

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
B.Tech IV Semester End Examinations (Regular/Supplementary) - July, 2021

Regulation: R18

ELECTROMAGNETIC WAVES AND TRANSMISSION LINES
Time: 3 Hours
(ECE)
Max Marks: 70
Answer FIVE Questions choosing ONE question from each module
(NOTE: Provision is given to answer TWO questions from any ONE module)
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Derive the electric flux density by using Gauss's law for the following charge distributions.
i) Point charge
ii) Infinite line charge
(b) Given point $\mathrm{P}(-2,6,3)$ and vector. $\vec{A}=y \hat{a}_{x}+(x+z) \hat{a}_{y}$ Translate P and in cylindrical co-ordinates.
Given vectors $\vec{A}=3 \hat{a}_{x}+4 \hat{a}_{y}+\hat{a}_{z}$ and $\vec{B}=2 \hat{a}_{y}+4 \hat{a}_{z}$ Find the angle between A and B. [7M]
2. (a) Derive the boundary conditions for the tangential and normal components of electrostatic fields at the boundary between two dielectrics.
(b) Verify Stokes's theorem for $\vec{A}=\rho \cos \phi \hat{a}_{\rho}+\sin \phi \hat{a}_{\phi}$ around the path shown in the Figure 1. [7M]

Figure 1

MODULE - II

3. (a) State and explain Biot-Savart's law and Ampere's circuit law.
[7M]
(b) Given the magnetic vector potential $\vec{A}=-\frac{\rho}{4} \hat{a}_{z} \mathrm{~Wb} / \mathrm{m}$, calculate the total magnetic flux crossing the surface $\varphi=\pi / 2,1 \leq \rho \leq 2 \mathrm{~m}$, and $0 \leq \mathrm{z} \leq 5 \mathrm{~m}$.
4. (a) Write down the Maxwell's equations in integral form and differential form for time varying fields.
(b) A charged particle of mass 2 kg and charge 3 C starts at point ($1,-2,0$) with velocity $4 \hat{a}_{x}+3 \hat{a}_{z} \mathrm{~m} / \mathrm{s}$ in an electric field $12 \hat{a}_{x}+10 \hat{a}_{y} \mathrm{~V} / \mathrm{m}$. At time $\mathrm{t}=2 \mathrm{~s}$, calculate the acceleration of the particle and its velocity.
[7M]

MODULE - III

5. (a) Write short notes on the following i) Brewster angle ii) Total internal reflection and iii) Uniform plane wave.
[7M]
(b) The electric field in free space is given by $\vec{E}=50 \cos \left(10^{8} t+\beta x\right) \hat{a}_{y} \mathrm{~V} / \mathrm{m}$. Find the direction of wave propagation and calculate the time it takes to travel $\lambda / 2$.
[7M]
6. (a) Give the expression for transmission coefficient for horizontal polarization with oblique incidence.
[7M]
(b) In a lossless dielectric for which $\eta=60 \pi, \mu_{r}=1$ and $\mathrm{H}=-0.1 \cos (\omega \mathrm{t}-\mathrm{z}) a_{x}+0.5 \sin (\omega \mathrm{t}-\mathrm{z})$ $a_{y} \mathrm{~A} / \mathrm{m}$. Calculate ϵ_{r}, ω and E .
[7M]

MODULE - IV

7. (a) Draw the equivalent circuit for an open wire transmission line and also obtain transmission line equations of voltage and current.
[7M]
(b) Calculate the characteristic impedance of a quarter wave transformer if a 120 ohm load is to be matched to a 75 ohm line.
8. (a) Discuss the condition for loss less and distortion less transmission lines.
(b) A transmission line operating at 500 MHz has $Z_{o}=80 \Omega, \alpha=0.04 \mathrm{~Np} / \mathrm{m}, \beta=1.5 \mathrm{rad} / \mathrm{m}$. Find the line parameters $\mathrm{R}, \mathrm{L}, \mathrm{G}$, and C .
[7M]

MODULE - V

9. (a) Briefly describe about quarter-wave transformer and explain how it can be made use of any impedance matching.
[7M]
(b) A lossless 50Ω transmission line is terminated in a load with $Z_{L}=(50+\mathrm{j} 25) \Omega$. Find the following: (i) The reflection coefficient Γ. (ii) The standing-wave ratio.
(iii) The input impedance at 0.35λ from the load.
10. (a) Write short notes on i) Sing stub matching ii) Double stub matching.
[7M]
(b) The 0.1λ length line shown in Figure 2 has a characteristics impedance of 50Ω and terminated by a load impedance of $Z_{L}=5+\mathrm{j} 25 \Omega$. Find:
i) VSWR;
ii) Impedance for $\mathrm{l}=0.1 \lambda$;
iii) Reflection coefficient at load.
[7M]

Figure 2

$$
-\circ \circ \bigcirc \circ \circ-
$$

