Hall Ticket No Question Paper Code: ACSB21

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech V Semester End Examinations (Regular), February – 2021

Regulation: IARE–R18 MACHINE LEARNING

Time: 3 Hours (CSE | IT) Max Marks: 70

Time: 3 Hours	$(CSE \mid TI)$	Max Marks: 70
	Answer any Four Questions from Part A Answer any Five Questions from Part B	
$\mathbf{PART}-\mathbf{A}$		
1. Explain the ca	andidate elimination algorithm.	[5M]
2. List the issues	in decision tree learning.	[5M]
3. Write a note o	on representational power of perceptron.	[5M]
4. Explain Naïve	Bayes theorem with example.	[5M]
5. Write short no	otes on reinforcement learning and its applications.	[5M]
6. Explain task, e	experience and performance in checkers learning problem.	[5M]
7. Discuss hypoth	hesis space search in decision tree learning.	$[5\mathrm{M}]$
8. Mention the in	mportance of stochastic gradient descent.	[5M]
$\mathbf{PART}-\mathbf{B}$		
9. Distinguish tra learning system	aditional and machine learning program. Describe in detail all the steps invom.	olved in designing a $[10M]$
10. What do you redefine a learning	mean by a well posed learning problem? Explain the important features that ng problem.	are required to well [10M]
11. What is the pr	cocedure of building decision tree using ID3 with information gain Illustrate wi	th example. $[10M]$
12. Illustrate Occa	am's razor and relate the importance of Occam's razor with respect to ID3 al	gorithm. [10M]
13. Explain in det	ail about calculating confidence interval for a population proportion.	[10M]
	significance of artificial neural network in machine learning. Explain about tificial intelligence.	the types of neural $[10M]$
15. Describe the c	concept of MAP hypothesis, ML hypothesis with suitable example.	[10M]
	wn to speak truth 2 out of 3 times. He throws a die and reports that the number obtained is actually a four by using Bayes theorem.	
17. Describe K-ne	arest neighbour learning algorithm for continuous valued target function.	[10M]
18. Explain Q lear	rning algorithm assuming deterministic rewards and actions?	[10M]

 $-\circ\circ\bigcirc\circ\circ-$