\square

INSTITUTE OF AERONAUTICAL ENGINEERING

 (Autonomous)B.Tech V Semester End Examinations (Regular), February - 2021

Regulation: IARE-R18
COMPILER DESIGN
Time: 3 Hours
(Common to CSE \| IT)
Max Marks: 70

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. Explain language processing system with neat diagram.
2. Explain context free grammar with examples.
3. Write short notes about syntax directed translation.
4. Elucidate in detail about type systems and type expression.
5. Explain principal sources of optimization with examples.
6. How lexical analyzer is constructed using lex? Give an example.
7. Give informative notes on shift reduce parser. Differentiate SLR, CLR, and LALR parser.
8. Write a short notes on abstract syntax tree.

PART - B
9. Show how the DFA is directly converted from an augmented regular expression (a/b)*abb.
10. Solve the given regular expression using Thompson construction
i) (a/b)*abb
ii) $(0 / \epsilon) \cdot(\mathrm{o} / 1) * 0$
[10M]
11. Design a predictive parsing table for the grammar.
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~F}$
$\mathrm{F} \rightarrow(\mathrm{E}) / \mathrm{id}$ and shows the moves for the input string id $+\mathrm{id} * \mathrm{id}$.
12. Check whether the following grammar is SLR or not. Explain your answer with reasons.
$\mathrm{S} \rightarrow \mathrm{L}=\mathrm{R} \mid \mathrm{R}$
$\mathrm{L} \rightarrow$ * $\mathrm{R} \mid \mathrm{id}$
$\mathrm{R} \rightarrow \mathrm{L}$
[10M]
13. Translate the following expression to quadruple, triple and indirect triple-
$\mathrm{a}=\mathrm{bx}-\mathrm{c}+\mathrm{bx}-\mathrm{c}$.
[10M]
14. Suppose that we have a production $\mathrm{A} \rightarrow \mathrm{BCD} \mathrm{A} \rightarrow \mathrm{BCD}$. Each of the four non terminals $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, and DD have two attributes: ss is a synthesized attribute, and ii is an inherited attribute. For each of the sets of rules below, tell whether
i) the rules are consistent with an S-attributed definition
ii) the rules are consistent with an L-attributed definition, and
iii) whether the rules are consistent with any evaluation order at all
a. A.s=B.i+C.s.A.s=B.i+C.s.
b. A.s=B.i+C.sA.s=B.i+C.s and D. $i=A . i+$ B.s.D. $i=A . i+$ B.s.
c. A.s=B.s+D.sA.s=B.s+D.s
d. A.s=D.i,B.i=A.s+C.s,C.i=B.s,A.s=D.i,B.i=A.s+C.s,C.i=B.s, and D.i=B.i+C.i.D.i=B.i+C.i.
15. Develop a quicksort algorithm for reads nine integers into an array a and sorts them by using the concepts of activation tree.
16. Explain the specification of simple type checker for statements, expressions and functions.
17. Explain the following with respect to code generation phase. i) Input to code generator ii) Target program iii) Memory management iv) Instruction selection v) Register allocation vi) Evaluation order
18. Construct the DAG for the following Basic block \& explain it.
i) $\mathrm{S} 1:=4 *$ i
ii) $\mathrm{S} 2:=\mathrm{a}[\mathrm{S} 1]$
iii) $\mathrm{S} 3:=4^{*} \mathrm{i}$
iv) $\mathrm{S} 4:=\mathrm{b}[\mathrm{S} 3]$
v) $\mathrm{S} 5:=\mathrm{s} 2$ * S 4
vi) $\mathrm{S} 6:=\operatorname{prod}+\mathrm{S} 5$
vii) Prod:= s6
viii) $\mathrm{S} 7:=\mathrm{i}+1$
ix) i $:=\mathrm{S} 7$
if $\mathrm{i}<=20$ goto (1)

