Hall Ticket No Question Paper Code: ACSB21

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech V Semester End Examinations (Regular), February – 2021

Regulation: IARE–R18 MACHINE LEARNING

Time: 3 Hours (CSE | IT) Max Marks: 70

Time: 3 Hours	$(\mathrm{CSE} \mid \mathrm{IT})$	Max Marks: 70
	Answer any Four Questions from Part A Answer any Five Questions from Part B	
	PART - A	
1. Explain the candidate eli	imination algorithm.	[5M]
2. List the issues in decision	[5M]	
3. Write a note on represent	[5M]	
4. Explain Naïve Bayes theo	[5M]	
5. Write short notes on rein	[5M]	
6. Explain task, experience	[5M]	
7. Discuss hypothesis space	search in decision tree learning.	[5M]
8. Mention the importance	of stochastic gradient descent.	$[5\mathbf{M}]$
	PART - B	
9. Distinguish traditional ar learning system.	nd machine learning program. Describe in detail all the steps invol	lved in designing a $[10M]$
10. What do you mean by a define a learning problem	well posed learning problem? Explain the important features that ϵ a.	are required to well [10M]
11. What is the procedure of	building decision tree using ID3 with information gain Illustrate with \ensuremath{ID}	th example. $[10M]$
12. Illustrate Occam's razor a	and relate the importance of Occam's razor with respect to ID3 alg	gorithm. $[10M]$
13. Explain in detail about c	calculating confidence interval for a population proportion.	[10M]
14. Describe the significance networks in artificial inte	of artificial neural network in machine learning. Explain about telligence.	the types of neural [10M]
15. Describe the concept of M	MAP hypothesis, ML hypothesis with suitable example.	[10M]
_	k truth 2 out of 3 times. He throws a die and reports that the nur y that the number obtained is actually a four by using Bayes theor	
17. Describe K-nearest neigh	bour learning algorithm for continuous valued target function.	[10M]
18. Explain Q learning algori	ithm assuming deterministic rewards and actions?	[10M]

- 0 0 0 0 0 -