\square

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
B.Tech III Semester End Examinations (Regular), February - 2021

Regulation: IARE-R18
PROBABILITY AND STATISTICS
Time: 3 Hours
(AE|ME)
Max Marks: 70

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. Out of 24 mangoes, 6 mangoes are rotten. If we draw two mangoes. Obtain probability distribution of number of rotten mangoes that can be drawn. also find the expectation.
2. The probability of a component's failure is 0.05 . Out of 14 components what is the probability that
i) Atmost 3 will fail
ii) Atleast 3 will fail
3. State the definition of the regression equation of X_{1} on X_{2} and X_{3}.
4. List out the differences between large and small samples with example.
5. Find $F_{0.95}$ with $(19,24)$ degrees of freedom.
6. A continuous RV X has the density function $f(x)$ given by $f(x)=c\left(x^{2}+1\right), 1<x<3$. Find the value of C.[5M]
7. A car hire firm has two cars which it hires out daily. The number of demands for a car on each day is distributed as Poisson variate with mean $\lambda=1.5$. Obtain the proportion of days on which
i) There was no demand
ii) Demand is refused.
[5M]
8. Outline the classical definition of probability. A coin is tossed 9 times. calculate the probability of getting 5 heads.

PART $-\mathbf{B}$
9. If the CDF of a RV X is given by $f(x)=\left\{\begin{array}{c}0, \mathrm{x}<0 \\ \frac{x^{2}}{16} 0 \leq x \leq 4 \text {. Find } \mathrm{P}(1<\mathrm{X}<5) \text {. } \\ 1 \quad x \geq 4\end{array}\right.$
10. If the density function of a continuous RV ' X ' is given by $f(x)=\left\{\begin{array}{l}a x, 0 \leq x \leq 1 \\ a, 1 \leq x \leq 2 \\ 3 \mathrm{a}-\mathrm{ax}, 2 \leq x \leq 3 \\ 0, \text { otherwise }\end{array}\right.$
i) Find the value of a
ii) Find expectation of X
[10M]
11. Out of 800 families with 4 children each, how many families would be expected to have i) 2 boys and 2 girls
ii) Atleast 1 boy iii) At most 2 girls and iv) Children of both sexes
[10M]
12. It is known that the probability of an item produced by a certain machine will be defective is 0.05 . If the produced items are sent to the market in packets of 20 , find the number of packets containing atleast, exactly and at most 2 defective items in a consignment of 1000 packets using binomial distribution.
[10M]

Table 1

X	1	2	3	4	5	6	7	8	9
Y	9	10	11	12	13	14	15	16	17

14. Determine the coefficient of correlation for the following data in Table 2:

Table 2

Number of tourists X	200	350	300	400	350	420	480
Profit Y	90	130	130	170	140	160	180

15. A sample of 900 members has mean of 3.4 and S.D of 2.61.is This sample has been taken from a large population mean 3.25 and S.D 2. 61? Also calculate 95% confidence interval.
[10M]
16. The average marks scored by 32 boys is 72 with an SD of 8 , while that for 36 girls is 70 with an SD of 6 . Test at 1% level of significance whether the boys perform better than girls.
[10M]
17. A group of 10 rats fed on a diet A and another group 8 rats fed on diets recorded the following increases on weight in Table 3 . Find the variances are significantly different.
[10M]
Table 3

Diet A	5	6	8	1	12	4	3	9	6	10
Diet B	2	3	6	8	10	1	2	8		

18. The following Table 4 are the average weekly losses of working hours due to accidents in ten industrial plants before and after an introduction of a safety program was put into operation

Table 4

Before	45	73	46	124	33	57	83	34	26	17
After	36	60	44	119	35	51	77	29	24	11

i) Use to 5% to test whether the safety program is effective. ii) Find if the variance are significantly at 1%

