

$\mathbf{MODULE}-\mathbf{I}$

1.	(a)	a) State and explain the ground clearance to be maintained in overhead distribution and						
		transmission lines installation as per electrical safety standards.	[7M]					
	(b)	Discriminate the earthing and grounding of power installations. Explain the various ground used in electrical system installations.	[7M]					
2.	(a)	List and explain the various firefighting equipment required in commercial buildings.	[7M]					
	(b)	Explain the principle of unsafe acts and conditions behind electrical accident.						
		Give an example.	[7M]					

$\mathbf{MODULE}-\mathbf{II}$

- 3. (a) State and explain the dos and don'ts for safety in the use of domestic electrical appliances.[7M]
 - (b) Prepare the bill of quantities (BoQ) for installation of a 5 HP mono block pump for suction of 4 inch with delivery of 3 inch. Where bore depth is 210 feet and required delivery 300 feet with two right angle bends. The service point available at 50 meters away from pump. [7M]
- 4. (a) List the causes for water taps and wet walls giving shock, recommend safety devices to be installed to save from the above shocks. [7M]
 - (b) What are the failure modes of flashover in the air gaps? Explain causes of overheating and thermal failure in electrical equipment. [7M]

$\mathbf{MODULE}-\mathbf{III}$

5.	(a)	Explain the preliminary preparations to be followed for safe installations of industrial				
		installations. [7M]				
	(b)	Analyze the various personal safety equipment used while industrial installations were under progress. [7M]				
6.	(a)	State and explain essential safety precautions to be taken during installation of a power plant.				
		[7M]				
	(b)	Describe safety precautions related with installation of metal-enclosed draw-out switchgear. [7M]				

$\mathbf{MODULE}-\mathbf{IV}$

7.	(a)	List the objectives of safety studies?	Explain	the interface	between	industrial	safety	and	electrical
		safety.							[7M]

- (b) List and explain the classification of equipment enclosure for various hazardous gases and vapours.
 - [7M]
- 8. (a) State and explain the personal protective equipment for working over hazards. [7M]
 - (b) Explain the principle of multiple causes behind an accident with an example. [7M]

$\mathbf{MODULE}-\mathbf{V}$

- 9. (a) State the root causes of accidents at construction site. Explain safety organisation at construction site of an electrical plant. [7M]
 - (b) List the causes for low power factor in industries. Suggest various methods to improve the power factor in industry. [7M]
- 10. (a) Explain the need for specifying minimum creepage distance for insulators. Why it depends on pollution level ? [7M]
 - (b) Design a automatic control for dynamic power factor control for the load variation from 750 to 1250 kW of 0.75 to 0.95 PF lagging correct to 0.98 PF lagging. [7M]

 $-\circ\circ\bigcirc\circ\circ-$