INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
B.Tech IV Semester End Examinations (Regular/Supplementary) - July, 2021

Regulation: R18

DESIGN AND ANALYSIS OF ALGORITHMS
Time: 3 Hours
(CSE|IT)
Max Marks: 70
Answer FIVE Questions choosing ONE question from each module
(NOTE: Provision is given to answer TWO questions from any ONE module)
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) What is stable sorting method? Is merge sort a stable sorting method? Justify .
[7M]
(b) Identify the tracing steps of merge sort and quicksort and analyze the time complexity for the following data: $33,44,2,10,25$.
[7M]
2. (a) Define various asymptotic notations used for best case, average case and worst case analysis of algorithms.
(b) Apply Strassen's matrix multiplication algorithm to multiply two matrices and justify how it is better than normal method.
[7M]
MODULE - II
3. (a) Compare the approaches of BFS and DFS methods and derive the time complexities of both methods for the inputs of adjacency lists and adjacency matrix separately.
(b) Construct DFS and BFS traversal trees of the graph shown in Figure 1.

Figure 1
4. (a) Discuss the design steps in Kruskal's algorithm to construct minimum spanning tree. Explain the breadth first search algorithm with suitable examples.
(b) Construct binary tree from the following inorder sequence: 4, 8, 2, 5, 1, 6, 3, 7 and postorder sequence: $8,4,5,2,6,7,3,1$.
5. (a) Explain control abstraction of greedy method, how it is useful for real time problems.
[7M]
(b) Choose shortest distances using all pairs shortest path algorithm for the graph shown in Figure 2.

Figure 2
6. (a) Explain the travelling salesman problem and discuss how to solve it using dynamic programming?
[7M]
(b) Solve knapsack problem by dynamic Programming method $n=6,(\mathrm{p} 1, \mathrm{p} 2, \ldots \mathrm{p} 6)=(\mathrm{w} 1, \mathrm{w} 2, \ldots \mathrm{w} 6)=$ ($100,50,20,10,7,3$) and $\mathrm{m}=165$.

MODULE - IV

7. (a) Explain 8-Queens problem with a backtracking algorithm. Using Backtracking enumerate how can you solve Hamiltonian cycle problem.
[7M]
(b) Build the state space tree generated by FIFO knapsack for the instance $\mathrm{N}=4$, (P1, P2, P3, P4) $=(10,10,12,18),(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(2,4,6,9), \mathrm{m}=15$.
8. (a) What is branch and bound? . With suitable example, demonstrate first in first out branch and bound solution.
(b) Explain TSP using branch and bound method with example.

MODULE - V

9. (a) Describe the approximation algorithm for NP-hard problem. Compare P class with NP class.
(b) Explain non deterministic algorithm for sorting non-deterministic knapsack algorithm. [7M]
10. (a) Prove that clique decision problem is NP - Complete. Explain chromatic number decision problem.
(b) Explain and prove Cook's theorem with suitable examples.
