	Hall Ticket No Question Paper Code: AAEB02
	INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)
	B.Tech III Semester End Examinations (Regular), February – 2021
	Regulation: IARE–R18 ENGINEERING THERMODYNAMICS
Tir	me: 3 Hours (AE) Max Marks: 70
	Answer any Four Questions from Part A Answer any Five Questions from Part B
	$\mathbf{PART} - \mathbf{A}$
1.	List down the thermodynamic properties with respective unit in SI system. [5M]
2.	Discuss the significance of Clausius inequality. [5M]
3.	List out the significant psychrometric properties and explain briefly. [5M]
4.	State the processes in Otto cycle and represent on P-V and T-S. [5M]
5.	State the conditions which lower the volumetric efficiency. [5M]
6.	State the irreversible work and explain state properties with suitable diagram. [5M]
7.	Differentiate between heat engines and reversed heat engines. [5M]
8.	State 'Dalton's law of partial pressure'. [5M]
	$\mathbf{PART} - \mathbf{B}$
9.	Compare and contrast between closed system, isolated system and open system with simple sketch. [10M]
10.	A system comprising of a gas of 5 kg mass undergoes expansion process from 1MPa and 0.5 m^3 to 0.5MPa. Expansion process is governed by, $p.v^{1.3} = C$. The internal energy of gas is given by, $u = 1.8pv + 85$, kJ/kg. Here 'u' is specific internal energy, 'p' is pressure in kPa, 'v' is specific volume in m^3 /kg. Determine heat and work interaction and change in internal energy. [10M]
11.	Describe Carnot cycle and obtain expression for its efficiency as applied to a heat engine. [10M]
12.	An inventor claims that a new heat cycle will develop 0.4 kW for a heat addition of 32.5kJ/min. The temperature of heat source is 1990 K and that of sink is 850 K. Is his claim possible? [10M]
13.	Discuss generation of steam from ice at -20° C at 1 atm with the help of T-H diagrams [10M]
14.	0.004 kg of water vapour per kg of atmospheric air is removed and temperature of air after removing the water vapour becomes 20°C. Assume that condition of atmospheric air is 30°C and 55% R.H. and pressure is 1.0132bar. Determine the following: i) Relative humidity ii) Dew point temperature [10M]
15.	What is an air standard cycle? What are the limitations of air standard cycle? State the assumptions to be taken for its analysis. $[10M]$
16.	An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is $0.00263 m^3$. The initial pressure and temperature are 1 bar and 50°C. If the maximum pressure is limited to 25bar, find the following: i) The air standard efficiency of the cycle. ii) The mean effective pressure for the cycle. Assume the ideal conditions [10M]

- 17. What is LMTD? List the assumptions made to derive LMTD for heat exchanger [10M]
- 18. An exterior wall of a house may be approximated by a 0.1 m layer of common brick ($k = 0.7W/m^{\circ}C$) followed by a 0.04 m layer of gypsum plaster ($k = 0.48W/m^{\circ}C$). What thickness of loosely packed rock wool insulation ($k = 0.065W/m^{\circ}C$) should be added to reduce the heat loss or (gain) through the wall by 80 per cent? [10M]