INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
B.Tech IV Semester End Examinations (Regular/Supplementary) - July, 2021

Regulation: R18

THEORY OF COMPUTATION
Time: 3 Hours
(CSE|IT)
Max Marks: 70
Answer FIVE Questions choosing ONE question from each module
(NOTE: Provision is given to answer TWO questions from any ONE module)
All Questions Carry Equal Marks
All parts of the question must be answered in one place only
MODULE - I

1. (a) Construct NFA with epsilon for the regular expression $=(a \mid b)^{*} a b b$ and convert into DFA and further find the minimized DFA.
(b) Consider the following NFA- ϵ for an identifier. Consider the ϵ-closure shown in Figure 1 of each state and find its equivalent DFA.

Figure 1
2. (a) Convert the following NFA to DFA shown in Table 1.

Table 1

States	Inputs	
	0	1
$\rightarrow p$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}\}$
q	$\{\mathrm{r}\}$	$\{\mathrm{r}\}$
r	$\{\mathrm{s}\}$	ϕ
s	$\{\mathrm{s}\}$	$\{\mathrm{s}\}$

(b) Design a NFA that accepts the following strings over the alphabet $\{0,1\}$. The set of all strings that begins with 01 and ends with 00 . Check for the validity of 011100 and 01100 strings and find its equivalent DFA.

MODULE - II

3. (a) Write in detail about closure properties of regular languages
[7M]

Figure 2
4. (a) Construct a minimized finite automata for the regular rxpression $\left(a(a+b)^{*} a\right)$
(b) Prove that the following languages are not regular.

$$
\begin{gathered}
L=\left\{w \epsilon\{a, b\} \mid w=w^{R}\right\} \\
L=\left\{0^{n} 1^{2 n} \mid n \geq 1\right\}
\end{gathered}
$$

MODULE - III

5. (a) Given the grammar $G=\left(V, \sum, R, E\right)$ where

$$
\begin{gathered}
V=\{E, D, a, 1,2,3,4,5,6,7,8,9,0,+,-, /,(,)\} \\
\sum=\{1,2,3,4,5,6,7,8,9,0,+,-, /,(,)\}
\end{gathered}
$$

R contains the following rules

$$
\begin{gathered}
E \rightarrow D|(E)| E+E|E-E| E * E \mid E / E \\
D \rightarrow 0|1| 2|3| \ldots . .9
\end{gathered}
$$

Find a parse tree for the string $1+2 * 3$.
(b) Let G be the grammar with

$$
\begin{gathered}
S \rightarrow a B \mid b A \\
A \rightarrow a|a S| b A A \\
B \rightarrow b|b S| a B B
\end{gathered}
$$

for the string $a a a b b a b b b a$ find the leftmost derivation and rightmost derivation.
6. (a) Construct the following grammar in CNF.

$$
\begin{gathered}
S \rightarrow a b S b a|b A a B| b b \\
A \rightarrow a a \mid a S A b \\
B \rightarrow A a \mid a b b
\end{gathered}
$$

(b) Convert the following grammar G into Greibach normal form (GNF)

$$
\begin{gathered}
S \rightarrow A B \\
A \rightarrow B S \mid b \\
B \rightarrow S A \mid a
\end{gathered}
$$

MODULE - IV
7. (a) Construct a PDA for the CFG given below:

$$
\begin{gathered}
S \rightarrow a S b b \\
S \rightarrow a a b
\end{gathered}
$$

(b) Construct PDA for the language $a^{n} b^{m} a^{n+m}$
8. (a) Show that $\mathrm{L}(\mathrm{P})$ is language acceptance by final state and $\mathrm{N}(\mathrm{P})$ is language acceptance by empty stack.
(b) Convert PDA to CFG. PDA is given by
$P=(\{p, q\},\{0,1\},\{X, Z\}, \delta,\{q\}, Z)$ where δ is given by,

$$
\begin{gathered}
\delta(p, 1, Z)=(p, X Z) \\
\delta(p, \epsilon, Z)=\{(p, \epsilon)\} \\
\delta(p, 1, X)=(p, X X) \\
\delta(q, 1, X)=(q, \epsilon) \\
\delta(p, 0, X)=(q, X) \\
\delta(q, 0, Z)=(p, Z)
\end{gathered}
$$

MODULE - V

9. (a) Describe the Chomsky hierarchy of languages.
(b) Design a Turing machine to accept the language $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$. Draw the transition diagram. Also specify the instantaneous description to trace the string 0011.
10. (a) State and describe the halting problem for Turing machine.
(b) Construct a Turing Machine to accept palindrome in an alphabet set $\sum=\{a, b\}$. Trace the string 'ababa' and 'aab
