INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
B.Tech IV Semester End Examinations (Regular/Supplementary) - July, 2021

Regulation: R18
FLUID MECHANICS AND MACHINES
Time: 3 Hours
(ME)
Max Marks: 70
Answer FIVE Questions choosing ONE question from each module
(NOTE: Provision is given to answer TWO questions from any ONE module)
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT - I

1. (a) List out and explain the significant properties of fluid along with their mathematical expressions.
[7M]
(b) The space between two horizontal square flat plates of sides 0.7 m each is filled with a lubricant film of thickness 1 cm . The upper plate requires a force of 100 N to maintain its speed of $2 \mathrm{~m} / \mathrm{s}$ while the lower plate is fixed. Evaluate the dynamic viscosity in poise and the kinematic viscosity in stokes of the lubricant if its specific gravity is 0.96 .
2. (a) State and derive impulse-momentum equation for steady flow.
[7M]
(b) The smaller diameter 0.1 m of a 4 m long pipe at lower level is inclined at an angle of 30^{0} with the horizontal and its large diameter is 0.3 m . If the velocity of water at the smaller diameter section is $2 \mathrm{~m} / \mathrm{s}$, then calculate the difference of pressure between the smaller and larger diameter sections of the pipe.

UNIT - II

3. (a) Derive acceleration of fluid flow by Lagrangian method.
[7M]
(b) Explain the working of Venturi meter with a neat sketch and determine the coefficient of discharge.
4. (a) Discuss various hydraulic coefficients. Distinguish between laminar and turbulent flow. [7M]
(b) Find the velocity and acceleration components at point $A(1,2,3) \mathrm{m}$ and at $t=2 s$ for the fluid flow described by the velocity vector $V=\left(2 x^{3}\right) i-\left(5 x^{2} y\right) j+(3 t) k$

UNIT - III
5. (a) Discuss the various minor losses in a pipe flow with simple sketch.
[7M]
(b) If the velocity distribution in the boundary layer is given by $\frac{u}{U}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}$, where δ is the boundary layer thickness. determine the displacement thickness.
6. (a) Enlist the effects of boundary layer separation. Discuss the methods to control.
(b) The petrol of specific gravity 0.74 flows at a rate of $0.06 \mathrm{~m}^{3} / \mathrm{s}$ through a pipe of length 1250 m and diameter 0.25 m . If the coefficient of friction is $f=0.002$ in the Darcy-Weisbach equation, then determine (i) The loss of head due to friction, (ii) Shear stress on the pipe wall, (iii) Shear velocity and (iv) Power required to maintain the flow
[7M]

UNIT - IV

7. (a) Enumerate the functions of draft tube used in turbine. Explain its different types with neat sketch.
[7M]
(b) A turbine is to operate under a head of 30 m at 190 rpm and the discharge is $8 \mathrm{~m}^{3} / \mathrm{s}$. If the efficiency is 85%, then determine (i) The power generated, (ii) Specific speed of the turbine, (iii) Type of turbine and (iv) The performance of turbine under a head of 20 m .
[7M]
8. (a) Explain the construction and working of a Pelton turbine with a neat diagram.
[7M]
(b) A Kaplan turbine working under a head of 5.5 m develops 2950 kW . It is fitted with a draft tube having inlet diameter 3 m and it is placed 1.6 m above the tail race level. The vacuum gauge connected to the inlet of draft tube reads 5 m of water. If the efficiency of draft tube is 75%, then determine the efficiency of the turbine. Take atmospheric pressure head as 10.3 m of water.
[7M]
UNIT - V
9. (a) With neat sketch explain the construction and working principle of reciprocating pump. [7M]
(b) The internal and external diameters of a centrifugal pump are 10 cm and 20 cm respectively. It runs at 2800 rpm and delivers $0.105 \mathrm{~m}^{3} / \mathrm{s}$ of water. The widths of impeller at the inlet and outlet are 2 cm and 1 cm , respectively. The water enters the impeller radially at the inlet and impeller blade angle at the exit is 45^{0}. Determine the pressure rise in the impeller by assuming that flow velocity as constant and neglecting losses through it.
10. (a) Discuss the importance and applications of model study.
[7M]
(b) The velocity through a circular orifice depends on the head H causing the flow, diameter of the orifice D , coefficient of viscosity μ, mass density ρ and the acceleration due to gravity g. Using Buckingham pi theorem, obtain an expression for V.
[7M]
