\square

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
B.Tech III Semester End Examinations (Regular), February - 2021

Regulation: IARE-R18
ANALOG AND DIGITAL ELECTRONICS
Time: 3 Hours
(CSE \| IT)
Max Marks: 70

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. Compare the characteristics of half wave rectifier and full wave rectifier.
2. Explain the h parameter model of BJT CE Amplifier.
3. State and prove absorption laws in boolean algebra.
4. Explain in detail about BCD to excess-3 code conversion
5. Explain the operation of serial in and serial out shift register using D-flip flop.
6. Write the expressions for voltage gain, input resistance, current gain and output resistance of CE amplifier.
7. Convert 372.34_{8} to hexadecimal system number.
8. Perform the following operation using 2's complement method i) $48-23$ ii) $23-48$

PART - B

9. Explain in detail about the working principle of full wave rectifier with circuit diagram and waveforms. [10M]
10. Outline the V-I characteristics of p-n junction diode for forward bias and reverse bias voltages.
[10M]
11. Demonstrate the working of transistor in common base configurations and draw its input and output characteristics.
[10M]
12. The h-parameters of a transistor used as an amplifier in the CE configuration are are $h_{i e}=800 \Omega, h_{r e}=5.4 \times 10^{-4}$, $h_{f e}=-50$ and $h_{o e}=80 \times 10^{-6}$. If the load resistance is $5 \mathrm{k} \Omega$ Find A_{i}, R_{i}, R_{o} and A_{v}.
13. Explain what do you mean by error detection and correcting code with examples.
14. Solve the canonical SOP form of the following functions.
i) $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AB}+\mathrm{C}$
ii) $Y(A, B, C, D)=A B+A C D$
15. Implement 8 to 1 multiplexer using 2 to 1 multiplexer and 4 to 1 multiplexer.
16. Explain in detail about a bit comparator with the help of logic diagram.
17. Discuss in detail about SR latch and design it using NAND gates.
18. Design a synchronous counter using JKFF to count the following sequence $0,2,5,6,0 \ldots$. undesired states $1,3,4,7$ must go to 0 on the next clock pulse.
[10M]
