\square

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

B.Tech III Semester End Examinations (Regular), February - 2021

Regulation: IARE-R18
ANALOG ELECTRONICS
Time: 3 Hours
(EEE)
Max Marks: 70

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. With a neat circuit diagram explain the input and output characteristics of BJT in CC configuration.
2. Explain the construction of depletion type P-channel MOSFET.
3. Briefly explain about cascade amplifiers.
4. Explain in detail about voltage shunt feedback amplifier.
5. Explain the operation of non-inverting Op-amp.
6. A transistor employs a $4 \mathrm{k} \Omega$ load and $V_{C C}=13 \mathrm{~V}$. What is the maximum input signal if $\beta=100$?
7. Draw the small-signal model of common source FET amplifier.
8. Draw and explain the operation of an op-amp as differentiator for sine wave input.

PART - B

9. Explain the operation of PN junction diode under forward and reverse bias conditions and sketch the V-I characteristics.
[10M]
10. A p-n-p germanium transistor is used in the self biasing arrangement with $V_{C C}=5 \mathrm{~V}, R_{1}=27 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$, $R_{E}=270 \Omega, R_{C}=2 \mathrm{k} \Omega, \beta=50$. Find $V_{C E Q}$ and $I_{C Q}$.
[10M]
11. Draw the small-signal model of common drain FET amplifier. Obtain the expressions for voltage gain and output resistance?
[10M]
12. A common drain amplifier uses FET having dynamic drain resistance $r_{d}=200 \mathrm{k}$-ohm and $\mu=20$. Calculate the output impedance and voltage gain for following values of load resistor R_{s} : i) 200 ii) 400 iii$) 600$
[10M]
13. Explain the two stage amplifier with Darlington connection. What are the drawbacks of a Darlington amplifier?
[10M]
14. Draw the circuit diagram of direct coupled class-A power amplifier and explain its operation. Show that the maximum conversion efficiency is 25%.
[10M]
15. Determine the expression for frequency oscillation of Hartley oscillator using transistor.
[10M]
16. A quartz crystal has the following constants. $\mathrm{L}=50 \mathrm{mH}, C_{1}=0.02 \mathrm{pF}, \mathrm{R}=500$ and $C_{2}=12 \mathrm{pF}$. Find the values of series and parallel resonant frequencies. If the external capacitance across the crystal changes from 5 pF to 6 pF , find the change in frequency of oscillations
[10M]
17. With a neat diagram explain about square wave generator and determine the frequency of oscillation. [10M]
18. Design an op-amp differentiator that will differentiate an input signal with $f_{\max }=100 \mathrm{~Hz}$. Draw the output waveform for sine wave of 1 V peak at 100 Hz applied to the differentiator. Also repeat it for square wave input.
[10M]
