\square

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech III Semester End Examinations (Regular), February - 2021
 Regulation: IARE-R18
 ELECTROMAGNETIC FIELDS

Time: 3 Hours
(EEE)
Max Marks: 70

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. Write about spherical coordinate systems in detail.
2. Determine the point form of Ohm's Law and write the properties of conductor.
3. State and explain Ampere's circuital law.
4. Obtain the expression for scalar \& vector magnetic potential.
5. Determine the electromagnetic wave equation in free space.
6. Obtain the relation between current and current density.
7. Find the Magnetic flux density at the center of a square loop with side 5 cm carrying a direct current 10A. [5M]
8. State Biot-savart's law and write its application.

PART - B

9. Find the electric field intensity due to infinite long straight line charge distribution.
[10M]
10. A point charge of $10 \mu \mathrm{C}$ is located at $(1,2,3)$ and another point charge of $-3 \mu \mathrm{C}$ is located at $(3,0,2)$ in vaccum. Find the force between them.
11. Obtain the expression for the capacitance of a parallel plates and deduce energy stored in terms of charge.
12. Determine the boundary relation at the boundary between a conductor and a dielectric.
13. Find the magnetic flux density at center of a circular loop of a radius b that carries current I.
[10M]
14. If $\mathrm{A}=(3 \mathrm{y}-3) a_{x}+(2 \mathrm{xy}) a_{y} \mathrm{wb} / \mathrm{m}$ in free space, i$)$ Find $\mathrm{B} \& \mathrm{H}$ at $\mathrm{P}(2,-1,3)$ ii) Show that A is solenoid.
[10M]
15. If the vector magnetic potential is given by $\mathrm{A}=10 /\left(x^{2}+y^{2}+z^{2}\right) u_{x}$, obtain the magnetic flux density in vector form.
[10M]
16. Obtain the expression for inductance of a toroidal coil carrying current I , with N turns and the radius of toroid is ' r '.
17. Prove that curl of H is not equal to zero and determine the expression for modified Ampere law from Faraday's laws.
[10M]
18. In a material for which $\sigma=5.0(\Omega \mathrm{~m})^{-1}$ and $\epsilon_{r}=1$ the electric field intensity is $\mathrm{E}=250 \sin \left(10^{10} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$. Calculate the conduction and displacement current densities and the frequency at which they have equal magnitudes.
