

Answer FIVE Questions choosing ONE question from each module (NOTE: Provision is given to answer TWO questions from any ONE module) All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{MODULE}-\mathbf{I}$

1.	(a) Derive the expression for evaluating mean square errors and its types.	[7M]
	(b) A continuous-time signal $x(t)$ is shown in Figure 1.	[7M]

Figure 1

i) Sketch
$$y(t) = 2x(-0.5t + 2)$$

ii) Sketch the even and odd part of the signal $\mathbf{x}(t)$.

2.	(a) Define and sketch the following elementary continuous time signals:	
	i) Unit impulse signal ii) Unit step signal iii) Unit ramp signal	[7M]
	(b) Find, whether $x(t) = Ae^{-at}u(t)$ for $a > 0$ is an energy signal or power signal.	[7M]

$\mathbf{MODULE}-\mathbf{II}$

3.	(a) Obtain the Fourier transform of the following functions:	
	i) Impulse signal ii) Single symmetrical gate pulse.	[7M]
	(b) Find the Fourier transform of the function	
	$x(t) = te^t u(t+2)$	[7M]

- 4. (a) State and prove any four properties of continuous time Fourier series.
 - (b) Find the Fourier series coefficient of the signal x(t) shown in Figure 2.

Figure 2

$\mathbf{MODULE}-\mathbf{III}$

- 5. (a) What is cross correlation? Explain the properties of cross correlation [7M]
 - (b) Compute the output y(t) for a continuous time LTI system whose impulse response h(t) and the input x(t) are given by x(t) = u(t) u(t 3), h(t) = u(t) u(t 2)

[7M]

[7M]

[7M]

- 6. (a) What is linear time invariant (LTI) system? Derive an expression for the transfer function of LTI system.
 [7M]
 - (b) Use graphical method to find out the convolution of two sequences $x_1[n] = [1,-1, 2, 3]$ and $x_2(n) = [1, -2, 3, -1]$ [7M]

$\mathbf{MODULE}-\mathbf{IV}$

7.	7. (a) What is meant region of convergence (ROC) in Laplace transforms? Dis ROC for Laplace transform.	scuss the properties of [7M]
	(b) Find the inverse Laplace transform of the following function $X(s) = \frac{2s+4}{s^2+4s+3}$ where Re(s)<-3	[7M]
8.	8. (a) What is condition for existence of Z- transform? State and prove any two Z- transformation.	properties of [7M]
	(b) Find the Z-transform of the following discrete time signal $x(n) = n \left(\frac{1}{3}\right)^n u(n) + 0.5 \left(\frac{1}{3}\right)^n u(n)$	[7M]

$\mathbf{MODULE}-\mathbf{V}$

9.	(a)	What is aliasing and how it can be minimized? Write the condition to avoid the aliasing effect?
		[7M]
	(b)	State and prove Nyquist sampling theorem. What is the Nyquist's Frequency for the signal
		$x(t) = 3 \cos 50t + 10 \sin 300t - \cos 100t$? [7M]
10.	(a)	State and prove the sampling theorem for a band limited signal. Explain about band pass
		sampling. [7M]
	(b)	Prove that the auto-correlation function and energy density spectrum form a Fourier transform pair. [7M]