Hall Ticket No	Question Pa	per Code: AHSB05
	NSTITUTE OF AERONAUTICAL ENGINEERIN (Autonomous)	3
TON YOR UNC	B.Tech III Semester End Examinations (Regular), February – 2021 Regulation: IARE–R18 COMPLEX ANALYSIS AND SPECIAL FUNCTIONS	
Time: 3 Hours	(ECE)	Max Marks: 70
	Answer any Four Questions from Part A Answer any Five Questions from Part B	
	$\mathbf{PART} - \mathbf{A}$	
1. Verify whethe	r the function $u(x,y) = e^x$ (x siny-y cosy) is harmonic.	[5M]

		[011-]
2.	Prove that $\int_{C} \frac{e^z}{(z^2+\pi^2)^2} dz = \frac{i}{\pi}$ where C is $ \mathbf{z} = 4$.	[5M]
3.	Explain the types of evaluation of integrals by Cauchy's Residue theorem.	[5M]
4.	Solve the integral $\int_{0}^{a} x^{4} \sqrt{a^{2} - x^{2}} dx$ using Beta-Gamma functions	[5M]
5.	State the most general solution of Bessel differential equation.	[5M]
6.	Find the analytic function whose imaginary part is $(2 \sin x \sin y)/(\cosh 2y - \cos 2x)$.	[5M]
7.	Prove that $\int_{0}^{\frac{\pi}{2}} \sin^{m} \theta \cos^{n} \theta d\theta = \frac{1}{2} \beta \left(\frac{m+1}{2}, \frac{n+1}{2} \right).$	[5M]

8. Prove that
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x.$$
 [5M]

PART - B

9. If f(z) is analytic, prove that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$$
. [10M]

10. Find the bilinear transformation which maps the points z=1,i,-1 on to the points w=i,0,-i. Hence find the invariant points of this transformation. [10M]

11. Show that
$$\int_{c} \frac{\cos \pi z^2}{(z-1)(z-2)} dz = 4\pi i$$
 where C is $|z|=3$ using Cauchys integral formule. [10M]

- 12. Using Cauchy's integral formula, evaluate $\int_{c} \frac{z+4}{z^2+2z+5} dz$ where C is the circle |z+1-i|=2. [10M]
- 13. Expand $f(z) = \int_{c} \frac{(7z-2)}{z(z-2)(z+1)}$ as a series valid in 1 < |z+1| < 3. [10M]
- 14. Using contour integration, show that $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)} = \frac{\pi}{3}$ [10M]
- 15. Express the following integral as Beta function and then in terms of Gamma function $\int_{0}^{\infty} \frac{y}{(1+y^3)^2} dy.$
- 16. Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. [10M]
- 17. Make use of generating function show that $\sin(x\sin\theta) = 2(J_1\sin\theta + J_3\sin3\theta + J_5\sin5\theta....)$. [10M]

18. Prove the relation
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x.$$
 [10M]

 $-\circ\circ\bigcirc\circ\circ-$

[10M]