\square
B.Tech VII SEMESTER END EXAMINATIONS (REGULAR/SUPPLEMENTARY) - DECEMBER 2022

Regulation: R18
VLSI DESIGN
(ELECTRONICS AND COMMUNICATION ENGINEERING)
Time: 3 Hours
Max Marks: 70
Answer FIVE Questions choosing ONE question from each module
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) With neat sketches of cross sectional view of MOSFETS, explain the salient steps of n-well CMOS inverter fabrication.
[BL: Understand| CO: 1|Marks: 7]
(b) Build CMOS circuit for the gates defined by $\mathrm{Y}=\overline{((A B+C) D)}$ and for a 4 -input NOR gate.
[BL: Apply| CO: 1|Marks: 7]
2. (a) Summarize the concet of PMOS fabrication process with neat diagrams and follow the step by step methodology involved in the process.
[BL: Understand| CO: 1|Marks: 7]
(b) Construct the CMOS inverter schematic circuit, DC characteristics and write the output voltage when the input is varied from 0 to $V_{D D}$. Verify the DC characteristics for $\beta_{p} / \beta_{n}=0.1,1$ and 10.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

3. (a) Mention one application each of thin oxide and thick oxide in silicon ICs. Explain wet oxidation and dry oxidation process.
[BL: Understand| CO: 2|Marks: 7]
(b) Design a pseudo-NMOS circuit for a 3 -input XOR gate and also draw the circuit for a 3 -input CVSL OR/NOR gate. Assume all input are available in both true and complement forms.
[BL: Apply| CO: 2|Marks: 7]
4. (a) Explain the RESET operation and normal operation in a D-latch and a D-flip flop, with asynchronous reset.
[BL: Understand| CO: 2|Marks: 7]
(b) Solve a dynamic CMOS logic circuit for G1 $=\overline{\left(A_{1} A_{2} A_{3}+B_{1} B_{2}\right)}$ and a domino CMOS circuit for $G_{2}=(\mathrm{E}+\mathrm{F})(\mathrm{C}+\mathrm{D})$
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

5. (a) Outline the structure of 4 X 4 barrel shifter. Explain the following operations on 4-bit input data: i) Rotate right ii) Rotate left iii) Rotate and shift.
[BL: Understand| CO: 3|Marks: 7]
(b) Construct a 1-bit CMOS full adder expressing sum as a function of carryout. Relate the gate level and transistor level diagrams for the same.
[BL: Apply| CO: 3|Marks: 7]
6. (a) With relevant circuit diagram and derivation, show that switching power dissipation in a CMOS circuit is directly proportional square of the power supply used.
[BL: Understand| CO: 4|Marks: 7]
(b) Make use of RC equivalent circuit of a unit inverter driving another unit inverter. A unit inverter is composed from an nMOS transistor of unit size and a pMOS transistor of twice unitwidth to achieve equal rise and fall resistance. Write the expression for propagation delay, $t_{p d}$.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

7. (a) Demonstrate the general interface diagram for a queue. Also explain the read and write operations in FIFO and LIFO queues.
[BL: Understand| CO: 5|Marks: 7]
(b) Illustrate a schematic for an 8-word X 2-bit NAND ROM that serves as a lookup table to implement a full adder.
[BL: Apply| CO: 5|Marks: 7]
8. (a) Interpret the schematic and logic diagram for a single bit adder and explain its operation with truth table.
[BL: Understand| CO: $5 \mid$ Marks: 7$]$
(b) Organize a 4 -word by 4 -bit ROM using pseudo-nMOS pullups with thefollowing contents:
word0: 0000
word1: 0010
word2: 0100
word3: 1000.
Also draw the corresponding dot diagram.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

9. (a) Describe semi custom and full custom design in terms turnaround time and time to market parameters.
[BL: Understand| CO: 6|Marks: 7]
(b) List the properties of an ideal power distribution networks in a chip. Also draw the power distribution of standard cell layout.
[BL: Apply| CO: 6|Marks: 7]
10. (a) What is meant by logic verification, silicon debug and manufacturing tests? With relevant diagram, explain a typical clock sub-system.
[BL: Understand| CO: 6|Marks: 7]
(b) Using simple diagram, explain how the H-tree clock distribution network overcome clock skew problem in clock distribution.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

