INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
B.Tech IV Semester End Examinations (Regular/Supplementary) - July, 2021

Regulation: R18

SIGNALS AND SYSTEMS
Time: 3 Hours
(ECE)
Max Marks:
Answer FIVE Questions choosing ONE question from each module
(NOTE: Provision is given to answer TWO questions from any ONE module)
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Derive the expression for evaluating mean square errors and its types.
(b) A continuous-time signal $\mathrm{x}(\mathrm{t})$ is shown in Figure 1.

Figure 1
i) Sketch $y(t)=2 x(-0.5 t+2)$
ii) Sketch the even and odd part of the signal $x(t)$.
2. (a) Define and sketch the following elementary continuous time signals:
i) Unit impulse signal ii) Unit step signal iii) Unit ramp signal
(b) Find, whether $x(t)=A e^{-a t} u(t)$ for $a>0$ is an energy signal or power signal.
MODULE - II
3. (a) Obtain the Fourier transform of the following functions:
i) Impulse signal ii) Single symmetrical gate pulse.
(b) Find the Fourier transform of the function
$x(t)=t e^{t} u(t+2)$
4. (a) State and prove any four properties of continuous time Fourier series.
(b) Find the Fourier series coefficient of the signal $x(t)$ shown in Figure 2.

Figure 2

MODULE - III

5. (a) What is cross correlation? Explain the properties of cross correlation
[7M]
(b) Compute the output $y(t)$ for a continuous time LTI system whose impulse response $h(t)$ and the input $\mathrm{x}(\mathrm{t})$ are given by $x(t)=u(t)-u(t-3), h(t)=u(t)-u(t-2)$
6. (a) What is linear time invariant (LTI) system? Derive an expression for the transfer function of LTI system.
(b) Use graphical method to find out the convolution of two sequences
$\mathrm{x}_{1}[\mathrm{n}]=[1,-1,2,3]$ and $\mathrm{x}_{2}(\mathrm{n})=[1,-2,3,-1]$
[7M]

MODULE - IV

7. (a) What is meant region of convergence (ROC) in Laplace transforms? Discuss the properties of ROC for Laplace transform.
(b) Find the inverse Laplace transform of the following function $X(s)=\frac{2 s+4}{s^{2}+4 s+3}$ where $\operatorname{Re}(\mathrm{s})<-3$
[7M]
8. (a) What is condition for existence of Z- transform? State and prove any two properties of Z- transformation.
(b) Find the Z-transform of the following discrete time signal

$$
\begin{equation*}
x(n)=n\left(\frac{1}{3}\right)^{n} u(n)+0.5\left(\frac{1}{3}\right)^{n} u(n) \tag{7M}
\end{equation*}
$$

MODULE - V

9. (a) What is aliasing and how it can be minimized? Write the condition to avoid the aliasing effect?
[7M]
(b) State and prove Nyquist sampling theorem. What is the Nyquist's Frequency for the signal $\mathrm{x}(\mathrm{t})=3 \cos 50 \mathrm{t}+10 \sin 300 \mathrm{t}-\cos 100 \mathrm{t}$?
10. (a) State and prove the sampling theorem for a band limited signal.Explain about band pass sampling.
(b) Prove that the auto-correlation function and energy density spectrum form a Fourier transform pair.
