\square

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
B.Tech III Semester End Examinations (Regular), February - 2021

Regulation: IARE-R18
COMPLEX ANALYSIS AND SPECIAL FUNCTIONS
Time: 3 Hours

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. Verify whether the function $\mathrm{u}(\mathrm{x}, \mathrm{y})=e^{x}$ (x siny- y cosy) is harmonic.
2. Prove that $\int_{c} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z=\frac{i}{\pi}$ where C is $|\mathrm{z}|=4$.
3. Explain the types of evaluation of integrals by Cauchy's Residue theorem.
4. Solve the integral $\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x$ using Beta-Gamma functions
5. State the most general solution of Bessel differential equation.
6. Find the analytic function whose imaginary part is $(2 \sin x \sin y) /(\cosh 2 y-\cos 2 x)$.
7. Prove that $\int_{0}^{\frac{\pi}{2}} \sin ^{m} \theta \cos ^{n} \theta d \theta=\frac{1}{2} \beta\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$.
8. Prove that $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
9. If $\mathrm{f}(\mathrm{z})$ is analytic, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
[10M]
10. Find the bilinear transformation which maps the points $z=1, i,-1$ on to the points $w=i, 0,-\mathrm{i}$. Hence find the invariant points of this transformation.
11. Show that $\int_{c} \frac{\cos \pi z^{2}}{(z-1)(z-2)} d z=4 \pi i$ where C is $|z|=3$ using Cauchys integral formule.
12. Using Cauchy's integral formula, evaluate $\int_{c} \frac{z+4}{z^{2}+2 z+5} d z$ where C is the circle $|z+1-i|=2$.
[10M]
13. Expand $f(z)=\int_{c} \frac{(7 z-2)}{z(z-2)(z+1)}$ as a series valid in $1<|z+1|<3$.
[10M]
14. Using contour integration, show that $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{3}$
[10M]
15. Express the following integral as Beta function and then in terms of Gamma function $\int_{0}^{\infty} \frac{y}{\left(1+y^{3}\right)^{2}} d y$.
16. Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.
17. Make use of generating function show that $\sin (x \sin \theta)=2\left(J_{1} \sin \theta+J_{3} \sin 3 \theta+J_{5} \sin 5 \theta \ldots \ldots.\right)$.
18. Prove the relation $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x$.
