\square

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

B.Tech III Semester End Examinations (Regular), February - 2021

Regulation: IARE-R18
PROBABILITY THEORY AND STOCHASTIC PROCESS
Time: 3 Hours
(ECE)
Max Marks:

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. State and prove Bayes theorem.
2. Give the expression for an arbitrary transformation of a single random variable, with a brief explanation. [5M]

3 . What are the conditions for the 2-dimentional random variable to be uncorrelated and orthogonal?
4. Explain classification of random processes with neat sketches.
5. Explain any two properties of cross-power density spectrum of two random processes.
6. Distinguish between joint distribution and marginal distribution.
7. List any five properties of joint density function of two random variables.
8. State the properties of correlation between two random variables.
PART - B
9. Find M.G.F., mean and variance of binomial distribution.
10. A random variable X has the following probability distribution given in Table 1. Find :
i) The value of a
ii) Cumulative distribution
iii) The smallest value of c for which $\mathrm{P}(\mathrm{X} \leq \mathrm{c})>3 / 4$.
[10M]
Table 1

X	0	1	2	3	4	5	6	7
$\mathrm{f}(\mathrm{x})$	0	a	2 a	2 a	3 a	a^{2}	$2 a^{2}$	$7 a^{2}+\mathrm{a}$

11. Explain the significance of the moment generating function of a random variable.
[10M]
12. Two coins are tossed. X denotes number of heads and Y denotes number of tails. Find
i) Joint p.m.f.
ii) Marginal p.m.f. of (X,Y)
iii) $\mathrm{P}(\mathrm{X} \leq 1, \mathrm{Y}=1)$
iv) $\mathrm{P}(\mathrm{Y} \leq 1)$
[10M]
13. Show that random process $\mathrm{X}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}+\theta)$ is W.S.S.if A and ω are constants θ is uniformly distributed random variable in $(0,2 \pi)$.
[10M]
14. If $\mathrm{X}(\mathrm{t})$ is a Gaussian process, with $\mu(\mathrm{t})=10$ and $\mathrm{C}\left(t_{1}, t_{2}\right)=16$ Find the probability that i) $X(10) \leq 8$
ii) $|\mathrm{X}(10)-\mathrm{X}(6)| \leq 4$
15. Let $\{\mathrm{X}(\mathrm{t}) ;-\infty<\mathrm{t}<\infty\}$ be a process with correlation function $\mathrm{R}(\tau)=\mathrm{ce}^{-\mathrm{a}|\tau|}, \mathrm{c}>0,>0$. Find the spectral density of the process $\{\mathrm{X}(\mathrm{t})\}$.
16. If $S_{X X}(\omega)$ and $S Y Y(\omega)$ are the p.s.d. function of the input $\mathrm{x}(\mathrm{t})$ and the output $\mathrm{y}(\mathrm{t})$ respectively and $\mathrm{H}(\omega)$ is the system transfer function, then $S_{Y Y}(\omega)=|\mathrm{H}(\omega)|^{2} S_{X X}(\omega)$.
[10M]
17. Deduce the cross power spectral density of input and output random processes of a linear time invariant system.
[10M]
18. A random process has the power density spectrum $S_{X X}(\mathrm{w})=w^{2} /\left(w^{2}+1\right)$. Find the average power in the random process.
[10M]
