marks: 7]

Figure 3
6. (a) Write about the flexibility and stiffness influence coefficients. What is the relation between them?
[BL: Understand| CO: 4|Marks: 7]
(b) Determine the mass matrix for the system shown in Figure 4 using inertia influence coefficients. Use θ and x as generalized coordinates.
[BL: Apply| CO: 4|Marks: 7]

Figure 4

MODULE - IV

7. (a) Elucidate the various boundary conditions for torsional oscillations of a circular shaft having different end conditions.
[BL: Understand| CO: 5|Marks: 7]
(b) Calculate the natural frequencies of a bar with one end fixed and a mass attached at the other end, as shown in Figure 5.
[BL: Apply| CO: 5|Marks: 7]

Figure 5
8. (a) How do you formulate the transverse beam vibration problem? Explain flow induced vibrations in a mechanical systems.
(b) Find the natural frequencies of the tapered cantilever beam shown in Figure 6 using the RayleighRitz method.

Figure 6

MODULE - V

9. (a) Demonstrate variation of the lift coefficient for different incidence and control surface angles with neat sketch.
[BL: Understand| CO: $6 \mid$ Marks: 7]
(b) Find the steady state response of a pinned-pinned beam subject to a harmonic force $\mathrm{f}(\mathrm{x}, \mathrm{t})=f_{0}$ $\sin t$ applied at $x=a$ as shown in the Figure 7 .
[BL: Apply| CO: 6|Marks: 7]

Figure 7
10. (a) Write about sweeping technique. Illustrate static aeroelasticity phenomena on a typical section model of an airfoil?
[BL: Understand| CO: 6|Marks: 7]
(b) An airfoil of mass m is suspended by a linear spring of stiffness k and a torsional spring of stiffness k_{t} in a wind tunnel, as shown in Figure 8. The C.G. is located at a distance of e from point O. The mass moment of inertia of the airfoil about an axis passing through point O is Io. Find the natural frequencies of the airfoil.
[BL: Apply| CO: 6|Marks: 7]

Figure 8

