INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

B.Tech III Semester End Examinations (Regular), February - 2021
 Regulation: IARE-R18 DIGITAL ELECTRONICS

Time: 3 Hours
(EEE)
Max Marks:

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. Explain the number systems in detail with suitable examples.
2. Discuss the operation of parity checker and generator.
3. Write the characteristic equations of SR, JK, D and T flip-flops.
4. Explain the specifications of A / D and D / A converters.
5. Differentiate programmable array logic and programmable logic array.
6. Perform the subtraction using 1's complement method.
i) $(11010)_{2}-(10000)_{2}$
ii) $(1000100)_{2}-(1010100)_{2}$
7. Explain the working of 2 to 4 decoder and also implement a 2 to 4 decoder using 1 to 2 decoders.
8. Explain how a serial shift register can be transformed into a ring counter.

PART - B

9. Explain what do you mean by error detection and correcting code with examples.
10. Solve the canonical SOP form of the following functions
i) $Y(A, B)=A+B$
ii) $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AB}+\mathrm{ACD}$
11. Identify all the prime implicants and essential prime implicants for a given function using k-map.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,6,7,8,9,10,15)$.
[10M]
12. Design a 4 bit BCD to excess 3 code converter. Draw the logic diagram.
[10M]
13. Write short notes on shift register? Mention its application along with the serial transfer in 4 -bit shift registers?
[10M]
14. Explain the JK flip-flop with the help of truth table and timing waveforms.
[10M]
15. Describe the operation of A/D converter with a neat circuit diagram using voltage to frequency method.
[10M]
16. Discuss weighted resistor converter and R-2R ladder D/A converter with a suitable diagram. [10M]
17. Compare logic families of CMOS, TTL and ECL with their specifications.
18. Realizing the following Boolean function using PLA
19. $f_{1}\left(x_{3}, x_{2}, x_{1}, x_{0}\right)=\sum \mathrm{m}(0,1,2,5,7,1014)$,
20. $f_{2}\left(x_{3}, x_{2}, x_{1}, x_{0}\right)=\sum \mathrm{m}(1,2,4,6,7,9,11,13)$
[10M]
