

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal-500043, Hyderabad

B.Tech VII SEMESTER END EXAMINATIONS (REGULAR/SUPPLEMENTARY) - DECEMBER 2022 Regulation: R18

REFRIGERATION AND AIR-CONDITIONING

Time: 3 Hours (MECHANICAL ENGINEERING) Max Marks: 70

Answer FIVE Questions choosing ONE question from each module
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Obtain an expression for COP of reversed Carnot cycle and clearly explain all the processes.

[BL: Apply CO: 1 | Marks: 7]

- (b) Ice is formed at 0°C from water at 20°C. The temperature of the brine is 8°C. Find out the kg of ice formed per kWh. Assume that the refrigeration cycle used is perfect reversed Carnot cycle. Take latent heat of ice as 335 kJ/kg.. [BL: Apply] CO: 1|Marks: 7]
- 2. (a) Classify various refrigeration systems and discuss any one refrigeration system, mentioning its application.

 [BL: Understand | CO: 1 | Marks: 7]
 - (b) A cold storage plant is required to store 20 tonnes of fish. The temperature of the fish when supplied = 25° C; storage temperature of fish required = -8° C; specific heat of fish above freezing point = $2.93 \text{ kJ/kg}^{\circ}$ C; specific heat of fish below freezing point = $1.25 \text{ kJ/kg}^{\circ}$ C; freezing point of fish = -3° C. Latent heat of fish = 232 kJ/kg. If the cooling is achieved within 8 hours. Find
 - i) Capacity of the refrigerating plant.
 - ii) Carnot cycle COP between this temperature range
 - iii) If the actual COP is 1/3 rd of the Carnot COP, find out the power required to run the plant.

[BL: Apply CO: 1 | Marks: 7]

MODULE - II

3. (a) How does an actual vapour compression cycle differ from that of a theoretical cycle? Compare vapour compression and vapour absorption refrigeration systems.

[BL: Understand CO: 2 | Marks: 7]

- (b) A simple vapour compression plant produces 5 tonnes of refrigeration. The enthalpy values at inlet to compressor, at exit from the compressor, and at exit from the condenser are 183.19, 209.41 and 74.59 kJ/kg respectively. Estimate
 - i) The refrigerant flow rate
 - ii) The C.O.P
 - iii) The power required to drive the compressor
 - iv) The rate of heat rejection to the condenser.

[BL: Apply CO: 2 | Marks: 7]

4. (a) Draw the schematic of a simple vapour compression cycle and explain its working principle

[BL: Understand CO: 2 | Marks: 7]

(b) 28 tonnes of ice at 0°C is produced per day in an ammonia refrigerator. The temperature range in the compressor is from 25°C to − 15°C as shown in Table 1. The vapour is dry and saturated at the end of compression and an expansion valve is used. Assuming a co-efficient of performance of 62% of the theoretical, calculate the power required to drive the compressor.

[BL: Apply CO: 2 | Marks: 7]

Table 1

Temperature	Enthalphy KJ/kgK		Entropy of liquid KJ/kgK	Entropy of vapour KJ/kg
	Liquid	Vapour	Entropy of figure 137 kgr	Entropy of vapour K3/kg
25	100.04	1319.22	0.3473	4.4852
-15	-54.56	1304.9	-2.1333	5.0582

MODULE - III

- 5. (a) Illustrate the working of following types of evaporators with neat sketches:
 - i) Flooded evaporator ii) Natural convection evaporator [BL: Understand | CO: 3|Marks: 7]
 - (b) 1 m^3 of a gas is compressed adiabatically ($\gamma = 1.4$) from 1 bar to 5 bar in a reciprocating compressor with 8 per cent clearance. If the exponent of the re-expansion curve is 1.1 instead of 1.4, find the percentage increase in the work of compression. [BL: Apply] CO: 3[Marks: 7]
- 6. (a) Outline the working principle of evaporative condenser with a neat sketch. Give the comparison between air cooled and water cooled condenser. [BL: Understand] CO: 4|Marks: 7]
 - (b) An R 134a Thermostatic-expansion valve, not equipped with an external equalizer, has a superheat setting of 7°C while supplying the refrigerant to the evaporator at 0°C. The power fluid is the same as the refrigerant.
 - i) Determine the difference in pressure on opposite sides of the diaphragm or bellows required to open the valve.
 - ii) If the temperature at the evaporator inlet is -5° C and the pressure drop through the coil is 0.3 bar, what is the degree of superheat of the suction gas leaving the evaporator?

[BL: Apply CO: 4 Marks: 7]

MODULE - IV

- 7. (a) What do you understand by psychrometric chart and interpret the various lines on it with the help of figure. [BL: Understand | CO: 5|Marks: 7]
 - (b) Calculate i) Relative humidity ii) Humidity ratio iii) Dew point temperature iv) Density v) Enthalpy of atmospheric air when the DBT is 35°C, WBT is 23°C and the barometer reads 750 mm Hg. [BL: Apply| CO: 5|Marks: 7]
- 8. (a) Describe winter air conditioning system. Summarize the procedure for calculating cooling load due to infiltration air. [BL: Understand] CO: 5|Marks: 7]
 - (b) The air-handling unit of an air-conditioning plant supplies a total of 4500 cmm of dry air which comprises by weight 20 per cent fresh air at 40°C DBT and 27°C WBT, and 80 per cent recirculated air at 25°C DBT and 50 per cent RH. The air leaves the cooling coil at 13°C saturated state. Calculate the total cooling load, and room heat gain.

 [BL: Apply] CO: 5|Marks: 7]

MODULE - V

9. (a) Summarize the usage of "heat pump" for heating and cooling cycle with neat diagrams.

[BL: Understand | CO: 6 | Marks: 7]

- (b) With the help of a diagram, illustrate the air washer humidifier and state the advantages of this type. [BL: Understand| CO: 6|Marks: 7]
- 10. (a) Explain in brief the following with a neat diagram:
 - i) Filters ii) Humidifiers used in air conditioning systems. [BL: Understand | CO: 6 | Marks: 7]
 - (b) Apply the Bernoulli's equation for ducts and obtain the expression for a capacity of a duct.

[BL: Apply CO: 6 | Marks: 7]

 $-\circ\circ\bigcirc\circ\circ-$